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A B S T R A C T   

Parkinson’s disease (PD) is the second most common progressive neurodegenerative disease that promotes 
neuronal cell death. The primary treatment strategy for Parkinson’s disease involves the therapy of an MAO-B 
inhibitor molecule, selegiline. The present research aims to fabricate selegiline loaded polymeric (PLGA) 
nanoparticles (SPNPs) and selegiline loaded lipid-PLGA hybrid nanoparticles (SLPNPs) while using the single 
emulsion solvent evaporation method. The prepared SPNPs and SLPNPs formulations were subjected to pre-
liminary optimisation using particle size, zeta-potential, and entrapment efficiency (EE%), and the selected 
formulations were subjected to further characterisation. Scanning electron microscopy (SEM) and high- 
resolution transmission electron microscopy (HRTEM) confirmed the particles’ 2-D spherical morphology and 
size. ATR-FTIR was used to evaluate the physical interactions among the formulation ingredients. Differential 
scanning calorimetry (DSC) and X-ray diffraction (XRD) studies confirm that SPNPs and SLPNPs were in an 
amorphous state. Ex-vivo studies showed 77.56% and 80% of drug permeation in 24 h for optimised formulations 
of SPNPs-2 and SLPNPs-1, respectively, while pure selegiline showed 65% Permeation. In-vivo study revealed a 
steady and controlled release profile with a half-life of 13.5 h, and AUC0-24 was observed at 130327.56 ± 231.6 
ng/ml*h for SPNPs-2. For SLPNPs-1 an immediate release was observed with a very short half-life and AUC0-24 
47548.57 ± 434.8 ng/ml*h compared with pure selegiline HCl solution with 2.3 h and AUC0-24 11116.52 ±
345.7 ng/ml*h. SLPNPs-1 has a shorter half-life due to its immediate release properties with the presence of lipid. 
Meanwhile, SPNPs-2, which only has a polymeric layer, has a longer half-life due to its sustained release 
properties. Overall, SPNPs-2 and SLPNPs-1 are promising carriers for selegiline nasal uptake and increase its 
brain bioavailability compared to oral absorption by pure selegiline.   

1. Introduction 

A recent report from the World Health Organization shows that over 
1.5 billion people worldwide are currently affected by neurological 
disorders such as Alzheimer’s Disease (AD), Parkinson’s Disease (PD), 
stroke, headache, brain injuries, epilepsy, neuro infection, and multiple 
sclerosis [1,2]. Neurodegenerative diseases are conditions that affect the 
functioning of neurons in the brain by fluctuations in neurological 
functions [3]. The neuropathological hallmarks of PD are neuronal loss 
in the substantia nigra, which causes striatal dopamine deficiency, and 
intracellular inclusions containing aggregates of α-synuclein [4]. PD 
comes under heterozygote gene diseases as it follows Mendel’s law. A 
recent study concluded that PD is linked to α-synuclein toxicity and to 

lysosomal abnormalities. It indicated that idiopathic Parkinson’s disease 
resembles Mendelian lysosomal storage disorders at a genetic and 
biochemical level [4]. PD is the second-most common neurodegenera-
tive disorder, affecting 2–3% of a sexagenarian population [5]. 

Selegiline, an MAO-B inhibitor, was one of the first adjunct therapies 
in clinical neurology. It is also known as 2-proponylphenethylamine. As 
a specific, irreversible inhibitor of MAO-B, an enzyme that catalyses 
dopamine metabolism in the Central Nervous System (CNS) [6]. Sele-
giline also plays a double role in treating PD as well as depression caused 
by PD. The oral daily dose approved for the management of PD is 5–10 
mg. However, for parenteral and transdermal routes, some studies have 
found that a lower dosage (1.5 mg–5 mg) is sufficient for the same 
amount of efficacy, which may also benefit in reducing side effects with 
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