
1

A BOTNET DETECTION SYSTEM WITH PRODUCT

MOMENT CORRELATION COEFFICIENT (PMCC)

HEATMAP INTELLIGENT

ONG WEI CHENG

Bachelor of Computer System (Computer System and

Networking) with Honours

UNIVERSITI MALAYSIA PAHANG

2

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name

Date of Birth

Title

Academic Session

: ONG WEI CHENG

: A BOTNET DETECTION SYSTEM WITH PRODUCT MOMENT
CORRELATION COEFFICIENT (PMCC) HEATMAP INTTLEGENT

: SEMESTER 1 2022/2023

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open

access (Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number
Date: 31 JAN 2023

 (Supervisor’s Signature)

Name of Supervisor
Date:

User
Typewritten text
Ts. Dr. Ahmad Firdaus Zainal Abidin

User
Typewritten text
9 February 2023

3

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been previously or

concurrently submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

(Student’s Signature)

Full Name : ONG WEI CHENG

ID Number : CA19098

Date : 31 JAN 2023

4

A BOTNET DETECTION SYSTEM WITH PRODUCT MOMENT CORRELATION
COEFFICIENT (PMCC) HEATMAP INTTLEGENT

ONG WEI CHENG

Thesis submitted in fulfilment of the requirements for the award of the
degree of Bachelor of Computer Science in Computer System and

Networking

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JAN 2023

5

ACKNOWLEDGEMENTS

First and foremost, I am grateful born into a wonderful family where I have been raised from

the beginning of my life. Thank you to my parents and siblings who take care me so much and make

me feel so grateful for my childhood and youth.

Next, I would like to express my deepest appreciation to all those who provided me the

possibility to complete this project. A special gratitude I give to my supervisor, Dr. Ahmad Firdaus

Bin Zainal Abidin for his advice and suggestion, spend time, and guidance on finishing this project

report at any time.

Furthermore, not to forget all of my friends that also struggle together in finishing this thesis

and doing their best to spend some of their time in order to assist me on this project from the beginning

until the end. This project requires a lot of hard work, patience, and time. Moreover, I am very grateful

to both of my parents and family for their love and endless support. Therefore, I would like to thank

you again for all of them.

Nevertheless, I would like to give my special thanks to the Faculty of Computer, University

Malaysia Pahang that gave me an opportunity to infinitely gain knowledge that cannot be found at any

other place. I would also like to thank everyone who involved either directly or indirectly in finishing

this project by giving their help in any way when developing this project.

6

ABSTRACT

Botnets must be combated in a concerted manner if they are not to become a danger to global

security in the coming years. Botnet detection is currently performed at the host and/or network levels,

but these options have important drawback which antivirus, firewalls and anti-spyware are not

effective against this threat because they are not able to detect hosts that are compromised via new or

malicious software. Therefore, this paper will propose the method and develop a system to detect

botnet malware. In order to detect the botnet malware, this study uses feature selection with product-

moment correlation coefficient and trains it using decision tree classifier. The botnet detection system

is developed according to the decision tree classifier.

7

ABSTRAK

Botnet mesti diperangi secara bersepadu jika ia tidak menjadi bahaya kepada keselamatan

global pada tahun-tahun mendatang. Pengesanan botnet pada masa ini dilakukan di peringkat hos

dan/atau rangkaian, tetapi pilihan ini mempunyai kelemahan penting yang mana antivirus, tembok api

dan anti-perisian intip tidak berkesan terhadap ancaman ini kerana mereka tidak dapat mengesan hos

yang terjejas melalui perisian baharu atau berniat jahat . Oleh itu, kertas kerja ini akan mencadangkan

kaedah dan membangunkan sistem untuk mengesan malware botnet. Untuk mengesan perisian hasad

botnet, kajian ini menggunakan pemilihan ciri dengan pekali korelasi momen produk dan melatihnya

menggunakan pengelas pokok keputusan. Sistem pengesanan botnet dibangunkan mengikut pengelas

pokok keputusan.

8

TABLE OF CONTENT

DECLARATION 3

TITLE PAGE 6

ACKNOWLEDGEMENTS 5

ABSTRACT 6

ABSTRAK 7

TABLE OF CONTENT 8

LIST OF TABLES 11

LIST OF FigureS 12

LIST OF SYMBOLS 14

LIST OF ABBREVIATIONS 15

CHAPTER 1 INTRODUCTION 16

1.1 Introduction 16

1.2 Background of the Problem 16

1.3 Objective 17

1.4 Scope 17

1.5 Thesis Organization 17

CHAPTER 2 LITERATURE REVIEW 18

2.1 Introduction 18

2.2 Three Related Work 20

2.2.1 Symmetrical Uncert Attribute Eval 20

2.2.2 Deep Q-learning based Feature Selection Architecture (DQFSA) 23

9

2.2.3 Term Frequency Inverse Document Frequency (TF-IDF) 25

2.3 Comparative Analysis 26

2.4 Chapter Summary 28

CHAPTER 3 METHODOLOGY 29

3.1 Introduction 29

3.2 Methodology 29

3.3 Hardware & Software Specification 32

3.4 Dataset 34

3.5 System Development Life Cycle 35

3.6 Functional & Non-Functional Requirements 37

3.7 Constraints & Limitations 37

3.8 Context Diagram 38

3.9 Use Case Diagram & Description 39

3.10 Activity Diagram 40

3.11 Testing Plan 40

CHAPTER 4 RESULTS 41

4.1 Introduction 41

4.2 Implementation 41

4.3 Result 50

4.4 Development 56

4.5 Web Hosting 60

CHAPTER 5 CONCLUSION 76

10

5.1 Objective Revisited 76

5.2 Limitation 79

5.3 Future Work 79

References 81

11

LIST OF TABLES

Table 2.1 Features of SymmetricalUncertAttribute 22

Table 2.2 Specification / Feature of Deep Q-learning based Feature Selection Architecture
(DQFSA) 24

Table 2.3 Specification / Feature of Modified Term Frequency Inverse Document Frequency
(MTF-IDF). 26

Table 2.4 Advantage & Disadvantage of the existing system 26

Table 2.5 Platform of the existing system 28

Table 2.6 shows the features selection method used by them compared to this study28

Table 3.1 Details of laptops that have been used. 32

Table 3.2 Details of Anaconda Navigator (anaconda3), MATLAB and Visual Studio Code
software. 32

Table 3.3 Botnet family 34

Table 3.4 Functional & Non-Functional Requirements 37

Table 3.5 Constraints & Limitation 37

Table 4.1 Accuracy based on the classifier 50

Table 4.2 Accuracy in Decision Tree Classifier 50

Table 4.3 Feature of PMCC 51

Table 4.4 Result and finding. 55

Table Python Library and Description 57

Table 5.1 Features Selection for 1st Approach 76

Table 5.2 Features Selection for 2nd Approach 77

Table 5.3 Features Selection for 3rd Approach 78

Table 5.4 Result of Coarse Tree Classifier 79

12

LIST OF FIGURES

Figure 2.1 The overview of Feature selection Retrieved from Machine Learning Mastery
website 19

Figure 2.2 Workflow of the method 20

Figure 2.3 Result of the performance from different machine algorithm 21

Figure 2.4 Deep Q-learning based Feature Selection 23

Figure 2.5 Assessment measurements results from various 24

Figure 2.6 Android Malware Detection model 25

Figure 2.7 Performance results from various machine 26

Figure 3.1 The methodology of the research and development 30

 Figure 3.2 Rapid Application Development diagram 35

Figure 3.3 The context diagram of Botnet Detection System 38

Figure 3.4 The use case diagram of Botnet Detection System. 39

Figure 3.5 The activity diagram for user of Botnet Detection System. 40

Figure 4.1 The code for how to plot the correlation heatmap. 41

Figure 4.2 The uploaded dataset in Jupyter Notebook. 42

Figure 4.3 The python code to generate a heatmap in Jupyter Notebook 42

Figure 4.4 Botnet Heatmap 43

Figure 4.5 Example of Feature Selection method works. 44

Figure 4.6 Best features selection for the first approach 44

Figure 4.7 Best feature selection for the second approach 45

Figure 4.8 Best feature selection for the third approach 45

Figure 4.9 How features are selected 46

Figure 4.10 The features were selected 47

Figure 4.11 Coding of training using classifier of decision tree 47

Figure 4.12 Select the classifier to train 48

Figure 4.13 The accuracy of classifiers 49

Figure 4.14 show the correlative matrix for the first approach 52

Figure 4.15 ROC Curve for the first approach 52

Figure 4.16 show the correlative matrix for the second approach 53

Figure 4.17 ROC Curve for the second approach 53

Figure 4.18 show the correlative matrix for the third approach 54

Figure 4.19 ROC Curve for the third approach 54

13

Figure 4.20 Confusion matrix table 55

Figure 4.21 Code to build the model 56

Figure 4.22 Code for the Prediction System 56

Figure 4.23 Code for generating a random dataset file. 58

Figure 4.24 Code of user input features value using sidebar. 58

Figure 4.25 Interface of the Botnet Detection System. 59

Figure 4.26 AWS EC2 Dashboard 60

Figure 4.27 List of Instance 60

Figure 4.28 Name the instance 61

Figure 4.29 Create new key pair 62

Figure 4.30 Other Settings 62

Figure 4.31 Security Group 63

Figure 4.32 Create New Security Group 63

Figure 4.33 Update Inbound Rules 64

Figure 4.34 RSA Key Pair 65

Figure 4.35 DNS Public IP 66

Figure 4.36 Command line to access the AWS server. 66

Figure 4.37 EC2 AWS server . 67

Figure 4.38 Install pyhton in the EC2 AWS Server 68

Figure 4.39 Python validation in the EC2 AWS Server 68

Figure 4.40 Git Clone My Repository 69

Figure 4.41 Set Domain Name in Route 53 70

Figure 4.42 Record List 71

Figure 4.43 Public IP Address of Instance 71

Figure 4.44 Assign Public IP Address 72

Figure 4.45 Assign Sub Domain in Record 72

Figure 4.46 GoDaddy My Product Page 73

Figure 4.47 Edit Nameservers 74

Figure 4.48 AWS Naemeserver 74

Figure 4.49 Botnet Detection Website 75

14

LIST OF SYMBOLS

15

LIST OF ABBREVIATIONS

DDoS Distributed Denial of Service
IoT

PMCC
TPR

FRP

AI

TP

FP

TN

FN

KNN

SVM

Internet of Things

Product moment correlation coefficient

True Positive Rate

False Positive Rate

Artificial Intelligence

True Positive

False Positive

True Negative

False Negative

K-Nearest Neighbor

Support Vector Machines

16

CHAPTER 1

INTRODUCTION

1.1 Introduction

A botnet is a collection of internet-connected devices, such as smartphones, desktop computers,

internet of things (IoT) devices, and servers, that have been infected and are controlled by a single

malicious programme without the owner's awareness. [1] The term "botnet" is derived from the word

"robot" and "network" combined. DDoS attacks, data theft, spam, and giving the attacker access to the

device and its connection are all common uses for botnets. Threat actors, mostly cybercriminals, have

remote control over infected devices and employ them for certain functions, even if the damaging

operations are hidden from the user.

1.2 Background of the Problem

We decided to build a machine learning model to detect the botnet before it spreads. This makes

it easier for the network to spot the red flag before it gets worse. The usage of feature selections is

critical since there are too many features to choose from, which can lead to overfitting of the model

and delayed and inefficient malware detection. As malware threats become more prevalent, so will the

threats to user’s personal information. This is extremely concerning and, if not addressed, it is

extremely dangerous. As a result, we'll use the botnet dataset from the publication Mobile Botnet

Detection: A Deep Learning Approach Using Convolutional Neural Networks in this paper. [2], [3]

We decided to use the heatmap and machine learning as the method to detect the Botnet.

17

1.3 Objective

There are three objectives in this project which are:

1. To study feature selection of Product Moment Correlation Coefficient (PMCC) algorithm

with heatmap for machine learning model classification and development.

2. To develop a Botnet detection system with Product Moment Correlation Coefficient (PMCC)

with heatmap intelligent.

3. To evaluate the detection performance of the Botnet detection system.

1.4 Scope

 To study of the proposed system are listed below:

i) This research is to improve the efficiency and resourcefulness of botnet detection

techniques based on machine learning and use the most efficient algorithm to develop

the botnet detection system.

1.5 Thesis Organization

 Chapter 1 is briefly describing the introduction about malware type which is botnet. Next, it

includes problem statements, objectives, scope, and thesis organization.

 Chapter 2 will discuss the literature review of the system. This chapter is divided into two

sections: existing system research and a comparison of the existing and proposed systems.

 Chapter 3 will discuss the methodology used during the development of detecting botnets using

heatmap and machine learning. This chapter also covers the hardware, software, and botnet dataset

that have been used in this project.

 Chapter 4 will discuss the implementation, results, and development. This chapter will also go

into the function, how the procedure was done, and the outcome of the suggested system. In addition,

the testing results will be supplied. After the testing is down, the system development will start using

the result that we get is testing.

 Lastly, Chapter 5 is the objective overview, the limitation and discussed for any future

enhancement for the methodology and the algorithm.

18

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 Machine learning is an artificial intelligence (AI) technique that allows systems to learn and

improve from their experiences without having to be explicitly programmed. Machine learning is

concerned with the development of computer programmes that can access and utilise data and learn

on their own.

The learning process starts with observations or data, such as examples, direct experience, or

instruction, in order to seek for trends in data and make informed decisions in the future. The main

objective is to enable computers to learn on their own and adapt their behaviour accordingly without

the need for human intervention.

Furthermore, there are just a few reasons why feature selection approaches are used. Shorter

training times, improved generalisation by eliminating overfitting, and model simplification to make

them easier to read and improve accuracy are just a few examples.

Next, the common algorithms that are being used for feature selection inside machine learning

are supervised or unsupervised. Figure 2-1 shows an overview of the feature selection method.

19

Figure 2.1 The overview of Feature selection Retrieved from Machine Learning Mastery website

 By maintaining the previous dataset, supervised methods allow the machine to forecast the

feature. When we want the machine to investigate the data in order to generate hypothesis from an

unlabelled dataset in order to explain subliminal structures, we utilise an unsupervised algorithm. The

combination of supervised and unsupervised algorithms in a semi-supervised algorithm allows the

computer to interact with both datasets (either labelled or unlabelled). This algorithm is typically

employed when the dataset necessitates the machine being educated, found, or skilled. A reinforcement

algorithm is a technique for allowing robots to immerse themselves in their surroundings in order to

learn through trial and error or rewards..

 We also provide three examples of existing work in this paper. These three existing works have

been studied by different groups. These three works have shown different results by using the same

features.

20

2.2 Three Related Work

 2.2.1 Symmetrical Uncert Attribute Eval

 Symmetrical Uncert Attribute Eval H al-kaaf, A Ali, S Shamsuddin and S Hassan proposed to

use 3 types of different feature selection method which is sequential minimal optimization. SMO),

Decision Tree (J48) and Naive Bayes which achieved highest accuracy of 0.88 and precision of 0.910

when combining with Symmetrical Uncert Attribute Eval.[4]

Figure 2.2 Workflow of the method

 Figure 2.2 shows how they apply the machine learning the classifier orderly to achieve

significant results. This study made use of a malicious dataset collected from PROGuard and Drebin.

The permissions for the apps are extracted using static extraction. Correlation-based Feature Subset

Selection (CFS), InfoGainAttribute, and SymmetricalUncertAttribute are the feature selection

methods used.

 Correlation-based Feature Subset Selection (CFS) is a channel calculation approach that

evaluates the expectation of each trait in terms of repetition and the relationship between them. It

21

selects highlights that have a strong link with the class. InfoGainAttribute is a type of channel process

that evaluates the inclusion based on the estimation of its data pick up concerning the class.

SymmetricalUncertAttribute evaluates the highlights based on the balanced vulnerability of each

property. The SymmetricalUncertAttributeEval estimation is either zero or one, with one indicating

that the trait or highlight is relevant to the class and 0 indicating that the characteristic is irrelevant to

the class..

 The Weka tool is used for the evaluation component to calculate Overall Accuracy, False

Positive Rate, and Precision. One of the measurements used to evaluate grouping models is accuracy.

The False Positive Rate (FPR) quantifies the number of negatives that are incorrectly identified as

positives (for example the level of clean applications that misclassified as malware applications)

Whereas TP refers to the number of malware applications that delegated malware applications, FN

refers to the number of clean applications that were incorrectly labelled spiteful. TN refers to the

number of thoughtful applications that have been delegated favourably. FN refers to the number of

irregular applications that have been mislabeled as ordinary. Precision quantifies the number of

negatives that are incorrectly identified as certain (for example the level of clean applications that are

misclassified as malware applications).

Figure 2.3 Result of the performance from different machine algorithm

 Figure 2.3 depicts the outcomes for all of the feature selection approaches.

SymmetricalUncertAttributeEval evaluates the value of a quality by evaluating the class's even

vulnerability. Although SymmetricalUncertAttribute with SMO and NaiveBayes classifiers produced

good results, J48 has low accuracy and an exaggerated FPR.

22

 They came to the conclusion that SymmetricalUncertAttribute is the best employing SMO,

with an accuracy of 88.4615%.

Table 2.1 Features of SymmetricalUncertAttribute

Feature Selection Method SymmetricalUncertAttribute

Classifiers NaiveBayes, Sequential Minimal

Optimization (SMO), Decision Tree (J48)

Highest accuracy 88.46%

23

2.2.2 Deep Q-learning based Feature Selection Architecture (DQFSA)

 This approach e trains an expert using Q-figuring out how to increase the morpheme's normal

precision on an approval dataset by sequentially collaborating with the highlighted region. Based on a

–greedy investigation technique and experience replay, the specialist studies a vast yet constrained

space of feasible activities and repeatedly finds options with improved execution on the learning task.

[5]

Figure 2.4 Deep Q-learning based Feature Selection

 The primary tasks for this model are to develop a learning process. Specialist in selecting

highlights sequentially for classification. The assumption that a component performs well in one

arrangement mission should be associated with the outcome of another arrangement mission, so that

the component option period can be displayed as a Markov Decision Process. Under the -insatiable

technique, the specialist selects highlights in a sequential manner until it reaches an end state.

24

Figure 2.5 Assessment measurements results from various

They applied 5 classifiers inside the machine to receive the best accuracy. The classifiers that

are being used in K-Nearest Neighbors (KNN), Decision Tree, Random Forest, Naive Bayes, Support-

Vector Machines (SVM). The detection for detecting malware that they achieved using this method is

99.53%.

Table 2.2 Specification / Feature of Deep Q-learning based Feature Selection Architecture (DQFSA)

Feature Selection Method Deep Q-learning based Feature

Selection Architecture (DQFSA)

Classifiers K-Nearest Neighbors (KNN),

Decision Tree, Random Forest, Naive

Bayes, Support-Vector Machines

(SVM)

Highest accuracy 99.53%

25

2.2.3 Term Frequency Inverse Document Frequency (TF-IDF)

Nurul Hidayah Mazlan and and Isredza Rahmi A Hamid implement feature selection algorithm for

android malware detection using Term Frequency Inverse Document Frequency (TF-IDF) in

Evaluation of Feature Selection Algorithm for Android Malware Detection article. However, as stated

in the article, Inverse Document Frequency (IDF) is ignorant during class label training and will

produce incorrect weight values in some features. As a result, they proposed a modified version of

Frequency Inverse Document Frequency (TF-IDF) to calculate the impact of key malware highlights

selected in the Android application testing. Figure 2.6 depicts how the detection model works with the

Modified Term Frequency Inverse Document Frequency feature selection (MTF-IDF). [6]

Figure 2.6 Android Malware Detection model

The feature selection process will be used to a dataset of Android information that has been

divided into XML document configuration. The information base is dissected to yield the element

vector portions. The element determination measure will reduce the unimportant and excessive

highlights. At the same time, the highlights used are classified into two types: API call and dangerous

consent.

26

Figure 2.7 Performance results from various machine

Figure 2.7 depicts the performance gained for Frequency Inverse Document Frequency (TF-

IDF) and Modified Frequency Inverse Document Frequency (MTF-IDF) utilising three algorithms:

bagging, decision tables, and random forests. In a nutshell, Modified Term Frequency Inverse

Document Frequency (MTF-IDF) has the highest accuracy for three algorithms which is 97.6%, 96.8%

and 98.9% respectively.

Table 2.3 Specification / Feature of Modified Term Frequency Inverse Document Frequency (MTF-

IDF).

Feature Selection Method Modified Term Frequency Inverse Document

Frequency(TF-IDF)

Classifiers Bagging, Decision Table, Random Forest

Highest accuracy 98.90%

2.3 Comparative Analysis

Here are the advantage and disadvantages of the three related work.

Table 2.4 Advantage & Disadvantage of the existing system

Machine Learning Advantages Disadvantages

Symmetrical Uncert

Attribute Eval

They applied benign and

malware dataset into the

machine learning for better

results.

Have the lowest accuracy

among other researches.

27

Deep Q-learning based

Feature Selection

Architecture (DQFSA)

Have the highest accuracy

among other researches.

Does not use android

malware dataset to train the

machine.

Term Frequency Inverse

Document Frequency (TF-

IDF)

All classifiers have a

minimum accuracy of 95.0

Does not train the machine

learning using a benign

dataset.

28

Table 2.5 Platform of the existing system

Name Platform

SolarWinds Security Event Manager Software

DataDome Cloud-based

ClickCease Software

2.4 Chapter Summary

 To summarise, this chapter has focused on the creation of three feature selection models by

other academics. The literature review demonstrates how they used feature selection to create a

powerful detection model. Every consequence and finding of their research is presented, as well as

figures and tables.

Table 2.6 shows the features selection method used by them compared to this study

Feature Selection Paper 1 Paper 2 Paper 3 This Study

Correlation-based Feature Subset

Selection (CFS), InfoGainAttribute

& SymmetricalUncertAttribute

✓

Deep Q-learning ✓

Modified Term Frequency Inverse

Document Frequency

 ✓

Product Moment Correlation

Coefficient (PMCC) + Heatmap

 ✓

 Table 2.6 shows the comparison of features selection method that have been conduct in the

existing system of previous researches between this study.

29

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter consists of four stages of methodology: data collection, correlation matrix with

heatmap, features selection extraction, and machine learning classifiers. In the data collection process,

we use botnet malware and a clean dataset. Then, we conduct a correlation matrix with heatmap. In

order to select the best features, we using the method of product moment correlation coefficient

(PMCC). Finally, we evaluate the features by using machine learning classifiers, in order to compare

the accuracy of the malware detection. Next, this chapter also includes the details of hardware, software

and botnet dataset that have been used throughout this research.

The Product Moment Correlation Coefficient (PMCC), which is represented by the symbol r,

is a metric for the strength of a linear relationship between two variables. The Pearson correlation

coefficient, or r, measures how far away all of these data points are from the line of best fit that a

Pearson product-moment correlation attempts to draw across the data of two variables.

The heatmap, which graphically describe data by colouring values, it is simple to see and

quickly comprehend complex data. Although modern heatmaps are typically made using specialist

heatmapping software, they can also be created manually.

3.2 Methodology

This paper consists of four main phases of methodology: literature review, model development

process, evaluating the mode, and system development.

30

Figure 3.1 The methodology of the research and development

 In the 1st phase, which is the literature review, we have started the research by studying more

about machine learning, feature selection method that will be chosen, classifier learner that will be

used, and understanding the concept of botnet to achieve the best model.

31

 Next, at the 2nd phrase is the model development process. This part consists of four stages

which are dataset collection, feature selection, features extraction, and machine learning classifiers. In

the data collection process, we chose botnet malware and clean dataset from Android botnet detection

dataset for machine learning, figshare. The dataset CSV will be imported into python using Jupyter

Notebook. Then, we conduct a correlation matrix to generate a heatmap. Next, in order to select the

best features, the product moment correlation coefficient algorithm has been implemented. We will

evaluate the dataset to ensure that the best features are selected. Finally, we trained the selected features

by using machine learning classifiers, in MATLAB in order to compare the accuracy of the malware

detection. We will train the features in three different classifiers such as decision tree, nearest neighbor

(KNN), and support vector machines (SVM). The accuracy, TPR, and FRP values were been taken

and evaluated.

 At 3rd Phase which is the Evaluate Model, which will analyse and make a conclusion for the

model's outcome. We have all of the results we require at this point, and we will choose the most

effective model to continue with the system development process.

 In the 4th Phase, system development will begin using python language to develop the botnet

detection system in web applications. Debug and testing will be carried out until it successfully runs

and detects botnet viruses.

32

3.3 Hardware & Software Specification

This subtopic will explain about the hardware and software that are been used for this research

in detail. There one hardware and three type of software were used throughout the whole research.

Table 6 shows the specification for my laptop and Table 7 show the specification Anaconda Navigator

(anaconda3), MATLAB software and Visual Studio Code software that was used to develop the

process of data.

Table 3.1 Details of laptops that have been used.

Name Version Description Purpose of use

Laptop

(Acer)

Windows 10 64bits A gaming

notebook that can

easily bring along

and has various

functions that can

be used in

different

environment

To write report and thesis, create a

heatmap and train the dataset using

machine learning classifier. Develop

a botnet detection with PMCC

Table 3.2 Details of Anaconda Navigator (anaconda3), MATLAB and Visual Studio Code software.

Name Version Description Purpose of use

Anaconda

Navigator

(Anaconda3)

Python

version

3.10.6

Dissemination of the Python and

R programming dialects for

logical figuring, that expects to

disentangle bundle the board and

sending. The dissemination

incorporates information science

bundles reasonable for Windows,

Linux, and macOS

To build a heatmap based

on python or R language.

MATLAB Original

License of

R2022b

version

MATLAB is a programming and

numeric computing platform used

by millions of engineers and

scientists to analyse data, develop

algorithms, and create models.

To train the selected

features using classifier

learner.

33

Visual Studio

Code

Version

1.67.2

Visual Studio Code is a

lightweight but powerful source

code editor for Windows, macOS,

and Linux that runs on your

desktop. It includes built-in

support for JavaScript,

TypeScript, and Node.

To develop the system

using python language

34

3.4 Dataset

 Table 3.3 Botnet family

Botnet Family Number of samples

Anserverbot 244

Bmaster 6

Droiddream 363

Geinimi 264

Misosms 100

Nickyspy 199

Notcompatible 76

Pjapps 244

Pletor 85

Rootsmart 28

Sandroid 44

Tigerbot 96

Wroba 100

Zitmo 80

Total 1929

In this study we used the Android dataset from [2], which is known as the ISCX botnet

dataset. The ISCX dataset contains 1,929 botnet apps and 4,873 clean apps. The botnet apps were

from 14 different families and have been used in previous works including [7][8][9][10][11][12].

The botnet families are shown in Table 8.

35

3.5 System Development Life Cycle

The system will begin developed by using python language. The system development process

will use Anaconda software and Visual Studio Code.

Figure 3.2 Rapid Application Development diagram

From the Figure 3.2 there are 4 phases in RAD which is analysis and quick design, prototype cycles,

testing and implementation.

First, analysis and quick design phase is a critical step for the ultimate success of the project, the

discussion between supervisor and student is needed to determine the goals and expectations for the

project as well as current and potential issues that would need to be addressed during the build. The

potential user of the system which is computer users that need to define and finalize their

requirements. The computer user needs to upload the file on the website.

Second, in prototype cycles there are 3 step that need to go through, they are demonstrate, refine and

build. After quick design is complete, it will demonstrate to supervisor. The information of

requirement gathered during the analysis and quick design phase is demonstrate and analysed to

define a set of clear data objects crucial for the business. They will give some idea to developers to

meet their requirement and developers will refine the design and build it again to meet the

requirement. Instead of following the requirements, student will create prototypes with different

features and functions and then show them to the supervisor to decide what should and should not

have. This process will be repeated until the supervisor is satisfied with the design.

After that testing process is perform for validation requirements. This step requires to test the product

and ensure that all part meet the expectations. Feedback needed after testing for any changes or

enhancements which is what’s good, what’s not, what works, and what doesn’t is shared. This phase

like prototype phase that these two steps are repeated until a final product can be realized that fits

both the developers and stakeholder requirements.

36

The last process is implementation which is the system will take place in the real environment. This

phase where the finished product will move to the programming components to a live production

environment to conduct comprehensive testing.

37

3.6 Functional & Non-Functional Requirements

Table 3.4 Functional & Non-Functional Requirements

Functional Requirement Non-Functional Requirement

1.The Botnet Detection System should enable

users to upload the file into the system in order

to check their file.

1.The Botnet Detection System should run in

web-based application

2.The Botnet Detection System should enable

show the result of the uploaded file

2. The Botnet Detection System should run in

24 hours per day and 7 days per week.

3.7 Constraints & Limitations

Table 3.5 Constraints & Limitation

Constraints Limitations

1.The different algorithm have different

featured selection to detect the botnet viruses.

1.The Botnet Detection System model might be

dependent on one dataset which may come out

with wrong result.

2. Dataset used to train will affect the detection

model.

2. The algorithm used may not the most

effective algorithm to detect the botnet viruses.

38

3.8 Context Diagram

Figure 3.3 The context diagram of Botnet Detection System

In Figure 3.3, user will upload the file to Botnet Detection System. The Botnet Detection System will

use the Machine Learning Model to scan the uploaded file by user and get the prediction result. Next

the prediction result will send to user.

39

3.9 Use Case Diagram & Description

Figure 3.4 The use case diagram of Botnet Detection System.

Use Case ID Upload File

Brief Description This use case is to manage user to upload file into the Botnet

Detection System. It is indicated user only.

Actor User

Basic Flow 1. The use case begin when users open the Botnet Detection

System.

2. Users are required to upload the file in the interface.

3. The use case end.

Exception Flow E1:Wrong upload file

1. Users had uploaded wrong file.

2. User reselect the file.

3. The use case return to step number 2 in the basic flow.

40

3.10 Activity Diagram

Figure 3.5 The activity diagram for user of Botnet Detection System.

In Figure 3.5, the activity will start at user which they will need to upload the file. Then the Botnet

Detection System will read the file and send to Machine Learning to do the checking. Then Botnet

Detection system will generate the result for the file and display the result for the user.

3.11 Testing Plan

 The testing plan for Botnet Detection System will test the effectiveness of the model that had

be trained and the it’s accuracy on detecting botnet. Other than that, the testing will also include the

functionality of each interface and database.

41

CHAPTER 4

RESULTS

4.1 Introduction

This chapter will go over the implementation of this research and the development of the

system in great detail. All the processes, workspace, and development have been done in two types of

software, which are Jupyter Notebook, Anaconda, Matlab, and Visual Studio Code. These tasks will

be well explained in the implementation part, while all results will be detailed in the result part.

4.2 Implementation

Implementation process in Jupyter notebook (anaconda3)

Figure 4.1 The code for how to plot the correlation heatmap.

We used to import the necessary packages and libraries into Anaconda to make sure the

algorithm could run without any problems. Inside the Jupyter Notebook, we will use the pandas,

seaborn, and matplotlib packages and libraries. Next, the dataset will be added to the Jupyter notebook

by importing the CSV file into the environment using pandas.

42

Figure 4.2 The uploaded dataset in Jupyter Notebook.

To ensure that the correct dataset is imported, a preview of the dataset will be performed. The

number of rows and columns is displayed in the dataset preview at the bottom. 343 columns and 6802

rows are present.

Figure 4.3 The python code to generate a heatmap in Jupyter Notebook

Once the imported data is accurate, a correlation matrix is created to generate a heatmap. The

heatmap's figure size and background have been configured. Next, we set the precision of the dataset

values in the heatmap to 2 decimal places. Following the computation of the correlation matrix, a

heatmap will be generated.

43

Figure 4.4 Botnet Heatmap

Figure 4.4 shows the whole visual of the botnet heatmap. In furthermore, we use the AJ Pearson

correlation technique, often known as the product-moment correlation coefficient (PMCC), to

determine the correlation between the characteristics. Then, we will select the best characteristics that

are highly associated with one another for usage as model properties.

Feature selection is the process of selecting a subset of relevant features (variables, predictors)

for use in model creation. It is also known as variable selection, attribute selection, and variable subset

selection. We considered using feature selection as one of our primary ideas in machine learning in

order to train the machine more efficiently. Figure 4.5 shows an example on how feature selection

works in order to achieve the best accuracy and result.

44

Figure 4.5 Example of Feature Selection method works.

Feature Selection is known as a cycle where you consequently or physically select these

highlights which contribute most to your forecast variable or yield in which you are keen on. Having

irrelevant or unused data in a machine in order to train them to track better for a specific reason can

cause a decline in inaccuracy which results in poor and unreliable results. By distinguishing the

irrelevant dataset, the machine can work more effectively and reach the main goal accurately [14],[15].

We have implemented feature selection for the multiple ways of in using the product-moment

correlation coefficient. Figures 4.6 to 4.8 illustrate how the best features were chosen. We started the

first round of feature selection with the first approach.

Figure 4.6 Best features selection for the first approach

Figure 4.6 shows the number of best features in a Botnet heatmap. For the first approach, we

had decided to select the best features based on the value of 0.99, which is the highest value. There

were 14 features were successfully been detected. All the best features information will be gathered.

45

We proceed with another implementation by using the same step and method of feature selections for

the second approach. The result will be shown in the next figure.

Figure 4.7 Best feature selection for the second approach

Figure 4.7 also showed the best features in the heatmap for the second approach. The best value

that we decide for this approach is 0.90 until 0.99. It is because the more features the more accuracy

will be get so that the efficient model will be produced. There were 36 features altogether. All the best

features information will be collected for another step purposed.

We proceed with the last implementation by using the same step and method of feature

selection for the third approach. The result will be shown in the next figure.

Figure 4.8 Best feature selection for the third approach

Figure 4.8 shows the best features in the heatmap for the last approach which is the third. We

decide to add more features to this approach compared to the two previous approaches by choosing

46

the best value starting from the lowest of 0.85 until 0.99. This is one of the steps to get the best accuracy

result by training the feature selection. The 47 features were successfully detected.

Implementation process in MATLAB

Once we have compiled the best features from the various approaches, we will proceed to the

next step. The next step in MATLAB involves importing the dataset in order to select the previously

selected features. We selected the best features manually, one by one, based on the references of the

best collections of features.

 Figure 4.9 How features are selected

The figure above shows how the features are selected from the implemented data. We had to repeat

the same step in order to produce the data of features based on the three different approaches.

47

Figure 4.10 The features were selected

Figure 4.10 shows the features that were selected which form to 3 dataset which is botnet,

botnet1, and botnet2.

Figure 4.11 Coding of training using classifier of decision tree

Figure 4.11 shows the code has been developed to train the features using the machine learning

classifier in MATLAB.

Machine learning is the study of algorithms that predict decisions based on samples of data

using a computer without explicit programming. There are numerous classifiers available for machine

learning, including decision tree, discriminate analysis, logistic regression, naive bayes, support vector

machine, nearest neighbour, assemble, and neural network.

48

Figure 4.12 Select the classifier to train

In this study, we proposed to use all "quick to train" so that it can run all classifiers to get the

highest accuracy. In addition, we also train the nearest neighbour classifier and support vector machine

classifier.

49

Figure 4.13 The accuracy of classifiers

Figure 4.13 shows the numbers of accuracy based on the trained classifier. The highest degree

of precision will be detected. We chose to evaluate the precision of the three classifiers, decision tree,

nearest neighbour, and support vector machines. Each classifier employs its own set of algorithms.

Fine, Medium, and Coarse are used in decision trees and nearest neighbour (KNN), whereas support

vector machines use Fine Gaussian, Medium Gaussian, and Coarse Gaussian (SVM).

50

4.3 Result

Table 4.1 Accuracy based on the classifier

Approach Classifier Fine Medium Coarse
Preferred

Classifier

1st

Decision Tree 99.7% 99.7% 99.8% ✓

KNN 99.8% 99.6% 98.7%

SVM 99.6% 99.8% 99.8%

2nd

Decision Tree 99.6% 99.6% 99.6% ✓

KNN 99.1% 98.9% 96.9%

SVM 99.0% 99.6% 99.6%

3rd

Decision Tree 99.6% 99.6% 99.6% ✓

KNN 99.2% 98.6% 96.9%

SVM 98.8% 99.6% 99.6%

Table 4.1 above shows the accuracy based on three different classifiers which is decision tree, nearest

neighbour (KNN), and support vector machines (SVM). In comparison to the other classifiers, the

accuracy of the decision tree classifier is the highest based on the above result.

Table 4.2 Accuracy in Decision Tree Classifier

 Decision Tree Classifier

Approach
Number

Features
Fine Medium Coarse

1st 14 99.7 99.7 99.8

2nd 36 99.6 99.6 99.6

3rd 47 99.6 99.6 99.6

Preferred

Algorithm
 ✓

Table 4.2 above shows the accuracy based on the decision tree algorithms. We are able to choose a

suitable and trustworthy classifiers algorithm based on the aforementioned result. We select coarse

tree classifiers as our results because it achieves the highest total accuracy when compared to fine and

coarse tree classifiers.

51

Table 4.3 Feature of PMCC

Feature Selection Method Product Moment Correlation Coefficient (PMCC)

Classifier Coarse Tree

Highest accuracy 99.80%

The table above shows that this research used the product moment correlative coefficient

(PMCC) as a feature selection method. The coarse tree algorithm has been selected as the best train

classifier with the highest accuracy, 99.8 %.

Once the classifier algorithm has been selected, the next step is to determine the true positive

rate (TPR) and false positive rate (FPR). The True Positive Rate (TPR) is the proportion of correct

definite outcomes among all definite examples available during the test. On the other hand, the False

Positive Rate (FPR) describes the frequency of false positives among all regrettable cases available

throughout the test.

The Receiver Operating Characteristic (ROC) is an estimation of issue execution at different

edge settings. AUC is the degree or percentage of distinguishability, whereas ROC is the likelihood

curve. It indicates the model's suitability for class recognition. The better the model predicts 0s as 0s

and 1s as 1s, the higher the AUC. According to the connection, the higher the AUC, the better the

model recognizes the target with restrictions and no infection.

Figure 4.14 – 4.19 will show the result confusion matrix for three different approaches.

52

The first approach

Figure 4.14 show the correlative matrix for the first approach

From the result of the first approach, we can identify the value of true positive (TP) is 99.7%,

false negative (FN) is 0.3%, false positive (FP) is 0.2%, and true negative (TN) is 99.8%.

Figure 4.15 ROC Curve for the first approach

The result shows that AUC is 0.9983 which means the roc curve is reliable to be trusted and chosen.

53

The second approach

Figure 4.16 show the correlative matrix for the second approach

From the result of the second approach, we can identify the value of true positive (TP) is 100%,

false negative (FN) is 0%, false positive (FP) is 4.1%, and true negative (TN) is 95.9%.

Figure 4.17 ROC Curve for the second approach

The result shows that AUC is 0.9752 which means the roc curve is reliable to be trusted and

chosen.

54

The third approach

Figure 4.18 show the correlative matrix for the third approach

From the result of the third approach, we can identify the value of true positive (TP) is 100%,

false negative (FN) is 0%, false positive (FP) is 4.1%, and true negative (TN) is 95.9%.

Figure 4.19 ROC Curve for the third approach

The result shows that AUC is 0.976 which means the roc curve is reliable to be trusted and

chosen.

55

Figure 4.20 Confusion matrix table

True Positive (TP): It is the number of correctly classified instances as positive. It means that how

successful a system is in detecting malware as malicious. As the true positive increases, the result is

better.

False Positive (FP): It is the number of incorrectly classified instances as positive. It means that the

ratio of which the algorithm considers normal data as malicious. As the false positive decreases, it

shows that the system is more accurate.

True Negative (TN): It is the number of correctly classified instances as negative.

False Negative (FN): It is the number of incorrectly classified instances as negative.

Accuracy: It shows how accurately the system can detect malware.

Precision: It is the number of instances correctly classified as class X among those classified as class

X.

Figure 4.20 above shows the confusion table used as a reference to count the value of precision.

We also can get the value of sensitivity, specificity, accuracy, positive predictive value, and negative

predictive value.

Table 4.4 Result and finding.

Classifier Algorithm
Number
Features

ACC TPR FPR AUC

Coarse Tree

14f 99.8 0.998 0.003 0.9983

36f 99.6 1 0.041 0.9752

47f 99.6 1 0.041 0.976

56

4.4 Development

BotnetModelBuilding.py

Figure 4.21 Code to build the model

Figure 4.21 above shows the coding of the model building. There are 3 python library was

imported into the file. First is pandas which use to analyse CSV file. Following that is the Decision

Tree Classifier which allows us to use the decision tree classifier to train our model. Lastly, the pickle

is used to save the trained model.

NavPrediction.py

Figure 4.22 Code for the Prediction System

Figure 4.22 shows the coding for the prediction system. There are 9 python library was

imported into the system. A detail description of each library will explain at table below.

57

Table Python Library and Description

Python Library Description

Streamlit Python language app framework

Pandas Use to analyse csv file

Numpy Working with arrays

Pickle Read saved model

Random To generate random number

Matplotlib.pyplot A plotting library MATLAB

Seaborn To make statistical graphics

Image To allow python to interpret the image

Option menu A simple Streamlit component that allows

users to select a single item from a list of

options in a menu

58

Figure 4.23 Code for generating a random dataset file.

Figure 4.23 shows the code to generate some random dataset files with these 14 features to

allow the user to download it and go the prediction in the system.

Figure 4.24 Code of user input features value using sidebar.

Figure 4.24 shows the coding of the user input features value using the sidebar.

59

Figure 4.25 Interface of the Botnet Detection System.

On the left side of the page, there 2 buttons and 14 progress bars. The first button from the top

is the browse files button which allows the user to upload the file to do the detection. The second

button is the button that will download a random dataset CSV file for the user to upload the file for

detection. On the right side of the page, There is a navigation bar with 3 column which is Home .

Heatmap Analysis and User Guide. In the home part, the first section is the User Input Features which

is it will show the input value of each feature. The second section which is the result of the detection

and the last section is the prediction probability which shows how many percentages the input value

is malware.

60

4.5 Web Hosting

Figure 4.26 AWS EC2 Dashboard

 Figure 4.26 shows the AWS EC2 dashboard. Click on the Instances (running) it will show the

interface as Figure 4.27 at below.

Figure 4.27 List of Instance

 In Figure 4.27, it will show the current instance that my account has as a list. TO create a new

instance To create a new instance, click on the orange button (Launch instances).

61

Figure 4.28 Name the instance

 In Figure 4.28, put a name for the web server.

62

Figure 4.29 Create new key pair

 Figure 4.29 shows how to create a new key pair for the web server. Key pair is needed because

it is allow us to access our own AWS server ubuntu command line later. A .pem file will created and

will be use later.

Figure 4.30 Other Settings

 Figure 4.30 shows the continuous setting. We remain it as default and click the orange button

(Lauch instance).

63

Figure 4.31 Security Group

 Figure 4.31 shows the list of the security group. We can edit the security group by click the

security group ID. As a demonstration we go to create security group.

Figure 4.32 Create New Security Group

 Figure 4.32 shows the information to create the security group. A security group name is

needed because we can use it for different instance and select the correct VPC instance.

64

Figure 4.33 Update Inbound Rules

 Figure 4.33 shows the information to update for inbound rules. The inbound rules is help the

web server to filter incoming traffic. By default the inbound rules is empty. For our streamlit web

application, it use the TCP with 8501 port and 8502 port. Therefore we need to configure the port

range and set the source from anywhere which to allow user to access the web application.

65

Figure 4.34 RSA Key Pair

 Figure 4.34 shows the .pem file which contain the RSA Private Key. This pair key will be use

to access the AWS server.

66

Figure 4.35 DNS Public IP

 Figure 4.35 shows the Domain Name Server public ip for the AWS server. This DNS public ip

will be use to access the AWS server.

Figure 4.36 Command line to access the AWS server.

 Figure 4.36 shows the command line to access the AWS server. The command is shh -i (the

name of .pem file shows in Figure 4.34) ec2-user@(the DNS public ip in Figure 4.35).

67

Figure 4.37 EC2 AWS server .

 Figure 4.37 shows we are successful to access the EC2 AWS server.

68

Figure 4.38 Install pyhton in the EC2 AWS Server

 Figure 4.38 shows the python installation in the EC2 AWS Server.

Figure 4.39 Python validation in the EC2 AWS Server

 Figure 4.39 shows how I validate the python is successful install in the EC2 AWS Server.

69

Figure 4.40 Git Clone My Repository

 Figure 4.40 shows the cloning of my GitHub repository.

70

Figure 4.41 Set Domain Name in Route 53

 In Figure 4.41, we need to put the correct domain name that we purchased and remain default

setting for others setting and create the host zone.

71

Figure 4.42 Record List

 Figure 4.42 shows the record of the hosted zone. By default it have 2 record which is NS and

Soa record. Now we need to create two A record for the hosted zone.

Figure 4.43 Public IP Address of Instance

 Figure 4.43 shows the public ip address of the instance. This public ip address will be use to

create a record.

72

Figure 4.44 Assign Public IP Address

 Figure 4.44 shows the public ip address of the instance that we get from Figure 4.43 will assign

in the record. After assigned, click create records.

Figure 4.45 Assign Sub Domain in Record

 In Figure 4.45 shows we assign a sub domain which is www for the predictzz.com domain in

another record.

73

Figure 4.46 GoDaddy My Product Page

 Figure 4.46 shows the My Product Page. We need go for the GoDaddy DNS management page

to do nameserver setting by click DNS as shown in the figure.

74

Figure 4.47 Edit Nameservers

 In Figure 4.47, we need to update the name server from GoDaddy nameserver to AWS

nameserver. The AWS nameserver is listed in Figure 4.48. After update the nameserver it will takes

up to 48 hours to make the changes.

Figure 4.48 AWS Naemeserver

 Figure 4.48 shows the AWS nameserver.

75

Figure 4.49 Botnet Detection Website

 Figure 4.49 shows the web application successfully access using the predictzz.com domain

name.

76

CHAPTER 5

CONCLUSION

5.1 Objective Revisited

1) To study feature selection of Product Moment Correlation Coefficient (PMCC) algorithm with

heatmap for machine learning model classification and development.

We were able to accomplish this by putting forward the algorithm of correlative matrices,

which was used to choose and detect the best characteristics in the heatmap. The viability of this

approach was demonstrated in chapter 4 as part of the implementation and development phase.

2) To develop a Botnet detection system with Product Moment Correlation Coefficient (PMCC) with

heatmap intelligent.

In order to develop the botnet detection system, we need to choose the most suitable feature.

We got a different feature for each dataset we used, because each feature only related to the others if

the attributes or characteristics had strong and important data. From Table 5.1 to Table 5.3, you can

see the different things we can capture with PMCC.

Table 5.1 Features Selection for 1st Approach

Dataset Botnets

1st Approach 14 features

Value 0.99

Best Features 1. 1. SUBSCRIBED_FEEDS_READ

2. 2. SUBSCRIBED_FEEDS_WRITE

3. 3. android.intent.action.UID_REMOVED

4. 4. UMS_DISCONNECTED

5. 5. INPUT_METHOD_CHANGED

6. 6. UID_REMOVED

7. 7. ServiceConnection

8. 8. bindService

9. 9. Ljava.util.Timer.*schedule

 10. Ljava.util.TimerTask

 11. Ljava.util.Timer

 12. AssetManager

 13. Landroid.content.res.AssetManager

77

 14. getAssets

Table 5.2 Features Selection for 2nd Approach

Dataset Botnets

2nd Approach 36 features

Value 0.90-0.99

Best Features
10. 1. READ_CALL_LOG

11. 2. READ_USER_DICTIONARY

12. 3. WRITE_CALL_LOG

13. 4. WRITE_USER_DICTIONARY

14. 5. android.intent.action.PACKAGE_REPLACED

15. 6. android.intent.action.BATTERY_LOW

16. 7. android.intent.action.UID_REMOVED

17. 8. android.intent.action.BATTERY_OKAY

18. 9. android.intent.action.SCREEN_OFF

19. 10. android.intent.action.SCREEN_ON

20. 11. PACKAGE_REPLACED

21. 12. UMS_CONNECTED

22. 13. UMS_DISCONNECTED

23. 14. BATTERY_LOW

24. 15. .apk

25. 16. .so

26. 17. onBind

27. 18. IBinder

28. 19. Ljavax\/crypto\/Cipher

29. 20. ProcessBuilder

30. 21. Process. *start

31. 22. Ljava.util.Timer.*schedule

32. 23. Ljava.util.TimerTask

33. 24. ZipInputStream.*close(

34. 25. ZipInputStream.*getNextEntry(

35. 26. SUBSCRIBED_FEEDS_READ

36. 27. SUBSCRIBED_FEEDS_WRITE

37. 28. android.intent.action.UID_REMOVED

38. 29. UMS_DISCONNECTED

39. 30. INPUT_METHOD_CHANGED

40. 31. ServiceConnection

41. 32. bindService

42. 33. Ljava.util.Timer

43. 34. AssetManager

44. 35. Landroid.content.res.AssetManager

45. 36. getAssets

46.

78

Table 5.3 Features Selection for 3rd Approach

Dataset Botnets

3rd Approach 47 features

Value 0.99

Best Features 47. 1. READ_CALENDAR

48. 2. SET_ALWAYS_FINISH

49. 3. SET_DEBUG_APP

50. 4. SIGNAL_PERSISTENT_PROCESSES

51. 5. WRITE_CALENDAR

52. 6. WRITE_SYNC_SETTINGS

53. 7. PICK_WIFI_WORK

54. 8. BATTERY_OKAY

55. 9. HttpPost.*init

56. 10. HttpUriRequest

57. 11. createSubprocess

58. 12. READ_CALL_LOG

59. 13. READ_USER_DICTIONARY

60. 14. WRITE_CALL_LOG

61. 15. WRITE_USER_DICTIONARY

62. 16. android.intent.action.PACKAGE_REPLACED

63. 17. android.intent.action.BATTERY_LOW

64. 18. android.intent.action.UID_REMOVED

65. 19. android.intent.action.BATTERY_OKAY

66. 20. android.intent.action.SCREEN_OFF

67. 21. android.intent.action.SCREEN_ON

68. 22. PACKAGE_REPLACED

69. 23. UMS_CONNECTED

70. 24. UMS_DISCONNECTED

71. 25. BATTERY_LOW

72. 26. .apk

73. 27. .so

74. 28. onBind

75. 29. IBinder

76. 30. Ljavax\/crypto\/Cipher

77. 31. ProcessBuilder

78. 32. Process. *start

79. 33. Ljava.util.Timer.*schedule

80. 34. Ljava.util.TimerTask

81. 35. ZipInputStream.*close(

82. 36. ZipInputStream.*getNextEntry(

83. 37. SUBSCRIBED_FEEDS_READ

84. 38. SUBSCRIBED_FEEDS_WRITE

85. 39. android.intent.action.UID_REMOVED

79

86. 40. UMS_DISCONNECTED

87. 41. INPUT_METHOD_CHANGED

88. 42. ServiceConnection

89. 43. bindService

90. 44. Ljava.util.Timer

91. 45. AssetManager

92. 46. Landroid.content.res.AssetManager

93. 47. getAssets

3) To evaluate the detection performance of the Botnet detection system.

This objective has been demonstrated in Chapter 4 under the results. The detection findings

were obtained after all the methods in this paper was followed and implemented. Using the Coarse

Tree Classifier technique, we may evaluate our final objective. The accuracy for the Botnet dataset

with the different approach was 99.8, 99.6, and 99.6 respectively. Following that, the TPR after training

is 0.998, 1, 1 and the FPR is 0.003, 0.041, and 0.041 respectively.

Table 5.4 Result of Coarse Tree Classifier

Classifier Algorithm
Number
Features

ACC TPR FPR AUC

Coarse Tree

14f 99.8 0.998 0.003 0.9983

36f 99.6 1 0.041 0.9752

47f 99.6 1 0.041 0.976

5.2 Limitation

Because the virus has the potential to spread and persist in the future, the list of Botnets may

change. Furthermore, botnet families will grow and evolve, creating a new and more dangerous threat.

As a result, more harmful botnets may attack the environment and network at a much faster rate. Even

if we utilise feature selection as our model-building technique, knowing more about the dataset can

help us make better and more accurate predictions. As a result, the dataset's characteristics must be

enhanced in order to capture more necessary traits and traits from botnets in order to prevent them

from creating a new family and to recognise the red flag in a faster and more accurate manner.

5.3 Future Work

Future studies can be incorporating various feature selection algorithms or methods to select the

best features, as the features will be increasing and be spread. So that, machine learning (ML) needs

to become more efficient and reliable, as many features are filtered out and the scan is based on

80

features. Next, machine learning (ML) must retrain its classifiers to ensure that the spreading can be

stopped and that it does not become more broadly disseminated faster.

81

REFERENCES

[1] “Botnet - Definition.” https://www.trendmicro.com/vinfo/us/security/definition/botnet (accessed

May 30, 2022).

[2] S. Y. Yerima, M. K. Alzaylaee, A. Shajan, and A. Rosa Cavalli, “electronics Article,” 2021, doi:

10.3390/electronics.

[3] S. Y. Yerima and A. Bashar, “A Novel Android Botnet Detection System Using Image-Based and

Manifest File Features,” Electronics (Switzerland), vol. 11, no. 3, Feb. 2022, doi:

10.3390/electronics11030486.

[4] G. Wang et al., “Feature selection for malicious android applications using Symmetrical Uncert

Attribute Eval method,” IOP Conference Series: Materials Science and Engineering, vol. 884, no. 1, p.

012060, Jul. 2020, doi: 10.1088/1757-899X/884/1/012060.

[5] Z. Fang, J. Wang, J. Geng, and X. Kan, “Feature Selection for Malware Detection Based on

Reinforcement Learning,” IEEE Access, vol. 7, pp. 176177–176187, 2019, doi:

10.1109/ACCESS.2019.2957429.

[6] N. H. Mazlan, N. H. Mazlan, and I. R. A. Hamid, “Evaluation of Feature Selection Algorithm for Android

Malware Detection,” International Journal of Engineering & Technology, vol. 7, no. 4.31, pp. 311–315,

Dec. 2018, doi: 10.14419/ijet.v7i4.31.23387.

[7] “Android Botnets: What URLs are Telling Us | springerprofessional.de.”

https://www.springerprofessional.de/en/android-botnets-what-urls-are-telling-us/6871696

(accessed May 30, 2022).

[8] W. Hijawi, J. Alqatawna, and H. Faris, “Toward a detection framework for android botnet,”

Proceedings - 2017 International Conference on New Trends in Computing Sciences, ICTCS 2017, vol.

2018-January, pp. 197–202, Jul. 2017, doi: 10.1109/ICTCS.2017.48.

[9] S. Hojjatinia, S. Hamzenejadi, and H. Mohseni, “Android botnet detection using convolutional neural

networks,” 2020 28th Iranian Conference on Electrical Engineering, ICEE 2020, Aug. 2020, doi:

10.1109/ICEE50131.2020.9260674.

[10] C. Tansettanakorn, S. Thongprasit, S. Thamkongka, and V. Visoottiviseth, “ABIS: A prototype of

Android Botnet Identification System,” Proceedings of the 2016 5th ICT International Student Project

Conference, ICT-ISPC 2016, pp. 1–5, Jul. 2016, doi: 10.1109/ICT-ISPC.2016.7519221.

[11] M. Yusof, M. M. Saudi, and F. Ridzuan, “A new mobile botnet classification based on permission and

API calls,” Proceedings - 2017 7th International Conference on Emerging Security Technologies, EST

2017, pp. 122–127, Oct. 2017, doi: 10.1109/EST.2017.8090410.

[12] B. Alothman and P. Rattadilok, “Android botnet detection: An integrated source code mining

approach,” 2017 12th International Conference for Internet Technology and Secured Transactions,

ICITST 2017, pp. 111–115, May 2018, doi: 10.23919/ICITST.2017.8356358.

82

Appendix

Gantt Chart

