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Abstract: Automatic leaf disease detection techniques are effective for reducing the time-consuming
effort of monitoring large crop farms and early identification of disease symptoms of plant leaves.
Although crop tomatoes are seen to be susceptible to a variety of diseases that can reduce the
production of the crop. In recent years, advanced deep learning methods show successful applications
for plant disease detection based on observed symptoms on leaves. However, these methods have
some limitations. This study proposed a high-performance tomato leaf disease detection approach,
namely attention-based dilated CNN logistic regression (ADCLR). Firstly, we develop a new feature
extraction method using attention-based dilated CNN to extract most relevant features in a faster
time. In our preprocessing, we use Bilateral filtering to handle larger features to make the image
smoother and the Ostu image segmentation process to remove noise in a fast and simple way. In this
proposed method, we preprocess the image with bilateral filtering and Otsu segmentation. Then,
we use the Conditional Generative Adversarial Network (CGAN) model to generate a synthetic
image from the image which is preprocessed in the previous stage. The synthetic image is generated
to handle imbalance and noisy or wrongly labeled data to obtain good prediction results. Then,
the extracted features are normalized to lower the dimensionality. Finally, extracted features from
preprocessed data are combined and then classified using fast and simple logistic regression (LR)
classifier. The experimental outcomes show the state-of-the-art performance on the Plant Village
database of tomato leaf disease by achieving 100%, 100%, 96.6% training, testing, and validation
accuracy, respectively, for multiclass. From the experimental analysis, it is clearly demonstrated that
the proposed multimodal approach can be utilized to detect tomato leaf disease precisely, simply
and quickly. We have a potential plan to improve the model to make it cloud-based automated leaf
disease classification for different plants.

Keywords: dilated CNN; filtering; logistic regression; segmentation; tomato leaf disease; feature extraction

1. Introduction

The detection of plant diseases is the foundation for crop disease prevention and
crop quality assurance. Traditional plant disease detection systems rely heavily on human
observation, resulting in low detection efficiency, generability and reliability. Farmers with
a lack of technical competence and agricultural professionals are unable to serve the field
at all times, causing them to overlook the most effective preventative opportunities. In
recent times, image processing [1], pattern recognition [2,3], computer vision [4,5] and
text [6–9] or video [6,10] analysis have fast advanced outcomes in recent years. A machine
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learning-based intelligent disease detection approach provides a means for effectively
resolving agricultural concerns [11,12].

Tomato is considered the most significant and widely consumed crop after potato [13].
The farmland area used for horticultural crops has expanded by 164% in the last four
decades. Recently, worldwide tomato production reached over 180 million tonnes [14,15].
China by far is the world’s top tomato grower, accounting for 31% of worldwide tomato
yield. However, every year a vast amount of tomato plants are affected by numerous leaf
diseases. This results in lower crop production, which affects human health and livelihood,
as well as financial stability [16]. Therefore, it is very crucial to detect tomato leaf disease
accurately in the early stage to decrease crop losses and assure optimal growth. Plant leaf
diseases are traditionally classified by trained experts by doing a visual investigation of
plant leaf tissues. These conventional techniques are very time-consuming, expensive, and
expertise-dependent [17]. In recent years, machine-learning-based recognition techniques
for crop disease identification became popular for their successful application [18]. More-
over, in the field of computer imaging, the conventional deep learning (DL) algorithms
are the most widely used approach for the automated identification of plant diseases [17].
Neural Networks [19], K-nearest Neighbors (k-NN) [20], Niave Bayes [21], Logistic Regres-
sion [22], Random Forest (RF) [23], Support Vector Machines (SVM) [24], as well as adaptive
boosting [20] are perhaps the most prominent conventional computer-based techniques
used for plant disease categorization. Traditional machine learning approaches rely signif-
icantly on the features individuals provided. These traits are painstakingly extracted by
the expert, making these procedures costly, as well as time-consuming. On the other hand,
the limitations of the handcrafted features technique can be readily overcome with the
automatic extraction of features utilizing deep learning (DL). Therefore, the DL methods
are widely employed for plant disease categorization [25] because of its high performance.
Among the wide range of DL methods, a deep convolutional neural network (CNN) is
most widely used for crop disease detection [26]. An improved YOLOv5 algorithm of
deep learning has been used in the detection of plant diseases [27]. However, the deep
learning methods require a large amount of training data and a considerable amount of
time for training. On the other hand, the performance of standard machine learning can
be outperformed compared to deep learning whilst providing a limited amount of train-
ing data. Moreover, in terms of computing resources, deep learning is more expensive
than traditional machine learning techniques. Actually, the machine learning algorithm is
able to perform faster classification and deep learning performs well in feature extraction
and classification.

For these considerations, this study has combined the DL with the ML method. In
the initial stage, all image are preprocessed (Filtering and Segmentation) to generate the
synthetic image using CGAN. At first, we used the attention-based dilated CNN to extract
the feature from the tomato leaf disease images. During the feature extraction process, the
hidden layer in deep learning models allows them to learn hierarchical representations.
Deep architectures can select discriminating representations from model training that aid
with exact predictions based on the training data in later classification phases. Finally,
the ML method LR (Logistic Regression) is utilized to classify the extracted feature. The
proposed tomato leaf disease detection approach is divided into three phases: fixed feature
extractor using attention-based dilated CNN as fusion features, dimensionality reduction
using normalization, and training of a logistic regression classifier. Furthermore, we also
developed Logistic Regression (LR), CNN with LR (CNN-LR), and the proposed attention-
based dilated CNN with LR (ADCLR) model to test the robustness and applicability of the
proposed tomato leaf detection approach. The main contribution of this study is as follows:
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1. In this study, we have introduced sequential image pre-processing steps. The tomato
leaf images have been pre-processed using the color conversion, filtering method
for denoising the images. To handle the larger features, we have used the bilateral
filter method which helps to make images smoother with fine spatial parameters.
Furthermore, the noises have been removed from the filtered data using the fast
and simple Otsu segmentation method. Then, we use the CGAN model to generate
synthetic image from the image to handle imbalance and noisy or wrongly labeled
data to obtain good prediction results.

2. To extract the most informative feature in a short time, we have designed a lightweight
dilated CNN architecture and attention mechanism in which the multiple hidden
layers of the architecture allow them to learn hierarchical representations from the
images. Then, the extracted features have been classified using the fast and simple
logistic regression model.

3. To check the validation and robustness of the proposed hybrid architecture, we
have also implemented eleven popular transfer learning algorithms on the same
dataset and compared the performance with the proposed ADCLR model. The
experimental analysis clearly shows that the proposed hybrid ADCLR provides
superior performance for detecting tomato leaf disease.

The basic flowchart of our proposed approach is shown in Figure 1. At first, the
input images are preprocessed using filtering and segmentation methods. Then, we use
the CGAN model to generate synthetic image. Synthetic image is generated to handle
imbalance and noisy or wrongly label data to obtain good prediction results. Then, the
synthetic images are used in the attention-based dilated CNN layer to extract the advanced
features. Finally, the logistic regression model is used to learn the extracted features and
classify the tomato leaf disease images accurately.

Preprocessing 
(Filtering and Segmentation)

Feature Extraction  
(Using dilated CNN)

Classifiy Feature  
using Logostic regressionResult analysis

Input image 
(Tomato leaf)

Feature Extraction  
(Using attention mechanism)

Synthetic image generation  
using CGAN

Original                     Grayscale                      Segmented 

Figure 1. The overall framework of the proposed approach.

The remainder of the paper is laid out as follows: Section 1 conducts a state-of-the-
art survey and explains the study’s objective. The data and dataset preprocessing are
introduced in Section 2. The experimental setup, technique, and development of all section
of the proposed method are described in Section 3. The results are presented in Section 4,
followed by an informative discussion, before the conclusion is presented in Section 5.

2. Related Study

Nowadays, intelligent approaches for plant leaf disease detection have shown great
successful applications in early diagnosis. The researchers have developed several strategies
for automatic plant disease classification. In recent years, machine learning or deep learning
approaches are widely adopted methods for the early diagnosis of plant disease.
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2.1. Machine Learning Methods

To obtain a high-performing model, the researchers have used several data preprocess-
ing steps such as color conversion, edge-based segmentation, filtering and segmentation.
Furthermore, image analysis, shape, size, augmentation, and color conversion are used to
extract the feature from the segmented images. Then, traditional machine learning methods
have been utilized to detect plant diseases efficiently [28].

For example, Hlaing et al. [29] developed a feature extraction approach based on
the Johnson SB distribution and a scale-invariant feature transform (SIFT). The proposed
approach was used to extract SIFT and color statistic features, which were then fed into
a multi-class support vector machine classifier for categorization. For tomato disease
categorization, the proposed approach got an accuracy score of 85.1%. In [30], a novel
method based on the concatenation of various features was presented. The Hue moments,
Haralick, and color histograms were extracted and then combined. For tomato leaf disease
categorization, the retrieved feature was input into the decision tree as well as RF classifiers.
They achieved a maximum of 94% classification accuracy with the random forest method.
Kalyoncu et al. [31] proposed a unique plant leaf disease categorization approach based on
numerous characteristics. A digital image of a leaf is used to extract the shape, textural and
geometric, as well as color properties. In particular, sorted uniform LBP is presented as a
novel local binary pattern (LBP) alternative for describing leaf texture. A machine learning
method using the SVM algorithm got very low accuracy of 85.02% but this method is
fast [29]. The discriminant classifier (LD) is being used to classify the data once it has been
combined with the retrieved characteristics. This approach was tested on three different
datasets: ICL, Flavia, and Swedish. The average accuracy of ICL, Flavia, and Swedish was
86.8%, 98.6%, and 99.5%, respectively. The authors of [32] proposed a semi-automated
technique for soybean disease detection based on color and texture characteristics. In
their approach, they used a total of 4775 images for classification with the SVM method
(90% accuracy).

2.2. Deep Learning Methods

In the past couple of years, researchers have widely focused on deep learning meth-
ods due to their successful application for plant disease diagnosis. In this sub-section,
tomato leaf disease detection-related studies based on the deep learning method have been
highlighted. Batool et al. [33] presented a tomato leaf disease identification method. In
their study, the AlexNet pre-trained model was used for feature extraction. Then, the kNN
method was used to classify the extracted feature. This achieved a maximum of 76.1%
testing accuracy. Another study [34] developed a transfer learning model (MobileNetV2)
for tomato leaf disease classification. To improve the model performance, they utilized
the fine-tuned strategy of the MobileNetV2 model, and achieved impressive performance
(90% accuracy) with the fine-tuned model. Agarwal et al. [35] proposed a CNN approach
for tomato disease diagnosis (91.2% accuracy). In [36], an inception method combined
with dilated convolution was used to identify 26 diseases of 14 different crops. They
achieved a maximum of 99.37% classification accuracy with the PlantVillage dataset. A
novel CNN model with eight hidden layers was introduced in [37] for tomato plant disease
detection. They achieved 98.4% classification accuracy with the PlantVillage dataset. The
authors [38] proposed a nine-layer CNN model to detect 39 types of the plant leaf. To
enhance the performance of their model, they used different data augmentation techniques
and finally achieved 96.46% accuracy on the PlantVillage dataset of tomato leaf disease.
Nithish et al. [39] developed a pre-trained deep learning method (ResNet-50). The ResNet-
50 architecture was fine-tuned to successfully categorize the six classes of leaf disease and
achieved a 97% average classification accuracy.
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2.3. Deep Learning with Machine Learning

For the particular task classification to be more effective, the researchers have devel-
oped a hybrid model where they combined the ML-ML, ML-DL, or DL-DL methods. Due to
the excellent feature learning capabilities of the DL methods, some recent studies used the
DL layers to extract the feature from the data [40]. Several hidden layers of the DL model
have the capabilities to select the discrimination feature more effectively. Fisher et al. [41]
proposed an approach where the image’s features were extracted using the CNN network.
The images were classified using the RPN and Fast-RCNN by constructed feature maps.
Furthermore, VGG networks are commonly used with faster RCNN. ResNet [42] has more
convolution layers than VGG16 and can use convolution to extract more object information.
ResNet has a layer-skipping structure that allows it to skip one or more layers immediately.
It addresses the issue of gradient disappearance caused by layer stacking. On the other
hand, the VGG16 network is unable to extract detailed aspects of tomato leaf diseases [43].
A feed-forward neural network with such a residual connection is used to create the deep
residual network. The identical mapping function of the skipping structure allows the
output with one stage to be used as the source of a subsequent layer. The benefit of this
method is that no other variables are imported, as well as the calculation time not being
greatly increased. Gradient disappearance [44] induced by expanding the number of neu-
rons in the hidden layer is prevented by employing cross-layer operations and reusing
intermediary features. As a result, the deep residual network is crucial in the field of
recognition. In addition, deep residual networks are frequently used in defect detection
as well as fault-tolerant control [45,46]. Some studies have shown that the ML with DL
approach provides slightly higher performance than conventional ML or DL method. For
example, the MobileNet and NasNet feature extractor with Logistic Regression achieved
97% accuracy [28]. On the other hand, recently, the dilated CNN mechanism has become
more popular because of its effective and fast feature learning capabilities [47].

Another attention-based method proposed by Devi et al. [48] that used the Salp Swarm
Algorithm to classify tomato leaf disease. This method got 97.56% accuracy to predict
five types of tomato leaf disease from plan village data. The limitation of this method is
that its performance is not high and it faces some computational complexity. On the other
hand, a method that utilized the Lightweight Attention-Based CNN mechanism [49] to
classify ten types of tomato leaf disease has 99.34% accuracy but it has slightly higher time
complexity than conventional methods such as CNN [37] and SVM [29]. In 2022, Zhao
et al. [50] developed a method utilizing spatial attention with CNN for real time leaf disease
detection. This method has 95.20% accuracy but this method needs to be adaptable by
increasing its generability.

3. Materials and Methods
3.1. Data Description

In this experimental analysis, a well-known PlantVillage dataset crosscheck the cita-
tion [51] was used to detect the tomato leaf disease. Hughes and Salathe et al. [52] generated
the PlantVillage collection, which includes 54,309 label images for 14 different species and
38 different types of healthy and leaf disease images. From the entire dataset, we used
15,989 images of tomato leaves grouped into ten classes. Then, the selected images were
resized into 256 × 256 pixels. The resized images were then normalized. The normalized
procedure helps to speed up the training procedure by reducing the computational complex-
ity. To test the validation of the proposed architecture, we used a total of 1000 new images
during testing (100 images for each class) from 54,309. The detailed data description is
shown in Table 1. Figure 2 shows the basic image samples of tomato leaf disease.
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Table 1. The types of Tomato leaf disease.

Leaf Disease Class Amount Percentage %

Bacterial spot 2126 13.29

Early blight 1000 6.25

Target Spot 1403 8.77

Yellow Leaf Curl Virus 3107 19.43

Mosaic virus 372 2.32

Late blight 2005 12.54

Leaf Mold 951 5.94

Septoria leaf spot 1760 11

Two spotted spider mite 1675 10.48

Healthy 1590 9.94

Total 15,989 100

(a) Healthy    (b) Bacterial Spot          (c) Early Blight           (d) Leaf Mold         (e)Septoria Leaf Spot

(f) Target Spot          (g) Two Spotted Spider Mite (h)Late Blight Mold      (i) Mosaic Virus       (j) Yellow Leaf Curl Virus

Figure 2. The sample images of the tomato leaf disease.

3.2. Data Preprocessing

In the preprocessing phase, we added a label for each image depending on the prefix
of their filename. Overall preprocessing task is presented sequentially in the Algorithm 1.
At first, the images were segmented using Bilateral filtering and Ostu’s image segmentation
process. Before the segmentation process, two-color converting functions were applied
where the sequence of the image’s color-space was lost and only the brightness and sat-
uration for each pixel were kept. After that, data normalization was accomplished by
calculating the mean difference between each pixel and dividing the result by the standard
deviation. The images were normalized to make it easier for the error function, which is
typically not convex, to identify the global minimum. Decreasing the range of inputs for
training variables also aids the backpropagation algorithm’s efficiency. Python’s random
shuffle technique, which is a command algorithm based on an arbitrary number generator,
was used to shuffle the data. The order of the images was originally sequential after the
application, but it is now mixed throughout the collection.

A multilevel categorization is a strategy that uses more than two labels. Every label in
this classification is not exclusive. For each sample, the classification method yields only
one degree. In actuality, multi label classification of leaf disease is used to label categories of
tomato leaf disease in one or more types. We focused on the image’s multilevel classification
of tomato leaf disease. We conducted a multilevel study on the D data set. For further
information on data collection, see Area F of this technical section. The data includes visual
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features of tomato leaf disease and each declaration set on the vector stage. The labeling of
the tomato disease image is presented in Equation (1).

D = (E, F)|F ∈ Image, E ∈ (0, 1)L (1)

Here, F is the Tomato leaf disease images, dataset E with L (Number of Tomato leaf
disease class label) target disease class, and the Tomato leaf disease categories indicated are
increased level L which is ten.

Algorithm 1 Preprocessing Algorithm for ADCLR Model

1: Input: Dataset of tomato leaf disease
2: Result:Preprocessing of tomato leaf disease image data, with number of image N
3: for Each iteration i in range(0,N) do
4: Resize to dimension (256 × 256)
5: Pre-processing to resize the image (224 × 224)
6: Normalize pixel values [0, 1]
7: Standardize pixel values to (256 × 256)
8: end for
9: if Image set size is (224 × 224) then

10: Normalize pixel value [0, 1]
11: Standardize pixel values to (256 × 256)
12: end if
13: if Image set size is (224 × 224) then
14: Perform Image Filterng with Bilateral Filter
15: Complete Otsu segmentation
16: end if
17: Generation of Preprocessed image of tomato leaf

3.3. Image Filtering

The bilateral image filtering method is used in our method. In this filtering, any input
image (a) is converted to a smoothed form by the bilateral filter (b). Then, most texture,
noise, and small details are removed, but broad sharp edges are preserved without being
blurred. A bilateral filter is a non-linear image smoothing filter that preserves edges while
lowering noise [53]. It uses a weighted mean of intensity data from surrounding pixels to
adjust the brightness of each pixel of the disease image. A Gaussian distribution could be
used to calculate this weight. The weights are determined not just by the Euclidean distance
between pixels, but also by the radiometric variations (color intensity, depth distance, etc.).
Sharp edges are preserved as a result. The computation of Bilateral image filtering is
utilized with the Equation (2).

The bilateral filter is defined as

FFilter(x) =
1

Wp
[ ∑
Coc fi∈Ω

F(coc fi) fr((||F(coc fi)− F(coc f )||))gs(||(coc fi − coc f )||)] (2)

and normalization term, Wp is defined as the Equation (3).

Wp = ∑
Coc fi∈Ω

fr(||I(coc fi)− F(coc f )||)gs(||coc fi − coc f ||) (3)

Here, FFilter indicates a filtered image of the tomato leaf disease data, I is considered
as the original image to be filtered, cocf indicates the current pixel coordinate to filter,
Ω presents a window centered in the coc fi so coc fi ∈ Ω is another pixel. fr indicates
the smoothing intensity difference. When smoothing disparities in positions, gs is the
spatiotemporal (or domain) kernel (this functional method can be a Gaussian distribution).

In the filtering of the image of tomato leaf disease, the spatial closeness (using spatially
kernel gs) and the intensity difference (using the range kernel fr) are used to give the weight
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Wp. Imagine a pixel at (i, j) that is needed to be denoised inside an image by using its
neighbors, and one of its neighbors is at (i, j) (k, l). Each assigned pixel (k, l) to remove
the noise the pixel (i, j) is provided by the following Equations (4) and (5), presuming the
range, as well as spatial kernels, are Gaussian kernels.

ω(i, j, l) = exp(− (i− k)2 + (j− l)2

2σ2
d

− F(i, j) + F(k, l)2

2σ2
r

) (4)

Here, σd and σr both indicate the smoothing parameters, and F(i, j) and F(k, l) presents
intensity of pixels (i, j) and (k, l).

FD(i, j) =
∑k,l F(k, l)w(i, j, k, l)

∑k,l w(i, j, k, l)
(5)

Here, FD presents the denoised pixel intensity of the pixel (i, j). The bilateral filter
steadily approaches like Gaussian convolution relatively closely as the ranged parameter
σr grows. Actually, the range of Gaussian expands and compresses, which implies that
it becomes nearly constant through the image’s intensity intervals. The larger features
become smoother as the spatial parameter value of σd is increased.

3.4. Image Segmentation

Object and boundary (lines, curves, etc.) inside images are often identified via the
image segmentation method. Image segmentation is typically used to assign a label to each
image pixel because pixels with nearly identical labels have similar characteristics. Image
segments are used to reduce the complexities of an image, making subsequent processing
and analysis easier. In layman’s terms, segmentation is the process of labeling pixels.

For this purpose, we have used the Otsu segmentation approach to segment the
tomato leaf disease images. Automatic image thresholding is performed using Otsu’s [1].
This method generates a single intensity threshold that divides pixels into two different
classes: foreground as well as background. This limit is set by reducing intraclass intensity
variation. The technique looks for a threshold that minimizes intraclass variance, which is
defined as the weighted combination of the classes’ variances as given in Equation (6).

σ2
P(t) = P0(t)σ2

0 (t) + P1(t)σ2
1 (t) (6)

In the above Equation (6) P0 and P1 indicates the class probability with threshold value
t difference and σ2

0 and σ2
1 presents variance.

Here, P0, 1(t) is measured by the histogram bins L, o(i) indicates previous probability
as computed in Equations (7) and (8):

P0(t) =
t−1

∑
i=0

o(i) (7)

P1(t) =
L−1

∑
i=t

o(i) (8)

The minimizing and maximizing of the intra-class variance is equivalent as computed
in Equation (9).

σ2
b (t) = σ2 − σ2

P(t) = P0(t)(µ0 − µT)
2 + P1(t)(µ1 − µT)

2 = P0(t)P1(t)[µ0(t)− µ1(t)]2 (9)

Generally, Otsu’s technique initializes the value of Pi and µ, then updates their levels
based on threshold levels to obtain the intended σ2

b (t) threshold. The Otsu threshold is
indeed a fast as well as a simple algorithm that works with histograms (that are 256-element
integer or float vectors).
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Figure 3 clearly shows the preprocessed result image and feature extraction result
using our method.

Figure 3. (a) Original image; (b) Gray scale image; (c) BF filtered image; (d) Otsu’s image segmented
image; (e) extracted features at first dilated convolution layer; (f) extracted features at the second hid-
den layer of dilated convolution; (g) extracted feature at the third hidden layer of dilated convolution;
and (h) extracted features at attention layer.

3.5. Synthetic Image Generation

This method uses the Conditional Generative Adversarial Network (CGAN) model to
generate synthetic images from preprocessed images. To deal with imbalance and noisy or
worn-out label data, a synthetic image is generated. This aids in training the model because
it can predict well.

Initially, the Generative Adversarial Network (GAN) was developed in 2014 [54]. The
GAN is built on the concept of having two neural networks fight in a zero-sum mechanism.
Therefore, it is adversarial, in which the loss with one network benefits of another directly,
as well as vice versa. To use picture generation for instance, there are distinct networks in
this work. A generating network that makes images as well as a discriminator network
that classifies the inputs as true or bogus. A gradient descent technique is used to update
the gradients of each network after each train batch, as is the case with most deep learning
approaches. Because the generator network’s output goes directly further into discriminator
network, the combined networks’ training is automated through competition. A score can
be determined using categorical cross-entropy as follows:

Loss = Ex × [log(Dis(x))] + Ez[log(1− Dis(Gen(z))] (10)

ExtendedLoss = Ex × [log(Dis(x/y))] + Ez[log(1− Dis(Gen(z/y))] (11)

In the equation Equation (10), where (Ex × [log(Dis(x))]) indicates the recognition of
real images and the (Ez[log(1− Dis(Gen(z))) is used for the recognition of fake tomato
leaf disease images. An additive noise input to a generator that starts as a real input from
the dataset. The term Dis(x) is used to detect false photos Ex or Ez since it calculates the
probability that a given piece of data is real. Because the discriminator’s source is Generator
G’s result while confronted with a random source vector, z, Dis(x) is replaced by Gen(z) in
the remaining half of the equation. Because the generator’s goal is to maximize or minimize
the loss function with the Equation number (10), whereas the discriminator’s goal is to
minimize it, this is regarded as the function to minimax loss.

A Conditional Generative Adversarial Network (CGAN ) [54] is an extended version of
the previous GAN model that works on given number of disease class. This mechanism of
image augmentation is also used in fruit classification [55]. The generator now aims to learn



Sensors 2022, 22, 6079 10 of 31

to generate images belonging to one of ten classes of tomato leaf disease. Equation (10)
is expanded as the Equation number (11), data objects and its label is ensured. As a
result, Gen(z/y) is the result of the generator having random vector given class y labeling,
and Dis(x/y) is the discriminator’s confidence that x is real provided class label y. The
production of objects corresponding to several classes is enabled by the minute difference in
topological from a GAN, as shown in Figure 4. When the dataset was fed into a conditional
GAN, the system would learn to generate fake tomato leaf disease images by training on
actual tomato leaf disease photos, requiring two networks to produce either class. The
networks in question would also need to train independently.

Class level
Fu

lly
 c

on
ne

ct
ed

la
ye

r
Fu

lly
 c

on
ne

ct
ed

la
ye

r

En
co

de
r B

iL
ST

M

Fu
lly

 c
on

ne
ct

ed
la

ye
r

C
on

ca
teFu

lly
 c

on
ne

ct
ed

la
ye

r

En
co

de
r B

iL
ST

M

Output
patch

Generator Discriminator

Fu
lly

 c
on

ne
ct

ed
 la

ye
r

Encoder
(Conv)

Encoder
(Conv)

Fu
lly

 c
on

ne
ct

ed
 la

ye
r

Fa
ke

 s
am

pl
e 

Encoder
(Conv)

Encoder
(Conv) So

ft 
m

ax
 a

ct
iv

at
io

n

Noise

Synthetic data  

Fake

Real

C
on

ca
te

Real or Fake?

Tomato leaf disease classTomato leaf disease data Preprocessing

C
la

ss
 le

ve
l

CGAN 

Figure 4. Synthetic Image Generation using GAN.

3.6. Proposed Hybrid Classification Model

In this study, we have designed a hybrid deep learning model (ADCLR) to detect
tomato leaf disease more efficiently. A new hierarchical attention network with a dilated
convolutional neural network (CNN) is used with multiclass in our tomato leaf disease
image categorization technique. At first, we take the publicly available dataset, followed
by preprocessing of all data and then synthetic image generation. The outcome of the
preprocessing is then sent to a new vector routing algorithm for extracting feature informa-
tion from the deep layer of the dilated CNN and then to the attention layer. Finally, the
Logistic Regression Classifier is used to classify the extracted features. Our proposed model
used categorical cross-entropy with the Adam optimizer and ROC assessment approach.
A multilevel disease identification module incorporates these layers. The overall sequential
process flow chart of our model is shown in Figure 5. The main Algorithm 2 of our ADCLR
method describes the overall process clearly.
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Figure 5. The overall procedure of the DCLR model.

Algorithm 2 General Algorithm of our ADCLR Model

1: Input: Dataset of tomato leaf disease STATE Output: Prediction of tomato leaf disease image
2: Initialization: N:= Number of image, C:= Class label
3: for Each iteration i in range(0,N) do
4: Take each image i
5: Pre-processing to resize the image i as the resolution of (224 × 224)
6: Normalize pixel values [0, 1] of the image i
7: Standardize pixel values to (256 × 256) of the image i
8: Image filtering with bilateral filtering method of the image i
9: Segmentation of image with Otsu method of the image i

10: Generation of preprocessed image
11: end for
12: for Each iteration j in range(0,N) do
13: Take preprocessed image j
14: CGAN based Generation of synthetic image j of tomato leaf with disease label C
15: end for
16: Initialization o f parameter
17: DCk := Extracted f eature by Dilated CNN
18: Ak := Extracted relevant f eature by Attention mechanism
19: for Each iteration k in range(0,N) do
20: Take synthetic image Sk and its class label C
21: Use dilated CNN to extract f eatures DCk o f the image sk
22: Use attention mechanism to capture relevant feature Ak from dilated CNN feature DCk
23: Use logistic regression classifier to classify image with features Ak to the target class C
24: Generate prediction score of each image for target class C
25: end for
26: Evaluate all the prediction of tomato leaf disease image

The following are the technical strengths of our proposed study:
Our method has the following steps:

1. Initially, the inputted data is preprocessed by color conversion, filtering, and denoising.
Bilateral filtering is used and can handle larger features to make the image smoother
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with fine spatial parameters. Noise from the preprocessed filter is also removed by
the fast and simple Otsu segmentation method.

2. Then, we use the Conditional Generative Adversarial Network (CGAN) model to
generate synthetic image from the image those are preprocessed in previous stage.
The synthetic image is generated to handle imbalance and noisy or wrongly labeled
data to obtain good prediction results.

3. Then, the synthetic image is sent to our proposed ADCLR model. In the ADCLR
model, the attention-based Dilated CNN is used to extract the informative feature
extraction. Dilated convolution has the advantage of capturing the level of internal
sequence data first by increasing the region of the convolution kernel without rais-
ing the model’s parameter amount. The attention layer simply concentrates on the
memory block, instead of focusing on the entire feature space, attention mechanism
has the benefit of dramatically reducing the number of parameters and sharing the
weights among diverse regional places.

4. After that, the ADCLR method is trained with the training dataset and it tests the
model robustness with the validation dataset. The Logistic Regression classifier is
used to classify the images based on the extracted feature. Logistic regression classifier
is simple, takes less time in training, and it performs well in multiclass prediction.

5. Finally, the validation of the proposed model is tested with different performance
evaluation metrics and comparison on disease image.

6. To test the validation and effectiveness of the proposed approach, we also imple-
mented eleven popular deep learning methods with the dataset, whereas our pro-
posed method shows superior performance.

3.6.1. Dilated CNN Layer for Feature Extraction

In this phase, a few feature variables such as color features are regarded because
their visual color difference recognizes whether the plant leaf is exposed to the virus by
the disease or not after a human perception in the precise system. In the Dilated CNN
network, the multiple hidden layers allow the model to learn the discriminatory feature
more efficiently. Deep learning, unlike machine learning, learns leaves with diseases and
classifiers automatically, resulting in the machine learning’s efficiency in such contexts. The
methodology maintains a strategy from the demand for humans to ideas by accumulating
information from experience, empowering the computer to understand complicated ideas
by creating them out of smaller complexes. The outputs of the multiple layer levels of
a dilated convolutional neural network and attention layer are responsible for feature
extraction and selection, as shown in Figure 6.

In the ADCLR model, this stage is one of the most crucial stages. The dilated con-
volution layer’s deep depth tries to find hierarchical, granular quality features that can
be used to describe compositional feature information. Our feature findings are pooled
and delivered to a Dilated CNN layer to produce DCV output, unlike typical CNNs,
which perform dilated convolution operations instantly. For the few blocks of convolution
given in Figure 6. Operational steps of the dilated CNN is given in the feature extraction
Algorithm 3. In Figure 6a, each green colored dot indicates that this block is the block
where selected convolution is performed. We define it as follows. As a consequence, the
deep CNN layer generates the following set of variables as the Equation (12):

dcvi = dconv1, dconv2, . . . , dconvn ∈ Rn×d∼ (12)

here, dcv is the output of the dilated convolution and d indicates the input sequence as (13).

DCV1 = [dcvl
1, dcvl

2, . . . , rvl
n] ∈ Rn∗d∼ , l ∈ (1, L) (13)
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In this Equation (13), L is the overall convolutional box, and the blocks filter has a
degree of k. Let us focus on block l-th number alone.

W l ∈ Rk∗w∗k, W l ∈ Rk∗w∗d∼ (14)

This filtering matrix W employs that the operation held in k time, as well as weight w
vector. The two adjacent blocks can be changed as seen in Equation (15) below.

DCV = F(W1, DCV l−1) (15)

It is just a sliding of filtering with a window used to w-length input, where f represents
linear algebra expression. Normally, dcvl

1 ∈ DCV l is computed as the Equation (18).

dcvl
t = ReLU(W l ⊕ [dcvl−1

t+1r]
w−1
t=0 ) (16)

Here, the ⊕ sign indicates convolution, r presents the level of the deep layer in
the dilation. The ReLU with all blocks has a length of (w − 1)2L−1. A conventional
deep convolution layer that raises it exponentially rather than increasing weights of the
parameters of the network layer. Finally, hierarchical maps of DCV1, DCV2, . . . . . . , DCV l

were obtained based on the coupling coefficients relation on upstream and downstream
layers. SoftMax gives the value of the bio set. Currently, DCV1 = [dcvl

1, dcvl
2, . . . , dcvl

n] ∈
Rn∗k∼ , l ∈ (1, L) Here, l-th convolutional block output given as Rn∗k∼ , l ∈ (1, L). Each k
filter operation output is generated as dcv. COVio’s value used as final output features.
Now obtain COV1 = [COV l

1 , COV l
2 , . . . , COV l

n] ∈ RM∗dV . The convolution terms size is
dv and M indicates the amount of final convolution. Now, perform the routing DCV l to
COV l for final feature extraction and information generation. The predicting vector d̃cvJ|l
indicates the raw vector feature transformation that is calculated as the multiplication of
devi with Wj in (17).

d̃cvJ|l = dcvi ∗Wj (17)

By increasing small vectors and decreasing large vectors into unit vectors, this strategy
improves the information exchange efficiency of the complicated routing method. To com-
pute the medium step, we used an iteratively layered routing strategy over multilayered
dilated convolution layers.

h1 h2 h3 ht

h 2h1 h3 ht

at,1 at,2 at,3 at,T

Output

Input

Attention Mechanism

D
ila

te
d 

C
on

vo
lu

tio
n

Input features from synthetic image

(a) (b)

Figure 6. (a) Dilated CNN and (b) Attention Mechanism.

Here, softmax routing function is sr fij and its modification with dcv is set to aij
agreement. This computation has used Equation (18).

aij = covi ∗ d̃cvJ|l + sr fij (18)
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Typically, the dilated convolution operation enables more efficient, as well as scalable,
convolution routing. Algorithm 3 describes the hierarchical routing scheme of the ADCLR
model. In this stage, the autonomous final convolution layer computed as COV1 =
[COV l

1 , COV l
2 , . . . , COV l

n] ∈ RM∗dV . In a unified COV, we summed the results of the final
convolution in (19).

COV1 = [COV l , COV l , . . . , COV l ] (19)

The action will be passed throughout the hierarchical layer after it is performed.
Extracted features [COV l , COV l , . . . , COV l ] of dilated convolution will be assigned.

Algorithm 3 Feature Extraction Algorithm of DCLR Model

Data : Input synthetic image Tomato disease with calss label
Result : Extract f eatures Fi f romTomato lea f disease data
Preprocess Image j to analysis
Process image features
: X = x1, x2, ...., xn ∈ Rn∗d here d is dimension
Get dilated convolutional output
Process iteration in dilated CNN
for each iteration l in range(0, l) do

for each iteration n in range(0, N) do
DCV1 = [dcvl

1, dcvl
2, ...., rvl

n] ∈ Rn∗d∼ , l ∈
(1, L)
for w in range(0, w) do

dcvl
t = ReLU(W l ⊕ [dcvl−1

t+1r ]
w−1
t=0 )

W l ∈ Rk∗w∗k , W l ∈ Rk∗w∗d∼

Here L is number o f layers
end for

end for
end for
Process Dynamic convolution network
for each iteration i in range(0, N)
do

for each iteration j in range(0, N)
do

COVj = ∑m
i=1 covij ∗ d̃cvJ|l

d̃cvJ|l = dcvi ∗Wj

aij = COVi ∗ d̃cvJ|l + sr fij
end for

end for
Execute hierarchical attention mechanism
for each iteration i in range(0,N) do

for each iteration j in range(0,N) do
for each iteration k in range(0,N) do

ei = a(q, aij)

aij =
exp(ei)

∑
k

exp(ek)

ACOVi = qT aij
end for

end for
end for
Process f eatures
for each iteration i in range(0, N)
do

Fi = ∑
i

ACOVi)

end for

3.6.2. Hierarchical Attention Layer

This important layer provide a specified and attention aggregation real variable by
using each target convolution as input. Algorithm 3 describes the hierarchical attention
routing scheme of the ADCLR model. For each target convolution covi ∈ Rdv in COV,
we evaluate attention aij, which produced and will be utilized in the classification layer.
Figure 6b presents the attention mechanism. The attention task is computed as given in
Equations (20) and (21)

ei = a(q, aij) (20)

aij =
exp(ei)

∑
k

exp(ek)
(21)

Wherein q is a training programme pattern vector, as well as k is the likelihood of
convolution pool COV inside the entire pool, the probability of convolution pool COV
in the entire pool is presented. After obtaining image features, the weighted total is
subsequently applied to the overall target dilated convolution layers in the downstream
pattern, resulting in a stationary attention aggregation variable. Figure 6b depicts process
of a attention mechanism. Finally, the extracted features of the attention-based dilated
convolutional are computed as the Equation (22)

ACOVi = qTaij (22)
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According to the the Equation (22), extracted features ACOVi, ACOV2, . . . , ACOVn of
the attention mechanism is transformed to F1, F2, . . . , Fn for the logistic regression classifier
to be classified.

3.6.3. Classification Layer

The main classification procedures presented in the Algorithm 4 after the ADCLR
method was trained with a train and validation set of data.

At this point, the ADCLR model uses the LR method to classify images based on the
extracted features. LR is a multi-label classification system. The tomato leaf disease target
class is predicted at the end of the process. The proposed model’s validation is assessed
using various performance evaluation metrics and comparisons on disease images.

Algorithm 4 Main Classification Algorithm of ADCLR Model Using Logistic Regression

Data : Input Fi f eatures o f attentive dialted cnn
Result : Prediction Tomato lea f disease
Get extracted f eatures F1, F2, ...., Fi o f Dilated CNN
Assign extracted f eatures F1, F2, ...., Fi to x1, x2, ...., xi
Assign target f eatures to y1, y2, ...., yi
Set max iteration as Imax
Set Augmented Weight Matrix, θ = 1
Set f unction f or costcalculation L(θ) = 0.
Mapping input f eatures.
Update a Augmented Weight Matrixθusing
θl(n) = θl(n− 1) = α× vj
Calculate the Cost f unction or average costL(θ)using

L(θ) = L(θ) + (− 1
m ) ∗ (∑m

i=1 yi ∗ log(hθ ∗ (x(i))) +
(1− y(i) ∗ log(1− hθ ∗ (x(i)))
if |l(θ)| ≤∈ (or)N = Nmax then

Find optimum weight of theta
else

Update the Augmented Weight Matirxθ
end if
Optimum weights are obtained f or θ
Find prediction
o = sigmoid(θT xi)

o = 1
(1+eθT xi)

Execute prediction f unction with class probability
p(y|I) = p(y|o)

The goal of this layer is to compute the probabilistic model using the formula p(y|S),
at which y is the class predicted. The vector o is given to the multi-layer classification
via the logistic regression function for the fixed-length and care-oriented aggregates. The
classification Algorithm 4 operation on tomato leaf disease image data is described in
this section. This algorithm receives raw data as input and predicts tomato leaf disease
and target classes. The tomato leaf disease image is initially collected and preprocessed.
The fully extracted feature from the attentive dilated CNN is transmitted to the attentive
hierarchical layer. In the last layer, the logistic regression is used to predict ten types of
tomato leaf disease based on the attentive dilated CNN features. Here, Algorithm 4 is
the LR classification algorithm that is used for tomato leaf disease classification with the
ADCLR model.

First take Fi preprocessed features from dilated the CNN layer. Initialize the parame-
ters of the logistic regression classification algorithm. Calculate the (θTx) value of the LR
classifier then execute the sigmoid function. Then, obtain output o with the computional
fuction as the Equations (23) and (25):

o = sigmoid(θTx) (23)

o =
1

(1 + eθTx)
(24)

Now, execute the prediction function with class probability as (23) follows:

p(y|I) = p(y|o) (25)

Figure 7 depicts the operating phase of our concept. From the source term through
the prediction or classification algorithm, the mechanics of each layer are depicted in this
figure. In one direction, the created output travels through the next processing layer input.
To evaluate the performance of the model in the real world, we will use data from tomato
leaf disease. The tomato leaf disease image is initially preprocessed as a raw image.
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Figure 7. Overall operational process diagram of our ADCLR model.

3.7. Evaluation Metrics

To evaluate our model performance, we use a performance evaluation matrix named
as accuracy, precision, and recall, our used metrics equations and computation are given in
Equations (26)–(28).

A. Accuracy
The average of all true cases is used to determine the Accuracy of the prediction. It is
calculated with the specified equation:

Accuracy =
(True Positive + True Negative)

True Positive + True Negative + Fasle Positive + Fasle Negative
(26)

B. Precision
The amount of true positives divided by the total of positive predictions is known as
Precision. The following equation shows the calculation of Precision.

Precision =
(True Positive)

True Positive + False Positive
(27)

C. Recall
The Recall is a measurement of how well our model detects True Positives. As a result,
Recall informs us how many tomato plants we accurately identified as having leaf
disease out of those that have it.

Recall =
(True Positive)

True Positive + False Negative
(28)

D. F1 Score
The F1 score elegantly summarizes a model’s predictive efficiency and measured by
two normally competing metrics, precision and recall.

F1 = 2 ∗ (Precession ∗ Recall)
Precession + Recall

(29)
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Experimental Setup

After the successful preprocessing procedures (BF filtering and Otsu, Segmentation
method), we generated the synthetic image using CGAN. Then, we fed this to the proposed
methodology developed with attention-based dilated CNN with logistic regression. We
fine-tuned the proposed model in our trials to demonstrate the performance of our model.
To evaluate the model, we used a binary cross-validation strategy. Indeed, we divided
the dataset into 80% training and 20% validation, with 1000 images used for testing. The
remaining 20% was utilized to validate the model before it was evaluated. The attention-
based dilated CNN feature extraction model was trained with 100 epochs and 32 mini-
batches. To reduce the loss (L), the Adam optimizer was used with only a 1× 10−3 learning
rate. We employed an L2 regularization and a dropout technique with a probability of
dropping of 0.5 to offset the effect of the overfitting problem during training. The number
of layers of the dilated CNN that was gradually configured to extract features from tomato
leaf disease images. The model was implemented using the Python programming language
as well as the Google colab framework. The categorical cross-validation was performed
on a computer with five CPUs (Intel(R) 3.60 GHz), 32 GB of RAM, and Windows 8 to 10.
Figure 7 and Table 2 clearly describes the model’s internal structure.

Table 2. Network parameter of the proposed model.

Layer No Layer Name Layer Information Image Size Output Size

01 2d Convolution Dilated Convolution 256 × 256 × 3 (None, 256, 256, 64)

02 Activation ReLU 256 × 253 × 3 (256, 64)

03 Normalization Batch Normalization (256) 256 × 253 × 3 (256, 256, 64)

04 Pooling MaxPoool2D (Kernel 2, Stride 2, Dilation 1) 256 × 253 × 3 (256, 256, 64)

05 2d Convolution Dilated Convolution 256 × 253 × 3 (128, 128, 64)

06 Activation ReLU 256 × 253 × 3 (128, 64)

07 Normalization Batch Normalization (128) 256 × 253 × 3 (128, 128, 64)

08 Pooling MaxPoool2D (Kernel 2, Stride 2, Dilation 1) 256 × 253 × 3 (128, 128, 128)

09 2d Convolution Dilated Convolution 256 × 253 × 3 (64, 64, 64)

10 Activation ReLU 256 × 253 × 3 (64, 64)

11 Normalization Batch Normalization (64) 256 × 253 × 3 (64, 64, 64)

12 Pooling MaxPoool2D (Kernel 2, Stride 2, Dilation 1) 256 × 253 × 3 (64, 64, 256)

13 2d Convolution Dilated Convolution 256 × 253 × 3 (32, 32, 64)

14 Activation ReLU 256 × 253 × 3 (32, 64)

15 Normalization Batch Normalization (32) 256 × 253 × 3 (32, 32, 64)

16 Pooling MaxPoool2D (Kernel 2, Stride 2, Dilation 1) 256 × 253 × 3 (32, 32, 512)

17 2d Convolution Dilated Convolution 256 × 253 × 3 (16, 16, 64)

18 Activation ReLU 256 × 253 × 3 (16, 64)

19 Normalization Batch Normalization (16) 256 × 253 × 3 (16, 16, 64)

20 Pooling MaxPoool2D (Kernel 2, Stride 2, Dilation 1) 256 × 253 × 3 (16, 16, 1024)

21 2d Convolution Dilated Convolution 256 × 253 × 3 (8, 8, 64)

22 Activation ReLU 256 × 253 × 3 (8, 64)

23 Normalization Batch Normalization (16) 256 × 253 × 3 (8,8, 64)

24 Pooling MaxPoool2D (Kernel 2, Stride 2, Dilation 1) 256 × 253 × 3 (8, 8, 2048)

25 Activation ReLU 256 × 253 × 3 (256, 64)

26 Pooling AdaptiveMaxPool2d 256 × 253 × 3 (8, 512)

27 Dropout Drop out (0.5) 256 × 253 × 3

28 Attention Attention 256 × 253 × 3 (100,10)

29 Flattern Flatten Layer 256 × 253 × 3 (64 × 10)

30 Logistic Regression
Logistic Regression (LR) Classifier

(N = 10, Number of features,
Random State = 100)

256 × 253 × 3 10
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4. Result Analysis

This section explains the experimental analysis in detail, including qualitative and
comparative analysis. The training set performs somewhat better than the validation
set, as well as the model accumulating to a steady value, showing that the parameters
used to train the model really are not excessive. In the validation model, the suggested
technique achieves stable classification performance with good accuracy. In Tables 3–5 we
use alphabet A to J as A: Bacterial Spot, B: Early Blight, C: Target Spot, D: Yellow Leaf Curl
Virus, E: Mosaic Virus, F: Late Blight, G: Leaf Mold, H: Septoria Leaf Spot, I: Two spotted
Spider Mite and J: Healthy.

4.1. Qualitative Analysis

In this qualitative analysis, a comprehensive experimental analysis is shown. Here,
Table 3 shows the training performance of the proposed ADCLR model on ten disease
classes of the tomato leaf dataset. The Table 3 demonstrated that our model performs the
same on train and validation data.

Table 3. Training performance of ADCLR model.

Model LR Metrics
Training Performance

A B C D E F G H I J

LR

Accuracy 0.96 0.95 0.96 0.97 0.98 0.96 0.97 0.95 0.97 0.96

Precession 0.98 0.95 0.94 0.98 1.00 0.96 0.98 0.93 0.96 0.99

Recall 0.96 0.95 0.96 0.97 0.98 0.96 0.92 0.98 0.98 0.98

F1 0.96 0.98 0.93 0.96 0.99 0.96 0.95 0.96 0.97 0.98

CNN- LR

Accuracy 0.97 0.97 0.96 0.97 0.97 0.97 0.98 0.98 0.97 0.96

Precession 0.99 0.95 0.94 0.98 1.00 0.96 0.98 0.93 0.96 0.99

Recall 0.99 0.93 0.98 1.00 0.97 0.96 0.94 0.98 0.99 0.98

F1 0.98 0.95 0.96 0.99 0.98 0.96 0.94 0.96 0.97 0.98

Attention-Dilated CNN- LR

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Precession 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Training supports as 80% data 1701 800 1123 2486 298 1604 761 1416 1340 1272

Table 4 shows the validation performance of the proposed ADCLR model on ten
disease classes of tomato leaf.

Table 4. Validation performance of ADCLR model.

Model Metrics
Validation Performance

A B C D E F G H I J

LR

Accuracy 0.97 0.96 0.97 0.97 0.98 0.96 0.97 0.95 0.97 0.96

Precession 0.99 0.96 0.95 0.99 1.00 0.96 0.98 0.94 0.96 0.99

Recall 0.97 0.98 0.96 0.97 0.99 0.96 0.92 0.98 0.98 0.98

F1 0.96 0.98 0.94 0.98 0.99 0.97 0.98 0.97 0.97 0.98

CNN-LR

Accuracy 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.97 0.97 0.96

Precession 0.99 0.96 0.98 0.99 1.00 0.97 0.97 0.97 0.98 0.99

Recall 0.99 0.94 0.99 1.00 0.97 0.99 0.98 0.98 0.99 0.98

F1 0.98 0.95 0.96 0.99 0.99 0.98 0.99 0.99 0.98 0.98

Attention-Dilated CNN-LR

Accuracy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Precession 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Recall 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

F1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Validation supports as 20% data 425 200 280 621 74 401 190 354 335 318
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Table 5 shows the testing performance of the proposed ADCLR model on ten disease
classes of tomato leaf. It is clearly shown that the testing accuracy of the proposed model is
slightly lower than the train and validation performance, because we use totally different
image for testing the model.

The experimental analysis demonstrated that the testing performance is slightly lower
than the training and validation performance. Our ADCLR model achieved 100%, 100%,
and 96.60% accuracy on train, validation, and test data, respectively. We also implemented
some popular conventional methods and used the same parameter tuning in each model.
Based on the results shown in the Table 6, it is clearly shown that our attention-based
dilated CNN with logistic regression (ADCLR) model outperforms the other method we
implemented in this study for tomato leaf disease detection. The comparative result of
LR, CNN-LR and Attention based Dilated CNN-LR method is showed in the bar chart
in Figure 8. This figure clearly present that our ADCLR method got higher accuracy that
compared method.

Table 5. Testing performance of ADCLR model.

Model Metrics
Testing Performance

A B C D E F G H I J

LR

Accuracy 0.96 0.94 0.94 0.95 0.97 0.96 0.97 0.93 0.95 0.94

Precession 0.98 0.91 0.9 0.96 0.98 0.96 0.98 0.95 0.96 0.97

Recall 0.97 0.89 0.94 0.98 0.98 0.93 0.9 0.92 0.94 0.96

F1 0.95 0.92 0.95 0.98 0.95 0.94 0.95 0.99 0.96 0.94

CNN- LR

Accuracy 0.98 0.95 0.95 0.96 0.98 0.97 0.96 0.94 0.96 0.95

Precession 0.99 0.94 0.93 0.97 0.99 0.95 0.97 0.94 0.95 0.98

Recall 0.97 0.92 0.95 0.99 0.99 0.94 0.91 0.94 0.96 0.97

F1 0.96 0.93 0.95 0.97 0.97 0.95 0.94 0.98 0.98 0.95

Attention-Dilated CNN- LR

Accuracy 0.99 0.97 0.96 0.97 0.97 0.96 0.97 0.95 0.97 0.96

Precession 0.98 0.95 0.94 0.98 1.00 0.96 0.98 0.93 0.96 0.99

Recall 0.98 0.93 0.97 1.00 0.97 0.96 0.92 0.98 0.98 0.98

F1 0.99 0.95 0.96 0.99 0.98 0.96 0.95 0.96 0.97 0.98

Supports 100 new image per class 100 100 100 100 100 100 100 100 100 100

Table 6. The performance comparison of three related models (training, validation and testing).

Training Performance

Model Input Size Sample Accuracy

LR 256 × 256 × 3 12,801 96.30%
CNN-LR 256 × 256 × 3 12,801 97.00%

Attention-Dilatd CNN LR(ADCLR) 256 × 253 × 3 12,801 100.0%

Validation Performance

Model Input Size Sample Accuracy

LR 256 × 256 × 3 3198 96.6%
CNN-LR 256 × 253 × 3 3198 97.4%

Attention-Dilatd CNN LR(ADCLR) 256 × 253 × 3 3198 100.00%

Testing Performance

Model Input Size Sample Accuracy

LR 256 × 256 × 3 1000 95.20%
CNN-LR 256 × 253 × 3 1000 96.00%

Attention-Dilatd CNN LR(ADCLR) 256 × 256 × 3 1000 96.60%
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Figure 8. The training, validation, and testing performance of ADCLR model.

4.2. Confusion Matrix

The Area Under the Curve (AUC)—receiver operating characteristic curve (ROC)
curve is a performance efficiency measurement technique for multiclass classification.
AUC indicates the degree or measurement of separability, whereas ROC is a probability
curve. It indicates how well the model can distinguish among categories based on the
training, validation, and testing data performance. The ADCLR model generates the
following graphical ROC result on tomato leaf disease data. The ROC curve performances
are visualized in Figures 9–11 during training, validation, and testing. In these figures,
the x-axis indicates a false-positive rate and the y-axis indicates a false-negative rate. Our
ADCLR model shows better ROC performance over other models. The ADCLR model
obtained 0.999 area value of ROC for both of training and validation, and 0.9869 on testing
data.
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Figure 9. ROC curve during training.
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Figure 10. ROC curve during validation.
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Figure 11. ROC curve during testing.

In some contexts, the classifier can become confused when dealing with many classes
with comparable features. A confusion matrix could be used to visually measure a model’s
classification performance. This experiment was conducted using ten different types of
tomato leaf disease. Since the leaf disease image samples are created from the leaf area and
are very unstable, the low resolution and poor area selection of the images can result in
noisy leaf images, causing the classifier to become confused in some circumstances. We
implemented our model (Attention-Dilated CNN LR) and related models (LR and CNN-LR)
on train, validation, and test data to generate a confusion matrix. Here, Figures 12–14 are
generated based on LR, CNN-LR, and Our (Attention dilated CNN-LR) model. All right
predictions seem to be on the diagonal, while all wrong predictions are off the diagonal.

An overall description of the data analysis during training is shown in Figure 12. The
LR algorithm correctly predicts 952 observations out of 1000 observations, the CNN-LR
algorithm correctly predicts 960 observations out of 1000 observations. The proposed
attention-based dilated CNN-LR algorithm correctly predicts 966 observations out of
the same number of observations. Our proposed ADCLR algorithm performs better in
prediction on validation train data as shown in Figures 12–14. So, the confusion matrix also
indicates that the proposed Attention-Dilated CNN-LR architecture is more accurate than
the LR and CNN-LR model. It also helps to overcome the limitations of LR algorithms and
works better than CNN-based feature extraction for tomato leaf disease detection.
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Figure 12. Confusion matrix of ADCLR method during testing.
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Figure 13. Confusion matrix of CNN-LR method during testing.
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Figure 14. Confusion matrix of LR method during testing.
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4.3. Comparisons with State-of-the-Art Methods

This section will discuss all current methodologies, as well as the performance of our
proposed method, in classifying the tomato leaf disease Plant Village database. Table 7
categorizes all of the compared methods into three groups: traditional machine learning
(ML), deep learning (DL), as well as Deep learning + Machine learning (DLML). Table 7
presents different existing methods performance with their features, data, model, and
evaluation metric result. From the comparative table, it is shown that SVM with SIFT
features had 85% accuracy [29], RF [29] with Hue and histogram color features having
94% accuracy, the ResNet model obtained 97% accuracy [39]. On the other hand, Machine
learning with a deep learning classifier achieved sightly higher accuracy than conventional
the ML or DL method. MobileNet and NasNet feature extractor with Logistic Regression
got 97% accuracy [28]. Fine-tuned MobileNetv2 obtained 95.6% accuracy. The SVM
algorithm got very low accuracy of 85.02% but this method is fast [29]. A maximum of 94%
classification accuracy is obtained with the random forest method [30]. Another attention-
based method proposed by Devi et al. [48] that used the Salp Swarm Algorithm had 97.56%
accuracy to predict five types of tomato leaf disease. The Lightweight Attention-Based
CNN mechanism [49] to classify ten types of tomato leaf disease. This method obtained
99.34% accuracy but it has slightly higher time complexity than conventional methods such
as CNN [37] and SVM [29]. In 2022, Zhao et al. [50] developed a method utilizing Spatial
attention with CNN that had 95.20% accuracy but this has a weakness in generability. We
have also shown the comparative performance of the state-of-the-art method in Figure 15.

Table 7. The performance comparison of the related studies with the proposed approach. DL: Deep
Learning, ML = Machine Learning, DLML = Deep learning with Machine Learning.

Type Author Method Features Class Samples Data Performance

ML Hlaing et al. [29] SVM SIFT and color
conversion Features 7 3535 Plant Village (Tomato) Accuracy 85.02%

Basavaiah
et al. [29]

Random forest and
decision tree

Hu Moments, pattern
and colour histograms. 5 300 Plant Village (Tomato) Accuracy 94%(RF)

Accuracy 90%(DT)

DL Agarwal et al. [37] CNN CNN model 10 10,100 Plant Village (Tomato) Accuracy 91.2%

Nitish et al. [39] ResNet ResNet-50 model 6 12,206 Plant Village (Tomato) Accuracy 97%

MLDL Medhar et al. [28]
MobileNetV2 or

NASNetMobile and
Logistic Regression

MobileNetV2 or
NASNetMobile feature

extractor
6 1,152 Plant Village (Tomato)

Accuracy 97%
(MobileNetV2)
Accuracy 97%

(NASNetMobile)

Zaki et al. [34] MobileNetV2 Fine-tune MobileNetV2 4 3471 Plant Village (Tomato) Accuracy 95.6%

Devi et al. [48] Attention
mechanism

Dense net with
Attention 5 9281 Plant Village (Tomato) Accuracy 97.56%

Bhujel et al. [49]
Lightweight

Attention-Based
CNN

Attentive CNN 10 19,510 Plant Village (Tomato) Accuracy 99.34%

Zaho et al. [50] Spatial attention
with CNN Fully connected layer 10 18,160 Plant Village (Tomato) Accuracy 95.20%

Proposed ADCLR
(Our)

Attention-Dilated
CNN and Logistic
Regression with
synthetic image

Attention-based Dilated
CNN 10 15,989 Plant Village (Tomato)

Accuracy 100.00%
F1 100.00%

Precession 100.00%
Recall 100.00%

Comparison of Pre-Network Recognition Accuracy

We also implemented some conventional methods with the same parameter tuning
and input size to check the validation of our model. Based on this table, it is clearly
shown that our ADCLR method performs better than other implemented methods. We also
calculated the executing time of the widely used popular deep learning model for feature
extraction. We run and check the time of execution on train, validation, and test sample
data. Figure 16 shows the accuracy of different deep learning models during training. In
the figure, the x-axis indicates the number of epochs, and the y-axis indicates the accuracy.
The graphical line shows the performance of compared models and the proposed model.
Figure 16 clearly indicates that our model performs better than the conventional method.
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An overall performance (accuracy) comparison of the ADCLR model with most
common and related models is clearly shown in Figure 16. Our method got higher accuracy
than other implemented methods with the same parameter tuning. Additionally, Table 8 is
generated based on our manual implementation with the same parameter tuning and shows
that our ADCLR model performance is better compared to the conventional approach.

Figure 17 shows the loss of different deep learning models during training. In the
figure, the x-axis indicates the number of epochs, and the y-axis indicates the loss. The
graphical line shows the performance of compared models and the proposed model.
Figure 17 clearly indicates that our model’s loss is less than the conventional method.
The categorical cross entropy loss of our ADCLR method is 0.07.
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Table 8. Performance comparison of the implemented conventional models with the proposed
ADCLR model.

Model Input Size Accuracy Precessoin Recall F1-Score

CNN 256, 256, 3 88.70% 86.76% 88.71% 87.30%

AlexNet 256, 256, 3 91.87% 89.93% 91.88% 90.47%

EfficientNet 256, 256, 3 92.25% 90.31% 92.26% 90.75%

Xception 256, 256, 3 97.61% 95.67% 88.70% 96.21%

Inception-Resnet-V2 256, 256, 3 97.80% 95.86% 95.87% 96.41%

MLP 256, 256, 3 97.99% 96.05% 97.99% 96.59%

LSTM 256, 256, 3 98.50% 96.56% 98.50% 97.11%

GRU 256, 256, 3 98.74% 96.80% 98.75% 97.34%

DenseNet 256, 256, 3 98.88% 96.94% 98.89% 97.48%

VGG 256, 256, 3 99.00% 97.06% 99.01% 97.61%

Dilated CNN-RNN 256, 256, 3 99.15% 97.21% 99.15% 97.75%

ADCLR (Our) 256, 256, 3 100.00% 100.00% 100.00% 100.00%

4.4. Discussion

The proposed method performed image preprocessing using bilateral filtering (BF),
segmentation using Otsu’s thresholding, synthetic image generation, feature extraction
using attention-based dilated CNN, and classification using logistic regression. The hyper-
parameter tuning on logistic regression (LR) seeks the fine change of the hyper-parameters
of the attention-based dilated CNN model of feature extraction in such a way that the
classification performance is improved to the highest extent possible. To ensure that the
attention-based dilated CNN-LR model performs effectively, a complete simulation analysis
is performed. The experimental results suggest that the ADCLR model outperforms
contemporary state-of-the-art methods on a variety of measures as shown in Table 8. In the
future, advanced DL-based image segmentation techniques will be used to improve the
detection efficiency of the ADCLR method.

The techniques of our successive preprocessing are computed from the original normal
Tomato leaf disease images. The preprocessing helps to extract more precise features from
the images. Then, we use the CGAN model to generate the synthetic image to handle
imbalance and noisy or wrongly labeled data to obtain good prediction results. The
synthetic image is used in the attention-based dilated CNN layer for feature extraction.
This aid of this technique is to reduce the misclassification issues and improve performance.
In our method, the Bilateral filtering technique helps to remove the noise of the tomato leaf
disease image. As a result, Otsu’s method of image segmentation is useful for handling
the noise of tomato leaf disease images. Otsu’s image segmentation technique is faster and
simpler than other methods [56].

In this proposed ADCLR method for feature extraction, which leverages the attention-
based hybrid dilated CNN approach. By dynamically converting its hierarchical system
into a deep convolution, we present a new hybrid model for optimizing learning structure,
extracting features, classification and analyzing tomato leaf disease. It can automatically
extract the hierarchical representations of tomato leaf disease features in order to fully
leverage the features. Our hybrid neural network convolution model successfully obtains
implicit and relevant feature information. The dilated convolution network can extract
informative information about the features. Our hybrid approach, which uses dilated CNN
and is based on a paradigm that includes hierarchical self-dilation approaches, provides
a reduction in training time and a clear network structure to boost performance. The
efficacy of the convolution network dynamic routing algorithm has been increased and an
improved convolutional network dynamic convolution method improves the efficacy of
efficient routing tuning convolution.
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In our ADCLR model, the attention layer simply concentrates on the memory block
instead of focusing on the entire feature space. The attention mechanism has the advantage
of dramatically reducing the number of parameters and sharing the weights among diverse
regional places.

The limitations of previous classification systems are well outlined in the literature
section, and our novel ADCLR model is aimed to overcome some of the weaknesses of the
compared method. The proposed ADCLR model is evaluated and compared to a number
of existing model benchmarks. The proposed ADCLR model achieved an accuracy of
100% in training, 100% in validation, and 96.6% in testing on the PlantVillage tomato leaf
disease dataset. This method predicts ten categorizations of the tomato leaf dataset. The
experimental analysis of this study showed that our method outperforms over a number of
competing baselines and produces a number of cutting-edge outcomes.

4.5. Real Time Test Result on New Image

To study the robustness of the proposed model in a real-time application, we used
1000 non-trained images. In Figure 18, we show the predicted class confidence of the new
image of tomato leaf disease. In this figure, we show the result of our model on six images.
In this figure, it is clearly shown that the prediction confidence of our model is almost 0.99
for all the new and non-trained tomato disease image samples.

Figure 18. Test Result in Leaf disease detection by our DCLR method.

4.6. Complexity Analysis

To ensure the superiority of the proposed strategy in terms of execution time, we
constructed a hybrid deep learning ADCLR model that utilized attention-based dilated
CNN to extract informative features. During the testing set, the model’s recorded running
speed is higher than any other implemented deep learning approach. This method does not
use transfer learning or a convolutional neural network (CNN) in feature extraction because
its training time is long (see Figure 19). However, we apply a dilated convolution operation
with a multi dilation mechanism with attention that uses only the convolutions required
for deep feature extraction that helps to reduce the overall computational complexity. The
training, validation set has a 122.8 and 5 s run time, respectively (see Figure 19). Figure 19
shows that our attention-based dilated CNN takes less time (122 s) in training whereas
CNN takes 210 s. Similarly, our model’s attention-based dilated CNN takes less time of
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8 and 5 s for feature extraction of validation and testing data, respectively. In normal
convolution layers, convolution kernels are also interconnected and all are convoluted.
Furthermore, the addition of attention-based dilated portions, minimizes the processing
complexity of the convolutions. The added attention mechanism uses less parameters to
select most important and relevant features from the selected region. The time complexity
of our model is lower than compared methods.

210 196 178 173 165 160
130 127 122

0

50

100

150

200

250

Train Feature extraction time(s)

20
17 18 17 16

14 15 14

8

0

5

10

15

20

25

Validation Feature extraction time(s)

12
11

8
7 7

9
8

7
5

0
2
4
6
8

10
12
14

Test Feature extraction time(s)

(a)                                                                                   (b)     (c)

Figure 19. Comparative feature extraction time during (a) Training, (b) Validation, (c) Testing.

4.7. Limitation and Future Work

Despite the outstanding performance of the proposed ADCLR model for tomato leaf
disease detection, there are a few flaws in the research as well. Firstly, this study only
focuses on ten types of tomato leaf disease images for classification, other category of
tomato plant leaf disease images did not analyzed. Secondly, Our proposed model validity
has been investigated on only the PlantVillage tomato leaf dataset. In a further study,
we intend to provide larger and more diverse datasets to test the proposed model and
continuously improve the network system’s generalization capacity. We will also work to
refine our model so that it may be applied to other datasets including tomato or other leaf
disease. Additionally, one of the primary drawbacks of the suggested detection method is
that the image used in our experiment was taken in a lab setting. However, our method
might be improved to support an integrative plant disease detection system that works in
real-world scenarios. However, further work is needed to make this model more advanced
to classify broadening categories of plant diseases and automatically recognizing the many
stages of the disease, as well as complementing images of leaf diseases in real surroundings.

Figure 20 shows a possible cloud-based tomato leaf disease detection system that
can be utilized on mobile phones. The cloud-based system could be able to collect and
process the image of tomato leaf disease from the real-time field. The processed data will be
interpreted by the cloud-based DL system, and the results are delivered to the agriculture
scientist with minimal human effort. Finally, the obtained results will be sent to the farmer’s
mobile phone after being verified by the practitioner. The processing costs of the DL model,
as well as the data dimension, impact the system’s feasibility. We have a plan to reduce
the time complexity and space complexity in future development with more adaptability
and generability.
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Figure 20. Cloud based Leaf disease detection.

5. Conclusions

The early tomato leaf disease diagnosis method has a great effect on the quality and
quantity of tomato production. Traditional methods for detecting tomato disease are
time-consuming, labor-intensive, and subjective cost. This study has designed a hybrid
architecture (ADCLR) based on attention and dilated convolutional layers with an LR
classifier.At first tomato leaf disease images are preprocessed (using nilateral fileterng and
otsu segmentation) properly and then we used our Conditional Generative Adversarial
Network(CGAN) to generete synthetics tomato leaf disease image. The informative and
relevant features from the images were extracted quickly using the attention-based dilated
convolutional layers. Then LR has been used to classify the extracted feature. Ten types of
tomato leaf disease have been analyzed in this study. Three related classifiers have also been
implemented (LR, CNN-LR, and Attention-Dilated CNN-LR) in this study. The validation
of the method has been tested using 1000 non-trained images sample. In comparison with
other state-of-art methods (CNN, AlexNet, Efficient Net, Xception, MLP, LSTM, GRU,
DenseNet, and VGG), our proposed method has achieved higher performance for the
tomato leaf disease detection. Our method will work for more types of diseases of plant
leaves in the future. We have a plan to reduce the time complexity and space complexity
in future development. In a further study, we intend to design a cloud-based artificial
intelligence (AI) system using deep learning techniques with more data variants.
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