A BOTNET DETECTION SYSTEM WITH PRODUCT MOMENT CORRELATION COEFFICIENT (PMCC) HEATMAP INTELLIGENT

ONG WEI CHENG

Bachelor of Computer System (Computer System and Networking) with Honours

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THE	SIS AND COPYRIGHT
Author's Full Name	: ONG WEI CHENG
Date of Birth	
Title	: A BOTNET DETECTION SYSTEM WITH PRODUCT MOMENT CORRELATION COEFFICIENT (PMCC) HEATMAP INTTLEGENT
Academic Session	: SEMESTER 1 2022/2023
I declare that this thes	is is classified as:
	(Contains confidential information under the Official Secret Act 1997)*
	(Contains restricted information as specified by the
OPEN ACCESS	organization where research was done)* I agree that my thesis to be published as online open access (Full Text)
I acknowledge that Un	niversiti Malaysia Pahang reserves the following rights:
2. The Library of University the purpose of reserved to the purpose of reserved to the purpose of reserved to the purpose of t	operty of Universiti Malaysia Pahang ersiti Malaysia Pahang has the right to make copies of the thesis for earch only. right to make copies of the thesis for academic exchange.
Certified by:	
(Student's Signa	ature) (Supervisor's Signature)
	Ts. Dr. Ahmad Firdaus Zainal Abidin
New IC/Passport I Date: 31 JAN 2023	

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

STUDENT'S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student's Signature) Full Name : ONG WEI CHENG ID Number : CA19098 Date : 31 JAN 2023

A BOTNET DETECTION SYSTEM WITH PRODUCT MOMENT CORRELATION COEFFICIENT (PMCC) HEATMAP INTTLEGENT

ONG WEI CHENG

Thesis submitted in fulfilment of the requirements for the award of the degree of Bachelor of Computer Science in Computer System and Networking

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JAN 2023

ACKNOWLEDGEMENTS

First and foremost, I am grateful born into a wonderful family where I have been raised from the beginning of my life. Thank you to my parents and siblings who take care me so much and make me feel so grateful for my childhood and youth.

Next, I would like to express my deepest appreciation to all those who provided me the possibility to complete this project. A special gratitude I give to my supervisor, Dr. Ahmad Firdaus Bin Zainal Abidin for his advice and suggestion, spend time, and guidance on finishing this project report at any time.

Furthermore, not to forget all of my friends that also struggle together in finishing this thesis and doing their best to spend some of their time in order to assist me on this project from the beginning until the end. This project requires a lot of hard work, patience, and time. Moreover, I am very grateful to both of my parents and family for their love and endless support. Therefore, I would like to thank you again for all of them.

Nevertheless, I would like to give my special thanks to the Faculty of Computer, University Malaysia Pahang that gave me an opportunity to infinitely gain knowledge that cannot be found at any other place. I would also like to thank everyone who involved either directly or indirectly in finishing this project by giving their help in any way when developing this project.

ABSTRACT

Botnets must be combated in a concerted manner if they are not to become a danger to global security in the coming years. Botnet detection is currently performed at the host and/or network levels, but these options have important drawback which antivirus, firewalls and anti-spyware are not effective against this threat because they are not able to detect hosts that are compromised via new or malicious software. Therefore, this paper will propose the method and develop a system to detect botnet malware. In order to detect the botnet malware, this study uses feature selection with product-moment correlation coefficient and trains it using decision tree classifier. The botnet detection system is developed according to the decision tree classifier.

ABSTRAK

Botnet mesti diperangi secara bersepadu jika ia tidak menjadi bahaya kepada keselamatan global pada tahun-tahun mendatang. Pengesanan botnet pada masa ini dilakukan di peringkat hos dan/atau rangkaian, tetapi pilihan ini mempunyai kelemahan penting yang mana antivirus, tembok api dan anti-perisian intip tidak berkesan terhadap ancaman ini kerana mereka tidak dapat mengesan hos yang terjejas melalui perisian baharu atau berniat jahat . Oleh itu, kertas kerja ini akan mencadangkan kaedah dan membangunkan sistem untuk mengesan malware botnet. Untuk mengesan perisian hasad botnet, kajian ini menggunakan pemilihan ciri dengan pekali korelasi momen produk dan melatihnya menggunakan pengelas pokok keputusan. Sistem pengesanan botnet dibangunkan mengikut pengelas pokok keputusan.

TABLE OF CONTENT

DECLARATION	3
TITLE PAGE	6
ACKNOWLEDGEMENTS	5
ABSTRACT	6
ABSTRAK	7
TABLE OF CONTENT	8
LIST OF TABLES	11
LIST OF FigureS	12
LIST OF SYMBOLS	14
LIST OF ABBREVIATIONS	15
CHAPTER 1 INTRODUCTION	16
1.1 Introduction	16
1.2 Background of the Problem	16
1.3 Objective	17
1.4 Scope	17
1.5 Thesis Organization	17
CHAPTER 2 LITERATURE REVIEW	18
2.1 Introduction	18
2.2 Three Related Work	20
2.2.1 Symmetrical Uncert Attribute Eval	20
2.2.2 Deep Q-learning based Feature Selection Architecture (DQFSA)	23

2.2.3 Term Frequency Inverse Document Frequency (TF-IDF)	25
2.3 Comparative Analysis	26
2.4 Chapter Summary	28
CHAPTER 3 METHODOLOGY	29
3.1 Introduction	29
3.2 Methodology	29
3.3 Hardware & Software Specification	32
3.4 Dataset	34
3.5 System Development Life Cycle	35
3.6 Functional & Non-Functional Requirements	37
3.7 Constraints & Limitations	37
3.8 Context Diagram	38
3.9 Use Case Diagram & Description	39
3.10 Activity Diagram	40
3.11 Testing Plan	40
CHAPTER 4 RESULTS	41
4.1 Introduction	41
4.2 Implementation	41
4.3 Result	50
4.4 Development	56
4.5 Web Hosting	60
CHAPTER 5 CONCLUSION	76

References	81
5.3 Future Work	79
5.2 Limitation	79
5.1 Objective Revisited	76

LIST	OF	TAB	LES
------	----	-----	-----

Table 2.1 Features of SymmetricalUncertAttribute	22
Table 2.2 Specification / Feature of Deep Q-learning based Feature Selection Arch (DQFSA)	itecture 24
Table 2.3 Specification / Feature of Modified Term Frequency Inverse Document (MTF-IDF).	Frequency 26
Table 2.4 Advantage & Disadvantage of the existing system	26
Table 2.5 Platform of the existing system	28
Table 2.6 shows the features selection method used by them compared to this stu	udy28
Table 3.1 Details of laptops that have been used.	32
Table 3.2 Details of Anaconda Navigator (anaconda3), MATLAB and Visual Studio software.	Code 32
Table 3.3 Botnet family	34
Table 3.4 Functional & Non-Functional Requirements	37
Table 3.5 Constraints & Limitation	37
Table 4.1 Accuracy based on the classifier	50
Table 4.2 Accuracy in Decision Tree Classifier	50
Table 4.3 Feature of PMCC	51
Table 4.4 Result and finding.	55
Table Python Library and Description	57
Table 5.1 Features Selection for 1 st Approach	76
Table 5.2 Features Selection for 2 nd Approach	77
Table 5.3 Features Selection for 3 rd Approach	78
Table 5.4 Result of Coarse Tree Classifier	79

LIST OF FIGURES

Figure 2.1 The overview of Feature selection Retrieved from Machine Learn website	ing Mastery 19
Figure 2.2 Workflow of the method	20
Figure 2.3 Result of the performance from different machine algorithm	21
Figure 2.4 Deep Q-learning based Feature Selection	23
Figure 2.5 Assessment measurements results from various	24
Figure 2.6 Android Malware Detection model	25
Figure 2.7 Performance results from various machine	26
Figure 3.1 The methodology of the research and development	30
Figure 3.2 Rapid Application Development diagram	35
Figure 3.3 The context diagram of Botnet Detection System	38
Figure 3.4 The use case diagram of Botnet Detection System.	39
Figure 3.5 The activity diagram for user of Botnet Detection System.	40
Figure 4.1 The code for how to plot the correlation heatmap.	41
Figure 4.2 The uploaded dataset in Jupyter Notebook.	42
Figure 4.3 The python code to generate a heatmap in Jupyter Notebook	42
Figure 4.4 Botnet Heatmap	43
Figure 4.5 Example of Feature Selection method works.	44
Figure 4.6 Best features selection for the first approach	44
Figure 4.7 Best feature selection for the second approach	45
Figure 4.8 Best feature selection for the third approach	45
Figure 4.9 How features are selected	46
Figure 4.10 The features were selected	47
Figure 4.11 Coding of training using classifier of decision tree	47
Figure 4.12 Select the classifier to train	48
Figure 4.13 The accuracy of classifiers	49
Figure 4.14 show the correlative matrix for the first approach	52
Figure 4.15 ROC Curve for the first approach	52
Figure 4.16 show the correlative matrix for the second approach	53
Figure 4.17 ROC Curve for the second approach	53
Figure 4.18 show the correlative matrix for the third approach	54
Figure 4.19 ROC Curve for the third approach	54

Figure 4.20 Confusion matrix table	55
Figure 4.21 Code to build the model	56
Figure 4.22 Code for the Prediction System	56
Figure 4.23 Code for generating a random dataset file.	58
Figure 4.24 Code of user input features value using sidebar.	58
Figure 4.25 Interface of the Botnet Detection System.	59
Figure 4.26 AWS EC2 Dashboard	60
Figure 4.27 List of Instance	60
Figure 4.28 Name the instance	61
Figure 4.29 Create new key pair	62
Figure 4.30 Other Settings	62
Figure 4.31 Security Group	63
Figure 4.32 Create New Security Group	63
Figure 4.33 Update Inbound Rules	64
Figure 4.34 RSA Key Pair	65
Figure 4.35 DNS Public IP	66
Figure 4.36 Command line to access the AWS server.	66
Figure 4.37 EC2 AWS server .	67
Figure 4.38 Install pyhton in the EC2 AWS Server	68
Figure 4.39 Python validation in the EC2 AWS Server	68
Figure 4.40 Git Clone My Repository	69
Figure 4.41 Set Domain Name in Route 53	70
Figure 4.42 Record List	71
Figure 4.43 Public IP Address of Instance	71
Figure 4.44 Assign Public IP Address	72
Figure 4.45 Assign Sub Domain in Record	72
Figure 4.46 GoDaddy My Product Page	73
Figure 4.47 Edit Nameservers	74
Figure 4.48 AWS Naemeserver	74
Figure 4.49 Botnet Detection Website	75

LIST OF SYMBOLS

LIST OF ABBREVIATIONS

2200	Distributed Denial of Service
IoT	Internet of Things
PMCC	Product moment correlation coefficient
TPR	True Positive Rate
FRP	False Positive Rate
AI	Artificial Intelligence
TP	True Positive
FP]	False Positive
TN	True Negative
FN]	False Negative
KNN	K-Nearest Neighbor
SVM	Support Vector Machines

CHAPTER 1 INTRODUCTION

1.1 Introduction

A botnet is a collection of internet-connected devices, such as smartphones, desktop computers, internet of things (IoT) devices, and servers, that have been infected and are controlled by a single malicious programme without the owner's awareness. [1] The term "botnet" is derived from the word "robot" and "network" combined. DDoS attacks, data theft, spam, and giving the attacker access to the device and its connection are all common uses for botnets. Threat actors, mostly cybercriminals, have remote control over infected devices and employ them for certain functions, even if the damaging operations are hidden from the user.

1.2 Background of the Problem

We decided to build a machine learning model to detect the botnet before it spreads. This makes it easier for the network to spot the red flag before it gets worse. The usage of feature selections is critical since there are too many features to choose from, which can lead to overfitting of the model and delayed and inefficient malware detection. As malware threats become more prevalent, so will the threats to user's personal information. This is extremely concerning and, if not addressed, it is extremely dangerous. As a result, we'll use the botnet dataset from the publication Mobile Botnet Detection: A Deep Learning Approach Using Convolutional Neural Networks in this paper. [2], [3] We decided to use the heatmap and machine learning as the method to detect the Botnet.

1.3 Objective

There are three objectives in this project which are:

 To study feature selection of Product Moment Correlation Coefficient (PMCC) algorithm with heatmap for machine learning model classification and development.
 To develop a Botnet detection system with Product Moment Correlation Coefficient (PMCC) with heatmap intelligent.

3. To evaluate the detection performance of the Botnet detection system.

1.4 Scope

To study of the proposed system are listed below:

 This research is to improve the efficiency and resourcefulness of botnet detection techniques based on machine learning and use the most efficient algorithm to develop the botnet detection system.

1.5 Thesis Organization

Chapter 1 is briefly describing the introduction about malware type which is botnet. Next, it includes problem statements, objectives, scope, and thesis organization.

Chapter 2 will discuss the literature review of the system. This chapter is divided into two sections: existing system research and a comparison of the existing and proposed systems.

Chapter 3 will discuss the methodology used during the development of detecting botnets using heatmap and machine learning. This chapter also covers the hardware, software, and botnet dataset that have been used in this project.

Chapter 4 will discuss the implementation, results, and development. This chapter will also go into the function, how the procedure was done, and the outcome of the suggested system. In addition, the testing results will be supplied. After the testing is down, the system development will start using the result that we get is testing.

Lastly, Chapter 5 is the objective overview, the limitation and discussed for any future enhancement for the methodology and the algorithm.

CHAPTER 2 LITERATURE REVIEW

2.1 Introduction

Machine learning is an artificial intelligence (AI) technique that allows systems to learn and improve from their experiences without having to be explicitly programmed. Machine learning is concerned with the development of computer programmes that can access and utilise data and learn on their own.

The learning process starts with observations or data, such as examples, direct experience, or instruction, in order to seek for trends in data and make informed decisions in the future. The main objective is to enable computers to learn on their own and adapt their behaviour accordingly without the need for human intervention.

Furthermore, there are just a few reasons why feature selection approaches are used. Shorter training times, improved generalisation by eliminating overfitting, and model simplification to make them easier to read and improve accuracy are just a few examples.

Next, the common algorithms that are being used for feature selection inside machine learning are supervised or unsupervised. Figure 2-1 shows an overview of the feature selection method.

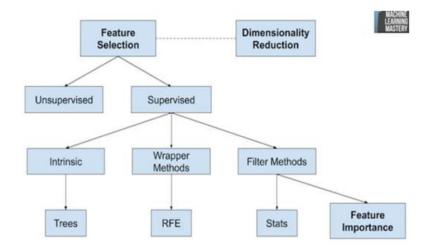


Figure 2.1 The overview of Feature selection Retrieved from Machine Learning Mastery website

By maintaining the previous dataset, supervised methods allow the machine to forecast the feature. When we want the machine to investigate the data in order to generate hypothesis from an unlabelled dataset in order to explain subliminal structures, we utilise an unsupervised algorithm. The combination of supervised and unsupervised algorithms in a semi-supervised algorithm allows the computer to interact with both datasets (either labelled or unlabelled). This algorithm is typically employed when the dataset necessitates the machine being educated, found, or skilled. A reinforcement algorithm is a technique for allowing robots to immerse themselves in their surroundings in order to learn through trial and error or rewards..

We also provide three examples of existing work in this paper. These three existing works have been studied by different groups. These three works have shown different results by using the same features.

2.2 Three Related Work

2.2.1 Symmetrical Uncert Attribute Eval

Symmetrical Uncert Attribute Eval H al-kaaf, A Ali, S Shamsuddin and S Hassan proposed to use 3 types of different feature selection method which is sequential minimal optimization. SMO), Decision Tree (J48) and Naive Bayes which achieved highest accuracy of 0.88 and precision of 0.910 when combining with Symmetrical Uncert Attribute Eval.[4]



Figure 2.2 Workflow of the method

Figure 2.2 shows how they apply the machine learning the classifier orderly to achieve significant results. This study made use of a malicious dataset collected from PROGuard and Drebin. The permissions for the apps are extracted using static extraction. Correlation-based Feature Subset Selection (CFS), InfoGainAttribute, and SymmetricalUncertAttribute are the feature selection methods used.

Correlation-based Feature Subset Selection (CFS) is a channel calculation approach that evaluates the expectation of each trait in terms of repetition and the relationship between them. It selects highlights that have a strong link with the class. InfoGainAttribute is a type of channel process that evaluates the inclusion based on the estimation of its data pick up concerning the class. SymmetricalUncertAttribute evaluates the highlights based on the balanced vulnerability of each property. The SymmetricalUncertAttributeEval estimation is either zero or one, with one indicating that the trait or highlight is relevant to the class and 0 indicating that the characteristic is irrelevant to the class.

The Weka tool is used for the evaluation component to calculate Overall Accuracy, False Positive Rate, and Precision. One of the measurements used to evaluate grouping models is accuracy. The False Positive Rate (FPR) quantifies the number of negatives that are incorrectly identified as positives (for example the level of clean applications that misclassified as malware applications) Whereas TP refers to the number of malware applications that delegated malware applications, FN refers to the number of clean applications that were incorrectly labelled spiteful. TN refers to the number of thoughtful applications that have been delegated favourably. FN refers to the number of negatives that are incorrectly identified as ordinary. Precision quantifies the number of negatives that are incorrectly identified as certain (for example the level of clean applications that are misclassified as malware applications).

Classifiers algorithms	Features	ACC	TPR	FPR	PREC
NaiveBayes	45f	0.85	0.869	0.169	0.837
-	11f	0.857	0.862	0.146	0.855
	12f	0.865	0.869	0.138	0.863
	14F	0.869	0.877	0.138	0.864
SMO	45f	0.876	0.862	0.108	0.889
	11f	0.876	0.838	0.085	0.908
	12f	0.8807	0.846	0.085	0.909
	14F	0.884	0.854	0.085	0.910
	45f	0.792	0.769	0.185	0.806
J48	11f	0.773	0.792	0.246	0.763
	12f	0.776	0.785	0.231	0.773
	14F	0.780	0.792	0.231	0.774

Figure 2.3 Result of the performance from different machine algorithm

Figure 2.3 depicts the outcomes for all of the feature selection approaches. SymmetricalUncertAttributeEval evaluates the value of a quality by evaluating the class's even vulnerability. Although SymmetricalUncertAttribute with SMO and NaiveBayes classifiers produced good results, J48 has low accuracy and an exaggerated FPR.

They came to the conclusion that SymmetricalUncertAttribute is the best employing SMO, with an accuracy of 88.4615%.

Feature Selection Method	SymmetricalUncertAttribute
Classifiers	NaiveBayes, Sequential Minimal Optimization (SMO), Decision Tree (J48)
Highest accuracy	88.46%

2.2.2 Deep Q-learning based Feature Selection Architecture (DQFSA)

This approach e trains an expert using Q-figuring out how to increase the morpheme's normal precision on an approval dataset by sequentially collaborating with the highlighted region. Based on a –greedy investigation technique and experience replay, the specialist studies a vast yet constrained space of feasible activities and repeatedly finds options with improved execution on the learning task. [5]

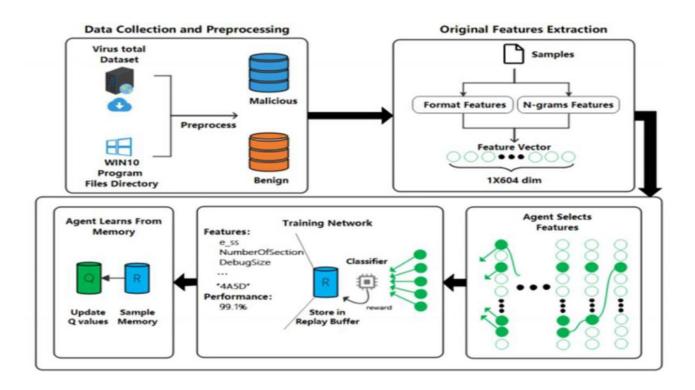


Figure 2.4 Deep Q-learning based Feature Selection

The primary tasks for this model are to develop a learning process. Specialist in selecting highlights sequentially for classification. The assumption that a component performs well in one arrangement mission should be associated with the outcome of another arrangement mission, so that the component option period can be displayed as a Markov Decision Process. Under the -insatiable technique, the specialist selects highlights in a sequential manner until it reaches an end state.

Accuracy Features Used Classifier	5	6	7	8	9	10	11	12	13	14	15
KNN	95.21%	97.69%	96.20%	98.80%	99.32%	99.48%	99.53%	98.63%	98.70%	99.27%	99.06%
Decision Tree	96.48%	96.76%	96.03%	97.66%	96.60%	98.09%	98.99%	99.03%	98.13%	98.23%	98.34%
Random Forest	96.04%	95.96%	98.16%	97.17%	98.59%	98.61%	99.46%	98.68%	99.01%	98.87%	99.34%
Naive Bayes	95.90%	94.31%	96.44%	99.25%	98.26%	97.71%	99.17%	99.20%	99.41%	98.82%	99.50%
SVM	95.33%	96.86%	99.29%	99.15%	97.74%	97.50%	99.20%	98.89%	98.89%	98.89%	98.89%

Figure 2.5 Assessment measurements results from various

They applied 5 classifiers inside the machine to receive the best accuracy. The classifiers that are being used in K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Naive Bayes, Support-Vector Machines (SVM). The detection for detecting malware that they achieved using this method is 99.53%.

Table 2.2 Specification / Feature of Deep Q-learning based Feature Selection Architecture (DQFSA)

Feature Selection Method	Deep Q-learning based Feature Selection Architecture (DQFSA)
Classifiers	K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Naive Bayes, Support-Vector Machines (SVM)
Highest accuracy	99.53%

2.2.3 Term Frequency Inverse Document Frequency (TF-IDF)

Nurul Hidayah Mazlan and and Isredza Rahmi A Hamid implement feature selection algorithm for android malware detection using Term Frequency Inverse Document Frequency (TF-IDF) in Evaluation of Feature Selection Algorithm for Android Malware Detection article. However, as stated in the article, Inverse Document Frequency (IDF) is ignorant during class label training and will produce incorrect weight values in some features. As a result, they proposed a modified version of Frequency Inverse Document Frequency (TF-IDF) to calculate the impact of key malware highlights selected in the Android application testing. Figure 2.6 depicts how the detection model works with the Modified Term Frequency Inverse Document Frequency feature selection (MTF-IDF). [6]

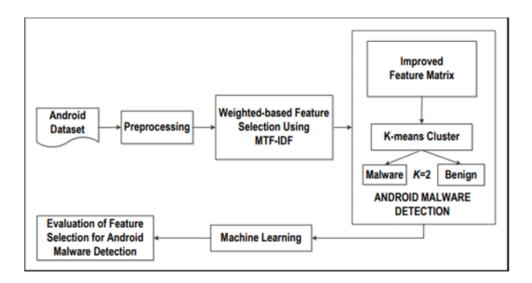


Figure 2.6 Android Malware Detection model

The feature selection process will be used to a dataset of Android information that has been divided into XML document configuration. The information base is dissected to yield the element vector portions. The element determination measure will reduce the unimportant and excessive highlights. At the same time, the highlights used are classified into two types: API call and dangerous consent.

Algorithm	Experiment	TP Rate	FP Rate	Accuracy(%)
Denning (mate)	TF-IDF	0.954	0.046	95.4
Bagging (meta)	MTF-IDF	0.976	0.032	97.6
Desision Table (mlas)	TF-IDF	0.950	0.047	95.0
Decision Table (rules)	MTF-IDF	0.968	0.040	96.8
Denders Ferret (tree)	TF-IDF	0.976	0.026	97.6
Random Forest (tree)	MTF-IDF	0.989	0.012	98.9

Figure 2.7 Performance results from various machine

Figure 2.7 depicts the performance gained for Frequency Inverse Document Frequency (TF-IDF) and Modified Frequency Inverse Document Frequency (MTF-IDF) utilising three algorithms: bagging, decision tables, and random forests. In a nutshell, Modified Term Frequency Inverse Document Frequency (MTF-IDF) has the highest accuracy for three algorithms which is 97.6%, 96.8% and 98.9% respectively.

Table 2.3 Specification / Feature of Modified Term Frequency Inverse Document Frequency (MTF-IDF).

Feature Selection Method	Modified	Term	Frequency	Inverse	Document
	Frequency(TF	-IDF)			
Classifiers	Bagging, I	Decision	Table, Rand	om Forest	
Highest accuracy	98.90%				

2.3 Comparative Analysis

Here are the advantage and disadvantages of the three related work.

Table 2.4 Advantage	& Disadvantage	of the existing	system

Machine Learning	Advantages	Disadvantages
Symmetrical Uncert Attribute Eval	They applied benign and malware dataset into the machine learning for better results.	

Deep Q-learning based	Have the highest accuracy	Does not use android
Feature Selection Architecture (DQFSA)	among other researches.	malware dataset to train the
		machine.
Term Frequency Inverse	All classifiers have a	Does not train the machine
Document Frequency (TF-	minimum accuracy of 95.0	learning using a benign
IDF)		dataset.

Table 2.5 Platform of the existing system

Name	Platform
SolarWinds Security Event Manager	Software
DataDome	Cloud-based
ClickCease	Software

2.4 Chapter Summary

To summarise, this chapter has focused on the creation of three feature selection models by other academics. The literature review demonstrates how they used feature selection to create a powerful detection model. Every consequence and finding of their research is presented, as well as figures and tables.

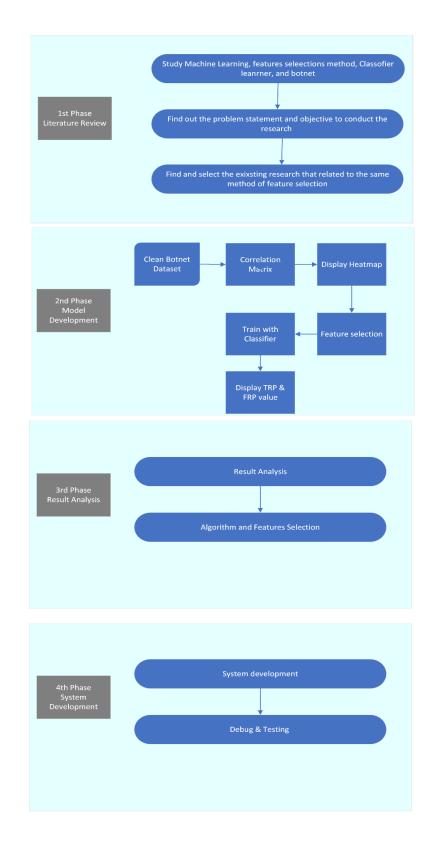
Feature Selection	Paper 1	Paper 2	Paper 3	This Study
Correlation-based Feature Subset Selection (CFS), InfoGainAttribute & SymmetricalUncertAttribute	√			
Deep Q-learning		\checkmark		
Modified Term Frequency Inverse Document Frequency			\checkmark	
ProductMomentCorrelationCoefficient (PMCC) + Heatmap				\checkmark

Table 2.6 shows the features selection method used by them compared to this study

Table 2.6 shows the comparison of features selection method that have been conduct in the existing system of previous researches between this study.

CHAPTER 3 METHODOLOGY

3.1 Introduction


This chapter consists of four stages of methodology: data collection, correlation matrix with heatmap, features selection extraction, and machine learning classifiers. In the data collection process, we use botnet malware and a clean dataset. Then, we conduct a correlation matrix with heatmap. In order to select the best features, we using the method of product moment correlation coefficient (PMCC). Finally, we evaluate the features by using machine learning classifiers, in order to compare the accuracy of the malware detection. Next, this chapter also includes the details of hardware, software and botnet dataset that have been used throughout this research.

The Product Moment Correlation Coefficient (PMCC), which is represented by the symbol r, is a metric for the strength of a linear relationship between two variables. The Pearson correlation coefficient, or r, measures how far away all of these data points are from the line of best fit that a Pearson product-moment correlation attempts to draw across the data of two variables.

The heatmap, which graphically describe data by colouring values, it is simple to see and quickly comprehend complex data. Although modern heatmaps are typically made using specialist heatmapping software, they can also be created manually.

3.2 Methodology

This paper consists of four main phases of methodology: literature review, model development process, evaluating the mode, and system development.

Figure 3.1 The methodology of the research and development

In the 1st phase, which is the literature review, we have started the research by studying more about machine learning, feature selection method that will be chosen, classifier learner that will be used, and understanding the concept of botnet to achieve the best model. Next, at the 2nd phrase is the model development process. This part consists of four stages which are dataset collection, feature selection, features extraction, and machine learning classifiers. In the data collection process, we chose botnet malware and clean dataset from Android botnet detection dataset for machine learning, figshare. The dataset CSV will be imported into python using Jupyter Notebook. Then, we conduct a correlation matrix to generate a heatmap. Next, in order to select the best features, the product moment correlation coefficient algorithm has been implemented. We will evaluate the dataset to ensure that the best features are selected. Finally, we trained the selected features by using machine learning classifiers, in MATLAB in order to compare the accuracy of the malware detection. We will train the features in three different classifiers such as decision tree, nearest neighbor (KNN), and support vector machines (SVM). The accuracy, TPR, and FRP values were been taken and evaluated.

At 3rd Phase which is the Evaluate Model, which will analyse and make a conclusion for the model's outcome. We have all of the results we require at this point, and we will choose the most effective model to continue with the system development process.

In the 4th Phase, system development will begin using python language to develop the botnet detection system in web applications. Debug and testing will be carried out until it successfully runs and detects botnet viruses.

3.3 Hardware & Software Specification

This subtopic will explain about the hardware and software that are been used for this research in detail. There one hardware and three type of software were used throughout the whole research. Table 6 shows the specification for my laptop and Table 7 show the specification Anaconda Navigator (anaconda3), MATLAB software and Visual Studio Code software that was used to develop the process of data.

Name	Version	Description	Purpose of use
Laptop (Acer)	Windows 10 64bits	A gaming notebook that can easily bring along and has various functions that can be used in different environment	To write report and thesis, create a heatmap and train the dataset using machine learning classifier. Develop a botnet detection with PMCC

Table 3.1 Details of laptops that have been used.

Table 3.2 Details of Anaconda Navigator (anaconda3), MATLAB and Visual Studio Code software.
--

Name	Version	Description	Purpose of use
Anaconda	Python	Dissemination of the Python and	To build a heatmap based
Navigator	version	R programming dialects for	on python or R language.
(Anaconda3)	3.10.6	logical figuring, that expects to	
		disentangle bundle the board and	
		sending. The dissemination	
		incorporates information science	
		bundles reasonable for Windows,	
		Linux, and macOS	
MATLAB	Original	MATLAB is a programming and	To train the selected
	License of	numeric computing platform used	features using classifier
	R2022b	by millions of engineers and	learner.
	version	scientists to analyse data, develop	
		algorithms, and create models.	

Visual Studio	Version	Visual Studio Code is a	To develop the system
Code	1.67.2	lightweight but powerful source code editor for Windows, macOS, and Linux that runs on your desktop. It includes built-in support for JavaScript, TypeScript, and Node.	using python language

3.4 Dataset

Table 3.3 Botnet family

Botnet Family	Number of samples	
Anserverbot	244	
Bmaster	6	
Droiddream	363	
Geinimi	264	
Misosms	100	
Nickyspy	199	
Notcompatible	76	
Pjapps	244	
Pletor	85	
Rootsmart	28	
Sandroid	44	
Tigerbot	96	
Wroba	100	
Zitmo	80	
Total	1929	

In this study we used the Android dataset from [2], which is known as the ISCX botnet dataset. The ISCX dataset contains 1,929 botnet apps and 4,873 clean apps. The botnet apps were from 14 different families and have been used in previous works including [7][8][9][10][11][12]. The botnet families are shown in Table 8.

3.5 System Development Life Cycle

The system will begin developed by using python language. The system development process will use Anaconda software and Visual Studio Code.

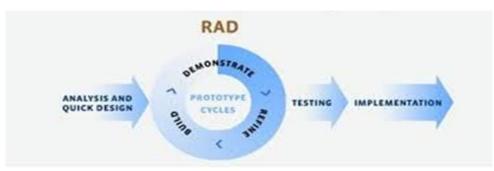


Figure 3.2 Rapid Application Development diagram

From the Figure 3.2 there are 4 phases in RAD which is analysis and quick design, prototype cycles, testing and implementation.

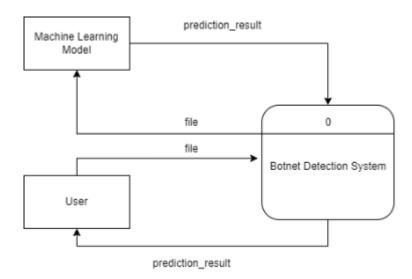
First, analysis and quick design phase is a critical step for the ultimate success of the project, the discussion between supervisor and student is needed to determine the goals and expectations for the project as well as current and potential issues that would need to be addressed during the build. The potential user of the system which is computer users that need to define and finalize their requirements. The computer user needs to upload the file on the website.

Second, in prototype cycles there are 3 step that need to go through, they are demonstrate, refine and build. After quick design is complete, it will demonstrate to supervisor. The information of requirement gathered during the analysis and quick design phase is demonstrate and analysed to define a set of clear data objects crucial for the business. They will give some idea to developers to meet their requirement and developers will refine the design and build it again to meet the requirement. Instead of following the requirements, student will create prototypes with different features and functions and then show them to the supervisor to decide what should and should not have. This process will be repeated until the supervisor is satisfied with the design.

After that testing process is perform for validation requirements. This step requires to test the product and ensure that all part meet the expectations. Feedback needed after testing for any changes or enhancements which is what's good, what's not, what works, and what doesn't is shared. This phase like prototype phase that these two steps are repeated until a final product can be realized that fits both the developers and stakeholder requirements. The last process is implementation which is the system will take place in the real environment. This phase where the finished product will move to the programming components to a live production environment to conduct comprehensive testing.

3.6 Functional & Non-Functional Requirements

Functional Requirement	Non-Functional Requirement
1.The Botnet Detection System should enable users to upload the file into the system in order to check their file.	1.The Botnet Detection System should run in web-based application
2. The Botnet Detection System should enable show the result of the uploaded file	2. The Botnet Detection System should run in24 hours per day and 7 days per week.


Table 3.4 Functional & Non-Functional Requirements

3.7 Constraints & Limitations

Table 3.5 Constraints & Limitation

Constraints	Limitations
1.The different algorithm have different featured selection to detect the botnet viruses.	1.The Botnet Detection System model might be dependent on one dataset which may come out with wrong result.
2. Dataset used to train will affect the detection model.	2. The algorithm used may not the most effective algorithm to detect the botnet viruses.

3.8 Context Diagram

In Figure 3.3, user will upload the file to Botnet Detection System. The Botnet Detection System will use the Machine Learning Model to scan the uploaded file by user and get the prediction result. Next the prediction result will send to user.

3.9 Use Case Diagram & Description

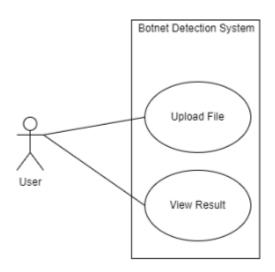


Figure 3.4 The use case diagram of Botnet Detection System.

Use Case ID	Upload File
Brief Description	This use case is to manage user to upload file into the Botnet
	Detection System. It is indicated user only.
Actor	User
Basic Flow	1. The use case begin when users open the Botnet Detection
	System.
	2. Users are required to upload the file in the interface.
	3. The use case end.
Exception Flow	E1:Wrong upload file
	1. Users had uploaded wrong file.
	2. User reselect the file.
	3. The use case return to step number 2 in the basic flow.

3.10 Activity Diagram

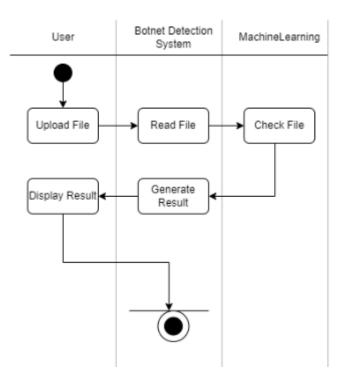


Figure 3.5 The activity diagram for user of Botnet Detection System.

In Figure 3.5, the activity will start at user which they will need to upload the file. Then the Botnet Detection System will read the file and send to Machine Learning to do the checking. Then Botnet Detection system will generate the result for the file and display the result for the user.

3.11 Testing Plan

The testing plan for Botnet Detection System will test the effectiveness of the model that had be trained and the it's accuracy on detecting botnet. Other than that, the testing will also include the functionality of each interface and database.

CHAPTER 4 RESULTS

4.1 Introduction

This chapter will go over the implementation of this research and the development of the system in great detail. All the processes, workspace, and development have been done in two types of software, which are Jupyter Notebook, Anaconda, Matlab, and Visual Studio Code. These tasks will be well explained in the implementation part, while all results will be detailed in the result part.

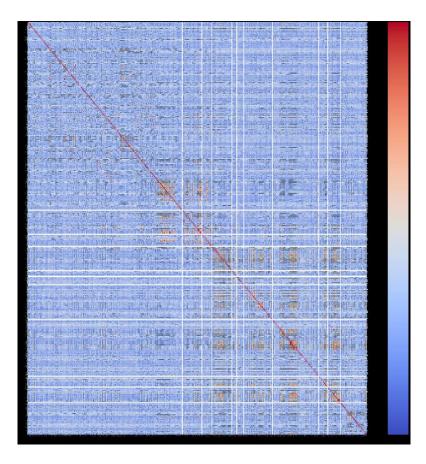
4.2 Implementation

Implementation process in Jupyter notebook (anaconda3)

Figure 4.1 The code for how to plot the correlation heatmap.

We used to import the necessary packages and libraries into Anaconda to make sure the algorithm could run without any problems. Inside the Jupyter Notebook, we will use the pandas, seaborn, and matplotlib packages and libraries. Next, the dataset will be added to the Jupyter notebook by importing the CSV file into the environment using pandas.

6798 0																					
1 0 0 0 0 1 0		PRO	LOC	F.LOC	сом	M.LOC	STATE	SURF	WIFI	A.MNG	VOICE	∨bin	insmod	stdout	stderr	killall	reboot	∨net	∖∕sys	pminstall	Result
2 0 1 0	0																				
3 0 0 0 0 1 0 1 0 1 0																					
4 0 0 0 0 1 0																					
6797 0																					
6798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																					
6799 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6797																				
	6798																				
6800 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6799																				
	6800																				
6801 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6801																				


Figure 4.2 The uploaded dataset in Jupyter Notebook.

To ensure that the correct dataset is imported, a preview of the dataset will be performed. The number of rows and columns is displayed in the dataset preview at the bottom. 343 columns and 6802 rows are present.

<pre>#get correlations of each features in dataset corr = data.corr()</pre>	
<pre>plt.figure(figsize=(300,300))</pre>	
	Python
#plot heatmap	
corr.style.background_gradient(cmap='coolwarm').set_precision(2)	
	Python

Figure 4.3 The python code to generate a heatmap in Jupyter Notebook

Once the imported data is accurate, a correlation matrix is created to generate a heatmap. The heatmap's figure size and background have been configured. Next, we set the precision of the dataset values in the heatmap to 2 decimal places. Following the computation of the correlation matrix, a heatmap will be generated.

Figure 4.4 Botnet Heatmap

Figure 4.4 shows the whole visual of the botnet heatmap. In furthermore, we use the AJ Pearson correlation technique, often known as the product-moment correlation coefficient (PMCC), to determine the correlation between the characteristics. Then, we will select the best characteristics that are highly associated with one another for usage as model properties.

Feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model creation. It is also known as variable selection, attribute selection, and variable subset selection. We considered using feature selection as one of our primary ideas in machine learning in order to train the machine more efficiently. Figure 4.5 shows an example on how feature selection works in order to achieve the best accuracy and result.

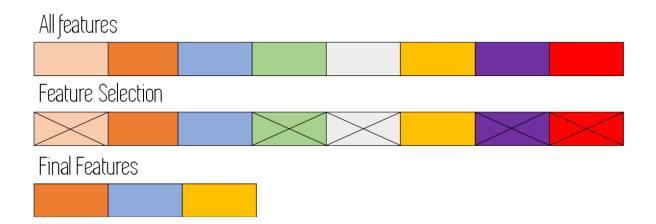


Figure 4.5 Example of Feature Selection method works.

Feature Selection is known as a cycle where you consequently or physically select these highlights which contribute most to your forecast variable or yield in which you are keen on. Having irrelevant or unused data in a machine in order to train them to track better for a specific reason can cause a decline in inaccuracy which results in poor and unreliable results. By distinguishing the irrelevant dataset, the machine can work more effectively and reach the main goal accurately [14],[15].

We have implemented feature selection for the multiple ways of in using the product-moment correlation coefficient. Figures 4.6 to 4.8 illustrate how the best features were chosen. We started the first round of feature selection with the first approach.

File Edit	View	Insert	Cell	Kernel	Widgets	Help						T	rusted	Python 3 (
• *	∞ 🖪	↑ ↓	► Run	C	➡ Code	~								
	0	.03	1.00	0.14	0.26	0.03	0.10	0.10	0.10	0.27	0.10	0.13	0.10	0.10
	0	21	0.14	1.00	0.11	0.20								0.16
	0	.13	0.26		1.00	0.11	0.31	0.32	0.31	0.37	0.27	0.22	0.27	0.27
	0	.62	0.03		0.11	1.00	0.34	0.34	0.34	0.26	0.19	0.23	0.19	0.19
	0	32		0.10	0.31	0.34	1.00	<mark>0.99</mark>	<mark>0.99</mark>	0.62	0.59	0.58	0.59	0.59
	0	32	0.10	0.10	0.32	0.34	<mark>0.99</mark>	1.00	0.98	0.61	0.58	0.57	0.59	0.58
	0	31	0.10	0.10	0.31	0.34	<mark>0.99</mark>	0.98	1.00	0.62	0.59	0.58	0.59	0.58
	0	33	0.27		0.37	0.26	0.62	0.61	0.62	1.00	0.56	0.68	0.56	0.56
	0	21	0.10		0.27	0.19	0.59	0.58	0.59	0.56	1.00	0.61	1.00	<mark>0.99</mark>
	0	31			0.22	0.23	0.58	0.57	0.58	0.68	0.61	1.00	0.61	0.61
	0	21			0.27	0.19	0.59	0.59	0.59	0.56	1.00	0.61	1.00	0.99
	0	21	0.10		0.27	0.19	0.59	0.58	0.58	0.56	<mark>0.99</mark>	0.61	<mark>0.99</mark>	1.00

Figure 4.6 Best features selection for the first approach

Figure 4.6 shows the number of best features in a Botnet heatmap. For the first approach, we had decided to select the best features based on the value of 0.99, which is the highest value. There were 14 features were successfully been detected. All the best features information will be gathered.

We proceed with another implementation by using the same step and method of feature selections for the second approach. The result will be shown in the next figure.

Jupyter	5000	1ets Last Check	Joint, a Millin	ite ago (autosav	ieu)			0.93		4/10 ^	~ ×)	Logout
ile Edit	View	Insert Cell	Kernel	Widgets	Help					Trusted	Python 3 (i	pykernel) C
+ % (26	↑ ↓ ► Ru	n 🔳 C	▶ Code	~							
	0.31	0.50	0.42	0.48	0.72	0.76	-0.01	-0.01	0.65	0.52		0.
	0.27	0.44	0.43	0.44	0.64	0.68		0.14	0.58	0.47	0.05	0.
	0.37	0.60	0.48	0.43	0.85	0.90	-0.01	-0.00	0.77	0.62		0.
	1.00	0.52		0.18	0.39	0.41	-0.02	-0.01	0.32	0.23		0.
	0.52	1.00	0.32	0.28	0.62	0.64	-0.01	-0.01	0.52	0.39		0.
	0.18	0.32	1.00	0.29	0.46	0.47	-0.01	-0.01	0.42	0.38	0.29	0.
	0.18	0.28	0.29	1.00	0.39	0.42	0.01	0.02	0.36	0.28	0.02	0.
	0.39	0.62	0.46	0.39	1.00	0.93	-0.01	-0.01	0.72	0.57		0.
	0.41	0.64	0.47	0.42	<mark>0.93</mark>	1.00	-0.01	-0.00	0.76	0.60		0.
	-0.02	-0.01	-0.01	0.01	-0.01		1.00	0.75	-0.01	0.18	-0.01	0.
	-0.01	-0.01			-0.01	-0.00	0.75	1.00	-0.01	0.01	-0.00	-0.
	0.32	0.52	0.42	0.36	0.72	0.76	-0.01		1.00	0.52	-0.01	-0.
	0.23	0.39	0.38	0.28	0.57	0.60	0.18	0.01	0.52	1.00	0.32	0.
	0.01	0.07	0.00	0.02	0.02	0.00	0.01	0.00	0.01	0.00	1.00	0

Figure 4.7 Best feature selection for the second approach

Figure 4.7 also showed the best features in the heatmap for the second approach. The best value that we decide for this approach is 0.90 until 0.99. It is because the more features the more accuracy will be get so that the efficient model will be produced. There were 36 features altogether. All the best features information will be collected for another step purposed.

We proceed with the last implementation by using the same step and method of feature selection for the third approach. The result will be shown in the next figure.

jupyter	heatmap	ast Checkpoint:	5 minutes ago	(autosaved)				0.88				< 🕨
ile Edit	View Inser	t Cell Ke	ernel Widge	ts Help						Trusted	Pyth	ion 3 (ipyke
+ % 4	b 🗈 🛧 🛛	🕨 🕨 Run 🔳	C D Coo	le 🗸	-							
	<figure siz<="" td=""><td>e 30000x30000</td><td>with 0 Axes</td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></figure>	e 30000x30000	with 0 Axes	>								
In [5]:	#to plot the corr.style.		adient(cmap=	'coolwarm').s	et_precisio	n(2)						
-0.00	-0.02	-0.00	0.01	-0.00	-0.00	-0.00	-0.00	nan	-0.00	-0.00	-0.00	-0.00
		0.06	0.14	-0.03	-0.03	-0.02	-0.02	nan	-0.03	-0.01		0.02
		-0.00	-0.01			-0.00	-0.00	nan		-0.00	-0.00	-0.00
	0.08	-0.01	0.21	0.31	0.32	0.68	0.71	nan	0.32	-0.01	0.02	-0.01
1.00	0.21	-0.02	0.53	0.86	0.88	-0.02	-0.02	nan	<mark>0.88</mark>	-0.03	-0.01	-0.01
0.21	1.00	0.05	0.26	0.22	0.23		0.09	nan	0.23	0.18		
-0.02	0.05	1.00	0.03	-0.03	-0.03	0.05	0.03	nan	-0.02		0.30	
0.53	0.26	0.03	1.00	0.59	0.60	0.26	0.27	nan	0.60	0.04	0.04	0.14
0.86	0.22	-0.03	0.59	1.00	0.98	0.37	0.39	nan	0.97	-0.04	-0.01	-0.01
0.88	0.23	-0.03	0.60	0.98	1.00	0.37	0.40	nan	0.99	-0.04	-0.01	-0.01
-0.02	0.10	0.05	0.26	0.37	0.37	1.00	0.93	nan	0.38	-0.02	0.03	-0.01
-0.02		0.03	0.27	0.39	0.40	0.93	1.00	nan	0.41	-0.02	0.03	-0.01

Figure 4.8 Best feature selection for the third approach

Figure 4.8 shows the best features in the heatmap for the last approach which is the third. We decide to add more features to this approach compared to the two previous approaches by choosing

the best value starting from the lowest of 0.85 until 0.99. This is one of the steps to get the best accuracy result by training the feature selection. The 47 features were successfully detected.

Implementation process in MATLAB

Once we have compiled the best features from the various approaches, we will proceed to the next step. The next step in MATLAB involves importing the dataset in order to select the previously selected features. We selected the best features manually, one by one, based on the references of the best collections of features.

	HOM	E	PLC	DTS	APPS		IMPORT					S	earch (Ctrl+Shi	ft+Space)		Q	. 🖩 🛧 a	→ 🖥 - 🥐	- ONG	s wei 👻
• Delin					 Selection/H 	listory	F2:G6803,		Name b	otnets		Repla	ce unimportable	e cells with NaN	ት	\bigcirc				
O Fixed	d Width	🋞 De	elimiter Op	tions 💌	Variable Na	mes Row		1	Type Ta	ble	*				s an	Import				
					📃 No Vari	iable Names			÷	Table Options	*				\times	Selection -				
FILE T	TYPE		DELIMITER	S		SELECTI	ON		IM	PORTED VARIABL	E		UNIMP	ORTABLE CELLS		IMPORT				
$\Leftrightarrow \Rightarrow$	1 🔁 🛛	2) / > MA	TLAB D	rive >															*
Curre	ent Folde	r	0	botn	ets.csv ×															0
- Work	space		0		А	В	С		D	E		F	G	н	1	J	к	L	М	
:: Name	:: Va	alue	:: Size		PRO	LOC	F_LO	C	СОМ	M_LOC	ST	ATE	SURF	WIFI	A_MNG	VOICE	AUTHEN	BATSTATS	A_SERV	APF
					Number 🔻	Number	 Number 	-	Number	Number	Numb	er 💌	Number 💌	Number -	Number 💌	Number -	Number -	Number -	Number -	Num
				1	PRO	L	DC I	LOC.	CC	M M.LC	C	STATE	SURF	WIFI	A.MNG	VOICE	AUTHEN	BATSTATS	A.SERV	AF ^
				2	0		0	0		0	0	1	0	0	C	0 0) (0	0 0	<u>ا</u>
				3	0		0	0		0	0	1	0	0	C	0) () (0)
				4	0		1	0		0	0	1	0	0	C	0) (0	0	2
				5	0		0	0		0	0	1	0	1	C	0) (0 0	0 0)
				6	0		0	0		0	0	1	0	0	C	0) (0 0	0	<u>ر</u>
				7	0		0	0		0	0	1	0	0	C	0) (0 0	0	<u>ر</u>
				8	0		0	0		0	0	1	0	1	C	0) (0 0	0	<u>ر</u>
				9	0		0	0		0	0	1	0	0	C				-	<u>ا</u>
				10	0		0	0		0	0	1	0	1	C		· · · ·		-	,
				11	0		0	0		0	0	1	0	1	C				-	,
				12	0		0	0		0	0	1	0	1	0				-	·
				13	0		0	0		0	0	1	0	0	0				· · · ·	
				14	0		0	0		0	0	1	0	1	C				-	
				15	0		0	0		0	0	1	0	0	0				-	
				16 17	0		0	0		0	0	1	0	1	0				0	
				17 18	0		0	0		0	0	1	0	1						_
4			•	10	4		0	0		0	0	1	0		(/	' U		1 ×
14		-	,	COMM	AND WINDOW	v														

Figure 4.9 How features are selected

The figure above shows how the features are selected from the implemented data. We had to repeat the same step in order to produce the data of features based on the three different approaches.

	HOME	PLC	OTS	APPS	V.	ARIABLE	VIEW			Search	n (Ctrl+Shift+Space	e)		٩	🗏 👆 🥐	Ē - ?	- 0 0	NG WEI 👻
New from Selection -	→ Open → Save As Print →	🛧 Go	Up To	Insert Delete	Sort → TRANSFORM	Colum	1 ns 1 Brushing ELECTION	plot	Plot as mu	tipl Plot as			bar	scatter	pie	• Plo	ot Options	ÞI
💠 🔶 🖻	a 🛛 🖉	/ > MA	TLAB [Drive >														-
 Current F Workspa 		0		nets × 03×14 table														0
II Name	:: Value 6803×14 ta	:: Size		II 1 FEEDS			2 DSWRITE	ii UID	3 REMOVE	ii Disc	4 ONNECTED		5 IODCHGD		6 REMOVE1	ii s	7 ervCon	8
botnets1	6803×47 ta 6803×36 ta 1×1 Sessio	. 6803>		Std Dev 0 Missing 1	.029697	Std Dev Missing	0 1 0.029697 0.16976 1 double	Min Max Mean Std Dev Missing Class	0 1 0.010879 0.10374 1 double	Min Max Mean Std Dev Missing Class	0 1 0.045722 0.2089 1 double	Min Max Mean Std Dev Missing Class	0 1 0.04484 0.20697 1 double	Min Max Mean Std Dev Missing Class	0 1 0.011173 0.10512 1 double	Min Max Mean Std Dev Missing Class	0 1 0.18289 0.3866 1 double	Mii Ma Sto Mii Cla
			1		NaN		NaN		NaN		NaN		Nat	1	NaN		N	aN
			2		0		0		0		1			1	0			0
			4		0				0		1			1	0			0
			5		0		C)	0		1			1	0			0
			6		0		C		0		1			1	0			0
			7		0				0		1			1	0			0
			8	4	0				-						-			• •
			Com	mand Window														0
			>>															
		•																<u>.</u>

Figure 4.10 The features were selected

Figure 4.10 shows the features that were selected which form to 3 dataset which is botnet, botnet1, and botnet2.

Figure 4.11 Coding of training using classifier of decision tree

Figure 4.11 shows the code has been developed to train the features using the machine learning classifier in MATLAB.

Machine learning is the study of algorithms that predict decisions based on samples of data using a computer without explicit programming. There are numerous classifiers available for machine learning, including decision tree, discriminate analysis, logistic regression, naive bayes, support vector machine, nearest neighbour, assemble, and neural network.

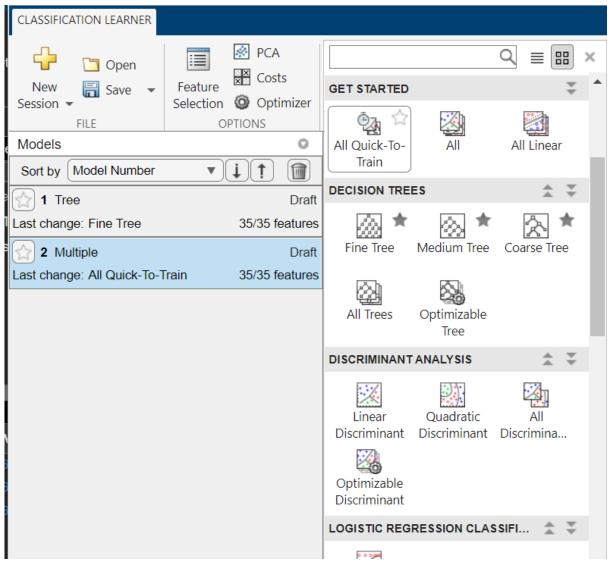


Figure 4.12 Select the classifier to train

In this study, we proposed to use all "quick to train" so that it can run all classifiers to get the highest accuracy. In addition, we also train the nearest neighbour classifier and support vector machine classifier.

CLASSIFICATION LEARNER				
CENSUITCATION LEARNER				
🕂 🛅 Open	PCA			Q ≣ III ×
New 🔚 Save 👻	Feature	GET STARTED		÷ *
Session - FILE	Selection Optimizer	Ğъ	20	
Models	0	All Quick-To-	All	All Linear
Sort by Model Number	• i 1 î	Train		
😭 1 Tree 🛛 A	ccuracy (Validation): 99.6%	DECISION TRE	ES	÷ ÷
Last change: Fine Tree	46/46 features	🔬 🖈	🏡 🖈	☆★
2 Tree A	ccuracy (Validation): 99.6%	Fine Tree	Medium Tree	Coarse Tree
Last change: Medium Tree	46/46 features	- 15h	a li	
3 Tree	ccuracy (Validation): 99.6%	All Trees	Optimizable	
Last change: Coarse Tree	46/46 features	Air frees	Tree	
🔂 4 KNN A	ccuracy (Validation): 99.1%	DISCRIMINANT	ANALYSIS	* *
Last change: Fine KNN	46/46 features	: :*/	t.) <u>^</u> +	- 2m
5 KNN A	ccuracy (Validation): 98.7%	Linear	Quadratic	All
Last change: Medium KNN	46/46 features		-	Disariasias
		Discriminant	Discriminant	Discrimina
6 KNN A	ccuracy (Validation): 97.0%	Discriminant	Discriminant	Discrimina
6 KNN A Last change: Coarse KNN		Optimizable	Discriminant	Discrimina
Last change: Coarse KNN	ccuracy (Validation): 97.0%	Optimizable Discriminant		
Last change: Coarse KNN	Accuracy (Validation): 97.0% 46/46 features	Optimizable Discriminant		
Last change: Coarse KNN	Accuracy (Validation): 97.0% 46/46 features Accuracy (Validation): 98.9%	Optimizable Discriminant		
Last change: Coarse KNN 7 SVM Last change: Fine Gaussian 8 SVM A	Accuracy (Validation): 97.0% 46/46 features Accuracy (Validation): 98.9% n SVM 46/46 features	Optimizable Discriminant LOGISTIC REG Logistic		
Last change: Coarse KNN 7 SVM A Last change: Fine Gaussian 8 SVM A Last change: Medium Gaus	Accuracy (Validation): 97.0% 46/46 features Accuracy (Validation): 98.9% n SVM 46/46 features Accuracy (Validation): 99.6%	Optimizable Discriminant LOGISTIC REG Logistic Regression	RESSION CLAS	
Last change: Coarse KNN 7 SVM A Last change: Fine Gaussian 8 SVM A Last change: Medium Gaus	Accuracy (Validation): 97.0% 46/46 features Accuracy (Validation): 98.9% n SVM 46/46 features Accuracy (Validation): 99.6% Accuracy (Validation): 99.6% Accuracy (Validation): 99.6%	Optimizable Discriminant LOGISTIC REG Logistic Regression	RESSION CLAS	
Last change: Coarse KNN 7 SVM A Last change: Fine Gaussian 8 SVM A Last change: Medium Gaus 9 SVM A	Accuracy (Validation): 97.0% 46/46 features Accuracy (Validation): 98.9% n SVM 46/46 features Accuracy (Validation): 99.6% Accuracy (Validation): 99.6% Accuracy (Validation): 99.6%	Optimizable Discriminant LOGISTIC REG Logistic Regression	RESSION CLAS	

Figure 4.13 The accuracy of classifiers

Figure 4.13 shows the numbers of accuracy based on the trained classifier. The highest degree of precision will be detected. We chose to evaluate the precision of the three classifiers, decision tree, nearest neighbour, and support vector machines. Each classifier employs its own set of algorithms. Fine, Medium, and Coarse are used in decision trees and nearest neighbour (KNN), whereas support vector machines use Fine Gaussian, Medium Gaussian, and Coarse Gaussian (SVM).

4.3 Result

Approach	Classifier	Fine	Medium	Coarse	Preferred Classifier
	Decision Tree	99.7%	99.7%	99.8%	\checkmark
1st	KNN	99.8%	99.6%	98.7%	
	SVM	99.6%	99.8%	99.8%	
	Decision Tree	99.6%	99.6%	99.6%	\checkmark
2nd	KNN	99.1%	98.9%	96.9%	
	SVM	99.0%	99.6%	99.6%	
	Decision Tree	99.6%	99.6%	99.6%	\checkmark
3rd	KNN	99.2%	98.6%	96.9%	
	SVM	98.8%	99.6%	99.6%	

Table 4.1 Accuracy based on the classifier

Table 4.1 above shows the accuracy based on three different classifiers which is decision tree, nearest neighbour (KNN), and support vector machines (SVM). In comparison to the other classifiers, the accuracy of the decision tree classifier is the highest based on the above result.

		Decis	ion Tree Cla	assifier
Approach	Number Features	Fine	Medium	Coarse
1st	14	99.7	99.7	99.8
2nd	36	99.6	99.6	99.6
3rd	47	99.6	99.6	99.6
Preferred Algorithm				\checkmark

Table 4.2 Accuracy in Decision Tree Classifier

Table 4.2 above shows the accuracy based on the decision tree algorithms. We are able to choose a suitable and trustworthy classifiers algorithm based on the aforementioned result. We select coarse tree classifiers as our results because it achieves the highest total accuracy when compared to fine and coarse tree classifiers.

Table 4.3 Feature of PMCC

Feature Selection Method	Product Moment Correlation Coefficient (PMCC)
Classifier	Coarse Tree
Highest accuracy	99.80%

The table above shows that this research used the product moment correlative coefficient (PMCC) as a feature selection method. The coarse tree algorithm has been selected as the best train classifier with the highest accuracy, 99.8 %.

Once the classifier algorithm has been selected, the next step is to determine the true positive rate (TPR) and false positive rate (FPR). The True Positive Rate (TPR) is the proportion of correct definite outcomes among all definite examples available during the test. On the other hand, the False Positive Rate (FPR) describes the frequency of false positives among all regrettable cases available throughout the test.

The Receiver Operating Characteristic (ROC) is an estimation of issue execution at different edge settings. AUC is the degree or percentage of distinguishability, whereas ROC is the likelihood curve. It indicates the model's suitability for class recognition. The better the model predicts 0s as 0s and 1s as 1s, the higher the AUC. According to the connection, the higher the AUC, the better the model recognizes the target with restrictions and no infection.

Figure 4.14 - 4.19 will show the result confusion matrix for three different approaches.

The first approach

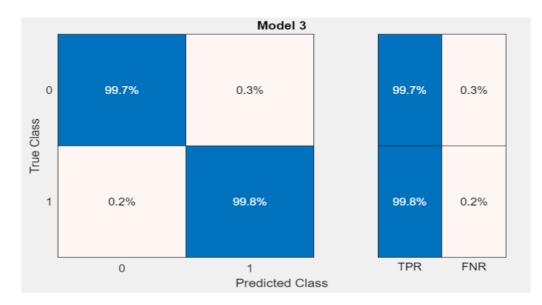
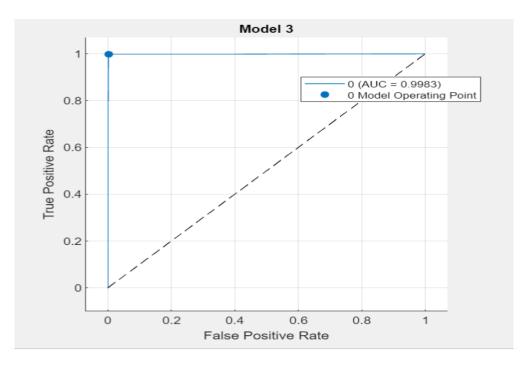
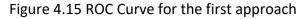




Figure 4.14 show the correlative matrix for the first approach

From the result of the first approach, we can identify the value of true positive (TP) is 99.7%, false negative (FN) is 0.3%, false positive (FP) is 0.2%, and true negative (TN) is 99.8%.

The result shows that AUC is 0.9983 which means the roc curve is reliable to be trusted and chosen.

The second approach

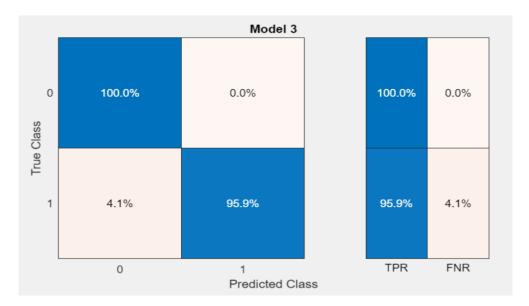


Figure 4.16 show the correlative matrix for the second approach

From the result of the second approach, we can identify the value of true positive (TP) is 100%, false negative (FN) is 0%, false positive (FP) is 4.1%, and true negative (TN) is 95.9%.

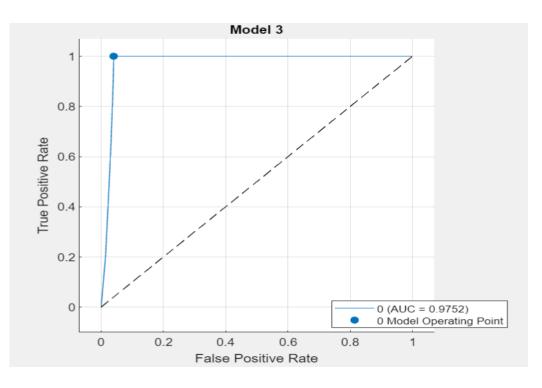


Figure 4.17 ROC Curve for the second approach

The result shows that AUC is 0.9752 which means the roc curve is reliable to be trusted and chosen.

The third approach

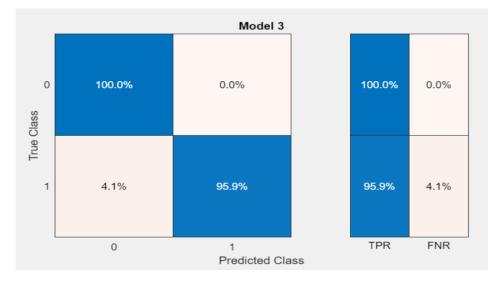


Figure 4.18 show the correlative matrix for the third approach From the result of the third approach, we can identify the value of true positive (TP) is 100%, false negative (FN) is 0%, false positive (FP) is 4.1%, and true negative (TN) is 95.9%.

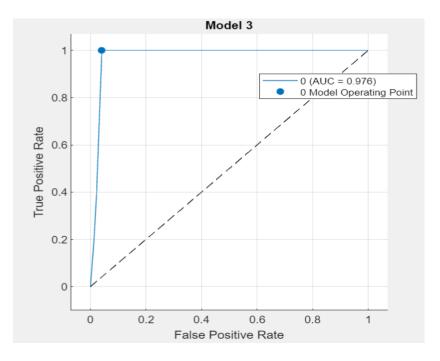


Figure 4.19 ROC Curve for the third approach

The result shows that AUC is 0.976 which means the roc curve is reliable to be trusted and chosen.

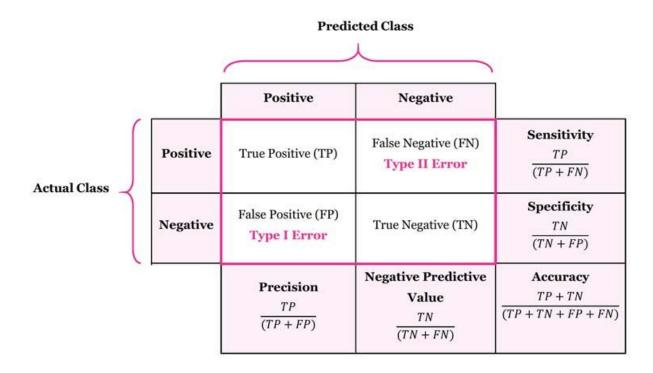


Figure 4.20 Confusion matrix table

True Positive (TP): It is the number of correctly classified instances as positive. It means that how successful a system is in detecting malware as malicious. As the true positive increases, the result is better.

False Positive (FP): It is the number of incorrectly classified instances as positive. It means that the ratio of which the algorithm considers normal data as malicious. As the false positive decreases, it shows that the system is more accurate.

True Negative (TN): It is the number of correctly classified instances as negative.

False Negative (FN): It is the number of incorrectly classified instances as negative.

Accuracy: It shows how accurately the system can detect malware.

Precision: It is the number of instances correctly classified as class X among those classified as class X.

Figure 4.20 above shows the confusion table used as a reference to count the value of precision.

We also can get the value of sensitivity, specificity, accuracy, positive predictive value, and negative predictive value.

10	ioic 4.4 Result allu	i illuling.					
	lassifier Algorithm	Number	ACC	TPR	FPR	AUC	
		Features	ACC	IFN	IFN	AUC	
		14f	99.8	0.998	0.003	0.9983	
	Coarse Tree	36f	99.6	1	0.041	0.9752	
		47f	99.6	1	0.041	0.976	

Table 4.4 Result and finding.

4.4 Development

BotnetModelBuilding.py

```
BoneModeBuildpy 2

    import pandas as pd

    from sklearn.tree import DecisionTreclassifier

    botnet = pd.read_csv('FeatureSelected.csv')

    df = botnet.copy()

    target = 'Result'

    rencode = ['sUBSCRIBED_FEEDS_READ', 'SUBSCRIBED_FEEDS_WRITE', 'android_intent_action_UID_REMOVED', 'UMS_DISCONNECTED', 'INPUT_METHOD_CHANGED', 'UID_REM

    f # Separating X and y

        x = df.drop('Result', axis=1)

        Y = df('Result')

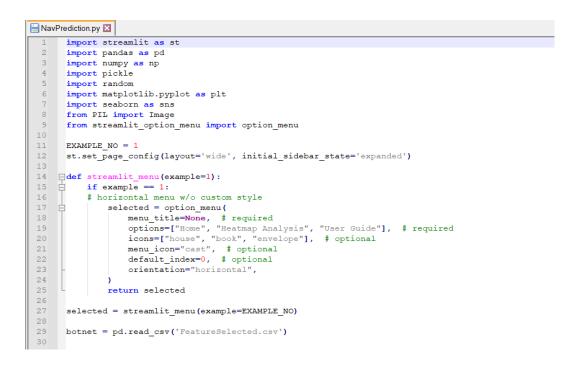
        df = build decision tree model

        clf = DecisionTreeClassifier()

        clf.fit(X, Y)

        f # Saving the model

        import pickle


        pickle.dump(clf, open('botnet_clf.pkl', 'wb'))

    }
```

Figure 4.21 Code to build the model

Figure 4.21 above shows the coding of the model building. There are 3 python library was imported into the file. First is pandas which use to analyse CSV file. Following that is the Decision Tree Classifier which allows us to use the decision tree classifier to train our model. Lastly, the pickle is used to save the trained model.

NavPrediction.py

Figure 4.22 Code for the Prediction System

Figure 4.22 shows the coding for the prediction system. There are 9 python library was imported into the system. A detail description of each library will explain at table below.

Table Python Library and Description

Python Library	Description
Streamlit	Python language app framework
Pandas	Use to analyse csv file
Numpy	Working with arrays
Pickle	Read saved model
Random	To generate random number
Matplotlib.pyplot	A plotting library MATLAB
Seaborn	To make statistical graphics
Image	To allow python to interpret the image
Option menu	A simple Streamlit component that allows users to select a single item from a list of options in a menu

• •	, powerowa tito for an broatonen
45	<pre> pdef convert_df(df): </pre>
46	# IMPORTANT: Cache the conversion to prevent computation on every rerun
47	<pre>return df.to_csv(index=False).encode('utf-8')</pre>
48	# data of Player and their performance
49	<pre> [data = {'SUBSCRIBED_FEEDS_READ': [random.randint(0,1)], </pre>
50	'SUBSCRIBED_FEEDS_WRITE': [random.randint(0,1)],
51	'android_intent_action_UID_REMOVED': [random.randint(0,1)],
52	'UMS_DISCONNECTED': [random.randint(0,1)],
53	'INPUT_METHOD_CHANGED': [random.randint(0,1)],
54	'UID_REMOVED': [random.randint(0,1)],
55	'ServiceConnection': [random.randint(0,1)],
56	<pre>'bindService': [random.randint(0,1)],</pre>
57	'Ljava_util_Timer_schedule': [random.randint(0,1)],
58	'Ljava_util_TimerTask': [random.randint(0,1)],
59	'Ljava_util_Date': [random.randint(0,1)],
60	'AssetManager': [random.randint(0,1)],
61	'Landroid_content_res_AssetManager': [random.randint(0,1)],
62	<pre>'getAssets': [random.randint(0,1)]}</pre>
62	

Figure 4.23 Code for generating a random dataset file.

Figure 4.23 shows the code to generate some random dataset files with these 14 features to allow the user to download it and go the prediction in the system.

```
if uploaded_file is not None:
        input df = pd.read csv(uploaded file)
else:
        st.sidebar.subheader('User Input Features')
         def user_input_features():
             SUBSCRIBED FEEDS READ = st.sidebar.slider('SUBSCRIBED FEEDS READ', 0, 1, 0)
             SUBSCRIBED FEEDS WRITE = st.sidebar.slider('SUBSCRIBED FEEDS WRITE', 0, 1, 0)
             android_intent_action_UID_REMOVED = st.sidebar.slider('android_intent_action_UID_REM
             UMS DISCONNECTED = st.sidebar.slider('UMS DISCONNECTED', 0, 1, 0)
             INPUT_METHOD_CHANGED = st.sidebar.slider('INPUT_METHOD_CHANGED', 0, 1, 0)
             UID_REMOVED = st.sidebar.slider('UID_REMOVED', 0, 1, 0)
             ServiceConnection = st.sidebar.slider('ServiceConnection', 0, 1, 0)
            bindService = st.sidebar.slider('bindService', 0, 1, 0)
             Ljava_util_Timer_schedule = st.sidebar.slider('Ljava_util_Timer_schedule', 0, 1, 0)
            Ljava util TimerTask = st.sidebar.slider('Ljava util TimerTask', 0, 1, 0)
            Ljava_util_Date = st.sidebar.slider('Ljava_util_Date', 0, 1, 0)
             AssetManager = st.sidebar.slider('AssetManager', 0, 1, 0)
             Landroid content res AssetManager = st.sidebar.slider('Landroid content res AssetMan
             getAssets = st.sidebar.slider('getAssets', 0, 1, 0)
             data = {'SUBSCRIBED FEEDS READ': SUBSCRIBED FEEDS READ,
                     'SUBSCRIBED FEEDS WRITE': SUBSCRIBED FEEDS WRITE,
                     'android_intent_action_UID_REMOVED': android_intent_action_UID_REMOVED,
                     'UMS DISCONNECTED': UMS DISCONNECTED,
                     'INPUT METHOD CHANGED': INPUT METHOD CHANGED,
                     'UID_REMOVED': UID_REMOVED,
                     'ServiceConnection': ServiceConnection,
                     'bindService': bindService,
                     'Ljava_util_Timer_schedule': Ljava_util_Timer_schedule,
                     'Ljava_util_TimerTask': Ljava_util_TimerTask,
'Ljava_util_Date': Ljava_util_Date,
                     'AssetManager': AssetManager,
                     'Landroid content res AssetManager': Landroid content res AssetManager,
                     'getAssets': getAssets}
             features = pd.DataFrame(data, index=[0])
             return features
         input_df = user_input_features()
```

Figure 4.24 Code of user input features value using sidebar.

Figure 4.24 shows the coding of the user input features value using the sidebar.

×					
	۲				1
Botnet Detection UMP		🛆 Home	<u>⊢∕</u> Heatm	ap Analysis 🔲 U	Jser Guide
Upload your input CSV file					
Drag and drop file here Limit 200MB per file • CSV	User I	nput feature	es		
Browse files	SUBSC	CRIBED_FEEDS_READ	SUBSCRIBED_FEEDS_WRITE	android_intent_action_UID_REMOVED	UMS_DISCONNECTED
	0	0	0	0	0
Download Example CSV for Prediction Process	Result				
User Input Features SUBSCRIBED_FEEDS_READ	0 0 Norm	al			
0 1	Predic	tion Probab	oility		
SUBSCRIBED_FEEDS_WRITE	0 0 0.9081	1 0.0919			
android_intent_action_UID_REMOVED					

Figure 4.25 Interface of the Botnet Detection System.

On the left side of the page, there 2 buttons and 14 progress bars. The first button from the top is the browse files button which allows the user to upload the file to do the detection. The second button is the button that will download a random dataset CSV file for the user to upload the file for detection. On the right side of the page, There is a navigation bar with 3 column which is Home . Heatmap Analysis and User Guide. In the home part, the first section is the User Input Features which is it will show the input value of each feature. The second section which is the result of the detection and the last section is the prediction probability which shows how many percentages the input value is malware.

4.5 Web Hosting

New EC2 Experience X Tell us what you think	Resources	EC2 Globa	al view 🖪 🛛 🙆
2 Dashboard	You are using the following	Amazon EC2 resources in the Asia Pacifi	ic (Singapore) Region:
Global View			
ts	Instances (running)	1 Dedicated Host	ts 0
	Elastic IPs	0 Instances	1
es	Key pairs	1 Load balancers	5 0
es	Placement groups	0 Security group	s 5
e Types	Snapshots	0 Volumes	1
Templates	Shapshots	Votumes	'
quests			
Plans		and deploy Microsoft SQL Server Alwa S Launch Wizard for SQL Server. Learn	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Instances			
ed Hosts			
y Reservations	Launch instance	Service h	ealth
	To get started, launch an Amaz which is a virtual server in the c		AWS Health Dashboard 🛽
alog	Launch instance 🔻	Region	

Figure 4.26 AWS EC2 Dashboard

Figure 4.26 shows the AWS EC2 dashboard. Click on the Instances (running) it will show the interface as Figure 4.27 at below.

Instances (1) Info	C Connect Instance	state v Actions v Launch instances v
Q Find instance by attribute or tag (case-sens Instance state = running X Clear	tive) filters	
□ Name ▼ Instance ID	Instance state 🛛 🗸 Instance type	▼ Status check Alarm status Availability Z
Ong Server i-04b466ba405d	166c ⊘ Running ⊕⊖ t2.micro	⊘ 2/2 checks passed No alarms + ap-southeast
Select an instance	=	© ×

Figure 4.27 List of Instance

In Figure 4.27, it will show the current instance that my account has as a list. TO create a new instance To create a new instance, click on the orange button (Launch instances).

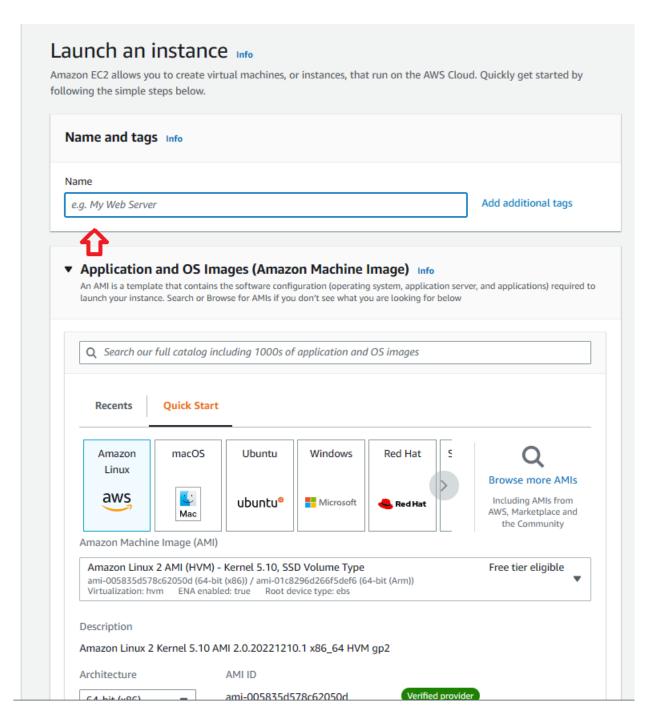


Figure 4.28 Name the instance

In Figure 4.28, put a name for the web server.

 Key pair (log 	l in) Info			
You can use a key p the instance.	air to securely connect to yo	ur instance. Ensure that you hav	ve access to the sele	ected key pair before you launch
Key pair name - <i>req</i>	uired			- 1

Figure 4.29 Create new key pair

Figure 4.29 shows how to create a new key pair for the web server. Key pair is needed because it is allow us to access our own AWS server ubuntu command line later. A .pem file will created and will be use later.

aws	Services Q Search [Alt+S]	
	Network info yc-O'cafa034bd38aa79 Subnet info Moreference (Default subnet in any availability zone) Auto-assign public IP info Eable Proved Security groups info Ascurity group is a set of frewall rules that control the traffic for your instance. Add rules to allow specific traffic to reach your instance. C reate security group	 ▼ Summary Number of instances Info
	▼ Configure storage Info Advanced	Cancel Launch instance
	1x 8 GiB gp2 Root volume (Not encrypted) ① Free tier eligible customers can get up to 30 GB of EBS General Purpose (SSD) or Magnetic storage X Add new volume Add new volume X	仓

Figure 4.30 shows the continuous setting. We remain it as default and click the orange button (Lauch instance).

	Q	Filter security gro	oups				A 1 > ⊚
EC2 Dashboard							U
EC2 Global View		Name	∇	Security group ID 🛛 🗢	Security group name 🛛 🗸	VPC ID 🛛	Description
Events		-		sg-0b7770b6f3078accd	HttpsBotnet2	vpc-07cafa034bd38aa79 🔀	Https inbound
Tags		-		sg-0adf0535f089c3ef5	HttpsBotnet	vpc-07cafa034bd38aa79 🔀	Added Https
Limits		-		sg-0a1e3d646d6c141f1	launch-wizard-3	vpc-07cafa034bd38aa79 🔀	launch-wizard created .
Instances		-		sg-0ebd073a300b99b72	launch-wizard-2	vpc-07cafa034bd38aa79 🔀	launch-wizard-2 create
Instances		-		sg-0fda7d5b13c753331	launch-wizard-1	vpc-07cafa034bd38aa79 🔀	launch-wizard created .
Instance Types		-		sg-09ca750de111235fe	N default	vpc-07cafa034bd38aa79 🗹	default VPC security gr
Launch Templates	4				₩ ₩		
Spot Requests							
Savings Plans							
Reserved Instances							
Dedicated Hosts							
Capacity Reservations							
mages							

Figure 4.31 Security Group

Figure 4.31 shows the list of the security group. We can edit the security group by click the security group ID. As a demonstration we go to create security group.

reate security group Info security group acts as a virtual firewall for your instance to control inbound and outbound t	
ecurity group acts as a virtual firewall for your instance to control inbound and outbound t	
	raffic. To create a new security group, complete the fields below.
Basic details	
Security group name Info	
Stremlit	
Name cannot be edited after creation. Description Info	
Allows SSH access to developers	
VPC Info	
Q vpc-07cafa034bd38aa79	×

Figure 4.32 Create New Security Group

Figure 4.32 shows the information to create the security group. A security group name is needed because we can use it for different instance and select the correct VPC instance.

ype Info	Protocol Info	Port range Info	Source Info	Description - optional Info	
Custom TCP	▼ ТСР	8501	Anywh ▼ Q 0.0.0.0/0 ×		Dele te
Custom TCP	TCP	8502	Anywh Q 0.0.0.0/0 X	I	Dele te

Figure 4.33 Update Inbound Rules

Figure 4.33 shows the information to update for inbound rules. The inbound rules is help the web server to filter incoming traffic. By default the inbound rules is empty. For our streamlit web application, it use the TCP with 8501 port and 8502 port. Therefore we need to configure the port range and set the source from anywhere which to allow user to access the web application.

1		
1	BEGIN RSA PRIVATE KEY	
2	MIIEowIBAAKCAQEAh9+LroICiv37sqA0HQNj/TwvEt20TegLnVHrBzZWc/evB9ut	
3	sGUNLtsEDiMs8ZCQd/QlVeRQ5TUE4YHrSnlbn3rOKpnUhyWqC+9st9BmhFf9Nf7k	
4	0WlA2m4771ZI83QhJ9zdB3tRojzjI0GaZCUQXCQMIBACnKr64ZR8AqITyrTFAOld	
5	yy73didlBib8pcbhTFQFDq4v8IQ0JcEDSgHlNUeDMlYQXpOr6DdKn4CF9AzBWuUX	
6	0n+1hWzfU7oR/pteUSC3oJYorQwcGPnbyWSLrKEA1NkXWUQr4ZqYCWiXvgaU6VCa	
7	QrIfQ0gQVcdnQAqpunEl3Yw5wJ79yTlYPmz4uQIDAQABAoIBAEQaf3fzwHSMg6lv	
8	9U8JkQewL+Qj7ikSgyfSlJxj1wd/gWLN8Iw2ylnO+4Reizt1e4Q0grY/n3CT1600	
9	rAwDMjKIqmfd/RHUhhw/YN3tfkUdmVSEM4rnV9NkZ3Q6aoxki+3gHYWPgUZxgGP+	
0	kPVbQoz8oHs9qyF97gw9kb78IDF8mJCHUb0gmVSkQmGBf7+4Cp6TmsCORjSKQ0oY	
1	xRBgPgqw6KgdvgVU1qUfUPJQPIJGhmNHRNi0W3tturF/Wi9WinvbkAJSeOXQwYPw	
2	msYfclPMIG+auhd/uVwYWxtsv7DsfkMlbPJvWINc52sUuRqSOWoMXnXZuC4fP5dx	
3	s6p3u1ECgYEAyyLjQ60frZ051R+XMonm9gBAv0zCGq0XklAbUyMXp6LhrPskfDQ5	
4	Yjje0ln74GmvfzhVFm5OSD/x7em93VG4UL/TiYTj9bsDjov3gyKYgdTvEpHQ/AXx	
5	cV8+fdYXgnsZamot2fCGDSzgi3ZD5I8ecSmpdX6PL0yEE8QJ9JF4Kz0CgYEAqzuJ	
6	KKX4m1JpxGpMqh01gXXQa8kKRqwNf2C7jf49XiHtG+sI+ZYGbsvwc/T9PZUgYVU2	
7	o7GKEs0oqT00c7ec0F86xgXLGMAI4q2/Y5hqsopz5wwihTfceZ/IDXvNgEvZJsoz	
8	30zY2tnw81hEz/9p5RES77xziWgVqepdxhpUyy0CgYEA16fURBJcNBq10r9jAjgy	
9	VjaaHnIj9/9qibGEtOzeHClekuZsts3Gia4rrJ/BjCla/H/yBm0TxJz44cZAGZuJ	
0	H8AXDfRIvIyCe0nD4ANUGJoAYry6aW2GdD3HSessYh3F081JrgwECJIYkgYZaenv	
1	sEyKV03FWGqnsJoLVKvGK4ECgYBjneRCqKQEQKLVqP3m6EZtBYx2WGRJDy1fFHio	
2	t+Md02DtIAR9p0EgzjaaT0nQv0Q0m+2It+3a2E4yfy/3rjdlpjE8KPyp7nZ84ZX5	
3	rB9OtWuOXCntFL2IaGNrLL42SGoRvgsFeuCiGa6qXp3R4AbMQ+2fWSRiKRKJYpah	
4	fIoeFQKBgGRv1yjvlvyimC3yScHubpkRHMHVmJCaDH2uAOC+dkuuvTHgcj+ZOtrf	N
5	1THtOLEQoiQJOZTQDYIFGk0Pe4mPS+JhFiaF5kp0DFRhyBbMVVpL4t0qyqpItYt0	5
6	1YGD3mRNRyNjKI5Ag5hF/xyV216JGzR2g23itEk/u6sgdbHd0/G8	
7	END RSA PRIVATE KEY	

Figure 4.34 RSA Key Pair

Figure 4.34 shows the .pem file which contain the RSA Private Key. This pair key will be use to access the AWS server.

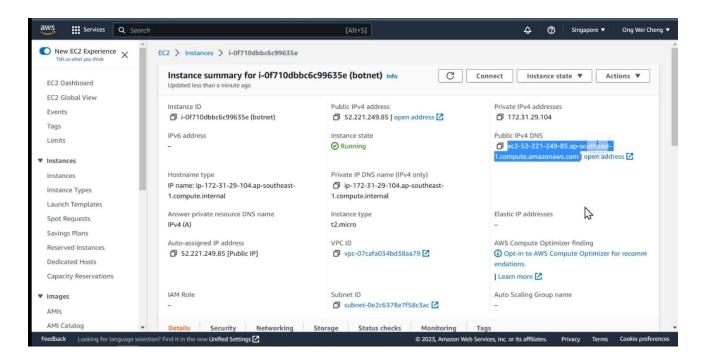


Figure 4.35 DNS Public IP

Figure 4.35 shows the Domain Name Server public ip for the AWS server. This DNS public ip will be use to access the AWS server.

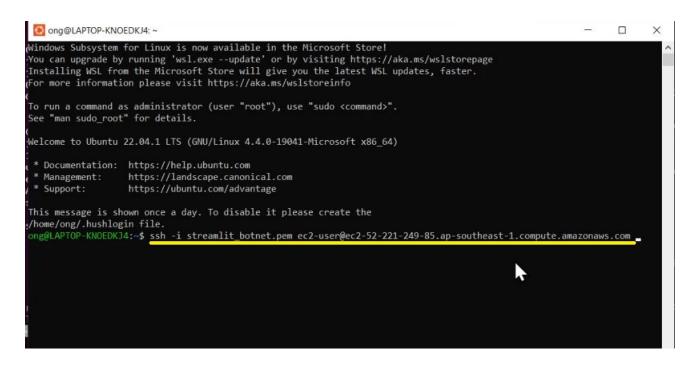


Figure 4.36 Command line to access the AWS server.

Figure 4.36 shows the command line to access the AWS server. The command is shh -i (the name of .pem file shows in Figure 4.34) ec2-user@(the DNS public ip in Figure 4.35).

6 ec2-user@ip-172-31-29-104:~	-		\sim
Windows Subsystem for Linux is now available in the Microsoft Store! You can upgrade by running 'wsl.exeupdate' or by visiting https://aka.ms/wslstorepage Installing WSL from the Microsoft Store will give you the latest WSL updates, faster.			Â
For more information please visit https://aka.ms/wslstoreinfo			
To run a command as administrator (user "root"), use "sudo <command/> ". See "man sudo_root" for details.			
Welcome to Ubuntu 22.04.1 LTS (GNU/Linux 4.4.0-19041-Microsoft x86_64)			
<pre>* Documentation: https://help.ubuntu.com * Management: https://landscape.canonical.com * Support: https://ubuntu.com/advantage</pre>			
This message is shown once a day. To disable it please create the /home/ong/.hushlogin file. ong@LAPTOP-KNOEDKJ4:≪\$ ssh -i streamlit_botnet.pem ec2-user@ec2-52-221-249-85.ap-southeast-1.compute.amu The authenticity of host 'ec2-52-221-249-85.ap-southeast-1.compute.amazonaws.com (52.221.249.85)' can't ED25519 key fingerprint is SHA256:5cR41Btct+dUYzCd1B21MT0AePFk4ANeb6y9niJJ1Mw. This key is not known by any other names Are you sure you want to continue connecting (yes/no/[fingerprint])? yes Warning: Permanently added 'ec2-52-221-249-85.ap-southeast-1.compute.amazonaws.com' (ED25519) to the list.	be es	tablish	
) (/ Amazon Linux 2 AMI \ https://aws.amazon.com/amazon-linux-2/ [ec2-user@ip-172-31-29-104 ~]\$	muque	Avunca	~

Figure 4.37 EC2 AWS server .

Figure 4.37 shows we are successful to access the EC2 AWS server.

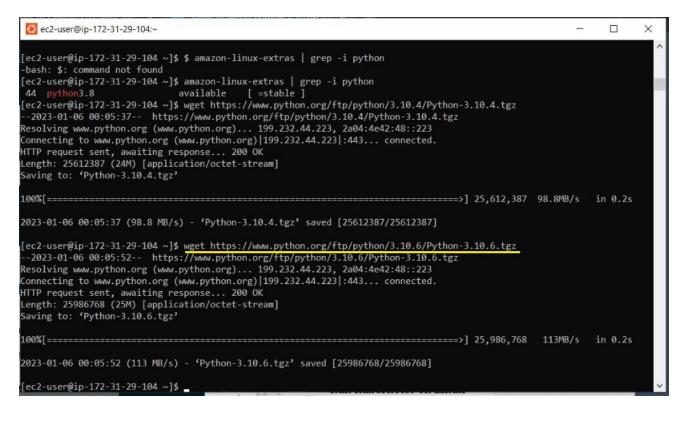


Figure 4.38 Install pyhton in the EC2 AWS Server

Figure 4.38 shows the python installation in the EC2 AWS Server.

oge manager. It is re [ec2-user@in-172-31	ecommended to use a virtual envi -29-104 Python-3.10.6]\$ python3.	ronment instead: https: 10version	//pip.pypa.io/warnings/venv	
Python 3.10.6 [ec2-user@ip-172-31	-29-104 Python-3 10.6]\$			

Figure 4.39 Python validation in the EC2 AWS Server

Figure 4.39 shows how I validate the python is successful install in the EC2 AWS Server.

💽 ec2-user@	Dip-172-31-29-104:~/Python-3.10.6		×
restore rm	Restore working tree files Remove files from the working tree and from the index		
evamine the	history and state (see also: git help revisions)		
bisect	Use binary search to find the commit that introduced a bug		
diff	Show changes between commits, commit and working tree, etc		
grep	Print lines matching a pattern		
log	Show commit logs		
show	Show various types of objects		
status	Show the working tree status		
grow, mark	and tweak your common history		
branch	List, create, or delete branches		
commit	Record changes to the repository		
merge	Join two or more development histories together		
rebase	Reapply commits on top of another base tip		
reset	Reset current HEAD to the specified state		
switch	Switch branches		
tag	Create, list, delete or verify a tag object signed with GPG		
	(see also: git help workflows)		
fetch	Download objects and refs from another repository		
pull	Fetch from and integrate with another repository or a local branch		
push	Update remote refs along with associated objects		
	a' and 'git help -g' list available subcommands and some		
	des. See 'git help <command/> ' or 'git help <concept>'</concept>		
	ut a specific subcommand or concept.		
	lp git' for an overview of the system.		
[ec2-user@i	p-172-31-29-104 Python-3.10.6]\$ git clone https://github.com/ /Botnet-Detection.git_		

Figure 4.40 Git Clone My Repository

Figure 4.40 shows the cloning of my GitHub repository.

aws	Services Q	Search		[Alt+S]
=	Route 53 📏 Host	ted zones 📏 Create hosted	zone	
	Create ho	osted zone Info		
		e configuration a container that holds information	about how you want to route traffic for a domain,	such as example.com, and its
		of the domain that you want to rou	ite traffic for.	
	valid characters. a	1-2, 0-9, : " # \$ % & () * + , - / . , <	->?@[\]^_`{ }.~	
	Description - op This value lets you	otional Info u distinguish hosted zones that ha	ve the same name.	G
	Botnet Stream			
	The description ca	an have up to 256 characters. 16/2	256	
	Type Info The type indicates	s whether you want to route traffic	c on the internet or in an Amazon VPC.	
		osted zone osted zone determines how outed on the internet.	Private hosted zone A private hosted zone determines how traffic is routed within an Amazon VPC.	

Figure 4.41 Set Domain Name in Route 53

In Figure 4.41, we need to put the correct domain name that we purchased and remain default setting for others setting and create the host zone.

predictzz.com	Info	1	<u>ጉ (</u>	Delete zone Test record	Configure query logging
Hosted zone details					Edit hosted zone
Records (2) DNSSEC signin	Ig Hosted zone	tags (0)			
Records (2) Info Automatic mode is the current search b	pehavior optimized for bes	st filter results. To ch a	ange modes go to set	ings.	
Records (2) Info Automatic mode is the current search to C Delete record	behavior optimized for bes			ings.	
Automatic mode is the current search b	Import zone file			ings. ▼ Routing policy ▼ Alias	▼ < 1 > ⊚
Automatic mode is the current search b	Import zone file				▼ < 1 > ⊚ ⊽
Automatic mode is the current search to C Delete record Q Filter records by property or Record name	Import zone file value ▼ Type ▼	Routin V	rd C	 Routing policy ▼ Alias 	
Automatic mode is the current search b C Delete record Q Filter records by property or	Import zone file	Create reco	rd C	 Routing policy ▼ Alias Value/Route traffic to ns-638.awsdns-15.net. 	

Figure 4.42 Record List

Figure 4.42 shows the record of the hosted zone. By default it have 2 record which is NS and Soa record. Now we need to create two A record for the hosted zone.

Se (botnet) Info
\sim
blic IPv4 address
52.221.249.85 open address 🗹
tance state
p s

Figure 4.43 Public IP Address of Instance

Figure 4.43 shows the public ip address of the instance. This public ip address will be use to create a record.

aws	Services Q insights		×	4
Ξ	Quick create record			Switch to wizard
	▼ Record 1			Delete
	Record name Info		Record type Info	
	subdomain	predictzz.com	A – Routes traffic to an IPv4 address and some AWS resource	es 🔻
	Keep blank to create a record for the root do	main.		
	Alias			
	Value Info			
	52.221.249.85			¥
		I		
		4		4
	Enter multiple values on separate lines.			
	TTL (seconds) Info		Routing policy Info	
	300	1m 1h 1d	Simple routing	•
	Recommended values: 60 to 172800 (two da	ays)		
			Add	another record
			Cancet	Create records

Figure 4.44 Assign Public IP Address

Figure 4.44 shows the public ip address of the instance that we get from Figure 4.43 will assign in the record. After assigned, click create records.

aws	Services Q insight	×	
=	Record 1	Dele	te
	Record name Info	Record type Info	
	www.	.predictzz.com A – Routes traffic to an IPv4 address and some AWS resources	•
	Keep blank to create a reco	for the root domain.	
	Alias		
	Value Info		G
	predictzz.com		
			1.
	Enter multiple values on se	arate lines.	
	TTL (seconds) Info	Routing policy Info	
	300	1m 1h 1d	•
	Recommended values: 60 t	172800 (two days)	
			_
		Add another reco	rd
		Cancel Create rec	cords

Figure 4.45 Assign Sub Domain in Record

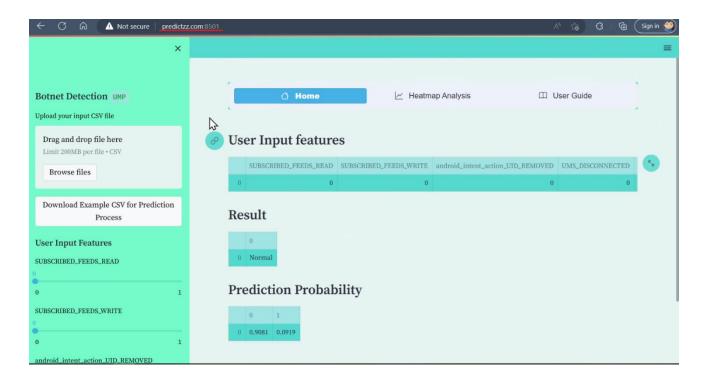
In Figure 4.45 shows we assign a sub domain which is www for the predictzz.com domain in another record.

← C	ය	🕒 http	://account.godaddy.com/products?go_redirect	=disabled	A 🏠 🕄 🖨 🧐
		predict predictzz.c Domain		+ Set up a free website Websites + Marketing Free Trial	
	AI	l Produc	s and Services		
		^	Domains		Manage All →
			predictzz.com Protection Plan: None Upgrade Protection		Set up V []] Manage
			Create a website Start for free	Set up an email account	Image: Connect to an existing site
		~	Additional Products		

Figure 4.46 GoDaddy My Product Page

Figure 4.46 shows the My Product Page. We need go for the GoDaddy DNS management page to do nameserver setting by click DNS as shown in the figure.

nanging nameservers is risky, and chang	e could potentially lead to your website disappear	ing from public v
ns-1465.awsdns-55.org		Ū
ns-1623.awsdns-10.co.uk		Ū
ns-224.awsdns-28.com		Ū
ns-997.awsdns-60.net		Ū


Figure 4.47 Edit Nameservers

In Figure 4.47, we need to update the name server from GoDaddy nameserver to AWS nameserver. The AWS nameserver is listed in Figure 4.48. After update the nameserver it will takes up to 48 hours to make the changes.

C	Delete record	Import zone file	Create record			
Q	Filter records by property	or value		Туре	▼ Routing policy ▼ Alias ▼ < 1	> ©
	Record name	⊽ Type ⊽	Routin ⊽	Differ ⊽	Value/Route traffic to	7
]	predictzz.com	А	Simple	•	52.221.249.85	
					an CZO annulas dE ant	
	predictzz.com	NS	Simple	-	ns-638.awsdns-15.net. ns-1391.awsdns-45.org. ns-35.awsdns-04.com. ns-2019.awsdns-60.co.uk	

Figure 4.48 AWS Naemeserver

Figure 4.48 shows the AWS nameserver.

Figure 4.49 Botnet Detection Website

Figure 4.49 shows the web application successfully access using the predictzz.com domain name.

CHAPTER 5 CONCLUSION

5.1 Objective Revisited

1) To study feature selection of Product Moment Correlation Coefficient (PMCC) algorithm with heatmap for machine learning model classification and development.

We were able to accomplish this by putting forward the algorithm of correlative matrices, which was used to choose and detect the best characteristics in the heatmap. The viability of this approach was demonstrated in chapter 4 as part of the implementation and development phase.

2) To develop a Botnet detection system with Product Moment Correlation Coefficient (PMCC) with heatmap intelligent.

In order to develop the botnet detection system, we need to choose the most suitable feature. We got a different feature for each dataset we used, because each feature only related to the others if the attributes or characteristics had strong and important data. From Table 5.1 to Table 5.3, you can see the different things we can capture with PMCC.

Dataset	Botnets
1 st Approach	14 features
Value	0.99
Best Features	1. SUBSCRIBED_FEEDS_READ
	2. SUBSCRIBED_FEEDS_WRITE
	3. android.intent.action.UID_REMOVED
	4. UMS_DISCONNECTED
	5. INPUT_METHOD_CHANGED
	6. UID_REMOVED
	7. ServiceConnection
	8. bindService
	9. Ljava.util.Timer.*schedule
	10. Ljava.util.TimerTask
	11. Ljava.util.Timer
	12. AssetManager
	13. Landroid.content.res.AssetManager

Table 5.1 Features Selection for 1st Approach

14.	getAssets

Table 5.2 Features Selection for 2nd Approach

Dataset	Botnets
2 nd Approach	36 features
Value	0.90-0.99
Value Best Features	0.90-0.99 1. READ_CALL_LOG 2. READ_USER_DICTIONARY 3. WRITE_CALL_LOG 4. WRITE_USER_DICTIONARY 5. android.intent.action.PACKAGE_REPLACED 6. android.intent.action.BATTERY_LOW 7. android.intent.action.BATTERY_OKAY 9. android.intent.action.SCREEN_OFF 10. android.intent.action.SCREEN_OFF 10. android.intent.action.SCREEN_ON 11. PACKAGE_REPLACED 12. UMS_CONNECTED 13. UMS_DISCONNECTED 14. BATTERY_LOW 15apk 16so 17. onBind 18. IBinder 19. Ljavax\/crypto\/Cipher 20. ProcessBuilder 21. Process. *start 22. Ljava.util.Timer.*schedule 23. Ljava.util.TimerTask 24. ZipInputStream.*close(25. ZipInputStream.*getNextEntry(26. SUBSCRIBED_FEEDS_READ 27. SUBSCRIBED_FEEDS_WRITE
	28. android.intent.action.UID_REMOVED29. UMS_DISCONNECTED
	30. INPUT_METHOD_CHANGED31. ServiceConnection32. bindService
	33. Ljava.util.Timer34. AssetManager35. Landroid.content.res.AssetManager
	36. getAssets

Dataset	Botnets
3 rd Approach	47 features
Value	0.99
Best Features	1. READ_CALENDAR
Dest l'eatures	2. SET_ALWAYS_FINISH
	3. SET_DEBUG_APP
	4. SIGNAL_PERSISTENT_PROCESSES
	5. WRITE_CALENDAR
	6. WRITE_SYNC_SETTINGS
	7. PICK_WIFI_WORK
	8. BATTERY_OKAY
	9. HttpPost.*init
	10. HttpUriRequest
	11. createSubprocess
	12. READ_CALL_LOG
	13. READ_USER_DICTIONARY
	14. WRITE_CALL_LOG
	15. WRITE_USER_DICTIONARY
	16. android.intent.action.PACKAGE_REPLACED
	17. android.intent.action.BATTERY_LOW
	18. android.intent.action.UID_REMOVED
	19. android.intent.action.BATTERY_OKAY
	20. android.intent.action.SCREEN_OFF
	21. android.intent.action.SCREEN_ON
	22. PACKAGE_REPLACED
	23. UMS_CONNECTED
	24. UMS_DISCONNECTED
	25. BATTERY_LOW
	26apk
	27so
	28. onBind
	29. IBinder
	30. Ljavax\/crypto\/Cipher
	31. ProcessBuilder
	32. Process. *start
	33. Ljava.util.Timer.*schedule
	34. Ljava.util.TimerTask
	35. ZipInputStream.*close(
	36. ZipInputStream.*getNextEntry(
	37. SUBSCRIBED_FEEDS_READ
	38. SUBSCRIBED_FEEDS_WRITE
	39. android.intent.action.UID_REMOVED

 Table 5.3 Features Selection for 3rd Approach

4	0. UMS_DISCONNECTED
4	1. INPUT_METHOD_CHANGED
4	2. ServiceConnection
4	3. bindService
4	4. Ljava.util.Timer
4	5. AssetManager
4	6. Landroid.content.res.AssetManager
4	7. getAssets

3) To evaluate the detection performance of the Botnet detection system.

This objective has been demonstrated in Chapter 4 under the results. The detection findings were obtained after all the methods in this paper was followed and implemented. Using the Coarse Tree Classifier technique, we may evaluate our final objective. The accuracy for the Botnet dataset with the different approach was 99.8, 99.6, and 99.6 respectively. Following that, the TPR after training is 0.998, 1, 1 and the FPR is 0.003, 0.041, and 0.041 respectively.

Classifier Algorithm	Number Features	ACC	TPR	FPR	AUC
	14f	99.8	0.998	0.003	0.9983
Coarse Tree	36f	99.6	1	0.041	0.9752
	47f	99.6	1	0.041	0.976

Table 5.4 Result of Coarse Tree Classifier

5.2 Limitation

Because the virus has the potential to spread and persist in the future, the list of Botnets may change. Furthermore, botnet families will grow and evolve, creating a new and more dangerous threat. As a result, more harmful botnets may attack the environment and network at a much faster rate. Even if we utilise feature selection as our model-building technique, knowing more about the dataset can help us make better and more accurate predictions. As a result, the dataset's characteristics must be enhanced in order to capture more necessary traits and traits from botnets in order to prevent them from creating a new family and to recognise the red flag in a faster and more accurate manner.

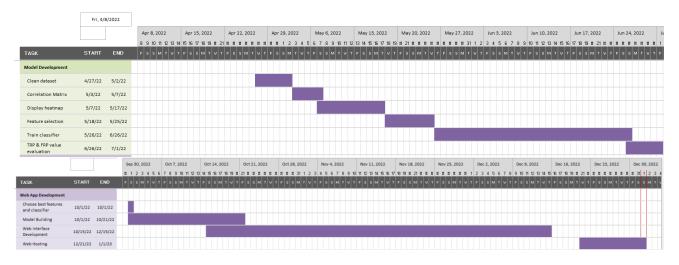
5.3 Future Work

Future studies can be incorporating various feature selection algorithms or methods to select the best features, as the features will be increasing and be spread. So that, machine learning (ML) needs to become more efficient and reliable, as many features are filtered out and the scan is based on

features. Next, machine learning (ML) must retrain its classifiers to ensure that the spreading can be stopped and that it does not become more broadly disseminated faster.

REFERENCES

- [1] "Botnet Definition." https://www.trendmicro.com/vinfo/us/security/definition/botnet (accessed May 30, 2022).
- S. Y. Yerima, M. K. Alzaylaee, A. Shajan, and A. Rosa Cavalli, "electronics Article," 2021, doi: 10.3390/electronics.
- S. Y. Yerima and A. Bashar, "A Novel Android Botnet Detection System Using Image-Based and Manifest File Features," *Electronics (Switzerland)*, vol. 11, no. 3, Feb. 2022, doi: 10.3390/electronics11030486.
- [4] G. Wang *et al.*, "Feature selection for malicious android applications using Symmetrical Uncert Attribute Eval method," *IOP Conference Series: Materials Science and Engineering*, vol. 884, no. 1, p. 012060, Jul. 2020, doi: 10.1088/1757-899X/884/1/012060.
- [5] Z. Fang, J. Wang, J. Geng, and X. Kan, "Feature Selection for Malware Detection Based on Reinforcement Learning," *IEEE Access*, vol. 7, pp. 176177–176187, 2019, doi: 10.1109/ACCESS.2019.2957429.
- [6] N. H. Mazlan, N. H. Mazlan, and I. R. A. Hamid, "Evaluation of Feature Selection Algorithm for Android Malware Detection," *International Journal of Engineering & Technology*, vol. 7, no. 4.31, pp. 311–315, Dec. 2018, doi: 10.14419/ijet.v7i4.31.23387.
- [7] "Android Botnets: What URLs are Telling Us | springerprofessional.de." https://www.springerprofessional.de/en/android-botnets-what-urls-are-telling-us/6871696 (accessed May 30, 2022).
- [8] W. Hijawi, J. Alqatawna, and H. Faris, "Toward a detection framework for android botnet," *Proceedings - 2017 International Conference on New Trends in Computing Sciences, ICTCS 2017*, vol. 2018-January, pp. 197–202, Jul. 2017, doi: 10.1109/ICTCS.2017.48.
- S. Hojjatinia, S. Hamzenejadi, and H. Mohseni, "Android botnet detection using convolutional neural networks," 2020 28th Iranian Conference on Electrical Engineering, ICEE 2020, Aug. 2020, doi: 10.1109/ICEE50131.2020.9260674.
- [10] C. Tansettanakorn, S. Thongprasit, S. Thamkongka, and V. Visoottiviseth, "ABIS: A prototype of Android Botnet Identification System," *Proceedings of the 2016 5th ICT International Student Project Conference, ICT-ISPC 2016*, pp. 1–5, Jul. 2016, doi: 10.1109/ICT-ISPC.2016.7519221.
- [11] M. Yusof, M. M. Saudi, and F. Ridzuan, "A new mobile botnet classification based on permission and API calls," *Proceedings - 2017 7th International Conference on Emerging Security Technologies, EST* 2017, pp. 122–127, Oct. 2017, doi: 10.1109/EST.2017.8090410.
- [12] B. Alothman and P. Rattadilok, "Android botnet detection: An integrated source code mining approach," 2017 12th International Conference for Internet Technology and Secured Transactions, ICITST 2017, pp. 111–115, May 2018, doi: 10.23919/ICITST.2017.8356358.


Appendix

Gantt Chart

FYP

	Fri, 4/3	3/2022																													
			Apr 8, 2022			Apr 15, 2022							Apr 22, 2022							Apr 29, 2022											
				8	9	10	11	12	13	14	15	16	17	18	19	20	21	22 2	3 2	4 2	5 2	26 2	27	28	29	30	1	2	3	4	5
ТАЅК	START	END		F	s	s	м	Т	W	Т	F	s	s	м	Т	w	т	F	s	sh	<u>ч</u>	т '	w	т	F	s	s	м	Т	w	Т
Introduction																															
Choosing project title	4/8/22	4/8/22																													
Objective identification	4/8/22	4/9/22																													
Scope identification	4/9/22	4/10/22																													
Literature Review																															
Research 1st paper	4/12/22	4/16/22																													
Research 2nd paper	4/16/22	4/20/22																													
Reseacrh 3rd paper	4/21/22	4/24/22																													
Compare research paper	4/24/22	4/26/22																													

FYP

