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ABSTRACT 

 

Botnets must be combated in a concerted manner if they are not to become a danger to global 

security in the coming years. Botnet detection is currently performed at the host and/or network levels, 

but these options have important drawback which antivirus, firewalls and anti-spyware are not 

effective against this threat because they are not able to detect hosts that are compromised via new or 

malicious software. Therefore, this paper will propose the method and develop a system to detect 

botnet malware. In order to detect the botnet malware, this study uses feature selection with product-

moment correlation coefficient and trains it using decision tree classifier. The botnet detection system 

is developed according to the decision tree classifier.   
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ABSTRAK 

 

Botnet mesti diperangi secara bersepadu jika ia tidak menjadi bahaya kepada keselamatan 

global pada tahun-tahun mendatang. Pengesanan botnet pada masa ini dilakukan di peringkat hos 

dan/atau rangkaian, tetapi pilihan ini mempunyai kelemahan penting yang mana antivirus, tembok api 

dan anti-perisian intip tidak berkesan terhadap ancaman ini kerana mereka tidak dapat mengesan hos 

yang terjejas melalui perisian baharu atau berniat jahat . Oleh itu, kertas kerja ini akan mencadangkan 

kaedah dan membangunkan sistem untuk mengesan malware botnet. Untuk mengesan perisian hasad 

botnet, kajian ini menggunakan pemilihan ciri dengan pekali korelasi momen produk dan melatihnya 

menggunakan pengelas pokok keputusan. Sistem pengesanan botnet dibangunkan mengikut pengelas 

pokok keputusan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

A botnet is a collection of internet-connected devices, such as smartphones, desktop computers, 

internet of things (IoT) devices, and servers, that have been infected and are controlled by a single 

malicious programme without the owner's awareness. [1] The term "botnet" is derived from the word 

"robot" and "network" combined. DDoS attacks, data theft, spam, and giving the attacker access to the 

device and its connection are all common uses for botnets. Threat actors, mostly cybercriminals, have 

remote control over infected devices and employ them for certain functions, even if the damaging 

operations are hidden from the user. 

1.2 Background of the Problem 

We decided to build a machine learning model to detect the botnet before it spreads. This makes 

it easier for the network to spot the red flag before it gets worse. The usage of feature selections is 

critical since there are too many features to choose from, which can lead to overfitting of the model 

and delayed and inefficient malware detection. As malware threats become more prevalent, so will the 

threats to user’s personal information. This is extremely concerning and, if not addressed, it is 

extremely dangerous. As a result, we'll use the botnet dataset from the publication Mobile Botnet 

Detection: A Deep Learning Approach Using Convolutional Neural Networks in this paper. [2], [3]  

We decided to use the heatmap and machine learning as the method to detect the Botnet. 
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1.3 Objective 

There are three objectives in this project which are:  

 

1. To study feature selection of Product Moment Correlation Coefficient (PMCC) algorithm 

with heatmap for machine learning model classification and development.  

2. To develop a Botnet detection system with Product Moment Correlation Coefficient (PMCC) 

with heatmap intelligent. 

3. To evaluate the detection performance of the Botnet detection system. 

 

1.4 Scope 

 To study of the proposed system are listed below: 

i) This research is to improve the efficiency and resourcefulness of botnet detection 

techniques based on machine learning and use the most efficient algorithm to develop 

the botnet detection system. 

1.5 Thesis Organization  

 Chapter 1 is briefly describing the introduction about malware type which is botnet. Next, it 

includes problem statements, objectives, scope, and thesis organization. 

 Chapter 2 will discuss the literature review of the system. This chapter is divided into two 

sections: existing system research and a comparison of the existing and proposed systems. 

 Chapter 3 will discuss the methodology used during the development of detecting botnets using 

heatmap and machine learning. This chapter also covers the hardware, software, and botnet dataset 

that have been used in this project. 

 Chapter 4 will discuss the implementation, results, and development. This chapter will also go 

into the function, how the procedure was done, and the outcome of the suggested system. In addition, 

the testing results will be supplied. After the testing is down, the system development will start using 

the result that we get is testing. 

 Lastly, Chapter 5 is the objective overview, the limitation and discussed for any future 

enhancement for the methodology and the algorithm. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction  

 Machine learning is an artificial intelligence (AI) technique that allows systems to learn and 

improve from their experiences without having to be explicitly programmed. Machine learning is 

concerned with the development of computer programmes that can access and utilise data and learn 

on their own. 

The learning process starts with observations or data, such as examples, direct experience, or 

instruction, in order to seek for trends in data and make informed decisions in the future. The main 

objective is to enable computers to learn on their own and adapt their behaviour accordingly without 

the need for human intervention. 

Furthermore, there are just a few reasons why feature selection approaches are used. Shorter 

training times, improved generalisation by eliminating overfitting, and model simplification to make 

them easier to read and improve accuracy are just a few examples. 

Next, the common algorithms that are being used for feature selection inside machine learning 

are supervised or unsupervised. Figure 2-1 shows an overview of the feature selection method. 
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Figure 2.1 The overview of Feature selection Retrieved from Machine Learning Mastery website 

 

 By maintaining the previous dataset, supervised methods allow the machine to forecast the 

feature. When we want the machine to investigate the data in order to generate hypothesis from an 

unlabelled dataset in order to explain subliminal structures, we utilise an unsupervised algorithm. The 

combination of supervised and unsupervised algorithms in a semi-supervised algorithm allows the 

computer to interact with both datasets (either labelled or unlabelled). This algorithm is typically 

employed when the dataset necessitates the machine being educated, found, or skilled. A reinforcement 

algorithm is a technique for allowing robots to immerse themselves in their surroundings in order to 

learn through trial and error or rewards.. 

 We also provide three examples of existing work in this paper. These three existing works have 

been studied by different groups. These three works have shown different results by using the same 

features. 
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2.2  Three Related Work  

       2.2.1 Symmetrical Uncert Attribute Eval 

 Symmetrical Uncert Attribute Eval H al-kaaf, A Ali, S Shamsuddin and S Hassan proposed to 

use 3 types of different feature selection method which is sequential minimal optimization. SMO), 

Decision Tree (J48) and Naive Bayes which achieved highest accuracy of 0.88 and precision of 0.910 

when combining with Symmetrical Uncert Attribute Eval.[4] 

 

 

Figure 2.2 Workflow of the method 

 Figure 2.2 shows how they apply the machine learning the classifier orderly to achieve 

significant results. This study made use of a malicious dataset collected from PROGuard and Drebin. 

The permissions for the apps are extracted using static extraction. Correlation-based Feature Subset 

Selection (CFS), InfoGainAttribute, and SymmetricalUncertAttribute are the feature selection 

methods used. 

 Correlation-based Feature Subset Selection (CFS) is a channel calculation approach that 

evaluates the expectation of each trait in terms of repetition and the relationship between them. It 
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selects highlights that have a strong link with the class. InfoGainAttribute is a type of channel process 

that evaluates the inclusion based on the estimation of its data pick up concerning the class. 

SymmetricalUncertAttribute evaluates the highlights based on the balanced vulnerability of each 

property. The SymmetricalUncertAttributeEval estimation is either zero or one, with one indicating 

that the trait or highlight is relevant to the class and 0 indicating that the characteristic is irrelevant to 

the class.. 

 The Weka tool is used for the evaluation component to calculate Overall Accuracy, False 

Positive Rate, and Precision. One of the measurements used to evaluate grouping models is accuracy. 

The False Positive Rate (FPR) quantifies the number of negatives that are incorrectly identified as 

positives (for example the level of clean applications that misclassified as malware applications) 

Whereas TP refers to the number of malware applications that delegated malware applications, FN 

refers to the number of clean applications that were incorrectly labelled spiteful. TN refers to the 

number of thoughtful applications that have been delegated favourably. FN refers to the number of 

irregular applications that have been mislabeled as ordinary. Precision quantifies the number of 

negatives that are incorrectly identified as certain (for example the level of clean applications that are 

misclassified as malware applications). 

 

Figure 2.3 Result of the performance from different machine algorithm 

 Figure 2.3 depicts the outcomes for all of the feature selection approaches. 

SymmetricalUncertAttributeEval evaluates the value of a quality by evaluating the class's even 

vulnerability. Although SymmetricalUncertAttribute with SMO and NaiveBayes classifiers produced 

good results, J48 has low accuracy and an exaggerated FPR. 
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 They came to the conclusion that SymmetricalUncertAttribute is the best employing SMO, 

with an accuracy of 88.4615%. 

Table 2.1 Features of SymmetricalUncertAttribute 

Feature Selection Method  SymmetricalUncertAttribute  

Classifiers  NaiveBayes, Sequential Minimal 

Optimization (SMO), Decision Tree (J48)  

Highest accuracy  88.46%  
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2.2.2 Deep Q-learning based Feature Selection Architecture (DQFSA) 

 This approach e trains an expert using Q-figuring out how to increase the morpheme's normal 

precision on an approval dataset by sequentially collaborating with the highlighted region. Based on a 

–greedy investigation technique and experience replay, the specialist studies a vast yet constrained 

space of feasible activities and repeatedly finds options with improved execution on the learning task. 

[5] 

 

 

Figure 2.4 Deep Q-learning based Feature Selection 

 

 The primary tasks for this model are to develop a learning process. Specialist in selecting 

highlights sequentially for classification. The assumption that a component performs well in one 

arrangement mission should be associated with the outcome of another arrangement mission, so that 

the component option period can be displayed as a Markov Decision Process. Under the -insatiable 

technique, the specialist selects highlights in a sequential manner until it reaches an end state. 
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Figure 2.5 Assessment measurements results from various 

 

They applied 5 classifiers inside the machine to receive the best accuracy. The classifiers that 

are being used in K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Naive Bayes, Support-

Vector Machines (SVM). The detection for detecting malware that they achieved using this method is 

99.53%. 

Table 2.2 Specification / Feature of Deep Q-learning based Feature Selection Architecture (DQFSA) 

 

 

 

 

  

Feature Selection Method   Deep Q-learning based Feature 

Selection Architecture (DQFSA)  

   

Classifiers   K-Nearest Neighbors (KNN), 

Decision Tree, Random Forest, Naive 

Bayes, Support-Vector Machines 

(SVM)  

Highest accuracy   99.53%  
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2.2.3 Term Frequency Inverse Document Frequency (TF-IDF) 

Nurul Hidayah Mazlan and and Isredza Rahmi A Hamid implement feature selection algorithm for 

android malware detection using Term Frequency Inverse Document Frequency (TF-IDF) in 

Evaluation of Feature Selection Algorithm for Android Malware Detection article. However, as stated 

in the article, Inverse Document Frequency (IDF) is ignorant during class label training and will 

produce incorrect weight values in some features. As a result, they proposed a modified version of 

Frequency Inverse Document Frequency (TF-IDF) to calculate the impact of key malware highlights 

selected in the Android application testing. Figure 2.6 depicts how the detection model works with the 

Modified Term Frequency Inverse Document Frequency feature selection (MTF-IDF).  [6] 

 

Figure 2.6 Android Malware Detection model 

The feature selection process will be used to a dataset of Android information that has been 

divided into XML document configuration. The information base is dissected to yield the element 

vector portions. The element determination measure will reduce the unimportant and excessive 

highlights. At the same time, the highlights used are classified into two types: API call and dangerous 

consent. 
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Figure 2.7 Performance results from various machine 

Figure 2.7 depicts the performance gained for Frequency Inverse Document Frequency (TF-

IDF) and Modified Frequency Inverse Document Frequency (MTF-IDF) utilising three algorithms: 

bagging, decision tables, and random forests. In a nutshell, Modified Term Frequency Inverse 

Document Frequency (MTF-IDF) has the highest accuracy for three algorithms which is 97.6%, 96.8% 

and 98.9% respectively. 

Table 2.3 Specification / Feature of Modified Term Frequency Inverse Document Frequency (MTF-

IDF). 

Feature Selection Method  Modified Term Frequency Inverse Document 

Frequency(TF-IDF)  

Classifiers  Bagging, Decision Table, Random Forest  

Highest accuracy  98.90%  

   

2.3 Comparative Analysis 

Here are the advantage and disadvantages of the three related work. 

Table 2.4 Advantage & Disadvantage of the existing system 

Machine Learning  Advantages  Disadvantages  

Symmetrical Uncert 

Attribute Eval  

They applied benign and 

malware dataset into the 

machine learning for better 

results.  

Have the lowest accuracy 

among other researches.  
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Deep Q-learning based 

Feature Selection 

Architecture (DQFSA)  

Have the highest accuracy 

among other researches.  

Does not use android 

malware dataset to train the 

machine.  

Term Frequency Inverse 

Document Frequency (TF-

IDF)  

All classifiers have a 

minimum accuracy of 95.0  

Does not train the machine 

learning using a benign 

dataset.  
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Table 2.5 Platform of the existing system 

Name Platform 

SolarWinds Security Event Manager Software  

DataDome Cloud-based 

ClickCease  Software 

 

2.4 Chapter Summary 

 To summarise, this chapter has focused on the creation of three feature selection models by 

other academics. The literature review demonstrates how they used feature selection to create a 

powerful detection model. Every consequence and finding of their research is presented, as well as 

figures and tables. 

Table 2.6 shows the features selection method used by them compared to this study 

Feature Selection Paper 1 Paper 2 Paper 3 This Study 

Correlation-based Feature Subset 

Selection (CFS), InfoGainAttribute 

& SymmetricalUncertAttribute 

✓    

Deep Q-learning  ✓   

Modified Term Frequency Inverse 

Document Frequency 

  ✓  

Product Moment Correlation 

Coefficient (PMCC) + Heatmap 

   ✓ 

 

 Table 2.6 shows the comparison of features selection method that have been conduct in the 

existing system of previous researches between this study. 
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CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

This chapter consists of four stages of methodology: data collection, correlation matrix with 

heatmap, features selection extraction, and machine learning classifiers. In the data collection process, 

we use botnet malware and a clean dataset. Then, we conduct a correlation matrix with heatmap. In 

order to select the best features, we using the method of product moment correlation coefficient 

(PMCC). Finally, we evaluate the features by using machine learning classifiers, in order to compare 

the accuracy of the malware detection. Next, this chapter also includes the details of hardware, software 

and botnet dataset that have been used throughout this research. 

The Product Moment Correlation Coefficient (PMCC), which is represented by the symbol r, 

is a metric for the strength of a linear relationship between two variables. The Pearson correlation 

coefficient, or r, measures how far away all of these data points are from the line of best fit that a 

Pearson product-moment correlation attempts to draw across the data of two variables. 

The heatmap, which graphically describe data by colouring values, it is simple to see and 

quickly comprehend complex data. Although modern heatmaps are typically made using specialist 

heatmapping software, they can also be created manually. 

3.2 Methodology 

This paper consists of four main phases of methodology: literature review, model development 

process,  evaluating the mode, and system development. 
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Figure 3.1 The methodology of the research and development 

 In the 1st phase, which is the literature review, we have started the research by studying more 

about machine learning, feature selection method that will be chosen, classifier learner that will be 

used, and understanding the concept of botnet to achieve the best model. 
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 Next, at the 2nd phrase is the model development process. This part consists of four stages 

which are dataset collection, feature selection, features extraction, and machine learning classifiers. In 

the data collection process, we chose botnet malware and clean dataset from Android botnet detection 

dataset for machine learning, figshare. The dataset CSV will be imported into python using Jupyter 

Notebook. Then, we conduct a correlation matrix to generate a heatmap. Next, in order to select the 

best features, the product moment correlation coefficient algorithm has been implemented. We will 

evaluate the dataset to ensure that the best features are selected. Finally, we trained the selected features 

by using machine learning classifiers, in MATLAB in order to compare the accuracy of the malware 

detection. We will train the features in three different classifiers such as decision tree, nearest neighbor 

(KNN), and support vector machines (SVM). The accuracy, TPR, and FRP values were been taken 

and evaluated. 

 At 3rd Phase which is the Evaluate Model, which will analyse and make a conclusion for the 

model's outcome. We have all of the results we require at this point, and we will choose the most 

effective model to continue with the system development process. 

 In the 4th Phase, system development will begin using python language to develop the botnet 

detection system in web applications. Debug and testing will be carried out until it successfully runs 

and detects botnet viruses. 
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3.3 Hardware & Software Specification 

This subtopic will explain about the hardware and software that are been used for this research 

in detail. There one hardware and three type of software were used throughout the whole research. 

Table 6 shows the specification for my laptop and Table 7 show the specification Anaconda Navigator 

(anaconda3),  MATLAB software and Visual Studio Code software that was used to develop the 

process of data. 

Table 3.1 Details of laptops that have been used. 

Name Version Description Purpose of use 

Laptop 

(Acer) 

Windows 10 64bits A gaming 

notebook that can 

easily bring along 

and has various 

functions that can 

be used in 

different 

environment  

To write report and thesis, create a 

heatmap and train the dataset using 

machine learning classifier. Develop 

a botnet detection with PMCC 

 

Table 3.2 Details of Anaconda Navigator (anaconda3), MATLAB and Visual Studio Code software. 

Name Version Description Purpose of use 

Anaconda 

Navigator 

(Anaconda3) 

Python 

version 

3.10.6 

Dissemination of the Python and 

R programming dialects for 

logical figuring, that expects to 

disentangle bundle the board and 

sending. The dissemination 

incorporates information science 

bundles reasonable for Windows, 

Linux, and macOS  

To build a heatmap based 

on python or R language.  

 

 

MATLAB  Original 

License of 

R2022b 

version  

MATLAB is a programming and 

numeric computing platform used 

by millions of engineers and 

scientists to analyse data, develop 

algorithms, and create models.  

To train the selected 

features using classifier 

learner. 
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Visual Studio 

Code 

Version 

1.67.2 

Visual Studio Code is a 

lightweight but powerful source 

code editor for Windows, macOS, 

and Linux that runs on your 

desktop. It includes built-in 

support for JavaScript, 

TypeScript, and Node. 

To develop the system 

using python language 
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3.4 Dataset 

    Table 3.3 Botnet family  

Botnet Family Number of samples 

Anserverbot 244 

 

Bmaster 6 

Droiddream 363 

Geinimi 264 

Misosms 100 

Nickyspy 199 

Notcompatible 76 

Pjapps 244 

Pletor 85 

Rootsmart 28 

Sandroid 44 

Tigerbot 96 

Wroba 100 

Zitmo 80 

Total 1929 

 

 

In this study we used the Android dataset from [2], which is known as the ISCX botnet 

dataset. The ISCX dataset contains 1,929 botnet apps and 4,873 clean apps. The botnet apps were 

from 14 different families and have been used in previous works including [7][8][9][10][11][12]. 

The botnet families are shown in Table 8. 
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3.5 System Development Life Cycle 

The system will begin developed by using python language. The system development process 

will use Anaconda software and Visual Studio Code.  

 
Figure 3.2 Rapid Application Development diagram 

From the Figure 3.2 there are 4 phases in RAD which is analysis and quick design, prototype cycles, 

testing and implementation.  

First, analysis and quick design phase is a critical step for the ultimate success of the project, the 

discussion between supervisor and student is needed to determine the goals and expectations for the 

project as well as current and potential issues that would need to be addressed during the build. The 

potential user of the system which is computer users that need to define and finalize their 

requirements. The computer user needs to upload the file on the website.  

Second, in prototype cycles there are 3 step that need to go through, they are demonstrate, refine and 

build. After quick design is complete, it will demonstrate to supervisor. The information of 

requirement gathered during the analysis and quick design phase is demonstrate and analysed to 

define a set of clear data objects crucial for the business. They will give some idea to developers to 

meet their requirement and developers will refine the design and build it again to meet the 

requirement. Instead of following the requirements, student will create prototypes with different 

features and functions and then show them to the supervisor to decide what should and should not 

have. This process will be repeated until the supervisor is satisfied with the design.  

After that testing process is perform for validation requirements. This step requires to test the product 

and ensure that all part meet the expectations. Feedback needed after testing for any changes or 

enhancements which is what’s good, what’s not, what works, and what doesn’t is shared. This phase 

like prototype phase that these two steps are repeated until a final product can be realized that fits 

both the developers and stakeholder requirements. 
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The last process is implementation which is the system will take place in the real environment.  This 

phase where the finished product will move to the programming components to a live production 

environment to conduct comprehensive testing. 
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3.6 Functional & Non-Functional Requirements 

Table 3.4 Functional & Non-Functional Requirements 

Functional Requirement Non-Functional Requirement 

1.The Botnet Detection System should enable 

users to upload the file into the system in order 

to check their file. 

1.The Botnet Detection System should run in 

web-based application 

2.The Botnet Detection System should enable 

show the result of the uploaded file 

2. The Botnet Detection System should run in 

24 hours per day and 7 days per week. 

 

3.7 Constraints & Limitations 

Table 3.5 Constraints & Limitation 

Constraints Limitations 

1.The different algorithm have different 

featured selection to detect the botnet viruses. 

1.The Botnet Detection System model might be 

dependent on one dataset which may come out 

with wrong result. 

2. Dataset used to train will affect the detection 

model. 

2. The algorithm used may not the most 

effective algorithm to detect the botnet viruses. 
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3.8 Context Diagram 

 

Figure 3.3 The context diagram of Botnet Detection System 

In Figure 3.3, user will upload the file to Botnet Detection System. The Botnet Detection System will 

use the Machine Learning Model to scan the uploaded file by user and get the prediction result. Next 

the prediction result will send to user.   
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3.9 Use Case Diagram & Description  

 

Figure 3.4 The use case diagram of Botnet Detection System. 

Use Case ID Upload File 

Brief Description This use case is to manage user to upload file into the Botnet 

Detection System. It is indicated user only. 

Actor User 

Basic Flow 1. The use case begin when users open the Botnet Detection 

System. 

2. Users are required to upload the file in the interface. 

3. The use case end. 

Exception Flow E1:Wrong upload file 

1. Users had uploaded wrong file. 

2. User reselect the file. 

3. The use case return to step number 2 in the basic flow. 
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3.10 Activity Diagram 

 

Figure 3.5 The activity diagram for user of Botnet Detection System. 

In Figure 3.5, the activity will start at user which they will need to upload the file. Then the Botnet 

Detection System will read the file and send to Machine Learning to do the checking. Then Botnet 

Detection system will generate the result for the file and display the result for the user.  

3.11 Testing Plan  

 The testing plan for Botnet Detection System will test the effectiveness of the model that had 

be trained and the it’s accuracy on detecting botnet. Other than that, the testing will also include the 

functionality of each  interface and database. 
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CHAPTER 4  

RESULTS 

4.1 Introduction 

This chapter will go over the implementation of this research and the development of the 

system in great detail. All the processes, workspace, and development have been done in two types of 

software, which are Jupyter Notebook, Anaconda, Matlab, and Visual Studio Code.  These tasks will 

be well explained in the implementation part, while all results will be detailed in the result part.  

4.2  Implementation 

Implementation process in Jupyter notebook (anaconda3) 

 

Figure 4.1 The code for how to plot the correlation heatmap. 

We used to import the necessary packages and libraries into Anaconda to make sure the 

algorithm could run without any problems. Inside the Jupyter Notebook, we will use the pandas, 

seaborn, and matplotlib packages and libraries. Next, the dataset will be added to the Jupyter notebook 

by importing the CSV file into the environment using pandas. 
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Figure 4.2 The uploaded dataset in Jupyter Notebook. 

To ensure that the correct dataset is imported, a preview of the dataset will be performed. The 

number of rows and columns is displayed in the dataset preview at the bottom. 343 columns and 6802 

rows are present. 

 

Figure 4.3 The python code to generate a heatmap in Jupyter Notebook 

Once the imported data is accurate, a correlation matrix is created to generate a heatmap. The 

heatmap's figure size and background have been configured. Next, we set the precision of the dataset 

values in the heatmap to 2 decimal places. Following the computation of the correlation matrix, a 

heatmap will be generated. 
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Figure 4.4 Botnet Heatmap 

Figure 4.4 shows the whole visual of the botnet heatmap. In furthermore, we use the AJ Pearson 

correlation technique, often known as the product-moment correlation coefficient (PMCC), to 

determine the correlation between the characteristics. Then, we will select the best characteristics that 

are highly associated with one another for usage as model properties. 

Feature selection is the process of selecting a subset of relevant features (variables, predictors) 

for use in model creation. It is also known as variable selection, attribute selection, and variable subset 

selection. We considered using feature selection as one of our primary ideas in machine learning in 

order to train the machine more efficiently. Figure 4.5 shows an example on how feature selection 

works in order to achieve the best accuracy and result. 
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Figure 4.5 Example of Feature Selection method works. 

Feature Selection is known as a cycle where you consequently or physically select these 

highlights which contribute most to your forecast variable or yield in which you are keen on. Having 

irrelevant or unused data in a machine in order to train them to track better for a specific reason can 

cause a decline in inaccuracy which results in poor and unreliable results. By distinguishing the 

irrelevant dataset, the machine can work more effectively and reach the main goal accurately [14],[15]. 

We have implemented feature selection for the multiple ways of in using the product-moment 

correlation coefficient. Figures 4.6 to 4.8 illustrate how the best features were chosen. We started the 

first round of feature selection with the first approach. 

 

Figure 4.6 Best features selection for the first approach 

Figure 4.6 shows the number of best features in a Botnet heatmap. For the first approach, we 

had decided to select the best features based on the value of 0.99, which is the highest value. There 

were 14 features were successfully been detected. All the best features information will be gathered. 
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We proceed with another implementation by using the same step and method of feature selections for 

the second approach. The result will be shown in the next figure. 

 

Figure 4.7 Best feature selection for the second approach 

Figure 4.7 also showed the best features in the heatmap for the second approach. The best value 

that we decide for this approach is 0.90 until 0.99. It is because the more features the more accuracy 

will be get so that the efficient model will be produced. There were 36 features altogether. All the best 

features information will be collected for another step purposed. 

We proceed with the last implementation by using the same step and method of feature 

selection for the third approach. The result will be shown in the next figure. 

 

Figure 4.8 Best feature selection for the third approach 

Figure 4.8 shows the best features in the heatmap for the last approach which is the third. We 

decide to add more features to this approach compared to the two previous approaches by choosing 
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the best value starting from the lowest of 0.85 until 0.99. This is one of the steps to get the best accuracy 

result by training the feature selection. The 47 features were successfully detected. 

Implementation process in MATLAB 

Once we have compiled the best features from the various approaches, we will proceed to the 

next step. The next step in MATLAB involves importing the dataset in order to select the previously 

selected features. We selected the best features manually, one by one, based on the references of the 

best collections of features. 

 

 Figure 4.9 How features are selected 

The figure above shows how the features are selected from the implemented data. We had to repeat 

the same step in order to produce the data of features based on the three different approaches. 
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Figure 4.10 The features were selected 

Figure 4.10 shows the features that were selected which form to 3 dataset which is botnet, 

botnet1, and botnet2. 

 

Figure 4.11 Coding of training using classifier of decision tree 

Figure 4.11 shows the code has been developed to train the features using the machine learning 

classifier in MATLAB. 

Machine learning is the study of algorithms that predict decisions based on samples of data 

using a computer without explicit programming. There are numerous classifiers available for machine 

learning, including decision tree, discriminate analysis, logistic regression, naive bayes, support vector 

machine, nearest neighbour, assemble, and neural network. 
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Figure 4.12 Select the classifier to train 

In this study, we proposed to use all "quick to train" so that it can run all classifiers to get the 

highest accuracy. In addition, we also train the nearest neighbour classifier and support vector machine 

classifier. 
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Figure 4.13 The accuracy of classifiers 

Figure 4.13 shows the numbers of accuracy based on the trained classifier. The highest degree 

of precision will be detected. We chose to evaluate the precision of the three classifiers, decision tree, 

nearest neighbour, and support vector machines. Each classifier employs its own set of algorithms. 

Fine, Medium, and Coarse are used in decision trees and nearest neighbour (KNN), whereas support 

vector machines use Fine Gaussian, Medium Gaussian, and Coarse Gaussian (SVM). 
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4.3 Result 

Table 4.1 Accuracy based on the classifier 

Approach Classifier Fine Medium Coarse 
Preferred 

Classifier 

1st  

Decision Tree 99.7% 99.7% 99.8% ✓ 

KNN 99.8% 99.6% 98.7%  

SVM 99.6% 99.8% 99.8%  

2nd 

Decision Tree 99.6% 99.6% 99.6% ✓ 

KNN 99.1% 98.9% 96.9%  

SVM 99.0% 99.6% 99.6%  

3rd 

Decision Tree 99.6% 99.6% 99.6% ✓ 

KNN 99.2% 98.6% 96.9%  

SVM 98.8% 99.6% 99.6%  

 

Table 4.1 above shows the accuracy based on three different classifiers which is decision tree, nearest 

neighbour (KNN), and support vector machines (SVM). In comparison to the other classifiers, the 

accuracy of the decision tree classifier is the highest based on the above result. 

Table 4.2 Accuracy in Decision Tree Classifier 

    Decision Tree Classifier 

Approach 
Number 

Features 
Fine Medium Coarse 

1st 14 99.7 99.7 99.8 

2nd 36 99.6 99.6 99.6 

3rd 47 99.6 99.6 99.6 

Preferred 

Algorithm  
      ✓ 

 

Table 4.2 above shows the accuracy based on the decision tree algorithms. We are able to choose a 

suitable and trustworthy classifiers algorithm based on the aforementioned result. We select coarse 

tree classifiers as our results because it achieves the highest total accuracy when compared to fine and 

coarse tree classifiers. 
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Table 4.3 Feature of PMCC 

Feature Selection Method Product Moment Correlation Coefficient (PMCC) 

Classifier Coarse Tree 

Highest accuracy  99.80% 

 

The table above shows that this research used the product moment correlative coefficient 

(PMCC) as a feature selection method. The coarse tree algorithm has been selected as the best train 

classifier with the highest accuracy, 99.8 %. 

Once the classifier algorithm has been selected, the next step is to determine the true positive 

rate (TPR) and false positive rate (FPR). The True Positive Rate (TPR) is the proportion of correct 

definite outcomes among all definite examples available during the test. On the other hand, the False 

Positive Rate (FPR) describes the frequency of false positives among all regrettable cases available 

throughout the test. 

The Receiver Operating Characteristic (ROC) is an estimation of issue execution at different 

edge settings. AUC is the degree or percentage of distinguishability, whereas ROC is the likelihood 

curve. It indicates the model's suitability for class recognition. The better the model predicts 0s as 0s 

and 1s as 1s, the higher the AUC. According to the connection, the higher the AUC, the better the 

model recognizes the target with restrictions and no infection. 

Figure 4.14 – 4.19 will show the result confusion matrix for three different approaches. 
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The first approach 

 
 

Figure 4.14 show the correlative matrix for the first approach 

From the result of the first approach, we can identify the value of true positive (TP) is 99.7%, 

false negative (FN) is 0.3%, false positive (FP) is 0.2%, and true negative (TN) is 99.8%. 

 

Figure 4.15 ROC Curve for the first approach 

The result shows that AUC is 0.9983 which means the roc curve is reliable to be trusted and chosen. 
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The second approach 

 
 

Figure 4.16 show the correlative matrix for the second approach 

From the result of the second approach, we can identify the value of true positive (TP) is 100%, 

false negative (FN) is 0%, false positive (FP) is 4.1%, and true negative (TN) is 95.9%. 

 

Figure 4.17 ROC Curve for the second approach 

The result shows that AUC is 0.9752 which means the roc curve is reliable to be trusted and 

chosen. 
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The third approach 

 
 

Figure 4.18 show the correlative matrix for the third approach 

From the result of the third approach, we can identify the value of true positive (TP) is 100%, 

false negative (FN) is 0%, false positive (FP) is 4.1%, and true negative (TN) is 95.9%. 

 

 
 

Figure 4.19 ROC Curve for the third approach 

The result shows that AUC is 0.976 which means the roc curve is reliable to be trusted and 

chosen. 
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Figure 4.20 Confusion matrix table 

 

True Positive (TP): It is the number of correctly classified instances as positive. It means that how 

successful a system is in detecting malware as malicious. As the true positive increases, the result is 

better.  

False Positive (FP): It is the number of incorrectly classified instances as positive. It means that the 

ratio of which the algorithm considers normal data as malicious. As the false positive decreases, it 

shows that the system is more accurate.  

True Negative (TN): It is the number of correctly classified instances as negative.  

False Negative (FN): It is the number of incorrectly classified instances as negative.  

Accuracy: It shows how accurately the system can detect malware.  

Precision: It is the number of instances correctly classified as class X among those classified as class 

X.  

 

Figure 4.20 above shows the confusion table used as a reference to count the value of precision. 

We also can get the value of sensitivity, specificity, accuracy, positive predictive value, and negative 

predictive value. 

Table 4.4 Result and finding. 

Classifier Algorithm 
Number 
Features 

ACC TPR FPR AUC 

Coarse Tree 

14f 99.8 0.998 0.003 0.9983 

36f 99.6 1 0.041 0.9752 

47f 99.6 1 0.041 0.976 
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4.4 Development 

BotnetModelBuilding.py 

 

Figure 4.21 Code to build the model 

Figure 4.21 above shows the coding of the model building. There are 3 python library was 

imported into the file. First is pandas which use to analyse CSV file. Following that is the Decision 

Tree Classifier which allows us to use the decision tree classifier to train our model. Lastly, the pickle 

is used to save the trained model. 

NavPrediction.py 

 

Figure 4.22 Code for the Prediction System 

Figure 4.22 shows the coding for the prediction system. There are 9 python library was 

imported into the system. A detail description of each library will explain at table below. 
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Table Python Library and Description 

Python Library Description 

Streamlit Python language app framework 

Pandas Use to analyse csv file 

Numpy Working with arrays 

Pickle Read saved model 

Random To generate random number 

Matplotlib.pyplot A plotting library MATLAB 

Seaborn To make statistical graphics 

Image To allow python to interpret the image 

Option menu A simple Streamlit component that allows 

users to select a single item from a list of 

options in a menu 
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Figure  4.23 Code for generating a random dataset file. 

Figure 4.23 shows the code to generate some random dataset files with these 14 features to 

allow the user to download it and go the prediction in the system. 

 

Figure 4.24 Code of user input features value using sidebar. 

Figure 4.24 shows the coding of the user input features value using the sidebar. 
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Figure 4.25 Interface of the Botnet Detection System. 

On the left side of the page, there 2 buttons and 14 progress bars. The first button from the top 

is the browse files button which allows the user to upload the file to do the detection. The second 

button is the button that will download a random dataset CSV file for the user to upload the file for 

detection. On the right side of the page, There is a navigation bar with 3  column which is Home . 

Heatmap Analysis and User Guide. In the home part, the first section is the User Input Features which 

is it will show the input value of each feature. The second section which is the result of the detection 

and the last section is the prediction probability which shows how many percentages the input value 

is malware.   
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4.5 Web Hosting 

 

Figure 4.26 AWS EC2 Dashboard 

 Figure 4.26 shows the AWS EC2 dashboard. Click on the Instances (running) it will show the 

interface as Figure 4.27 at below. 

 

 

Figure 4.27 List of Instance  

 In Figure 4.27, it will show the current instance that my account has as a list. TO create a new 

instance To create a new instance, click on the orange button (Launch instances). 
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Figure 4.28 Name the instance  

 In Figure 4.28, put a name for the web server.  
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Figure 4.29 Create new key pair  

 Figure 4.29 shows how to create a new key pair for the web server. Key pair is needed because 

it is allow us to access our own AWS server ubuntu command line later. A .pem file will created and 

will be use later. 

 

Figure 4.30 Other Settings   

 Figure 4.30 shows the continuous setting. We remain it as default and click the orange button 

(Lauch instance). 
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Figure 4.31 Security Group  

 Figure 4.31 shows the list of the security group. We can edit the security group by click the 

security group ID. As a demonstration we go to create security group. 

 

 

Figure 4.32 Create New Security Group  

 Figure 4.32 shows the information to create the security group. A security group name is 

needed because we can use it for different instance and select the correct VPC instance. 
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Figure 4.33 Update Inbound Rules 

 Figure 4.33 shows the information to update for inbound rules. The inbound rules is help the 

web server to filter incoming traffic. By default the inbound rules is empty. For our streamlit web 

application, it use the TCP with 8501 port and 8502 port. Therefore we need to configure the port 

range and set the source from anywhere which to allow user to access the web application. 
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Figure 4.34 RSA Key Pair 

 Figure 4.34 shows the .pem file which contain the RSA Private Key. This pair key will be use 

to access the AWS server. 
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Figure 4.35 DNS Public IP  

 Figure 4.35 shows the Domain Name Server public ip for the AWS server. This DNS public ip 

will be use to access the AWS server. 

 

 

Figure 4.36 Command line to access the AWS server.  

 Figure 4.36 shows the command line to access the AWS server. The command is shh -i (the 

name of .pem file shows in Figure 4.34) ec2-user@(the DNS public ip in Figure 4.35). 
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Figure 4.37 EC2 AWS server .  

 Figure 4.37 shows we are successful to access the EC2 AWS server. 
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Figure 4.38 Install pyhton in the EC2 AWS Server  

 Figure 4.38 shows the python installation in the EC2 AWS Server.  

 

 

Figure 4.39 Python validation in the EC2 AWS Server 

 Figure 4.39 shows  how I validate the python is successful install  in the EC2 AWS Server.  
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Figure 4.40 Git Clone My Repository  

 Figure 4.40 shows the cloning of my GitHub repository. 
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Figure 4.41 Set Domain Name in Route 53 

 In Figure 4.41, we need to put the correct domain name that we purchased and remain default 

setting for others setting and create the host zone.  
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Figure 4.42 Record List 

 Figure 4.42 shows the record of the hosted zone. By default it have 2 record which is NS and 

Soa record. Now we need to create two A record for the hosted zone.  

 

 

Figure 4.43 Public IP Address of Instance 

 Figure 4.43 shows the public ip address of the instance. This public ip address will be use to 

create a record.   
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Figure 4.44 Assign Public IP Address 

 Figure 4.44 shows the public ip address of the instance that we get from Figure 4.43 will assign 

in the record. After assigned, click create records. 

 

Figure 4.45 Assign Sub Domain in Record 

 In Figure 4.45 shows we assign a sub domain which is www for the predictzz.com domain in 

another record. 
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Figure 4.46 GoDaddy My Product Page 

 Figure 4.46 shows the My Product Page. We need go for the GoDaddy DNS management page 

to do nameserver setting by click DNS as shown in the figure.  
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Figure 4.47 Edit Nameservers 

 In Figure 4.47, we need to update the name server from GoDaddy nameserver to AWS 

nameserver. The AWS nameserver is listed in Figure 4.48. After update the nameserver it will takes 

up to 48 hours to make the changes.  

 

 

Figure 4.48 AWS Naemeserver 

 Figure 4.48 shows the AWS nameserver.  
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Figure 4.49 Botnet Detection Website 

 Figure 4.49 shows the web application successfully access using the predictzz.com domain 

name.  
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CHAPTER 5 

CONCLUSION 

5.1 Objective Revisited  

1) To study feature selection of Product Moment Correlation Coefficient (PMCC) algorithm with 

heatmap for machine learning model classification and development. 

We were able to accomplish this by putting forward the algorithm of correlative matrices, 

which was used to choose and detect the best characteristics in the heatmap. The viability of this 

approach was demonstrated in chapter 4 as part of the implementation and development phase. 

2) To develop a Botnet detection system with Product Moment Correlation Coefficient (PMCC) with 

heatmap intelligent. 

In order to develop the botnet detection system, we need to choose the most suitable feature. 

We got a different feature for each dataset we used, because each feature only related to the others if 

the attributes or characteristics had strong and important data. From Table 5.1 to Table 5.3, you can 

see the different things we can capture with PMCC. 

Table 5.1 Features Selection for 1st Approach 

Dataset Botnets 

1st Approach 14 features 

Value 0.99 

Best Features 1. 1. SUBSCRIBED_FEEDS_READ 

2. 2. SUBSCRIBED_FEEDS_WRITE 

3. 3. android.intent.action.UID_REMOVED 

4. 4. UMS_DISCONNECTED 

5. 5. INPUT_METHOD_CHANGED 

6. 6. UID_REMOVED 

7. 7. ServiceConnection 

8. 8. bindService 

9. 9. Ljava.util.Timer.*schedule 

   10. Ljava.util.TimerTask 

   11. Ljava.util.Timer 

   12. AssetManager 

   13. Landroid.content.res.AssetManager 
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   14. getAssets 

 
 

Table 5.2 Features Selection for 2nd Approach 

Dataset Botnets 

2nd Approach 36 features 

Value 0.90-0.99 

Best Features 
10. 1. READ_CALL_LOG 

11. 2. READ_USER_DICTIONARY 

12. 3. WRITE_CALL_LOG 

13. 4. WRITE_USER_DICTIONARY 

14. 5. android.intent.action.PACKAGE_REPLACED 

15. 6. android.intent.action.BATTERY_LOW 

16. 7. android.intent.action.UID_REMOVED 

17. 8. android.intent.action.BATTERY_OKAY 

18. 9. android.intent.action.SCREEN_OFF 

19. 10. android.intent.action.SCREEN_ON 

20. 11. PACKAGE_REPLACED 

21. 12. UMS_CONNECTED 

22. 13. UMS_DISCONNECTED 

23. 14. BATTERY_LOW 

24. 15. .apk 

25. 16. .so 

26. 17. onBind 

27. 18. IBinder 

28. 19. Ljavax\/crypto\/Cipher 

29. 20. ProcessBuilder 

30. 21. Process. *start 

31. 22. Ljava.util.Timer.*schedule 

32. 23. Ljava.util.TimerTask 

33. 24. ZipInputStream.*close( 

34. 25. ZipInputStream.*getNextEntry( 

35. 26. SUBSCRIBED_FEEDS_READ 

36. 27. SUBSCRIBED_FEEDS_WRITE 

37. 28. android.intent.action.UID_REMOVED 

38. 29. UMS_DISCONNECTED 

39. 30. INPUT_METHOD_CHANGED 

40. 31. ServiceConnection 

41. 32. bindService 

42. 33. Ljava.util.Timer 

43. 34. AssetManager 

44. 35.  Landroid.content.res.AssetManager 

45. 36. getAssets 

46.   
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Table 5.3 Features Selection for 3rd  Approach 

Dataset Botnets 

3rd  Approach 47 features 

Value 0.99 

Best Features 47. 1. READ_CALENDAR 

48. 2. SET_ALWAYS_FINISH 

49. 3. SET_DEBUG_APP 

50. 4. SIGNAL_PERSISTENT_PROCESSES 

51. 5. WRITE_CALENDAR 

52. 6. WRITE_SYNC_SETTINGS 

53. 7. PICK_WIFI_WORK 

54. 8. BATTERY_OKAY 

55. 9. HttpPost.*init 

56. 10. HttpUriRequest 

57. 11. createSubprocess 

58. 12. READ_CALL_LOG 

59. 13. READ_USER_DICTIONARY 

60. 14. WRITE_CALL_LOG 

61. 15. WRITE_USER_DICTIONARY 

62. 16. android.intent.action.PACKAGE_REPLACED 

63. 17. android.intent.action.BATTERY_LOW 

64. 18. android.intent.action.UID_REMOVED 

65. 19. android.intent.action.BATTERY_OKAY 

66. 20. android.intent.action.SCREEN_OFF 

67. 21. android.intent.action.SCREEN_ON 

68. 22. PACKAGE_REPLACED 

69. 23. UMS_CONNECTED 

70. 24. UMS_DISCONNECTED 

71. 25. BATTERY_LOW 

72. 26. .apk 

73. 27. .so 

74. 28. onBind 

75. 29. IBinder 

76. 30. Ljavax\/crypto\/Cipher 

77. 31. ProcessBuilder 

78. 32. Process. *start 

79. 33. Ljava.util.Timer.*schedule 

80. 34. Ljava.util.TimerTask 

81. 35. ZipInputStream.*close( 

82. 36. ZipInputStream.*getNextEntry( 

83. 37. SUBSCRIBED_FEEDS_READ 

84. 38. SUBSCRIBED_FEEDS_WRITE 

85. 39. android.intent.action.UID_REMOVED 
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86. 40. UMS_DISCONNECTED 

87. 41. INPUT_METHOD_CHANGED 

88. 42. ServiceConnection 

89. 43. bindService 

90. 44. Ljava.util.Timer 

91. 45. AssetManager 

92. 46. Landroid.content.res.AssetManager 

93. 47. getAssets 

 

3) To evaluate the detection performance of the Botnet detection system. 

This objective has been demonstrated in Chapter 4 under the results. The detection findings 

were obtained after all the methods in this paper was followed and implemented. Using the Coarse 

Tree Classifier technique, we may evaluate our final objective. The accuracy for the Botnet dataset 

with the different approach was 99.8, 99.6, and 99.6 respectively. Following that, the TPR after training 

is 0.998, 1, 1 and the FPR is 0.003, 0.041, and 0.041 respectively. 

Table 5.4 Result of Coarse Tree Classifier 

Classifier Algorithm 
Number 
Features 

ACC TPR FPR AUC 

Coarse Tree 

14f 99.8 0.998 0.003 0.9983 

36f 99.6 1 0.041 0.9752 

47f 99.6 1 0.041 0.976 

 

5.2 Limitation 

Because the virus has the potential to spread and persist in the future, the list of Botnets may 

change. Furthermore, botnet families will grow and evolve, creating a new and more dangerous threat. 

As a result, more harmful botnets may attack the environment and network at a much faster rate. Even 

if we utilise feature selection as our model-building technique, knowing more about the dataset can 

help us make better and more accurate predictions. As a result, the dataset's characteristics must be 

enhanced in order to capture more necessary traits and traits from botnets in order to prevent them 

from creating a new family and to recognise the red flag in a faster and more accurate manner. 

5.3 Future Work  

Future studies can be incorporating various feature selection algorithms or methods to select the 

best features, as the features will be increasing and be spread. So that, machine learning (ML) needs 

to become more efficient and reliable, as many features are filtered out and the scan is based on 
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features. Next, machine learning (ML) must retrain its classifiers to ensure that the spreading can be 

stopped and that it does not become more broadly disseminated faster. 
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