Contents lists available at ScienceDirect

Surfaces and Interfaces

journal homepage: www.sciencedirect.com/journal/surfaces-and-interfaces

Insight into the development of silica-based materials as photocatalysts for CO₂ photoconversion towards CH₃OH: A review and recent progress

M.B. Bahari^a, A.A. Jalil^{b,*}, C.R. Mamat^a, N.S. Hassan^b, H.D. Setiabudi^c, D.-V.N. Vo^d

^a Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

^b School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia

^c Faculty of Chemical and Process Engineering Technology, College of Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang,

Kuantan, Pahang, Malaysia

^d Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam

ARTICLE INFO

Keywords: Methanol CO₂photoconversion Silica-based Photocatalyst Renewable

ABSTRACT

High exploitation of fossil fuel energy has resulted in substantial CO_2 emissions into the atmosphere, leading to severe global warming. Tremendous strategies have been developed to explore possible approaches in minimizing the content of CO_2 in the atmosphere. CO_2 photoconversion into CH_3OH has been put forward as a promising strategy since anthropogenic CO_2 is utilized to generate valuable CH_3OH assisting by clean solar energy. Silica-based materials have emerged as potential candidates for photocatalysts is accredited to their mesoporous framework with a large surface area, flexible tunability pore sizes, excellent thermal stability, and capability to suppress metal particle growth. Thus, this review encompasses the current progress on applying and developing silica-based materials as photocatalysts for CO_2 photoconversion into CH_3OH . Apart from that, fundamental aspects of the mechanism, the factors affecting performance, and the efficiency of silica-based materials in CO_2 photoconversion into CH_3OH are also comprehensively highlighted. The difficulties and prospects of CO_2 photoconversion into CH_3OH are also discussed. In general, the most recent scenarios recommended further investigation to explore these materials since CO_2 photoconversion to CH_3OH has not been adequately investigated in the literature.

1. Introduction

According to the British Petroleum's (BP) *Statistical Review of World Energy 2020*, fossil fuels account for around 84% of global primary energy usage [1]. The continued consumption of fossil fuels to satisfy global energy demands has significantly amplified carbon dioxide (CO₂) content in the atmosphere. Although CO₂ is also recognized as environmentally abundant and can be considered harmless, the high content of CO₂ in the atmosphere sparks serious world's environmental problems such as climate crisis and ocean acidification [2]. According to the International Panel on Climate Change (IPCC), atmospheric CO₂ levels could reach 590 parts per million by 2100, with a 1.9 °C rise in global mean temperature [3]. Hence, it is vital to uncover an alternative approach to mitigate the CO₂ content in the atmosphere. The diminution of CO₂ in the atmosphere can be handled by various techniques, including carbon capture and storage (CCS) and CO₂ utilization [4,5].

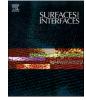
(CO₂) explored, the photocatalytic approach, known as artificial photosynenvithesis, has attracted significant attention in academic fields since this economic and eco-friendly approach can convert undesirable CO₂ into valuable products using solar energy. Among the valuable products the

photocatalytic [9] approach.

valuable products using solar energy. Among the valuable products, the CO_2 photoconversion into methanol (CH₃OH) has gained significant interest owing to CH₃OH's broad applications in critical industrial sectors such as feedstock for chemicals synthesis, fuels for transportation, and power generation [10,11]. The CO₂ photoconversion was first explored in 1978 by Halmann with the presence of water (H₂O) and P-type gallium phosphide as a photocathode [12]. Since this artificial photosynthesis effort resulted in positive findings, many attempts have

To date, enormous scientific efforts to utilize this anthropogenic CO_2 into value-added products have been widely reported in the literature,

such as thermochemical [6], biological [7], electrochemical [8], and


Although various CO2 transformation technologies have been

* Corresponding author. *E-mail address: aishahaj@utm.my* (A.A. Jalil).

https://doi.org/10.1016/j.surfin.2022.102049

Received 8 September 2021; Received in revised form 25 February 2022; Accepted 13 May 2022 Available online 16 May 2022 2468-0230/© 2022 Elsevier B.V. All rights reserved.

