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Abstract Developing an accurate forecasting model for electricity demand plays a vital role

in maximising the efficiency of the planning process in the power generation industries. The

time series data of electricity demand in Malaysia is highly volatile with seasonal characteristics.

This study aims to evaluate the forecasting performance of the seasonal autoregressive integrated

moving average (SARIMA) model with GARCH for weekly maximum electricity demand. The

weekly maximum electricity demand data (in megawatt, MW) from 2005 to 2016 has been used

for this study. The results show that SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) with generalized

error distribution (GED) is the most appropriate model for forecasting electricity demand due to

its parsimonious characteristic with low values of root mean square error (RMSE), mean absolute

error (MAE) and mean absolute percentage error (MAPE) which are 644.1828, 523.8380 and

3.13%, respectively. The MAPE value of the proposed model which is less than 5% indicates

that the SARIMA − GARCH model is relatively good in forecasting electricity demand for the

case of Malaysia data. In conclusion, the proposed model of SARIMA with GARCH has great

potential and provides a promising performance in forecasting electricity demand with seasonal

highly volatile characteristics.
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1 Introduction

Forecasting electricity demand is vital as electricity is a resource that is hard to store. In connection

with this matter, the term peak demand, also known as peak load, is widely used by load forecasters

to monitor the optimum electricity usage for a given period. The consumption of electricity depends

on the change in weather and other environmental factors. For instance, according to the Department
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of Statistics Malaysia [1], the peak demand in Malaysia was recorded at 17,788 MW on 19 April

2016 due to the El-Nino phenomenon. During that time, due to the hot and dry conditions, consumers

consumed electricity up to their highest level. Therefore, the maximum demand is considered a

benchmark to measure the performance of electricity instead of the minimum demand.

Rationally, the maximum value is more reasonable compared to the minimum value, especially in

forecasting electricity performance. Other than that, electricity demand forecasting is important for

planning and expansion of infrastructure in the electricity sector. Accurate forecasts will significantly

reduce operational and maintenance costs and improve the efficiency of the electrical power supply

and distribution network. As a result, proper decisions can be made for potential developments. Thus,

forecasting high-precision demand is required to prevent energy wastage and device failure. For that

reason, applying the best technique to generate the most precise forecasts of electricity demand is

extremely important since the prediction of electricity consumption plays a crucial role, particularly

in the economy. Hence, there are several approaches that can be explored to forecast electricity

demand.

Additionally, electricity represents a common and fundamental source of energy, exerting a

pivotal influence on contemporary society. Its manifold advantages and contributions extend across

diverse domains, encompassing transportation, manufacturing, mining, and communication sectors.

Electricity stands as a cornerstone underpinning the prosperity and advancement of an economy,

thus occupying a vital role in the context of socio-economic development. It serves as a versatile

instrument capable of making valuable contributions to the strategic planning and future policy

direction of the energy sector. The utilization of this electrical energy continues to surge progressively

with each passing day. The multifaceted applications of electricity have propelled human civilization

to unprecedented levels of advancement. Consequently, the demand for electricity is intrinsically

intertwined with every facet of development [2].

Forecasting electricity demand and price holds paramount importance for both market participants

and system operators. Accurate predictions are essential to the efficient management of power

systems. Nevertheless, the task of forecasting electricity demand and prices is intricate owing to their

distinctive characteristics. These include high frequency, volatility, extended trends, non-uniform

mean and variance, mean reversion, numerous seasonal patterns, calendar-related effects, and the

occurrence of spikes and jumps [3].

In time series modelling, it is common to consider monthly or quarterly seasonal effects. However,

due to the change in weather and other environmental factors throughout the year, producing forecasts

of electricity demand on a quarterly or monthly basis might not be sufficient to provide input for the

efficient management of electricity supply, therefore a weekly basis can be an appropriate choice.

Therefore, viewed by highly volatile time series and seasonal characteristics in electricity demand,

the good performance of SARIMA – GARCH model, and the practicality of the weekly basis data

to provide input for electricity supply, this study aims to evaluate the performance of the model of

SARIMA with GARCH yet providing a comprehensive procedure specifically for one-step ahead

forecast for weekly maximum electricity demand produced. While previous studies such as Sigauke

and Chikobvu [4] and Kim and Kim [5], have utilized the model for electricity data, this study

represents a pioneering effort in Malaysia and being the first to apply the SARIMA model with

GARCH for forecasting electricity demand in the country. Furthermore, previous studies lacked a

comprehensive procedure tailored for one-step ahead forecasting of electricity demand, a gap that

this study aims to fill. The application of this model not only addresses the unique characteristics of

Malaysia’s electricity demand patterns, but also establishes a potential framework for analyses that



Syarranur Zaim et. al / MATEMATIKA 39:3 (2023) 293–313 295

sharing similar electricity consumption patterns.

Moreover, numerous studies aim to estimate future electrical energy demand for residential and

commercial purposes to enable electricity generators, distributors, and suppliers to plan effectively

ahead and promote energy conservation among users. Some of the statistical models used in

forecasting electricity demand are SARIMA [6], Exponential Smoothing Models such as Simple

Exponential Smoothing, Holt’s Exponential Smoothing, and Brown’s Exponential Smoothing [7],

Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Least Squares

Support Vector Machines (LSSVMs), and Fuzzy Time Series (FTS) [8].

The study conducted by Goswami and Kandali [6] focused on analyzing daily 24-hour electrical

load data obtained from the State Load Dispatch Center (SLDC) in Assam. The dataset covered daily

at 10 am load data for a period of three years, from 1 January 2016 to 31 December 2018, resulting

in a total sample size of 1,095 data points. The data was split into 75% training data (822 points) and

25% testing data for model development and evaluation. The study employed the SARIMA model for

time series analysis. The final results indicated that the SARIMA model that considers the seasonality

of load data provided better prediction with a low MAPE value which is 10.7%.

Ishak et al. [7] focused on forecasting the electricity consumption of Malaysia’s residential sector

based on yearly data from 1997 to 2018 obtained from the Malaysia Energy Information Hub (MEIH).

Three exponential smoothing models were employed in the study: simple exponential smoothing,

Holt’s exponential smoothing, and Brown’s exponential smoothing. The study aimed to provide

insights into energy trends and projections for the period from 2019 to 2032. The results show that

Holt’s exponential smoothing has the best performance with the lowest MAPE score of 2.299%.

Meanwhile, Lee et al. [8] forecasted monthly electricity consumption data for seven countries

over a 10-year period (2007-2016). The data was obtained from ceicdata.com. The study employed

four different models: ANN, ANFIS, LSSVMs, and FTS. The performance of these models was

evaluated and compared using error metrics such as RMSE, average forecasting error (AFE), and

performance parameter (PP). The study highlighted the strengths and weaknesses of each model and

identified the FTS model as the best performer for most of the countries studied.

In Nyoni’s research [9], the first of its kind in Zimbabwe, annual time series data spanning

from 1971 to 2014 on electricity demand in Zimbabwe is employed to model and predict electricity

demand. This is achieved using the Box-Jenkins ARIMA framework, marking a unique approach to

this area of study in the country. The study pursues three primary objectives: firstly, to analyze the

trends in electricity consumption in Zimbabwe throughout the study period; secondly, to construct a

robust electricity demand forecasting model for Zimbabwe using the Box-Jenkins ARIMA technique;

and lastly, to project electricity demand in Zimbabwe for the upcoming decade (2015 – 2025).

Sigauke and Chikobvu [4] conducted a study focused on forecasting daily peak electricity demand

in South Africa. They explored different models, including a SARIMA model, a SARIMA–GARCH

errors, and a regression-SARIMA–GARCH (Reg-SARIMA–GARCH) model. Among these models,

the Reg-SARIMA–GARCH model emerged as the most effective, demonstrating superior forecast

accuracy with MAPE of 1.42%. These results emphasize the Reg-SARIMA–GARCH model’s

supremacy in predicting daily peak demand, establishing it as a valuable tool for electricity demand

forecasting in South Africa.

In the study conducted by Kim and Kim [5], they focused on predicting the electricity usage

of an industrial manufacturing facility in Korea known as GGM over the period from January

2014 to April 2017. Various models were employed, including SARIMA, SARIMA with GARCH

integration, Holt-Winters, and ARIMA with Fourier transformation. One-month-ahead electricity
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consumption forecasts were generated, and the predictive performance of each model was assessed

by comparing the root mean square error and error rate. Given the weekly and yearly fluctuations

in GGM’s electricity consumption, the SARIMA-GARCH model, which accounts for both volatility

and seasonality, demonstrated the best fit and prediction accuracy.

According to the prior studies, this current study is the first of its kind in the case of Malaysia

where the SARIMA model with GARCH has been implemented to forecast electricity demand and

potentially serve as a model for similar analyses in other regions with comparable characteristics in

their electricity demand patterns. In addition, a comprehensive procedure specifically for one-step

ahead forecast for weekly maximum electricity demand was not provided in the previous studies. In

addition, this study initially concentrates on the standard GARCH, also known as GARCH, due to

its popularity and parsimonious characteristics, in developing a basic procedure of the combination

model of SARIMA and GARCH.

In the extensive body of research on electricity demand forecasting, various statistical models and

methodologies have been employed to improve the precision and effectiveness of these predictions.

Researchers have explored diverse datasets and applied distinct techniques to tackle the unique

challenges posed by this essential aspect of energy planning. These studies, such as those discussed

earlier, offer valuable insights and findings that pave the way for further advancements in the field. In

summary, the studies discussed here represent a diverse spectrum of research efforts aimed at tackling

the intricate challenges of electricity demand forecasting across different regions and contexts.

2 Methodology

2.1 Time Series Models

2.1.1 SARIMA Model

Electrical demand pattern shows the obvious periodic vibration resulting from seasonal changes.

These seasonal changes can be dealt with the SARIMA model of Box-Jenkins. A seasonal

ARIMA model is formed by including additional seasonal terms in the ARIMA models. The

model can be written as S ARIMA(p, d, q)(P,D,Q) s, where p is non-seasonal AR order, d is

non-seasonal differencing, q is non-seasonal MA order, P is seasonal AR order, D is seasonal

differencing, Q is seasonal MA order, and s is the seasonal period. The mathematical model for

S ARIMA(p, d, q)(P,D,Q) s is given by Equation 1,

ΦP (Bs)ϕp (B) (1 − B)d(1 − Bs)D
ẏt = ΘQ(Bs)θq(B)at (1)

where

ẏt =

{
yt − µ, if d = D = 0

yt, otherwise

and yt is the observed time series data at time t, the operator of ϕp (B) = 1 −
∑p

i=1
ϕiB

i and θq(B) =

1 −
∑q

j=1
θ jB

j are polynomials in terms of B of degree p and q, while the operator of ΦP (Bs) =

1 −
∑P

I=1ΦI(Bs)I and ΘQ(Bs) = 1 −
∑Q

J=1
ΘJ(Bs)J are polynomials in terms of Bs of order P and

Q, ∇s
D
= (1 − Bs)D, B is the backward shift operator, and the random errors at are assumed to be

independently and identically distributed (IID) with mean zero and constant variance σ2.
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2.1.2 GARCH Model

GARCH stands for Generalized Autoregressive Conditional Heteroscedasticity and is a statistical

model commonly used in finance and economics to estimate the volatility of financial returns. The

GARCH model extends the simpler ARCH (Autoregressive Conditional Heteroscedasticity) model

by allowing for autoregressive terms in the conditional variance equation. The GARCH formula is

typically expressed as follows,

st = µ + at , at = σtεt , σ2
t = ω +

r∑

i=1

αiε
2
t−i +

s∑

j=1

β jσ
2
t− j (2)

where st and at be the stationary time series data and random error at time t, µ is the conditional mean

of st , σ
2
t is the conditional variance of the error term at time t, ω is a constant term representing the

long-term average variance of the error term, εt is the residual error at time t and has zero-mean IID

with a continuous distribution, αi are the coefficients for the lagged squared error terms, with α0 = 0,

and αi ≥ 0 for i = 1, 2, ..., r, β j are the coefficients for the lagged conditional variance terms, with β0

= 0, and β j ≥ 0 for j = 1, 2, ..., s.

The GARCH model specifies that the conditional variance at time t depends on the past squared

errors (ε2) and past conditional variances (σ2) of the series. The α and β parameters represent the

influence of past squared errors and past conditional variances on the current conditional variance,

respectively. The ω term represents the long-run average level of variance in the series.

2.1.3 SARIMA-GARCH Model

GARCH The hybrid model combines these two models to capture both the seasonal patterns and the

volatility clustering in the time series data. The SARIMA component models the mean of the time

series, while the GARCH component models the volatility of the time series.

The SARIMA-GARCH model is one in which the variance of the error term of the SARIMA

model follows a GARCH process. The model can be written as Equation 3,

ϕP (B) ∅P

(
BS
) (

1 − BS
)D

ẏt = θq (B)ΘQ

(
BS
)

at, (3)

at = εtσt, σ
2
t = ω +

r∑

i=1

αiε
2
t−i +

s∑

j=1

β jσ
2
t− j

where the definition of the notations can be referred to in Equations 1 and 2.

2.2 Proposed Research Framework of the SARIMA - GARCH in Forecasting Electricity

Demand

Figure 1 shows the proposed research framework of SARIMA - GARCH where the steps of

forecasting electricity demand are properly arranged. In order to evaluate the forecast accuracy,

there are four stages adopted from the Box-Jenkins modelling that need to be considered which are

Model Identification, Parameter Estimation, Diagnostic Checking, and Forecasting. The framework

is adopted from Yaziz [10] as the study focuses on the non-seasonal highly volatile time series data,

while this study focuses on the seasonal highly volatile time series data.



Syarranur Zaim et. al / MATEMATIKA 39:3 (2023) 293–313 298

2.2.1 Stage I: Model Identification

In order to identify the appropriate SARIMA and GARCH parameters, several statistical tests can be

conducted.

For the SARIMA model, the following steps can be taken:

1. Stationarity Test: Check whether the time series is stationary or not using ADF test. If it is

not stationary, taking differences, seasonal differences, or transformations is required to make

it stationary.

2. ACF and PACF of the stationary data of the non-seasonal part: These plots are used to identify

the order of the autoregressive (AR), integrated (I), and moving average (MA) terms in the

SARIMA model.

3. Seasonality: Check for any seasonal patterns in the data and select the appropriate seasonal

period.

4. ACF and PACF of the stationary data of the seasonal part: These plots are used to identify the

order of the seasonal autoregressive (SAR), and seasonal moving average (SMA) terms in the

SARIMA model.

For the GARCH model, the following steps can be taken:

1. Build a SARIMA model for the stationary data and remove any serial correlation in the data.

Use the residual series of the model to check the ARCH effect. The LBQ test is used to check

the conditional heteroscedasticity in the data.

2. ACF and PACF of the squared residuals of the SARIMA model: These plots are used to identify

the GARCH orders, r and s, respectively.

Overall, the process of identifying the appropriate parameters for a SARIMA-GARCH model can

be iterative, and several models may need to be tested before selecting the best-fitting model.

2.2.2 Stage II: Parameter Estimation

Parameter estimation in the SARIMA-GARCH model involves estimating the parameters of both the

SARIMA and the GARCH components separately. The steps involved in parameter estimation in the

SARIMA-GARCH model are as follows:

1. Stationarity and Seasonality Analysis: Check whether the time series is stationary and has any

seasonal patterns using statistical tests such as the ADF test and the Seasonal Decomposition

of Time Series (STL) method, respectively.

2. SARIMA Parameter Estimation: Estimate the parameters of the SARIMA component of the

model using MLE. This involves selecting the appropriate orders for AR, MA, SAR, and SMA

components of the model.

3. GARCH Parameter Estimation: Estimate the parameters of the GARCH component of the

model using MLE. This involves selecting the appropriate orders for ARCH and GARCH

components of the model.
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4. Model Selection: Select the appropriate SARIMA-GARCH model based on the AIC and BIC

as proposed by Akaike [11] and Schwarz [12], respectively. The AIC or BIC with the lowest

value is preferred in the model selection criteria.

Figure 1: Research Framework of SARIMA - GARCH in Forecasting
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Figure 1: Continued

2.2.3 Stage III: Diagnostic Checking

Diagnostic checking is an important step in the modeling process, as it allows us to evaluate the

adequacy of the model and identify any potential shortcomings. When it comes to SARIMA-GARCH

models, diagnostic checking is particularly important as it can help us ensure that both the time series

and the volatility components of the model are adequately captured. If the model is adequate, then
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the residual series should behave as a white noise [13]. In the diagnostic checking stage, the tests

considered are serial correlation test, heteroscedasticity test and normality test to assure that the errors

behave like white noise.

One way to check the serial correlation in the model residuals is to plot the ACF and PACF of

the model residuals and perform an LBQ test on the residuals. If there is evidence of autocorrelation,

it may be necessary to revise the model. Meanwhile, to detect the existence of heteroscedasticity

in the residuals, the LBQ test on the squared residuals is used. The residuals of the model should

be normally distributed and exhibit no autocorrelation or ARCH/GARCH effects. For normality test,

Jarque-Bera test (JB test) has been utilized. However, when the residuals are not normally distributed,

another innovation of distributions such as Student’s t and GED needs to be considered.

2.2.4 Stage IV: Forecasting

Forecast accuracy refers to the degree to which the actual outcomes of a future event match the

predictions made by a forecast model. It is a measure of the effectiveness of the model in predicting

future outcomes, and it is typically expressed as a percentage or a numerical score. Additionally, it is

important to continually evaluate and update forecast models to ensure their accuracy and relevance

over time.

Some common measures of forecast accuracy include the MAE, RMSE, and MAPE, as given by

Equation 4, 5, and 6, respectively,

MAE =
1

n

n∑

t=1

∣∣∣yt − ŷt

∣∣∣ (4)

RMS E =

√∑n
t=1

(
yt − ŷt

)2

n
(5)

MAPE =
100%

n

n∑

t=1

∣∣∣∣∣∣
yt − ŷt

yt

∣∣∣∣∣∣ (6)

where yt and ŷt are the observed and forecast values at time t, respectively, and n is the number of

out-of-sample data. The best forecasting model is the one that generates the lowest prediction error.

However, if the results are not consistent among the forecast evaluations, it is suggested to choose

MAPE since it is relatively more stable than others [14]. According to Girish [15], the ability of

forecasting is considered relatively good if the model has a MAPE value of around 5%.

3 Results and Discussion

3.1 Dataset

This study uses weekly maximum electricity demand data (in MW) in the year range of 2005 to 2016

from Single Buyer Department (SB) website (https://www.singlebuyer.com.my/). SB is the entity

authorised by Suruhanjaya Tenaga (Energy Commission) to be responsible for the management of

electricity procurement and related services. This data is considered secondary data. Table 1 shows

the weekly maximum electricity demand data. The input data has been split into two groups of

training and testing data to build the forecasting model with the typical ratio of 90:10. However, since
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the data is weekly and seasonal, the ratio of estimate to forecast used is 92:8 for better cycle. There

are 624 observations in the in-sample data and 52 observations in the out-of-sample data. Meaning

that, 52 weeks represent one whole year as the testing data.

Table 1: Weekly Maximum Electricity Demand Data

Duration Number of Data In-Sample Data Out-of-Sample Data

2005 - 2016 676 1 - 624 625 - 676

3.2 Modelling and Forecasting using SARIMA Model with GARCH

The modelling and forecasting of the dataset of electricity demand are conducted based on the

proposed framework of SARIMA - GARCH as illustrated in Figure 1. Figure 2 shows the trend

increases in in-sample data of weekly maximum electricity demand from 2005 to 2016. However,

within the increasing trend, there can be periods of fluctuation. These fluctuations represent short-

term variations, often caused by various factors such as seasonal effects, economic cycles, or other

external events. Graphically, Figure 2 shows that electricity demand data exhibits strong seasonality

and has a positive upward trend. Hence, this study utilizes the peak electricity demand from 2005 to

2016 to forecast electricity demand in 2017.

Figure 2: In-Sample Data of Weekly Maximum Electricity Demand from 2005 to 2016

Figure 3 shows the decomposed data of weekly maximum electricity demand from 2005 to

2016. The seasonal variation looked to be about the same magnitude across time, so an additive

decomposition might be good. The additive model is useful when the seasonal variation is relatively

constant over time. The plot shows the data, the seasonal pattern, the smoothed trend line, and the

remaining part of the series. The seasonal pattern is a regularly repeating pattern. These components

can be added together to reconstruct the data shown in the top panel. Notice that the seasonal

component changes slowly over time, so that any two consecutive years have similar patterns, but
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years far apart may have different seasonal patterns. The remainder component shown in the bottom

panel is what is left over when the seasonal and trend-cycle components have been subtracted from

the data.

Therefore, the numerical output is shown in Table 2 where the seasonal effect values are repeated

each year for 52 weeks. This requires estimating the impact for each week of the year for weekly

data. According to R statistical software, seasonality in a time series was evaluated where there is a

regular pattern of changes that repeats over seasonal periods of 52 weeks, until the pattern consistently

repeats again at the same frequency.

The seasonally differenced data is shown in Figure 4. Based on the data series in Figure 4, the

data is clearly non-stationary, with strong seasonality and a nonlinear trend, so seasonal difference

is required. These also appear to be non-stationary, therefore additional first differenced is required

as shown in Figure 5. Figure 5 shows the stationary data as the differencing has been utilized to the

seasonal series.

Figure 3: Decompose Data of Weekly Maximum Electricity Demand from 2005 to 2016
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Table 2: Additive Seasonal Effects on Weekly Maximum Electricity Demand Data

Week Seasonal Week Seasonal Week Seasonal Week Seasonal

1 -746.10643 14 83.279955 27 229.641055 40 17.940921

2 -453.570003 15 277.813744 28 94.930048 41 24.395311

3 -421.14846 16 218.915386 29 75.914597 42 136.866413

4 -182.889025 17 342.976185 30 -4.364496 43 -71.787237

5 -195.218038 18 334.228121 31 40.950543 44 -168.380759

6 -458.885644 19 327.723248 32 108.12446 45 -182.14976

7 -165.18635 20 452.649327 33 151.965315 46 -139.350252

8 -39.000477 21 411.627251 34 123.208896 47 -295.65627

9 -49.501256 22 386.41597 35 -24.998705 48 -264.466928

10 103.707071 23 220.04397 36 -122.37355 49 -414.021955

11 176.26278 24 199.505319 37 42.100497 50 -242.904177

12 133.870152 25 208.052205 38 47.489786 51 -424.704133

13 -424.704133 26 330.178137 39 49.495172 52 -602.442584

Figure 4: Seasonally Differenced Weekly Maximum Electricity Demand Data
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Figure 5: Double Differenced Weekly Maximum Electricity Demand Data

LBQ test has been utilized to ensure that there is no serial correlation in the series. In this test,

the null hypothesis is that the series is not serially correlated. Consequently, the p-value of 2.2 x

10−16 which is less than 0.05 suggests that the null hypothesis is rejected at 5% significance level. It

indicates that the first differenced series is serially correlated and SARIMA model is justified to be

considered in this time series data. It turns out that there are seven significant SARIMA models out

of 10 possible models at 5% significance level, which the specific models are presented in Table 3.

Table 3: Heteroscedasticity Checking on the Significant SARIMA Models

SARIMA Model Remarks on Model Significance Heteroscedasticity

1. SARIMA(1, 1, 0)(0, 1, 0)52 Significant Exists

2. SARIMA(2, 1, 0)(0, 1, 0)52 Significant Exists

3. SARIMA(3, 1, 0)(0, 1, 0)52 Significant Exists

4. SARIMA(4, 1, 0)(0, 1, 0)52 Significant Exists

5. SARIMA(5, 1, 0)(0, 1, 0)52 Significant Exists

6. SARIMA(6, 1, 0)(0, 1, 0)52 Significant Exists

7. SARIMA(7, 1, 0)(0, 1, 0)52 Significant Exists

In checking whether the data series is highly volatile and exists an ARCH effect, the squared

residuals of the significant SARIMA model have been examined. The LBQ test has been utilized
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on the squared residuals of the SARIMA models. Based on the results in Table 3, heteroscedasticity

exists in all the significant SARIMA models. Therefore, all the significant SARIMA models need to

be combined with the GARCH model to handle the volatility that exists in the data series.

JB test is a frequently used statistical test to determine whether a dataset or the errors within

the dataset exhibit a normal distribution. This test statistic quantifies the disparity between the

skewness and kurtosis of the dataset and those of a standard normal distribution. In this study,

a significance level of α=0.05 was employed for the normality test. The decision-making process

regarding normality is informed by the probability results obtained from the JB test. If the p-value

is greater than 0.05, it is considered that the assumption of normality is satisfied. Conversely, if the

p-value is less than 0.05, it is deemed that the assumption of normality is not met. Looking at Table

6 below, the JB statistic yields probability values of 613.3802, 429.3995, 472.1505, 867.6595, and

1153.183. Notably, each of these p-value is 0.000 for all SARIMA-GARCH models, which is lower

than the specified significance level of 0.05. Consequently, it can be concluded that the assumption

of normality is not satisfied.

According to the ACF and PACF plot for the seven significant SARIMA models, the possible

ARCH and GARCH orders are 0,1 and 2, respectively. Therefore, there are 52 possible models from

the combination of SARIMA and GARCH with the consideration of distribution errors of student’s

t and GED. Table 6 presents the five significant SARIMA – GARCH models out of the 52 possible

models where GED has been selected as the most appropriate distribution of errors.

Table 4: Results of the Possible SARIMA Models

Para- SARIMA(4,1,0) SARIMA(5,1,0) SARIMA(6,1,0) SARIMA(7,1,0)

meter (0,1,0)[52] (0,1,0)[52] (0,1,0)[52] (0,1,0)[52]

C -0.0808 (0.9929) 0.0164 (0.9984) 0.0565 (0.9938) 0.1125 (0.9862)

ϕ1 -0.7312 (0.0000) -0.7521 (0.0000) -0.7671 (0.0000) -0.7824 (0.0000)

ϕ2 -0.6443 (0.0000) -0.6900 (0.0000) -0.7226 (0.0000) -0.7485 (0.0000)

ϕ3 -0.3771 (0.0000) -0.4543 (0.0000) -0.5118 (0.0000) -0.5535 (0.0000)

ϕ4 -0.1734 (0.0001) -0.2609 (0.0000) -0.3475 (0.0000) -0.4094 (0.0000)

ϕ5 - -0.1194 (0.0172) -0.2136 (0.0000) -0.3003 (0.0000)

ϕ6 - - -0.1265 (0.0188) -0.2180 (0.0013)

ϕ7 - - - -0.1207 (0.0133)

AIC 15.6480 15.6372 15.6247 15.6137

SIC 15.6936 15.6905 15.6856 15.6822

Log-l -4461.4890 -4457.4100 -4452.8580 -4448.7170

* values in parenthesis denote p-value and Log-l is abbreviated for log-likelihood

Based on the information presented in Table 4, the model SARIMA(4, 1, 0)(0, 1, 0)52 has been

chosen as the preferred model during the model estimation stage. This decision is based on the

observation that its values for AIC and BIC, as well as its log-likelihood, exhibit only slight differences

compared to other significant models, while adhering to the principle of parsimony. Furthermore,
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the selection of the SARIMA(4, 1, 0)(0, 1, 0)52 model for forecasting weekly maximum electricity

demand is further validated by the results of the forecasting evaluation, as demonstrated in Table 5.

Table 5. Forecast Accuracy of Significant SARIMA Models

SARIMA Model Forecast Accuracy (Test Set Evaluation)

RMSE MAE MAPE (%)

1. SARIMA(1, 1, 0)(0, 1, 0)52 606.4686 477.2099 2.88

2. SARIMA(2, 1, 0)(0, 1, 0)52 627.2976 492.4028 2.97

3. SARIMA(3, 1, 0)(0, 1, 0)52 622.4103 486.3534 2.94

4. SARIMA(4, 1, 0)(0, 1, 0)52 623.4419 488.5009 2.95

5. SARIMA(5, 1, 0)(0, 1, 0)52 624.5307 489.3780 2.95

6. SARIMA(6, 1, 0)(0, 1, 0)52 632.1847 493.3851 2.98

7. SARIMA(7, 1, 0)(0, 1, 0)52 637.3993 496.5803 3.00

Table 6: The Significant SARIMA-GARCH Models

SARIMA-GARCH

Model

Serially

Correlated

Heteroscedasticity Normality

Test

Distribution

SARIMA(1, 1, 0)(0, 1, 0

−GARCH(1, 2)

Not serially

correlated

up to lag 1

Not exists up to

Lag 51

Not normal

JB: 613.3802

P-value: 0.000

GED

SARIMA(1, 1, 0)(0, 1, 0

−GARCH(2, 1)

Not serially

correlated

up to lag 1

Not exists up to

Lag 50

Not normal

JB: 429.3995

P-value: 0.000

GED

SARIMA(1, 1, 0)(0, 1, 0)

−GARCH(2, 2)

Not serially

correlated

up to lag 1

Not exists up to

Lag 51

Not normal

JB: 472.1505

P-value: 0.000

GED

SARIMA(3, 1, 0)(0, 1, 0)

−GARCH(1, 1)

Not serially

correlated

up to lag 3

Not exists up to

Lag 51

Not normal

JB: 867.6595

P-value: 0.000

GED

SARIMA(6, 1, 0)(0, 1, 0)

−GARCH(0, 1)

Not serially

correlated

up to lag 6

Not exists up to

Lag 1

Not normal

JB: 1153.183

P-value: 0.000

GED

According to Table 6, all of the significant SARIMA-GARCH models are not serially correlated,

no heteroscedasticity exists and they literally pass the diagnostic checking for GED error distribution.

The residuals plot of the considered models supports the randomness and no serial correlation in the

residuals of the SARIMA-GARCH models. Table 7 shows the estimation results of the five significant

SARIMA-GARCH models with GED distribution.
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The well-known AIC and BIC are implemented in this proposed procedure to determine the most

significant SARIMA-GARCH model. These criteria penalise models with too many parameters,

so the model with the lowest AIC or BIC value that still adequately captures the time series and

volatility components should be selected. If the number of parameters of the models are different,

then the parsimony principle is applied by selecting the simpler model that is adequate and has similar

performance. Therefore, based on Table 7, the model of SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) is

chosen as the preferred model in the model estimation stage since its values of AIC and BIC, as well

as its log-likelihood are marginally difference to other significant models, yet apply the parsimony

principle. The selection of SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) as the best model in forecasting

weekly maximum electricity demand is supported as well by the forecasting evaluation results, which

as shown in Table 8.

Table 7: Estimation Results of the Significant SARIMA-GARCH Models with GED Distribution

Parameter SARIMA

(1,1,0) (0,1,0)

[52]-GARCH

(1,2)

SARIMA

(1,1,0) (0,1,0)

[52]-GARCH

(2,1)

SARIMA

(1,1,0) (0,1,0)

[52]-GARCH

(2,2)

SARIMA

(3,1,0) (0,1,0)

[52]-GARCH

(1,1)

SARIMA

(6,1,0) (0,1,0)

[52]-GARCH

(0,1)

C -5.8942

(0.6910)

-10.6981

(0.5129)

-6.8661

(0.6470)

-2.8861

(0.7658)

1.0485

(0.8733)

ϕ1 -0.3531

(0.0000)

-0.2674

(0.0000)

-0.3113

(0.0000)

-0.5518

(0.0000)

-0.7484

(0.0000)

ϕ2 - - - -0.3954

(0.0000)

-0.6463

(0.0000)

ϕ3 - - - -0.1546

(0.0003)

-0.4305

(0.0000)

ϕ4 - - - - -0.2936

(0.0000)

ϕ5 - - - - -0.1718

(0.0003)

ϕ6 - - - - -0.1083

(0.0064)

ω 173432.6000

(0.0000)

23474.1000

(0.1347)

51789.5100

(0.0432)

157315.2000

(0.0000)

8877.6710

(0.0009)

α1 0.4156

(0.0000)

0.4946

(0.0000)

0.4215

(0.0000)

0.3398

(0.0000)

-

α2 - -0.4622

(0.0000)

-0.3300

(0.0000)

- -

β1 0.3100

(0.0032)

0.9131

(0.0000)

0.9420

(0.0000)

0.1818

(0.0146)

0.9708

(0.0000)

β2 -0.1355

(0.0167)

- -0.1629

(0.0041)

- -

AIC 15.5254 15.5241 15.5123 15.3954 15.4038

BIC 15.5712 15.5699 15.5656 15.4489 15.4729

Log-l -4418.7440 -4418.3750 -4413.9980 -4365.2810 -4342.5800

* values in parenthesis denote p-value and Log-l is abbreviated for log-likelihood
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Table 8: Forecast Accuracy of Significant SARIMA-GARCH Models

SARIMA-GARCH Model Forecast Accuracy (Test Set

Evaluation)

RMSE MAE MAPE (%)

1. SARIMA(1, 1, 0)(0, 1, 0)52−

GARCH(1, 2)

644.1828 523.8380 3.13

2. SARIMA(1, 1, 0)(0, 1, 0)52−

GARCH(2, 1)

713.4813 606.6723 3.62

3. SARIMA(1, 1, 0)(0, 1, 0)52−

GARCH(2, 2)

656.2296 538.7854 3.22

4. SARIMA(3, 1, 0)(0, 1, 0)52−

GARCH(1, 1)

623.5834 491.5818 2.96

5. SARIMA(6, 1, 0)(0, 1, 0)52−

GARCH(0, 1)

634.8374 493.1797 2.98

The one-step ahead forecast of weekly maximum electricity demand from

SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) model with GED for the next 52 weeks is shown in

Figure 6. According to the plot, the solid line in blue colour presents the forecasted values whereas

the solid line in green colour shows the actual value of electricity demand. The forecasted values

are estimated to fall within a range of ±2 standard errors which is in red colour of dashed line.

Graphically, the plot shows a fluctuating trend between 17815 and 15337 MW for 52 weeks of

out-sample period and the trend of forecast values closely follows the actual data within that period

which suggests that the forecasting model is performing well in terms of capturing the underlying

trend in the data. The comparison between actual weekly maximum electricity demand and its

one-step ahead forecast value using the proposed SARIMA – GARCH model for 52 weeks of

out-of-sample simulation period is given by Table 10. In this study, 52 weeks represent one whole

year as the testing data and it is adequate to capture a comprehensive trend as 52 weeks would

provide a year’s worth of information.

Table 9 provides a comparison between two types of models which are SARIMA model

and SARIMA-GARCH model. This comparison could relate to evaluation metrics like RMSE,

MAE, and MAPE for forecasting. In this case, a lower MAPE value which is 2.95%

for SARIMA(4, 1, 0)(0, 1, 0)52 suggests that it has a smaller average percentage error in its

predictions compared to SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) which produced MAPE value

of 3.13%. In summary, based on all the evaluation metrics (RMSE, MAE, and MAPE),

SARIMA(4, 1, 0)(0, 1, 0)52 appears to perform better in forecasting electricity demand compared

to SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2). Note that, the SARIMA model fails to handle the

heteroscedasticity that exist in the data series, as well as violating the assumption on the constant

variance in the errors of the Box-Jenkins model. Therefore, it can solely be concluded that SARIMA-

GARCH with GED innovations is appropriate and preferred in forecasting weekly maximum

electricity demand since it reflects its pattern without violating the errors assumptions of the Box-

Jenkins model.
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Table 9: Comparison of Forecast Accuracy between SARIMA and SARIMA-GARCH Models

Forecast Accuracy (Test Set

Model Evaluation)

RMSE MAE MAPE (%)

1. SARIMA(4, 1, 0)(0, 1, 0)52 623.4419 488.5009 2.95

2. SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) 644.1828 523.8380 3.13

Figure 6: Forecasted Results of SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2)

Table 10: The Actual and Forecast Values of

SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2)

Week (Out-of-Sample Data) Actual Forecast Difference

625 15773.00 15789.53 -16.53

626 16186.00 16671.47 -485.47

627 16964.00 16850.35 113.65

628 16621.00 16682.95 -61.95

629 15501.00 16714.64 -1213.64

630 15407.00 16690.19 -1283.19

631 16492.00 15337.49 1154.51

632 16094.00 16660.53 -566.53

633 16767.00 16553.66 213.34

634 15926.00 16692.76 -766.76

635 16600.00 17236.86 -636.86

636 17126.00 17131.97 -5.97

637 16849.00 17408.08 -559.08

638 16641.00 17204.18 -563.18
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Table 10: Continued

639 16701.00 17261.29 -560.29

640 16914.00 17721.39 -807.39

641 17144.00 17814.50 -670.50

642 16749.00 17468.60 -719.60

643 16922.00 17560.71 -638.71

644 16782.00 17331.82 -549.82

645 17571.00 17252.92 318.08

646 17364.00 17238.03 125.97

647 17184.00 16903.13 280.87

648 17360.00 16806.24 553.76

649 17180.00 16689.34 490.66

650 16814.00 16670.45 143.55

651 15391.00 16741.56 -1350.56

652 16862.00 15940.66 921.34

653 16693.00 16651.77 41.23

654 17130.00 16251.87 878.13

655 17202.00 16208.98 993.02

656 17157.00 16702.09 454.91

657 17197.00 16877.19 319.81

658 16623.00 17040.30 -417.30

659 17095.00 16886.40 208.60

660 16479.00 16555.51 -76.51

661 17087.00 16593.61 493.39

662 17190.00 16175.72 1014.28

663 16504.00 16486.83 17.17

664 17069.00 16897.93 171.07

665 16800.00 16849.04 -49.04

666 17124.00 16892.14 231.86

667 17227.00 16664.25 562.75

668 17790.00 16373.35 1416.65

669 16827.00 16418.46 408.54

670 16662.00 16532.57 129.43

671 17108.00 16328.67 779.33

672 17286.00 16455.78 830.22

673 15998.00 16006.88 -8.88

674 17244.00 16740.99 503.01

675 17000.00 16152.10 847.90

676 16721.00 16106.20 614.80
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4 Conclusion

This study indicates that SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) with GED is the most appropriate

model for forecasting electricity demand in the Malaysia data due to its parsimonious characteristic

with a low value of MAPE which is 3.13% as compared to other considered models.

Yet, it can be said that electricity demand in Malaysia can be forecasted accurately using

SARIMA(1, 1, 0)(0, 1, 0)52−GARCH(1, 2) with GED model since its MAPE statistic value of less

than 5% which is considered to be relatively good [15]. This concludes that the proposed model of

SARIMA - GARCH is able to produce a promising performance for electricity demand for the case

of Malaysia data. In conclusion, the proposed model of SARIMA with GARCH has great potential

and yet provides a comprehensive procedure specifically for one-step ahead forecast in forecasting

electricity demand and would be a good start for multistep forecasting by considering other GARCH-

type models as well in handling heteroscedasticity in the data for further study.
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