

A COMPARATIVE STUDY OF BLOCKCHAIN ALGORITHMS

FOR NON-FUNGIBLE TOKEN

WOO JAN YIN

Bachelor of Computer Science

(Computer System & Networking)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : WOO JAN YIN

Date of Birth

Title : A COMPARATIVE STUDY OF BLOCKCHAIN ALGORITHMS

FOR NON-FUNGIBLE TOKEN

Academic Session : 2021/2022

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997) *

 RESTRICTED (Contains restricted information as specified by the

organization where research was done) *

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

 New IC/Passport

Number Date: 17

February 2023

 (Supervisor’s Signature)

Dr Zahian Ismail
Name of Supervisor

Date: 17 February 2023

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan Universiti

Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate in

terms of scope and quality for the award of the degree of Bachelor of Computer Science in

Computer System & Networking

 (Supervisor’s Signature)

Full Name : Dr Zahian Ismail

Position : Senior Lecturer

Date : 17 February 2023

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has not

been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang

or any other institutions.

 (Student’s Signature)

Full Name : WOO JAN YIN

ID Number : CA19079

Date : 17 February 2023

I

RESEARCH ON A COMPARATIVE STUDY OF BLOCKCHAIN

ALGORITHMS FOR NON-FUNGIBLE TOKEN

WOO JAN YIN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science in Computer System & Networking

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JANUARY 2023

II

ACKNOWLEDGEMENT

 I would like to convey my heartfelt thanks to Dr Zahian Ismail, the supervisor of the

Final Year Project at Universiti Malaysia Pahang's Faculty of Computing, for enabling me to

work under her supervision and providing helpful guidance during the Final Year Project. Her

zeal, vision, sincerity, and drive have all made a lasting effect on me. She had given me

instructions on how to complete the job and communicate the outcomes as clearly as possible.

It was a wonderful pleasure and joy to work and learn under her direction. I am appreciative of

everything she has done for me. I'd want to thank her for her friendship, understanding, and

excellent sense of humors as well. I want to thank her for her patience and compassion during

our project work and thesis preparation conversations.

 For their love, commitment, care, and efforts in teaching and educating me for the future,

I owe my parents a debt of appreciation. I am appreciative for their patience, compassion,

commitment, and unwavering support in assisting me in completing my study endeavors.

 I'd want to convey my heartfelt gratitude to Yew Wei Zhiang and Lim Aun Xian, two

of my closest friends, for their unwavering support. Throughout this semester, I've appreciated

their encouragement and suggestions when I've been having trouble with my research. Their

efforts and commitment are valuable, and it pays out in the end.

Finally, I'd want to thank everyone who has assisted me in completing the research

work, whether actively or passively.

III

ABSTRAK

 Dari segi prestasi, skalabilitas, dan kependaman, NFT adalah pelaksanaan penting bagi

manusia tidak kira dalam cryptocurrency atau perlindungan pemilikan aset digital. Walau

bagaimanapun, terdapat beberapa kebimbangan yang perlu dipertimbangkan oleh masyarakat

sebelum menggunakan universal teknologi NFT. Isu terpenting yang wajib diatasi adalah

prestasi algoritma blockchain dalam NFT dan kesan skalabiliti dalam setiap algoritma

blockchain. Oleh kerana sistem blockchain sangat bergantung pada protokol, masalah

berprestasi rendah mungkin dialami. Selain itu, sistem blockchain mungkin tidak dapat

memproses jika blok dihasilkan terlalu cepat. Oleh itu, penyelidikan ini akan menjadi kejayaan

NFT yang dapat menilai prestasi algoritma blockchain dan menentukan algoritma yang paling

sesuai yang mungkin berlaku untuk NFT. Algoritma yang dicadangkan akan dinilai dari segi

prestasi, skalabiliti, dan kependaman. Dalam penyelidikan ini, akan ada beberapa algoritma

terpilih, yang merupakan Bukti Kerja dan Bukti-Berjaya dari sumber terbuka dan diubah suai

menjadi kriteria ujian yang sesuai untuk menilai data yang sah dan mencukupi untuk visualisasi

data. Semua data akan dilakukan dalam paparan carta untuk menjadikan semua perbandingan

lebih jelas. Dari hasilnya, salah satu algoritma yang paling sesuai akan dipilih iaitu Proof-of-

Stakes dan alasannya dibenarkan seperti prestasi yang lebih baik, skalabilitas yang baik, dan

kurang latensi. Oleh itu, penyelidikan ini akan dilakukan pada pengujian algoritma dan

menentukan algoritma terbaik yang perlu diterapkan dalam NFT.

IV

ABSTRACT

 In terms of performance, scalability, and latency, NFTs are a crucial implementation

for humans no matter in cryptocurrency or digital asset ownership protection. However, there

are some concerns for the community to consider before using NFTs technology universalness.

The most important issue that is compulsory to overcome is the performance of blockchain

algorithms in NFTs and the effect of scalability in each blockchain algorithm. Since a

blockchain system is highly dependent on the protocols, a low-performance problem might be

experienced. Other than that, a blockchain system might not be able to process if blocks are

produced too fast. Therefore, this research will be a breakthrough of NFTs which could

evaluate the performance of blockchain algorithms and determine the most suitable algorithms

that may apply to NFTs. The proposed algorithms will be evaluated in terms of performance,

scalability, and latency. In this research, there will be some selected algorithms, which is Proof-

of-Work and Proof-of-Stakes from open resource and modified to the suitable testing criteria

to evaluate valid and sufficient data for data visualization. All data will be done in chart view

to make all comparative more obvious. From the result, one of the most suitable algorithms

will be selected which is Proof-of-Stakes and the reasons are justified as in better performance,

good scalability, and less latency. Therefore, this research will be on a testing for algorithms

and determine the best algorithms that need to apply in NFTs.

V

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS II

ABSTRAK III

ABSTRACT IV

TABLE OF CONTENT V - VII

LIST OF FIGURES VIII

LIST OF TABLES IX

CHAPTER 1 INTRODUCTION

1.1 Overview 1

1.2 Background 2 - 3

1.3 Problem Statement 4

1.4 Objectives 5

1.5 Scope 5

1.6 Hypothesis 6

1.7 Research Contribution 6

1.8 Organization of Thesis 7

CHAPTER 2 LITERATURE REVIEW

2.1 Blockchain Algorithms 8

2.1.1 Proof of Work 8

2.1.2 Proof of Stake 8

2.1.3 Proof of Space 9

2.2 Related Work 10

2.2.1 Bitcoin 10 - 12

2.2.2 Ethereum 13

2.2.3 Chia 14

2.3 Related Resources 15

2.4 Summary 16

CHAPTER 3 METHODOLOGY

3.1 Introduction 17

3.2 Project Management Framework 18

VI

3.2.1 Data Collection & Token Randomization 18

3.2.2 Code Modification 18

3.2.3 Experimental Algorithms 18

3.2.4 Result Evaluation 18

3.3 Project Requirements 19

3.3.1 Input 19

3.3.2 Output 19

3.3.3 Process Description 19

3.3.4 Constraint and Limitation 19

3.3.5 Software Requirement 20

3.3.6 Hardware Requirement 20

3.4 Proposed Design 21 - 22

3.5 Proof of Initial Concept 23 - 24

3.6 Potential Used of Proposed Solution 25

CHAPTER 4 IMPLEMENTATION, RESULT & DISCUSSION

4.1 Introduction 26

4.2 Implementation Process 26

4.2.1 Collecting Open Resources Code 27

4.2.2 Test Run Potential Code 28

4.2.3 Code Modification 29 – 31

4.2.4 Train Data 32

4.3 Result (Data Visualization) 33

4.3.1 Performance 33

4.3.2 Scalability 34

4.3.3 Latency 35

4.4 Discussion 36

4.4.1 Performance 36 – 37

4.4.2 Scalability 38

4.4.3 Latency 39

CHAPTER 5 CONCLUSION

5.1 Introduction 40

5.2 Discussion on the Result 41

VII

5.3 Limitation and Constraint 42

5.4 Future Work 42

REFERENCE 43 – 44

APPENDIX 45 - 56

VIII

LIST OF FIGURES

Figure 2.1 Flow of blockchain system in bitcoin 10

Figure 3.2 Basic Flow of the Research 18

Figure 3.4 Full flow of the Research 21

Figure 4.1 Apply the filter function to browse the potential code. 27

Figure 4.2 Test Run Proof-of-Work 28

Figure 4.3 Test Run Proof-of-Stake 28

Figure 4.4 Completely run for 50 sets of random data in Proof-of-Work 32

Figure 4.5 Completely run for 50 sets of random data in Proof-of-Stake 32

Figure 4.6 The graph of Number of Process vs Runtime in Proof-of-Work 33

Figure 4.7 The graph of Number of Process vs Runtime in Proof-of-Stake 33

Figure 4.8 The graph of Cumulative Run Time for 50 sets of process for both

algorithms
34

Figure 4.9 The graph of Cumulative Run Time for 200 sets of process for

both algorithms

34

Figure 4.10 The graph of the Latency of Proof-of-Work and Proof-of-Stakes 35

Figure 4.11 The process takes more time to solve an -digit nonce 36

Figure 4.12 The process repeats for assign a random winner to own the block 37

IX

LIST OF TABLES

Table 2.1 Advantages and Disadvantages of Bitcoin 12

Table 2.2 Advantages and Disadvantages of Ethereum 13

Table 2.3 Advantages and Disadvantages of Chia 14

Table 3.3 Software Requirements of the Research 20

Table 3.4 Hardware Requirements of the Research 20

Table 3.6 Comparative Analysis of the Algorithms used 23 - 24

1

CHAPTER 1

INTRODUCTION

1.1 OVERVIEW

With the improvement of blockchain technologies and the trend of cryptocurrencies,

it is getting more ordinary to use NFTs. NFTs are a Non-Fungible Token digital assets

which are built on blockchain. Every NFT own its unique identity number to make user

easy to trace them (Sharma, 2022). Using blockchain technology, NFTs occurs is used to

make copyright more easily recognized and protect artwork from loss. For instance,

Monalisa by Leonardo da Vinci is a well-known painting in the world. However, nobody

knows which is real and counterfeit. By using NFTs, all artworks could be identified by

using serial number. Therefore, only the artwork with registered serial numbers is the real

and actual artwork with copyright of the artist. The existence of NFTs help give artists a

safety way to keep and sell their works, and it could kindly protect their work from copy

or stolen.

This chapter discusses the background of NFT, problem statement, research objective,

etc. All general content and basic explanation regarding this project proposed.

2

1.2 BACKGROUND

In the digital transformation generation, it is better for us to keep our documents in a

digital way. For example, Dropbox is used to upload any document and files for user to

keep, Google Photo may focus on keeping images and videos digitally. It is safer for us to

upload and store our important documents in a trusted platform. NFTs could be a format

for user to store their artwork online. To prove it is better than a physical form, we may

talk about the “Water Lilies” of Claude Monet. He is a French painter who draw a lot of

amazing paint, but his artwork is getting burn in The Museum of Modern Art, New York.

Therefore, a digital form of asset can ensure the hand down of artwork. A graphic designer,

Mike Winkelmann is using NFTs to manage his artwork.

Non-fungible token, also called as NFT is an economic security made up of digital

format recorded in a public ledger called a blockchain system with specific identity serial

and metadata to differentiate them. By using cryptocurrency, which is ETH coin, user may

purchase an NFT, and it could be encoded with mostly software provided (Clark, 2021).

According to Statista Research Department, NFTs sold in one year (April 2021 to March

2022) are more than 565 thousand no matter it is primary sales, or secondary sales

(Statistic_id1265353_daily_nft_sales_value_worldwide_up_until_january.Pdf, 2022).To

ensure all NFT is unique, each of them have its specific identity code. Generally, most of

the NFTs are using an Ethereum blockchain, which is a cryptocurrency that could support

NFTs functionality. By using this technology, NFTs may only be owned by one person at

a time, it will never occur duplicated ownership exist in this system. All NFTs will only

be verified by the person who owns the ownership, and it could transfer the token between

owners. It also allows the creator to hide some specific information in the token to prove

the copyright of the digital asset. It is different between NFT and cryptocurrency since

cryptocurrency is a fungible, and it could be exchange. Unfortunately, NFTs are unable to

replace, and it is linked with a digital asset permanently.

In the field of data security, NFTs is a safe platform due to its blockchain technologies.

It can be considered impossible for cybercriminals to hack, change, and remove any asset

that is stored in this platform. The reason for the good security is because blockchain

technologies will record all the transaction history duplicate to all the participants that

joining in the network. Everyone will own the same transaction history and it is hard to

change or remove all records in million billion accounts. Back to NFTs, all digital assets

3

will be saved on blockchain system and distributed the authentical record to every user.

Theoretically, it can avoid any thefts of missing issue happened. From these, NFTs may

declared that have improved the private and confidentiality of artwork to a new level and

it is specific in the market in this generation.

Theoretically, NFTs are safe enough to keep all the digital assets. However, it is still

occurring some hidden risk between it. Commonly, all the images could be easily copy

and duplicate, and it has a big possibility to spread to any online platform and social media.

This illegal spreading of artwork will never credit their original creators, most of the online

surfers will never know who owns the copyright of that media. Besides that, the genuine

copyright and ownership of NFTs are not verified and enforced since there is no legal

justification or evidence. It is a crucial problem because everyone may keep doing other

people’s artworks as NFTs and make their own profits. The buyer who purchased this kind

of NFTs might need to take legal responsibility of getting sued by the person who owns

the real copyright.

NFTs bring security concerns to the user which is the private keys may link to all digital

assets. Therefore, variants of NFTs might be happened in the platform and it could

interrupt the NFTs and cause loss of digital asset due to scam or fraud. On either side,

effective security measures on NFT exchanges may also be endorsed the idea favor.

Unfortunately, Strong industry security procedures was not enough to overcome NFT

security vulnerabilities when using centralized markets. Platform participants may be to

blame for uncovering a slew of additional security flaws in NFT markets. Users might

forfeit their crucial NFTs for a range of factors, such as uncomplicated password

combination or a failure of apply two-factor authentication (Brock, 2022).

To summarize, NFTs is a new technology which enhances the copyright protection and

transaction of ownership for artwork in digital form. However, its own advantages and

disadvantages have a lot of hidden risks that the developer needs to overcome. For instance,

NFTs has brought some ownerships concerns which everyone could copy other artworks

and sell as his own in this platform. NFTs must become a more safety platform to avoid

any commercial loss occurring to every participant. In additional, it should be more focus

on the security layers to avoid any hacked, thefts, and cybercrime issue happened in this

platform.

4

1.3 PROBLEM STATEMENTS

Two problem statements have been identified. These problems happened because of the

performance of NFT. it contains 2 problem statements cause the low stability occurs in NFTs,

which is:

1. Performance of NFT

Blockchain systems that adopt the classical Byzantine Fault Tolerant (BFT) protocols and

the newly enacted Nakamoto consensus (NC) such as Proof-of-Work, Proof-of-Stakes, and

Proof-of-Authority may experience low-performance problems as a result of the extensive

communication or intensive computation (Wang & Li, 2021). In order to achieve

dependable and transparent administration, NFT users often communicate the transactions

to the blockchain network. Nevertheless, present NFT systems have poor performance

since they are tightly connected with the underlying blockchain technology. The

blockchain topology has to be modified, its structure needs to be optimised, or the

consensus processes need to be improved in order to tackle this issue. Such conditions

cannot be satisfied by the current blockchain systems, and consumers may have a lengthy

delay for each NFT trade (NFT Challenges - NFT, n.d.). Without a confusion, the

performance problem has emerged as the main barrier to the adoption of blockchain in

NFTs, particularly for systems requiring high speed.

2. Stability and Scalability

NFTs are traded anonymously, like other virtual currency and asset transactions, and their

sale indicates market volatility. NFTs are good platforms for financial fraud because of

their obscurity and volatility, but they also constantly run the risk of being used to support

terrorism (Why Would 99% of NFTs Fail?. In Economics, the Concepts of Fungible… | by

BSN | Blockchain Thought Leadership | Medium, n.d.). The subgroup of blocks that are

confirmed must organically expand over time when new blocks are added as this is a

fundamental referral specifically of a blockchain system. This is not assured, though, as

blocks are generated throughout time at various points around the system and must

subsequently be distributed. Communications on the network suffer delays and may not

be immediate due to capacity restrictions (Gopalan et al., 2020). A blockchain system may

be unable to confirm blocks if blocks are produced too fast network latency. The scaling

issues that occur when blockchain technology develops and grows need to be defined.

5

1.4 OBJECTIVES

There are three objectives in this project which are:

• To study blockchain algorithms and identify the most suitable algorithms which may

enhance the performance of NFTs.

• To implement the relevant blockchain algorithms in NFTs which could ensure the

stability of the blockchain process.

• To evaluate the scalability of blockchain using different algorithms in NFTs.

1.5 SCOPE

We have 2 scopes include in this project which is:

• Digital Asset.

In blockchain system, all tokens are unpredictable and unique. There is impossible

for collecting and reuse the same token for testing multiple time. In this case, a

token randomisation will be done. Multiple random tokens will be created by the

system following the number of testing needs. These tokens will be created and

assigned by the code to ensure valid and eligible data are provided.

• Suitable Blockchain Algorithms.

Two suitable algorithms will be chosen for the comparison and the result will be

shown to evaluate the most suitable techniques applied in NFTs. The algorithms

chosen must be the most potential algorithms that could be apply in NFTs. A

prediction must be done and the reason of algorithm chosen should be stated to

prove the research value.

6

1.6 HYPOTHESIS

Based on the block arrival rate, network capacity restrictions, and network structure, the

constraints on the stability region of blockchain systems are calculated. The highest block

arrival rate that allows a blockchain system utilizing a tree or throughput policy to confirm

an unlimited number of blocks at once (Gopalan et al., 2020). Therefore, the performance

of blockchain may be affected by the algorithms use and the data size for processing. As a

summary, the project outcome might be investigated:

• The best blockchain implementation which can cover the heavy workload of NFTs

function and able to run in a most stable time with less latency. The blockchain

algorithms should ensure that the pending time for every use in NFTs are relevant and

acceptable.

• Suitable algorithms to ensure all artwork uploaded to NFTs is able to have their own

address and there is no duplicate blocks happened.

1.7 RESEARCH CONTRIBUTION

There are some main points need to focus on in this research:

• The most promising blockchain algorithms have to evaluate which could make sure

that is suitable to apply on NFTs.

• This research finds out the most suitable testing method of blockchains algorithms

to prove the performance when it applies in NFTs.

7

1.8 ORGANIZATION OF THESIS

This thesis is including 6 chapter as followed:

 Chapter 1 briefly introduces the existing of NFT technologies. This research also

discusses the needs of NFT nowadays. However, it could be occurred some issue that make

NFT less trusted (Ownership problem and Uniquely problem). It also highlights the

Objectives, Scope, and Hypothesis of this research.

Chapter 2 explains about NFTs includes the comparison of research from other sources

and state out the suitable algorithms could be applied in NFTs. It also includes the related

work with blockchain technologies.

Chapter 3 presents the methodologies of testing blockchains algorithms. This chapter

also explains the way to prove the performance of blockchains using the methodologies

stated.

Chapter 4 is the whole process of the research conduct, and the testing will be run on.

All modification of code will be explained here. Furthermore, the results which have

visualize are discussed in this chapter.

 Chapter 5 discusses the conclusion of the research. There are contain the limitation

and constraint of this project and briefly discuss on the future work that can be apply in

this research.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Blockchain Algorithms

There is few of blockchain algorithms can be evaluated. Based on the study, these are

the common algorithms used (Krishnamurthi & Shree, 2020):

2.1.1 Proof of Work (POW)

Proof of Work is a common algorithm used in cryptocurrency. PoW may ensure

all the transaction success and a new block in a blockchain is created. This

algorithm makes participants to mine block harder and harder and need to compete

with each other’s to make sure they could get something. PoW may meet highest

energy consumption when it is running. However, it has more fairness since all the

coins will be equally separated to all nodes who are mining. Furthermore, it has

more advance creditability in the performance and mining of coins because of its

super accuracy of block generation. For the concerns of PoW, this algorithm must

face the risk of DoS attack, Selfish Mining and Sybil Attack.

2.1.2 Proof of Stake (POS)

Proof of Stakes have been used for validating transaction in a system. Basically,

this algorithm will choose the miners who have the higher balance to give priority.

Therefore, the richest man in the selection will be possible to become a permanent

miner since he has the highest balance and always given priority by system. In the

performance site, PoS also required high energy consumption and it is quite

consistent in the stated energy levels. Based on the logic of richest man get priority,

it is unfair to the person who own less balance since they only could be leads by

the person who at the top. Rich man will getting richer and poor man will still

maintained. Besides that, over long periods, the reliability of PoS systems changes

rather a lot. For the security concerns, it faces a big problem since it has a high risk

of getting malware attack in Dos, Short-Range Attack, Long-Range Attack, Coin-

Age accumulation, Pre-Computation Attack and Sybil Attack(Hackernoon, 2018).

9

2.1.3 Proof of Space

Proof of space (PoS) is a consensual process that involves dedicating a non-trivial

quantity of memory or disc space to fulfill a task posed by the service provider in

order to demonstrate one’s genuine interest in a system . Proofs of space are similar

to proofs of work, the only difference is the storage is utilized to earn bitcoin

instead of compute. Proof-of-space functions vary from recollection functions in

that the barrier is the quantity of memory required, not the number of main memory

instances. Due to a general structure of capacity and the reduced energy cost

required by memory, blockchain supporters consider proofs of space as a kinder

and better option, however they have been challenged for greater storage demand

(Proof of Space | Owlapps, n.d.).

10

2.2 Related Works

The related work in this research is Bitcoin, Ethereum and CHIA. These three

systems are represented the three of algorithms will be used respectively which are

Proof-of-Work, Proof-of-Stake and Proof-of-Space. These systems are currently

activated, and it can be proved that the algorithms selected are works and the advantages

and disadvantages could be bringing the benefits to the research and easier the

evaluation of result. Nevertheless, these related works may refer as a comparison to

justify the potential of each algorithm and minimize the scope of testing.

2.2.1 Bitcoin

Bitcoin is a virtual currency using blockchain technologies as their basic

technique. This technique may enhance the security of the system which could

encrypts a user’s profile to secure their personal data. Every Bitcoin node record

and validates the authenticity in any transaction on the blockchain, which would be

a distributed shared-data database that comprises a block documenting all created

transactions over an amount of time (Zhu et al., 2018). Only transactions with a

variety of input activities and output destinations are added to the blockchain. The

transaction may be verified by comparing the total of the output values of the input

operations to the total of the target value of that kind of transaction. A bitcoin

address is the base58 encoding of a participant’s public key hashing, which

specifically identifies the client. However, a person can hold many Bitcoin

addresses by generating a new address or changing the address provided by the

system, which provides security in Bitcoin. Others are unable to precisely determine

the transfer of cash with a particular Bitcoin address due to the various incoming

and outgoing addresses of an operation and the system's automatic creation between

several addresses.

11

Figure 2.1: the Flow of blockchain system in bitcoin.

a. Blockchain Decoder

To isolate and obtain data on asset and address information, that is require the

decoder to decode the blockchain data. The input and output of each operation

will be retrieved from the binary blockchain data following this approach.

b. MySQL

It is necessary to keep Bitcoin blocks in order to study the patterns of Bitcoin

exchanges and identifies. Due to the large number of transactions in blockchain,

an index is required to greatly minimize lead times. It is possible to figure out

another comparative statistic of operations and addresses using a database

system as the preservation of bitcoin network.

c. Address Clustering

Due to the system generating a large number of addresses, it is important to

connect the addresses to a summary in order to de-anonymize them. As a result,

the number of Bitcoin addresses can be lowered, removing some anonymity.

d. Graph Database Store

This requirement gives the accounting process of a specific address and returns

the transaction’s connected chain. To successfully carry out this job, a graph

database is employed to record all transaction information, which may be more

effective and unique than a database system in terms of searching and displaying

social relationships. Thus, by describing the node as a cluster formed in the

previous stage and the feature as a transaction, store the operation in a graph

database. The cluster-id is stored in the datatype variable, whereas the date,

target output, and transaction id are stored in the edge’s asset. Finally, to

illustrate the performance and eventually, a massive, directed graph will be

created.

12

Author Satoshi Nakamoto

Year 2009

Advantages • High-returning ability.

• Fraudulent Payment Security.

• Foreign Transactions, Instant Settlement.

• Greater Stability and Flexibility.

Disadvantages • High risk of big losses due to high unpredictability.

• Operations in the black market.

• Cyber intrusion is uncontrolled and unsupported.

• Not refundable.

Table 2.1: Advantages and Disadvantages of Bitcoin

13

2.2.2 Ethereum

Ethereum is a popular blockchain platform without a block size restriction.

Unfortunately, executing infinite transactions per second has significant drawbacks.

Varying users execute the Ethereum blockchain code at varied speeds and with

different levels of performance. There is two type of Ethereum Account which is:

a. Externally Owned Accounts (EOA): User may send the transaction directly.

b. Contract Accounts: Depends on the contract for possibility of call another

contract to send the transaction.

The Transaction is a single input code that transmits a message from an

Externally Owned Account to another account. The Ethereum blockchain begins

with a blockchain network, after which further transactions are made, resulting in

the creation of new blocks and a new state. Any modification within that status of

the blockchain begins with a trade submitted by EOA. This transaction might either

be a direct transfer of Ethereum digital money to another account or a contractual

trigger. The sender’s account private key authorizes that transaction. Ethereum

might well be thought of as a control structure that is built on transactions

(Saskatoon, 2017). Ethereum uses the transition probability mechanism to ensure

that transitioning from one state to another is successful. Based on the Ethereum

Yellow Paper, the formula of blockchain used in Ethereum are shown as below

(Wood, 2019):

𝜎𝑡+1 ≡ Υ(𝜎𝑡, T)

Ethereum state transition function takes responsibilities to progress several

tasks. For instance, it must evaluate if such transaction becomes well, resetting

general ledger, refunding the reminder cost, and compensating miners for

processing.

Author Vitalik Buterin, Gavin Wood

Year 2015

Advantages • Expertise and confidence are successfully distributed across

network members.

• Set up and manage private blockchain networks easily.

• There are a lot of available protocol layers that may be used.

• Not required a huge and efficient network.

• Private transaction layers.

Disadvantages • Utilizes a Difficult Programming Language.

• Defects, failures, and hackers are all possible outcomes.

• Investment seems to be a risky business.

Table 2.2: Advantages and Disadvantages of Ethereum

14

2.2.3 Chia

Miners fill data storage with randomized integers in new crypto currencies like

Chia. The Chia blockchain generates its own random figure, and the participant

with the closest is the winner. Chia calls it “proof of space and proof of time,”

however the more hard disk drive capacity you own, ever more randomized

integers you own, and the higher chances that you will win (Moss, 2022):

Chialisp is a sophisticated and reliable LISP-like language with smart-contract

features for weighing down and transferring assets. The code below is the sample

of Chialisp (Chialisp, n.d.):

(mod (password new_puzhash amount)
(defconstant CREATE_COIN 51)
(if(=(sha256password)(q.

0x2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e7304336

2938b9824))

(list (list CREATE_COIN new_puzhash amount))

(x)

)

)

 Chia has using Chia Asset Tokens (CATs) which can create or trade among

Chia’s Blockchain. Using a Token and Asset Issuance Limiter (TAIL), the owners

of these assets specify the conditions for their tokens and withdrawal. The holders

of these assets have complete control regarding their use. CATs could be used as

stable currency, stock distribution tokens, shares outstanding, and like anything else.

Author Bram Cohen

Year 2021

Advantages • There’s no need for high-capacity power supply.

• The installation of Disk hardware is uncomplicated.

• Setting up a software to mine coins does not need any specific

skills.

Disadvantages • Different hard drive models have a broad range of durability.

• PC components that are required are in low supply.

• Purchase of large hard discs comes at a high expense.

Table 2.3: Advantages and Disadvantages of Chia

15

2.3 Related Resources

From the open resource, most of the study are related to comparison between

blockchain algorithms only. Basically, there is no one testing the algorithms

performance and relate into NFTs application. However, there are some aspects that

can be applied on this study to make this research more efficient.

This section lists the maximum theoretical number of transactions per second

(TPS) that a blockchain can process. The TPS values of Proof-of-Work, Proof-of-

Stakes, and Proof-of-Space are 7, 7 and 15 respectively (L. M. Bach, B. Mihaljevic,

2018). There is some variation across systems that employ the same technology, even

though the algorithm that powers a cryptocurrency determines the optimum TPS that

can be reached. Larger blocks appear to be the main barrier for transactions in a PoW

system; for instance, Bitcoin's TPS statistics are low because the block size has a

difficult limit of one mb of data. Moreover, it is challenging to offer a really exact

comparison of TPS for each currency's protocol since not all resources are easily

verified. Thus, instead of the performance of blockchain, scalability of blockchain also

a important things in this study.

16

2.4 Summary

 Proof-of-Work Proof-of-Stakes Proof-of-Space

Mechanism
Mining system,

unlimited token

provided.

Limited token

assigned in the

system.

Mining system

depends on the device

storage.

Example of

Application
Bitcoin Ethereum Chia

Advantages

• High-returning

ability.

• Fraudulent

Payment Security.

• Foreign

Transactions,

Instant Settlement.

Greater Stability and

Flexibility.

• Expertise and

confidence are

successfully

distributed across

network members.

• Set up and manage

private blockchain

networks easily.

• There are a lot of

available protocol

layers that may be

used.

• Not required a

huge and efficient

network.

Private transaction

layers.

• There’s no need

for a high-capacity

power supply.

• The installation of

Disk hardware is

uncomplicated.

Setting up a software

to mine coins does not

need any specific

skills.

Disadvantages

• High risk of big

losses due to high

unpredictability.

• Operations in the

black market.

• Cyber intrusion is

uncontrolled and

unsupported.

• Not refundable.

• Utilizes a Difficult

Programming

Language.

• Defects, failures,

and hackers are all

possible outcomes.

• Investment seems

to be a risky

business.

• Different hard

drive models have

a broad range of

durability.

• PC components

that are required

are in low supply.

• Purchase of large

hard discs comes

at a high expense.

17

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

 This chapter briefly explained the testing framework and project requirements. All the

methodologies to ensure the guidelines of testing are fully evaluated. The general process

of the testing is derived as 4 parts which are Data Collection & Token Randomization,

Code Modification, Experimental Algorithms and Result Evaluation.

18

3.2 PROJECT MANAGEMENT METHODOLOGY

Figure 3.2: Basic Flow of the Research

3.2.1 Data Collection & Token Randomization

In this performance testing of blockchain algorithms, first step is data collection.

The code that uses for testing must collect by each algorithm. The input needed is the

random token that generated by the code.

3.2.2 Code Modification

To make sure the open sources code fulfill the requirement of the testing result, a

modification have to done to set all the testing can be reach the parameter needs in the

testing.

3.2.3 Experimental Algorithms

During the experiment, result will be collected, and a calculation will be done to

compare the performance of different algorithms.

3.2.4 Result Evaluation

A graph will be generated by using data in multiple testing to ensure the accuracy

of the result.

19

3.3 PROJECT REQUIREMENT

3.3.1 Input

Input data is the randomization token of the tools. There are impossible to create or

collect the blocks in blockchain and use the same thing to test since all blocks are unique.

Therefore, only random token could be taken as the input of the project.

3.3.2 Output

Output is the data after processing. All the result after testing will be recorded and

processed to determine the best algorithms of NFTs. It will be evaluated into a graphical

format.

3.3.3 Process Description

The whole testing process include 4 steps. First, the data collection will be done with

taken the code from any open source’s tools. Hence, tokenization will be done to ensure

all data is generated by the code for the input. Furthermore, the code that collect must

modified until it hit the requirement of the blockchain testing. All manipulation variables

should be considered as great as possible to minimize the inaccuracy of data. Finally, an

analyzing of data should be done to view the proper result of testing.

3.3.4 Constraint and Limitation

The constraint of this research is it does not include all algorithms. There is a lot of

algorithms in blockchain which include Proof-of-Work, Proof-of-Sakes, Proof-of-Space,

Delegated Proof-of-Stake, Proof of Importance, Practical Byzantine Fault Tolerance and

Ripple Transaction. It is impossible to us to do experiment on each algorithm, the time

spend will be long and waste energy. As a result, determining which algorithms is the

best and most accurate for this study has become a restriction.

The limitation of this research could be the size of the dataset. When a huge dataset

occurs, it could limit the performance of the testing and cause inaccurate data.

Additionally, many attributes and predictor data can be lengthening the time taken for

the testing, an error could be happened when the output are stimulated.

20

3.3.5 Software Requirements

The table below show the software required in this research:

Software Specification Purpose

Microsoft Office

Word

Version 2019 Used for report documentation.

Microsoft Office

PowerPoint

Version 2019 Used for preparing presentation material.

Canva Version 2021 Used for preparing presentation material.

Draw.io Version 13.9.9 Used to draw flow chart for the research.

Google Chrome Version 102.0.5005.61/63 Assist with the search for research

regarding to the project

Google

Collaboratory

Python 3.7.13 To process data and run the source code

for testing algorithms on research purpose.

Table 3.3: Software Requirements of the Research

3.3.6 Hardware Requirements

This research is determining some specific hardware for the testing. The efficiency of hardware

and usability of hardware facing high-load data are crucial and highly needed. The table below

show the hardware required in this research:

Software Specification Purpose

Laptop ASUS Vivobook A412DA

CPU: AMD Ryzen 5 3500U with

Radeon Vega Mobile Gfx 2.10 GHz

GPU: AMD Radeon Vega 8 Graphic

RAM: 12GB SODIMM 2400MHz

Used for development,

documentation, and testing

algorithms in the research.

Smartphone Apple iPhone Xs Max

CPU: Hexa-core (2x2.5 GHz Vortex

+ 4x1.6 GHz Tempest)

GPU: Apple GPU (4-core graphics)

OS: iOS 15.5

Used For Searching information

that required to complete this

research.

Tablet Apple iPad 9th Generation

CPU: Hexa-core (2x2.65 GHz

Lightning + 4x1.8 GHz Thunder)

GPU: Apple GPU (4-core graphics)

OS: iPadOS 15.5

Used to record data and analytic.

It also included produce chart and

diagrams.

Table 3.4: Hardware Requirements of the Research

21

3.4 PROPOSED DESIGN

Figure 3.4: Full flow of the Research

22

Phase 1:

Data Collection is a procedure for browsing from any open-source programme or tools

which has potential to do testing in this project. Since there is 2 algorithms have to test in this

project, therefore we need to make sure each algorithm has at least one of the testing tools in

order to ensure all the result is valid. It is impossible to us to create the blockchain token by

our own and collect a big class of data for testing. To make the testing less complicated, a

random sample will be chosen which all the blocks will be generated by the testing code. This

is what randomization proposed.

Phase 2:

The majority code of the open source given might be not achieved the testing parameter

we set. Therefore, a code modification has to done to obtain all the testing parameter that stated

in this project can be reached. The Code Modification are not necessarily modified using

individual knowledge, but it could be using other sources and combine it as long as the

parameter are achieved. After modified the code, all the parameters have been checking and

established the performance, security, and stability of the algorithm can be tested. Before the

code running and get the real result, a test run must be done to verify any bugs or error occurs

after we modified the code.

Phase 3:

During the last phase, data have been trained with the random token. By using each

algorithm stated in the project, an amount of token will be processing, and the trained data will

be existed in the procedure. After the data trained, an actual data testing will be conducted, and

the result will be recorded. A sentiment analysis will be hand out to filter the needed data and

result. To produce a summary of result, all testing data will propose in diagram either graph,

table, or chart. Last but not least, a data prediction has to done and justify the result of the

testing.

23

3.5 PROOF OF INITIAL CONCEPT

In this research, three algorithms are filtering from all blockchain algorithms, the algorithms

will be experimented in this research is Proof-of-Work (PoW) and Proof-of-Stake (PoS).The

reason of used PoW is due to its mining capacity which could produce unlimited nodes for user.

PoS are considered in this research because it is a less work and energy consumption on the

validation of data blocks.

Table 3.6: Comparative Analysis of the Algorithms used

 Proof of Work Proof of Stake

Energy

Consumption

• Required a lot of energy in

mining.

• The profitability of mining using

Proof of Work are decreasingly

follow the time.

• Required less work to validate

data blocks

• Required less energy.

Woking Criteria

Virtual miners from all around the

world compete to be the first to

solve a math challenge to protect

and verify proof-of-work

blockchains. The winner will

receive to update the blockchain

with the most recent confirmed

transactions and is paid with a

certain amount of coin by the

network.

No race against nodes to validate a

transaction. All user is taking part

in a lucky draw and the winner will

be selected by blockchain itself.

The winner validates the

transaction and get smaller reward

(it consume less electricity).

How the

Algorithms

Work

The network will provide a

difficulty rate for the nodes (it

could be a long prefix like prefix

with 20 zeros).

Miner frames the header with the

following information:

- Cryptocurrency Version

- Previous Blockhash

- Merkle Root

- Timestamp

- Difficulty Target

- Nonce

Once solved, Miner hash the

blockchain twice SHA256 and it

becomes current blockhash.

Challenge String is what miners

must solve which it has a string

with guess number:

“CS” + <Guess “”> = 000…

Example:

Select nodes be a validator by using

pseudo-random election process

based on:

- Staking Age

- Randomization

- Node’s Wealth

Nodes chosen by the algorithms is

from a pool of candidates. When

nodes are choosing to forge the next

block, it verifies the validity of the

transaction, signed it and add into

blockchain.

Two technique of Proof of Stakes

choose Validators:

a. Randomized Block Selection

24

0 (CS) + 1 (Guess) = … 000

0 (CS) + 1 (Guess) = … 001

Stake sizes are public, the next

forger can typically be

predicted by other nodes.

b. Coin Age Selection

After forging block, a node’s

currency age reset to zero. It

must wait a specific of time

before forging another block.

This is used for avoiding the

large stakes nodes control

consensus mechanism.

Features

a. Mining Capacity depends on

computational power.

b. Block rewards received by solve

a cryptographic puzzle.

c. Impractically of the 51% Attack.

Hacker needs to insert malicious

block in 51% of the user data.

a. Fixed Number of Coin.

b. Transaction Fees as Rewards for

Forgers.

c. Impractically of the 51% Attack.

Hacker needs to own 51% of all

the stakes in network.

25

3.6 POTENTIAL USE OF PROPOSED SOLUTION

 Among this research, it is helpful for NFTs to enhance their platform in different aspect

such as performance, security, and stability. In terms of the performance of NFTs, a suitable

algorithm may improve the data structure of blockchain, and it could cause a decreasing of the

run time on every NFTs. The aims of the performance improve might be make NFTs required

less work and energy on validate the data. Nevertheless, a preferable working criterion could

help the participant of NFTs use this technology smoothen and fairly.

 Equally important, determined an appropriate algorithm are able to provide higher

security protection to NFTs. The main issue for NFTs to undergo is solving the security

concerns and minimize the risk of fraud occurs in the system. Therefore, a relevant algorithm

may use for avoiding any cheats and stolen asset occurs in NFTs. The protection of privacy

must include the ownership issue of the system. A safe system should be included a mechanism

which may prevent any counterfeit and fake data appear, especially NFTs which have linkage

with economy values. As a result, this research are needs for NFTs as an evaluation of the best

algorithms to ensure that their blockchain may recognized invalid digital asset and block any

illegal transaction happened between users.

 Meanwhile, stability might be considered as one of the crucial points of NFTs. If the

blockchain system are less stable, it will crack of occurs error while the validation or transaction

are process. It could burden the user and extended the system downtime. NFTs may applied a

satisfied algorithm to enhance the complexity of the system but decrease the overload of

module. An algorithm which can fit NFTs can reduce the overall downtime of the system and

increase the availability to the level which can match the majority participant usage.

26

CHAPTER 4

IMPLEMENTATION, RESULT, AND DISCUSSION

4.1 INTRODUCTION

 Chapter 4 describes the implementation and testing of the potential algorithms chosen

in methodology. All code used for testing are received from open resources and modified to

fulfill the testing parameter. This chapter contains the analysis of data which visualize in a

better view for understanding. Data set used and explanation of result are fully discussed in

this chapter.

4.2 IMPLEMENTATION PROCESS

 The implementation process records all the steps for collecting open sources code and

investigates the usability and functionality of the code. By using google collaboration, an online

environment of python programming, the code is modified to ensure the output is scalable and

the result are available to testing the parameter stated on previous chapter. To visualize the data,

Microsoft excel is used by manually entering all the single data and producing a graph to

validate the comparative between both algorithms.

27

4.2.1 Collecting Open Resource Code

 In this process, looking for any potential code for different algorithms will be

processed. GitHub is a open resource platform which provides a lot of code with

different programming languages such as C++, Java, Python etc. Since Python is chosen

as the main programming language in this testing, therefore a filter of programming

language will be applied during browse potential code.

Figure 4.1: How to apply the filter function to browse the potential code.

28

4.2.2 Test Run Potential Code

 Potential code selected must run once in google collaboration to make sure the

environment can support the algorithms provided. Test run for the code also helps to

verify the output of code and ensure that the data provided can fulfill our testing plan.

Figure 4.2: Test Run Proof-of-Work

Figure 4.3: Test Run Proof-of-Stakes

29

4.2.3 Code Modification

 From the test run of previous steps, the code contains some incomplete

parameters which have to fix before used for testing.

• Proof-of-Work

i. The process only will run once, it does not fulfill one of the criteria of

testing which is “Run multiple set of data”.

• Proof-of-Stake

i. The process will run unlimited data without any stopping conditions.

ii. The run time of each process is not printed.

To solve this problem, code modification must be done by adding stopping

conditions for each code and adding start and end time for Proof-of-Stake code. The

stopping condition added must be scalable and easy to modify in case any changes or

increasing data set is needed.

30

For Proof-of-Work:

if __name__ == '__main__':

 count = 0

 while count<50 :

 powser = Powser(db_path='./pow.sqlite3')

 ip = '240.240.240.240'

 prefix, time_remain = powser.get_challenge(ip)

 print(f'''

 sha256({prefix} + ???) == {'0'*powser.difficulty}({powser.diff

iculty})...

 IP: {ip}

 Time remain: {time_remain} seconds

 You need to await {time_remain - powser.min_refresh_time} seco

nds to get a new challenge.

 ''')

 last = int(time())

 i = 0

 while not powser._verify_hash(prefix, str(i)):

 i += 1

 print(int(time()) - last, 'seconds')

 print(f"sha256({prefix} + {i}) == {'0'*powser.difficulty}(

{powser.difficulty})")

 print(powser.verify_client(ip, str(i), with_msg=True))

 count +=1

 print("Counter =" + str(count))

 powser.close()

 Highlighted line is the modification of the code. By declaring a count number,

the code can be controlled by setting the number of looping using while loop. Number

50 is declared on this testing since our data number needed is 50 set of processing.

Counter print is added to verify the progress of the code running which how many set

of data have been processed.

31

Proof-of-Stake

from datetime import datetime

import time

from hashlib import sha256

import json, requests

from random import randint

import timeit

…

…

…

…

 count = 0

 while count < 50:

 start = timeit.default_timer()

 print('== \n

\n')

 client = clients[randint(0, 3)]

 client.pos()

 count += 1

 print("Counter =" + str(count))

 stop = timeit.default_timer()

 print('Time: ', stop - start)

 Highlighted line is the modification of the code. The same method are use for

modifying the stopping conditions which is by adding the count and set a count number

in while loop. To fix the same comparison data, the same number of data is used which

is 50 set of process. To solve another problem which is print time of each process, a

start and stop time module are added. This is the original module which have been

imported by added the first line “import timeit”. Therefore, the code are able to print

every process runtime by using the stop time – start time of each process.

32

4.2.4 Train Data

 After the code is modified, an official process will be run. Both algorithms will

be run until 50 sets of data are finished and the runtime will be record one by one. The

output will be manually recorded in Microsoft Excel and the Data Visualization will be

process for the further steps.

Figure 4.4: Completely run for 50 sets of random data in Proof-of-Work.

Figure 4.5: Completely run for 50 sets of random data in Proof-of-Work.

33

4.3 RESULT (DATA VISUALIZATION)

4.3.1 PERFORMANCE

 After all data is collected, two comparative graphs could be built to define the runtime

of both algorithms.

Figure 4.6: The graph of Number of Process vs Runtime in Proof-of-Work

Figure 4.7: The graph of Number of Process vs Runtime in Proof-of-Stake

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Runtime Proof-of-Work

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Runtime Proof-of-Stakes

34

4.3.2 SCALABILITY

To test the scalability of the algorithms, data are increased from 50 sets to 200 sets. The

result shows will be in the cumulative runtime to compare the total runtime of both algorithms

in different number of data set.

Figure 4.8: The graph of Cumulative Run Time for 50 sets of process for both algorithms

Figure 4.9: The graph of Cumulative Run Time for 200 sets of process for both algorithms

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Cumulative Run Time for 50 Sets of Process

Proof-of-Work Proof-of-Stakes

0

2000

4000

6000

8000

10000

12000

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

1
5

1

1
5

7

1
6

3

1
6

9

1
7

5

1
8

1

1
8

7

1
9

3

1
9

9

Cumulative Run Time for 200 Sets of Process

Proof-of-Work Proof-of-Stakes

35

4.3.3 LATENCY

To estimate the latency time in more obvious units, the data record will be in a unit of

microsecond (ms). The output will not be in cumulative value due to the comparison of each

state and an observation of overlapping is needed.

Figure 4.10: The graph of the Latency of Proof-of-Work and Proof-of-Stakes

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Latency of Proof-of-Work and Proof-of-Stakes

Proof-of-Work Proof-of-Stakes

36

4.4 DISCUSSION

4.4.1 PERFORMANCE

 From the testing process, there is obviously may observed the shape of the graph from

both algorithms output. 50 sets of data are good enough for the whole testing since the result

have a critically fluctuation graph and an almost constant graph (non-constant are affected by

decimal places). Therefore, there is unnecessary to upgrade the data set due to the number of

data stated are satisfied and could fulfill the testing.

The graph above is the graph of Number of processes versus runtime in Proof-of-Work

algorithm. Following the result shown above, proof-of-work own an unstable graph which have

a strongly fluctuation in every processes. The runtime of proof-of-work is highly unstable. The

maximum runtime is 316.00s and the minimum runtime is 2.00 second. From the peak of the

graph, we may know that the solution is hard to solve due to the higher nonce, therefore the

process takes more time to get the valid number for the certain process. For the bottom, since

the process takes less time to count the nonce value, this process may declare as easier to solve.

As conclusion, more digit of the nonce need to solve, longer of the time taken for the process

to complete.

Figure 4.12: The process takes more time to solve an 8-digit nonce.

Figure 4.11: The process takes less time to solve a 6-digit nonce.

37

The graph above is the graph of Number of processes versus runtime in Proof-of-Stake

algorithm. Based on the graph above, proof-of-stake shows a nearly constant graph which has

a constant runtime for the whole process. While rounding off all the data recorded in this graph,

all the runtime is 20.00s which forms a perfect horizontal line in the testing. The maximum

runtime is 20.03041s and minimum runtime is 20.02077s. As conclusion, Proof-of-stake own

a stable runtime due to the validator are created completely. The algorithm only needs to assign

the winner to each validator by random picking. Therefore, a fix process will be happened, but

the validator will keep changing randomly due to the picking process.

Figure 4.12: The process only repeats for assign a random winner to own the block.

38

4.4.2 SCALABILITY

To test the scalability, various data sets need to be used to compare the effect of data

size on the runtime of algorithms. From the beginning, 50 sets of data have using for the testing.

To make a big difference, 200 sets of input will be run to verify any delay happened in each

algorithm. The reason for using 200 sets is because 100 sets is only double of the original data

set, there is hard to make a conclusion on small changes of data size. Therefore, 4 times of the

original data set, which is 200 sets are used in order to have a better and obvious observation

on the cumulative runtime.

 From the 50 sets of data, Proof-of-work algorithms owned an unstable graph due to its

runtime are not fix and unpredictable. In contrast, Proof-of-stakes have a constant graph since

all the runtime for every step is almost 20 seconds (if decimal places are not included). While

looking at the total run time, proof-of-work takes longer time which is 2893 seconds compared

to proof-of-stakes which only takes 1001 seconds for running 50 sets of data. The difference

of both total runtimes is almost 3 times in 50 sets of data size. Therefore, from the 50 sets data

testing, proof-of-stakes have better performance, stability and scalability compared to proof-

of-work.

 From the 200 sets of data, the same case happened in proof-of-work which an

unforeseeable graph is exist in this testing. This issue happened because the data set does not

affect the runtime of the single process which still depends on the nonce digit for every random

token. However, Proof-of-stakes algorithms produce a sustainable data which could visualize

a mostly perfect straight-line graph. The increase of data size makes both algorithms have a

grow of total runtime. For proof-of-work, the runtime unpredictable, therefore there is no

increased by 4 times (the increased of data set). There is still a long time that would not be

acceptable if applied in NFTs which is 10946 seconds for 200 sets of data. Nevertheless, Proof-

of stakes with a constant runtime for each process have increased nearly 4 times of the whole

process which is 4005 second for 200 sets of data. Compared to the ratio of both increased total

run time, proof-of-stakes have higher increased compared to proof-of-work. However, proof-

of-work takes a longer time to process the same number data size. Therefore, even if the data

size increases, proof-of-stake still take advantages compared to proof-of-work in the aspects of

performance, stability, and scalability.

39

4.4.3 LATENCY

According to the graph above which display the latency in ms of both algorithms, there

is unstable data that recorded. However, the average of latency for proof-of-stakes (orange line)

algorithms is lower than proof-of-work (blue line). The maximum of latency happened in

Proof-of-Work is 1.116 ms which is exceed 1.5 times of the maximum latency of Proof-of-

Stakes which owned a value 0.736 ms. Furthermore, The average latency of Proof-of-Work is

0.77690 ms, this is a value that higher than latency of Proof-of-Stakes more than 2 times since

there is only hold a average of 0.34354 ms. From the graph, there is only one spike of latency

for proof-of-stakes overlapping another algorithm which is proof-of-work. Thus, a summary

can be done which is the overall latency in Proof-of-Stakes are lower than Proof-of-Work. This

might be brought back to the characteristics of Proof-of-Work which have a mining nonce.

When a higher digit nonce are given to be solved, the algorithm takes more time to start the

process. However, Proof-of-Stakes with a constant and fixed process will be takes less delay

for each process started.

40

CHAPTER 5

CONCLUSION

5.1 INTRODUCTION

 Chapter 5 discuss the relationship of each algorithm and NFTs and link it to the

application of blockchain algorithms in the entire implementation. In the others work that has

been done, only blockchain algorithms are always compared and stated the advantages and

disadvantages of the algorithms. However, there are leaks of research mentioning the

implementation of NFTs and the importance of using suitable algorithms in the whole

application. This comparative study could be one of the media to verify the suitable algorithms

to provide an improvement to the existing NFTs system in order to gain a better performance

in server site or user site.

41

5.2 DISCUSSION ON THE RESULT

 From the testing result shown, Proof-of-Work algorithms have owned an unstable data

no matter in performance or scalability. This is due to the algorithms characteristic which the

system is required to do mining process. The mining process is unpredictable, and the puzzle

solved time are highly depending on the digits of nonce. This is the main reason that makes the

time of the whole process become longer and unexpected. Furthermore, proof-of-work

algorithms provide unlimited tokens which make the token value decrease accordingly. The

value of each token is directly proportional to the number of tokens provided on the platform.

Therefore, unlimited tokens will make NFTs become worthless and decrease the market value

of a digital asset. As a summary, Proof-of-Work algorithms are not suitable algorithms for NFT

due to the mining processing and unlimited provided token specification.

 Other than Proof-of-Work, Proof-of-Stakes is another algorithm that compared in this

research. Proof-of-Stake displayed a definitely opposite part of Proof-of-Work. A stable

performance, scalability and less latency data are evaluated after the testing is made. The reason

for stability performance in Proof-of-Stakes algorithms can be refer to the restriction in number

of tokens. Proof-of-Stakes have a limit on the token, this will cause the lucky draw of the

algorithms to be more stable and faster since there is a limit of token provide in the platform.

Since the tokens are limited, the issue of valueless digital assets will not occur. There are only

such numbers of tokens that will be used for trading and every token is unique. This will make

the token keep their value last longer.

 As a conclusion, through the output given from this testing algorithms, Proof-of-Stake

are the most suitable algorithms that can be apply in NFTs. A stable performance time and less

latency is important due to the user having to know about the purchase immediately. It is

impossible to let the user wait for a long term and mining the token for purchasing NFTs.

Another reason that Proof-of-Stakes are suit to NFTs is the limited token provided. All the

digital assets must be valuable, a fixed number of token can limit the transaction flow in NFTs

platform and secure all the artwork selling in the website own a merit.

42

5.3 LIMITATION AND CONSTRAINT

 The limitation of the testing is due to the algorithms only can provide an ideal

performance for each process. It has no link to direct NFTs system and unable to set the real

scenario which can fit the similarity of NFTs. In the reality case, it could be more possibility

happened such as number of users, number of assets, mining criteria (for Proof-of-Work),

number of tokens limited (for Proof-of-Stakes) and etc. Therefore, this comparison study only

can proof the algorithms characteristic and apply the suitable algorithms in NFTs in the ideal

case.

 The constraint of the study comes from the algorithms used. It is impossible to test all

the existing blockchain algorithms in the world. Therefore, only the most potential algorithms

can be filtered and proceed to the testing. This does not mean the algorithms that are not applied

in this testing have a worse performance compared to these algorithms selected. The selected

algorithms only pick by the ideal criteria. Thus, there might be other algorithms that can fit

NFTs but do not apply for testing in these comparison studies.

5.4 FUTURE WORK

 From the limitation and constraint, there are 2 future works that can be applied in this

study. To get more actual data which can meet the reality, the next study should include the

real scenario event is virtual data. This should be involved in testing similar data. An idea can

be applied which a stimulated NFTs platform can be done and fit the implemented algorithms

into the platform to get data in the aspect of performance.

 Not only the real problems have to be achieved, but a suggestion for the future work is

also using other algorithms which have not been tested in this study to compare with Proof-of-

Stake. From the conclusion, Proof-of-Stakes algorithm are the most suitable and ideal

blockchain algorithms to fit in to NFTs, therefore Proof-of-Work are not required to testing

anymore. Nevertheless, applying the other algorithms to compare with Proof-of-Stakes might

get a different result and implemented new suitable algorithms to NFTs. In the opposite site, if

Proof-of-Stakes still the best suit algorithms, then it can double clarify that Proof-of-Stakes is

the highly recommended algorithms to NFTs applications.

43

REFERENCE

statistic_id1265353_daily_nft_sales_value_worldwide_up_until_january.pdf. (2022). Statista

Research Department.

Brock, W. B. T. J. (2022). 8 Pros and Cons of NFTs & How They Compare to Traditional

Investments. https://www.annuity.org/2022/01/14/from-the-experts-8-pros-and-cons-of-

nfts/

Chialisp. (n.d.). Retrieved June 2, 2022, from https://chialisp.com/

Clark, M. (2021). NFTs, explained: what they are, and why they’re suddenly worth millions -

The Verge. https://www.theverge.com/22310188/nft-explainer-what-is-blockchain-

crypto-art-faq

Gopalan, A., Sankararaman, A., Walid, A., & Vishwanath, S. (2020). Stability and Scalability

of Blockchain Systems. Proceedings of the ACM on Measurement and Analysis of

Computing Systems, 4(2), 1–35. https://doi.org/10.1145/3392153

Hackernoon. (2018). Proof of Work, Proof of Stake and Proof of Burn. Icicv, 279–283.

https://hackernoon.com/proof-of-work-proof-of-stake-and-proof-of-burn-6823eac2776e

Krishnamurthi, R., & Shree, T. (2020). A Brief Analysis of Blockchain Algorithms and Its

Challenges. Research Anthology on Blockchain Technology in Business, Healthcare,

Education, and Government, January, 23–39. https://doi.org/10.4018/978-1-7998-5351-

0.ch002

L. M. Bach, B. Mihaljevic, and M. Z. (2018). Comparative Analysis of Blockchain

Consensus Algorithms. 1545–1550.

Moss, S. (2022). Understanding Chia, the cryptocurrency straining storage markets - DCD.

https://www.datacenterdynamics.com/en/analysis/understanding-chia-the-

cryptocurrency-straining-storage-markets/

NFT Challenges - NFT. (n.d.). Retrieved November 29, 2022, from

https://thetokenizer.io/NFT/6-nft-challenges/

Proof of space | owlapps. (n.d.). Retrieved June 2, 2022, from

https://www.owlapps.net/owlapps_apps/articles?id=52214944&lang=en

Saskatoon, S. (2017). Performance Analysis of Ethereum Transaction in Private Blockchain.

44

1–5.

Sharma, R. (2022). Non-Fungible Token Definition: Understanding NFTs.

https://www.investopedia.com/non-fungible-tokens-nft-5115211

Wang, Q., & Li, R. (2021). A weak consensus algorithm and its application to high-

performance blockchain. Proceedings - IEEE INFOCOM, 2021-May.

https://doi.org/10.1109/INFOCOM42981.2021.9488725

Why would 99% of NFTs fail?. In economics, the concepts of fungible… | by BSN |

Blockchain Thought Leadership | Medium. (n.d.). Retrieved November 29, 2022, from

https://medium.com/blockchain-thought-leadership/why-would-99-of-nfts-fail-

123d91d66195

Wood, G. (2019). Ethereum: a secure decentralised generalised transaction ledger. Ethereum

Project Yellow Paper, 1–32.

Zhu, J., Liu, P., & He, L. (2018). Mining information on bitcoin network data. Proceedings -

2017 IEEE International Conference on Internet of Things, IEEE Green Computing and

Communications, IEEE Cyber, Physical and Social Computing, IEEE Smart Data,

IThings-GreenCom-CPSCom-SmartData 2017, 2018-Janua, 999–1003.

https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.153

45

APPENDIX

Gantt Chart:

Task and

Milestones

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

First Meeting

with Supervisor

Chapter 1 -

Introduction

Second Meeting

with Supervisor

Chapter 2 -

Literature Review

Chapter 3 -

Methodology

PSM 1

Presentation

PSM 1

Submission

Task and

Milestones

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

First Meeting with

Supervisor

Code Browsing

Code Modification

Discussion with

Supervisor on

Enhancement

New Testing

Parameter and

Code Modification

Chapter 4 –

Implementation,

Result &

Discussion

Chapter 5 -

Conclusion

Poster Design

PSM 2

Presentation

PSM 2 Submission

46

Code for Proof-of-Work:

#!/usr/bin/env python3

import sqlite3

from time import time

from time import perf_counter

import hashlib

import secrets

'''

db_path: required, where to save the sqlite3 database

difficulty: how many leading zero bits

clean_expired_rows_per: clean expire rows after n inserts

prefix_length: the length of prefix

default_expired_time: how long can a challenger solve the challen

ge in seconds, default is 10 minutes

min_refresh_time: how long can a challenger get a new challenge,

default is half of default_expired_time

'''

class Powser:

 def __init__(

 self,

 db_path,

 difficulty=22,

 clean_expired_rows_per=1000,

 prefix_length=16,

 default_expired_time=None,

 min_refresh_time=None

):

 self.db = sqlite3.connect(db_path)

 self.difficulty = difficulty

 self.clean_expired_rows_per = clean_expired_rows_per

 self.prefix_length = prefix_length

 self.default_expired_time = max(600, 2**(difficulty-

16)) if default_expired_time is None else default_expired_time

 self.min_refresh_time = self.default_expired_time // 2 if

 min_refresh_time is None else min_refresh_time

 self._insert_count = 0

 self._create_table()

 def get_challenge(self, ip):

 row = self.db.execute('SELECT prefix, valid_until FROM po

w WHERE ip = ?', (ip,)).fetchone()

 if row is None:

 return self._update_row(ip)

 prefix, valid_until = row

 time_remain = valid_until - int(time())

47

 if time_remain <= self.min_refresh_time:

 return self._update_row(ip)

 return prefix, time_remain

 def verify_client(self, ip, answer, with_msg=False):

 row = self.db.execute('SELECT valid_until, prefix FROM po

w WHERE ip=?', (ip,)).fetchone()

 if row is None:

 return (False, 'Please get a new PoW challenge.') if

with_msg else False

 valid_until, prefix = row

 if int(time()) > valid_until:

 return (False, 'This PoW challenge is expired.') if w

ith_msg else False

 result = self._verify_hash(prefix, answer)

 if not result:

 return (False, 'The answer is incorrect.') if with_ms

g else False

 self._update_row(ip)

 return (True, 'Okay.') if with_msg else True

 def clean_expired(self):

 self.db.execute('DELETE FROM pow WHERE valid_until < strf

time("%s", "now")')

 self.db.commit()

 def close(self):

 self.db.close()

 def _verify_hash(self, prefix, answer):

 h = hashlib.sha256()

 h.update((prefix + answer).encode())

 bits = ''.join(bin(i)[2:].zfill(8) for i in h.digest())

 return bits.startswith('0' * self.difficulty)

 def _update_row(self, ip):

 self._insert_count += 1

 if self.clean_expired_rows_per > 0 and self._insert_count

 % self.clean_expired_rows_per == 0:

 self.clean_expired()

 prefix = secrets.token_urlsafe(self.prefix_length)[:self.

prefix_length].replace('-', 'B').replace('_', 'A')

 now = int(time())

 valid_until = now + self.default_expired_time

 data = {

 'ip': ip,

 'valid_until': valid_until,

 'prefix': prefix

48

 }

 self.db.execute('INSERT OR REPLACE INTO pow VALUES(:ip, :

valid_until, :prefix)', data)

 self.db.commit()

 return prefix, valid_until - now

 def _create_table(self):

 self.db.execute('''

 CREATE TABLE IF NOT EXISTS pow (

 ip TEXT PRIMARY KEY,

 valid_until INTEGER,

 prefix TEXT

)

 ''')

 self.db.commit()

if __name__ == '__main__':

 count = 0

 while count<50 :

 powser = Powser(db_path='./pow.sqlite3')

 ip = '240.240.240.240'

 prefix, time_remain = powser.get_challenge(ip)

 print(f'''

 sha256({prefix} + ???) == {'0'*powser.difficulty}({powser.diffi

culty})...

 IP: {ip}

 Time remain: {time_remain} seconds

 You need to await {time_remain - powser.min_refresh_time} secon

ds to get a new challenge.

 ''')

 last = int(time())

 i = 0

 while not powser._verify_hash(prefix, str(i)):

 i += 1

 print(int(time()) - last, 'seconds')

 latency_start = perf_counter()

 latency_end = perf_counter() - latency_start

 print('Latency = {:.10f}s'.format(latency_end))

 print(f"sha256({prefix} + {i}) == {'0'*powser.difficulty}({

powser.difficulty})")

 print(powser.verify_client(ip, str(i), with_msg=True))

 count +=1

 print("Counter =" + str(count))

 powser.close()

49

Code for Proof-of-Stake:

"""

 Python implementation of POW

 Credit: https://github.com/mycoralhealth/blockchain-tutorial

"""

from datetime import datetime

import time

from hashlib import sha256

import json, requests

from random import randint

import timeit

DATE = datetime.now()

GENESIS_BLOCK = {

 "Index": 0,

 "Timestamp": str(DATE),

 "BPM": 0, #instead of transactions

 "PrevHash": "",

 "Validator": "" #address to receive the reward {validator, we

ight, age}

}

GENESIS_BLOCK2 = {

 "Index": 0,

 "Timestamp": str(DATE),

 "BPM": 0, #instead of transactions

 "PrevHash": "",

 "Validator": "" #address to receive the reward {validator, we

ight, age}

}

GENESIS_BLOCK3 = {

 "Index": 0,

 "Timestamp": str(DATE),

 "BPM": 0, #instead of transactions

 "PrevHash": "",

 "Validator": "" #address to receive the reward {validator, we

ight, age}

}

GENESIS_BLOCK4 = {

 "Index": 0,

 "Timestamp": str(DATE),

 "BPM": 0, #instead of transactions

 "PrevHash": "",

 "Validator": "" #address to receive the reward {validator, we

ight, age}

}

50

class Blockchain(object):

 def __init__(self, _genesisBlock, account):

 """

 If the genesis block is valid, create chain

 """

 self.blockChain = []

 self.tempBlocks = []

 #self.candidateBlocks = [] #constains block

 self.myCurrBlock = {}

 #self.announcements = []

 self.validators = set() # stakers and balance

 #self.unconfirmed_txns = []

 self.nodes = set()

 self.myAccount = {'Address': '', 'Weight': 0, 'Age': 0}

 self.myAccount['Address'] = account['Address']

 self.myAccount['Weight'] = account['Weight']

 try:

 genesisBlock = self.generate_genesis_block(_genesisBl

ock)

 if self.is_block_valid(genesisBlock):

 self.blockChain.append(genesisBlock)

 else:

 raise Exception('Unable to verify block')

 except Exception as e:

 print('Invalid genesis block.\nOR\n' + str(e))

 def is_block_valid(self, block, prevBlock={}):

 try:

 _hash = block.pop('Hash')

 except KeyError as e:

 return False

 try:

 hash2 = self.hasher(block)

 assert _hash == hash2

 except AssertionError as e:

 return False

 prevHash = prevBlock['Hash'] if prevBlock else ''

 block['Hash'] = _hash

 if self.blockChain:

 prevHash = self.blockChain[-

1]['Hash'] if not prevHash else prevHash

 try:

 assert prevHash == block["PrevHash"]

 except AssertionError as e:

51

 if prevHash == self.blockChain[0]['Hash']:

 block['Hash'] = _hash

 return True

 block['Hash'] = _hash

 return False

 block['Hash'] = _hash

 return True

 def generate_new_block(self, bpm=randint(53, 63), oldBlock=''

, address=''):

 if self.myCurrBlock:

 return self.myCurrBlock

 prevHash = self.blockChain[-1]['Hash']

 index = len(self.blockChain) if not oldBlock else oldBloc

k['Index'] + 1

 address = self.get_validator(self.myAccount) if not addr

ess else address

 newBlock = {

 "Index": index,

 "Timestamp": str(datetime.now()),

 "BPM": bpm, #instead of transactions

 "PrevHash": prevHash,

 "Validator": address

 }

 newBlock["Hash"] = self.hasher(newBlock)

 assert self.is_block_valid(newBlock)

 self.myCurrBlock = newBlock

 return newBlock

 def get_blocks_from_nodes(self):

 if self.nodes:

 for node in self.nodes:

 #resp = requests.get('http://{}/newblock'.format(

node))

 node.add_another_block(self.myCurrBlock)

 resp = node.generate_new_block()

 if self.is_block_valid(resp): #resp.json()

 #self.tempBlocks.append(resp.json())

 if not resp['Validator'] in self.validators:

 self.tempBlocks.append(resp)

 self.validators.add(resp['Validator'])

 def add_another_block(self, another_block):

 if self.is_block_valid(another_block):

 if not another_block['Validator'] in self.validators:

 self.tempBlocks.append(another_block)

 self.validators.add(another_block['Validator'])

52

 def pick_winner(self):

 """Creates a lottery pool of validators and choose the va

lidator

 who gets to forge the next block. Random selection we

ighted by amount of token staked

 Do this every 30 seconds

 """

 winner = []

 self.tempBlocks.append(self.myCurrBlock)

 self.validators.add(self.myCurrBlock['Validator'])

 for validator in self.validators:

 acct = (validator.rsplit(sep=', '))

 acct.append(int(acct[1]) * int(acct[2]))

 if winner and acct[-1]:

 winner = acct if winner[-1] < acct[-

1] else winner

 else:

 winner = acct if acct[-1] else winner

 if winner:

 return winner

 for validator in self.validators:

 acct = (validator.rsplit(sep=', '))

 acct.append((int(acct[1]) + int(acct[2]))/len(acct[0]

))

 if winner:

 winner = acct if winner[-1] < acct[-

1] else winner

 else:

 winner = acct

 return winner

 def pos(self):

 """

 #get other's stakes

 #add owns claim

 #pick winner

 """

 print(str(self.myAccount) + ' =======================> Ge

tting Valid chain\n')

 self.resolve_conflict()

 time.sleep(1)

 self._pos()

 print('***Calling other nodes to announce theirs***' + "\

n")

 time.sleep(1)

53

 for node in self.nodes:

 node._pos()

 time.sleep(1)

 for block in self.tempBlocks:

 validator = block['Validator'].rsplit(', ')

 if validator[0] == self.pick_winner()[0]:

 new_block = block

 break

 else:

 pass

 print('New Block ====> ' + str(new_block) + "\n")

 time.sleep(1)

 self.add_new_block(new_block)

 for node in self.nodes:

 node.add_new_block(new_block)

 print('Process ends' + "\n")

 def announce_winner(self):

 self.blockChain.append(self.myCurrBlock)

 def add_new_block(self, block):

 if self.is_block_valid(block):

 #check index too

 self.blockChain.append(block)

 acct = block['Validator'].rsplit(', ')

 if self.myAccount['Address'] != acct[0]:

 self.myAccount['Age'] += 1

 else:

 self.myAccount['Weight'] += (randint(1, 10) * sel

f.myAccount['Age'])

 self.myAccount['Age'] = 0

 self.tempBlocks = []

 self.myCurrBlock = {}

 self.validators = set()

 def _pos(self):

 print("Coming from ==========================> " + str(se

lf.myAccount) + "\n")

 time.sleep(1)

 print('***Generating new stake block***' + "\n")

 time.sleep(1)

 self.generate_new_block()

 print('***Exchanging temporary blocks with other nodes***

' + "\n")

 time.sleep(1)

 self.get_blocks_from_nodes()

54

 print('***Picking a winner***' + "\n")

 time.sleep(1)

 print("Winner is =======================> " + str(self.pi

ck_winner()) + "\n")

 def resolve_conflict(self):

 for node in self.nodes:

 if len(node.blockChain) > len(self.blockChain):

 if self.is_chain_valid(node.blockChain):

 print('***Replacing node***' + "\n")

 self.blockChain = node.blockChain

 return

 print('***My chain is authoritative***' + "\n")

 return

 def is_chain_valid(self, chain):

 _prevBlock = ''

 for block in chain:

 if self.is_block_valid(block, prevBlock=_prevBlock):

 _prevBlock = block

 else:

 return False

 return True

 def add_new_node(self, new_node):

 self.nodes.add(new_node)

 new_node.add_another_node(self)

 def add_another_node(self, another_node):

 self.nodes.add(another_node)

 @staticmethod

 def hasher(block):

 block_string = json.dumps(block, sort_keys=True).encode()

 return sha256(block_string).hexdigest()

 @staticmethod

 def get_validator(address):

 return ', '.join([address['Address'], str(address['Weight

']), str(address['Age'])])

 def generate_genesis_block(self, genesisblock):

 address = {'Address': 'eltneg', 'Weight': 50, 'Age': 0}

 address = self.get_validator(address)

 genesisblock['Index'] = 0 if not genesisblock['Index'] el

se genesisblock['Index']

 genesisblock['Timestamp'] = str(datetime.now()) if not ge

nesisblock['Timestamp'] else genesisblock['Timestamp']

55

 genesisblock['BPM'] = 0 if not genesisblock['BPM'] else g

enesisblock['BPM']

 genesisblock['PrevHash'] = '0000000000000000'

 genesisblock['Validator'] = address if not genesisblock['

Validator'] else genesisblock['Validator']

 genesisblock['Hash'] = self.hasher(genesisblock)

 return genesisblock

def main():

 """Run test"""

 account = {'Address': 'eltneg', 'Weight': 50}

 account2 = {'Address': 'account2', 'Weight': 55}

 account3 = {'Address': 'account3', 'Weight': 43}

 account4 = {'Address': 'account4', 'Weight': 16}

 blockchain = Blockchain(GENESIS_BLOCK, account)

 blockchain.generate_new_block(52)

 blockchain2 = Blockchain(GENESIS_BLOCK2, account2)

 blockchain3 = Blockchain(GENESIS_BLOCK3, account3)

 clients = [blockchain, blockchain2, blockchain3]

 blockchain.add_new_node(blockchain2)

 blockchain.add_new_node(blockchain3)

 blockchain2.add_new_node(blockchain)

 blockchain2.add_new_node(blockchain3)

 blockchain.get_blocks_from_nodes()

 blockchain2.get_blocks_from_nodes()

 blockchain.pick_winner()

 #check if temp blocks are same

 blockchain.pos()

 blockchain2.pos()

 blockchain3.pos()

 blockchain4 = Blockchain(GENESIS_BLOCK4, account4)

 blockchain4.add_new_node(blockchain)

 blockchain4.add_new_node(blockchain2)

 blockchain4.add_new_node(blockchain3)

 blockchain4.pos()

 clients.append(blockchain4)

 count = 0

 while count < 50:

 start = timeit.default_timer()

56

 print('== \n\

n')

 client = clients[randint(0, 3)]

 client.pos()

 count += 1

 print("Counter =" + str(count))

 stop = timeit.default_timer()

 print('Time: ', stop - start)

 latency_start = time.perf_counter()

 latency_end = time.perf_counter() - latency_start

 print('Latency = {:.10f}s'.format(latency_end))

if __name__ == '__main__':

 main()

