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Abstract: A variety of operational parameters can influence the operation of an automobile air-
conditioning (AAC) system. This issue is solved by using optimization techniques that can recom-
mend the ideal parameters for the best results. To improve the performance of AAC system usings
Al2O3-SiO2/PAG composite nanolubricants, the response surface method (RSM) was employed.
RSM was used to design the experimental work, which was based on a face composite design (FCD).
The RSM quadratic models were helpful in determining the links between the input parameters and
the responses. The addition of composite nanolubricants improved the overall performance of AAC
systems. The parameters were optimized using the RSM’s desirability approach, with the goal of
increasing cooling capacity and the coefficient of performance (COP), while reducing compressor
work and power consumption. The ideal parameters for the AAC system were found to be 900 rpm
compressor speed, 155g refrigerant charge, and 0.019% volume concentration, with a high desirability
of 81.60%. Test runs based on the optimum circumstances level were used to estimate and validate
cooling capacity, compressor work, COP, and power consumption. Both predicted and measured
values were in good agreement with each other. A new RSM model was successfully developed to
predict the optimal conditions for AAC system performance.

Keywords: hybrid nanolubricants; refrigeration system; response surface method

1. Introduction

Optimization approaches using various methods are useful in determining the opti-
mum parameters to achieve the desired performance. The investigation of the refrigeration
system is time-consuming and costly when all experiments must be conducted. Thus, an op-
timization approach on refrigeration system parameters to find the optimum performance
should be evaluated. The most commonly used methods for optimization are the RSM [1,2],
Taguchi method [3,4], artificial neutral network (ANN) [5], multi-response optimization
method [6], and regression analysis. Recently, improving and optimizing refrigeration
system performance using software networks or modeling has begun receiving increasing
attention from researchers [7,8]. This is plausible due to improved computer technology,
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as well as the accessibility of simulation software. RSM is a mathematical and statistical
method for improving, enhancing, and optimizing independent parameters in a set of
experiments, as well as their interactions with response variables, in a process that allows it
to enhance and optimize development [9,10]. RSM is devoted to estimating interactions
and quadratic effects, and it is a solution to the multi-variable statistical method problem,
providing an idea of the response surface local shape [11]. Likewise, RSM can aid in
the quantitative and routine modification of elements that influence the AAC system’s
performance. The RSM has an advantage over the complete factorial approach in that
it requires fewer tests to construct the experiment and less time to answer the objective
problem. Therefore, computing resources are reduced.

Many studies have used the RSM optimization approach to determine the optimum
working conditions. The surface roughness of EN31 steel was analyzed by Abhang and
Hameedullah [12] using RSM. The feed rate, followed by the cutting speed and depth
of the cut, had the greatest impact on surface roughness. During the turning process,
RSM was utilized by Makadia and Nanavati [13] to generate a mathematical model for
surface roughness. The feed rate had the largest impact on surface roughness, followed
by the tool nose radius. The electrical discharge machining (EDM) process was modeled
and optimized using RSM [14]. They discovered that RSM could be employed in most
optimization-related tasks, and the advantage of RSM-based response parameter analysis
was that each working parameter’s effect on the value of the resultant response parameter
could be explained individually. Table 1 provides a list of previous studies using a range of
optimization approaches in various applications.

Table 1. Previous studies on optimization method approaches in various applications.

Author (s) Year Fields/Applications/Systems Optimization Methods

Abhang and Hameedullah [12] 2011 EN31 steel turning process RSM
Barik and Mandel [15] 2012 EN31 steel turning process RSM
Krishankant et al. [16] 2012 EN34 steel turning process Taguchi Method

Makadia and Nanavati [13] 2013 EN31 steel turning process RSM
Rao and Venkatasubbaiah [17] 2016 Surface roughness in CNC turning Taguchi and ANOVA

Li et al. [18] 2016 CNC machining Taguchi, RSM, and MOPSO
Costa and Garcia [7] 2016 Refrigeration systems RSM

Parpas et al. [19] 2017 Refrigeration systems RSM

Gangil and Pradhan [14] 2017 Electrical discharge machining
(EDM) process RSM

Parpas et al. [19] 2017 Air distribution and refrigeration systems CFD/EES model
Belman-Flores et al. [20] 2017 Refrigeration systems ANN

Nataraj et al. [21] 2018 CNC turning RSM
Ocholi et al. [22] 2018 Sesame biolubricant pilot plant RSM
Mao et al. [23] 2018 Resident air-conditioning (TAC) systems RSM

Redhwan et al. [24] 2018 AAC systems RSM
Qader et al. [25] 2018 Solar air heaters RSM

Zendehboudi et al. [26] 2019 VCRS RSM
Canbolat et al. [27] 2019 Absorption refrigeration systems Taguchi and ANOVA

Zaman [28] 2019 Photonic radiative coolers Taguchi
Vyas et al. [29] 2019 Capacity of lead acid battery Taguchi

Huirem and Sahoo [30] 2020 Solar-Assisted Vapor Absorption
Refrigeration Systems (SAVARS) RSM

Ahmed et al. [8] 2021 Refrigeration systems Multiple Methods
Zawawi et al. [31] 2022 Automotive air-conditioning Systems Taguchi

Software solutions for optimization techniques have been used to optimize the proper-
ties of nanolubricants [32–34], vapor compression refrigeration systems (VCRS) [26,35–39],
and AAC systems [40]. Artificial intelligence approaches for modeling and optimizing
refrigeration systems were evaluated by Ahmed et al. [8]. They discovered that the COP is
the most important cost function to optimize, followed by overall cost, energy consumption,
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and cooling capacity, according to trend analysis. To date, there are previous studies avail-
able which employ RSM approaches in order to optimize refrigeration [7,26,30] and AAC
system performance [41]. Costa and Garcia [7] optimized the parameters of the refrigera-
tion system using RSM. Parameters such as the temperature and flow rate of evaporators
and condensers were considered. The behavior of R450A in VCRS was investigated by
Zendehboudi et al. [26] using modeling and multi-objective optimization. They used RSM’s
central composite design (CCD) to calculate the impact of each variable, model the system,
and develop cost functions. The compressor’s power consumption was lowered by 18.39%,
the discharge temperature was increased by 53.31%, and the refrigerant mass flow rate was
increased by 215.57%. Huirem and Sahoo [30] used a combined Box–Behnken statistical
design (BBD) and RSM technique to maximize the COP, exergetic COP (ECOP), and total
exergy destruction (TED) of a LiBr-H2O vapor absorption refrigeration system.

A concept of using two or more metal oxide nanoparticles in existing lubricants—known
as composite nanolubricants—is adapted due to the limited contribution of single nanolu-
bricants in terms of the stability, compressor operations, wear rates, and performance of
AAC system. Nanofluids/nanolubricants have distinct thermal physical and tribological
properties, as well as performance, compared to base fluids, according to several investiga-
tions [42–45]. Previous studies on the thermal physical and tribological properties, along
with the performance and optimization of AAC using PAG based single-component nanol-
ubricants with SiO2, Al2O3, and TiO2 metal oxides, are available in the literature [46–50].
Zawawi et al. [51] examined the thermal conductivity of single Al2O3, SiO2, and metal oxide
composite nanolubricants. Based on the comparison, metal oxide composite nanolubricants
have a substantially higher thermal conductivity than single nanolubricants. Addition-
ally, few studies investigated the performance of single nanolubricants and composite
nanolubricants in refrigeration and AAC systems [41,52,53]. Sharif et al. [53] examined the
performance of the AAC system employing SiO2/PAG nanolubricants. They discovered a
maximal COP enhancement of up to 24%. In another study, Redhwan et al. [41] claimed
that COP and cooling capacity were improved by up to 31% and 32%, respectively, in
another experiment. Meanwhile, Zawawi et al. [54] found that Al2O3-SiO2/PAG composite
nanolubricants showed greater COP and cooling capacity increases than single nanolu-
bricants, with values of 28.10% and 65.21%, respectively, at 0.015% volume concentration.
For the optimization of nanolubricants, Redhwan et al. [24] used the RSM approach to
study the AAC system performance using single-component Al2O3 nanolubricants in a
PAG based nanolubricant in AAC systems. They found that the compressor speed, initial
refrigerant charge, and nanolubricant volume concentration all have a significant impact
on the AAC system’s efficiency. The literature on the use of composite nanolubricants to
improve the performance of AAC systems is scarce [55]. Despite this, no further research
into the performance improvement of AAC systems using composite nanolubricants by
employing RSM has been done in recent years.

Previous studies have reported on the impact of single-component nanolubricants
on refrigeration and AAC system performance; however, more research into the effects
of AAC system parameters operating with Al2O3-SiO2/PAG using RSM is still essential.
Therefore, in this study, the effects of operational parameters on COP, cooling capacity,
compressor work (Win), and power consumption for Al2O3-SiO2/PAG nanolubricants in
AAC systems were explored using RSM. The current study makes use of Design–Expert
software, and the experiments are designed employing the FCD procedure. For maximum
augmentation in COP and cooling capacity, as well as maximum decrease in Win and power
consumption, optimal operating settings, such as speed, initial refrigerant charge, and
composite nanolubricants volume concentration, were determined.

2. Materials and Methods
2.1. Preparation of Al2O3-SiO2 Composite Nanolubricants

In this investigation, Al2O3 and SiO2 nanoparticles in dry powder form, as well
as polyalkylene glycol (PAG) 46, were employed. Table 2 lists the features of these
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nanoparticles [46,56], and Table 3 illustrates the characteristics of PAG 46 lubricant at
atmospheric pressure [57]. To confirm the existence of the nanoparticles, a chemical compo-
sition test was performed. The chemical composition of both nanoparticles was assessed
by EDX analysis, as shown in Figure 1. In Figure 1a,b, the elemental composition of the
materials for Al2O3 and SiO2 nanoparticles, respectively, was validated. TEM evaluation
was carried out for the composite nanolubricant to observe the colloidal nanoparticle dis-
persion in nanolubricants. Figure 2 shows TEM imaging of the Al2O3-SiO2/PAG composite
nanolubricants. Both nanoparticles were discovered to be spherical. In addition, the graph
demonstrates the presence of two groups of nanoparticles with various diameters. Al2O3
nanoparticles are represented by the smaller diameter particles, while SiO2 nanoparti-
cles are represented by the larger diameter particles. The appearance of nanoparticles in
grayscale shades may be caused by overlap particles and small aggregation. The formu-
lation and characterization of composite nanolubricants was previously addressed in the
literature. Therefore, this study focused on the preparation and formulation procedures for
composite nanolubricants.

Table 2. Properties of nanoparticles [46,56].

Properties Al2O3 SiO2

Molecular mass (g/mol) 101.96 60.08
Average particle diameter (nm) 13 30

Density (kg/m3) 4000 2220
Thermal Conductivity (W/m.k) 36 1.4

Specific heat (J/kg·K) 773 745

Table 3. Properties of PAG 46 lubricant [57].

Properties PAG 46

Density, g/cm3 @ 20 ◦C 0.9954
Flash Point, ◦C 174

Kinematic viscosity, cSt @ 40 ◦C 41.4–50.6
Pour point, ◦C −51
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Figure 2. TEM image of composite nanolubricants.

In this study, the Al2O3-SiO2/PAG composite nanolubricants were made utilizing
a two-step procedure, and their stability was then investigated using UV-Vis and zeta
potential. Zawawi et al. [51] found that the best combination for both nanolubricants
used is a composition ratio of 60:40. The Al2O3-SiO2/PAG composite nanolubricants in a
60:40 ratio, according to the authors, produces better thermal characteristics [58], tribologi-
cal behavior [59], and AAC system performance [54] compared to other combination ratios.
Therefore, the optimum ratio for Al2O3-SiO2/PAG composite nanolubricants is chosen for
the current work as a continuation of the prior work. The nanolubricants of Al2O3/PAG
and SiO2/PAG were first prepared separately. A total volume of 63 mL of Al2O3/PAG
nanolubricants was then mixed with 42 mL SiO2/PAG using a magnetic stirrer. The desired
volume concentrations used in this study are 0.005% up to 0.045%. Equation (1) is used to
compute the volume concentration of the composite nanolubricants.

φ =
mp/ρp

mp/ρp + mL/ρL
× 100 (1)

where φ is the volume concentration of nanolubricants (%), mp is the nanoparticle mass
(g), ρp is the nanoparticle density (kg/m3), mL is the lubricant mass (g), and ρp is the
lubricant density (kg/m3). The prepared composite nanolubricants were then sonicated
in an ultrasonic bath for 2 h for a uniform dispersion and stable suspension, based on
previous works [51,55,58,60–62], and shown in the Figure 3. The absorbance ratio of the
mixed nanolubricant dispersions, measured at various sonication durations (0 to 2.0 h) up
to 700 h, is shown in Figure 3. The graph is used to determine the ideal sonication duration
required to preserve the stability of Al2O3-SiO2/PAG composite nanolubricants. With the
most stable composite nanolubricants, the absorbance ratio with the highest value indicates
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the ideal sonication time. According to the graph, two hours of sonication sustained the
concentration ratio beyond 90%, even after up to 700 h of sedimentation.

Lubricants 2022, 10, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 2. TEM image of composite nanolubricants. 

 
Figure 3. Composite nanolubricant with various sonication times. 

0 100 200 300 400 500 600 700
0.2

0.4

0.6

0.8

1.0

1.2

Sonication time, s (hour) 
 0.0
 0.5
 1.0
 1.5
 2.0

Ab
so

rb
an

ce
 ra

tio
,⎯

Α
 

Sedimentation time, t (hour)

Figure 3. Composite nanolubricant with various sonication times.

The zeta potential and zeta sizer were used in the study to analyze the zeta potential
reading and polydispersity index (PDI) of the composite nanolubricants. The current
absolute zeta potential reading for the Al2O3-SiO2/PAG is up to 61.1 mV. The zeta potential
for Al2O3-SiO2/PAG was found to be beyond the stable limit, thus proving an excellent
stability. The current absolute zeta potential reading for the Al2O3-SiO2/PAG is up to
61.1 mV, whereas other combination of metal oxides, i.e., Al2O3-TiO2/PAG and TiO2-
SiO2/PAG composite nanolubricants, which were studied prior to this work [51], recorded
up to 31.7 mV and 22.7 mV, respectively. Previously, Redhwan et al. [41] reported that the
zeta potential for Al2O3/PAG single nanolubricants was 37.8 mV. When compared to single-
component nanolubricants, the Al2O3-SiO2/PAG composite nanolubricants employed in
this study showed improved stability. The present results were compared to the stability
classification suggested by Lee et al. [63], as shown in Figure 4. The zeta potential for Al2O3-
SiO2/PAG was found to be beyond the stable limit, thus proving an excellent stability. The
breadth or spread of the particle size distribution is described by the PDI, which is another
crucial metric [64]. The maximum PDI value was found to be 0.86 for the Al2O3-TiO2/PAG
composite nanolubricants, while the lowest PDI value was found to be 0.22 for the Al2O3-
SiO2/PAG, as can be seen in Figure 4. In light of this, it should be observed that the lowest
PDI value is quite comparable to that of the monodisperse state. A suspension will be
monodisperse, according to Sadeghi et al. [65], if the PDI value is less than 0.3, and the size
distribution curve has a single peak.
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2.2. Design of Experiment with RSM

The initial step in RSM is to confirm a range with the optimal condition. Secondly,
the relationship model between response and the group of independent factors must
be established. The last stage is to optimize the process with the model. A selection
of elements in RSM study included batch tests on AAC performance with parameters
of composite nanolubricants including volume concentrations, compressor speeds, and
refrigerant charges. Meanwhile, cooling capacity, compressor work, COP, and power
consumption were selected for the output responses of the experiment. The RSM is used to
optimize all AAC system performance responses simultaneously by incorporating them
into a single objective function. The objective of RSM in the current study is to examine
the effect of the compressor speed, initial refrigerant charge, and volume concentration of
composite nanolubricants on the AAC system performance.

The CCD was used to optimize the model, and it worked well for fitting a quadratic
surface and for process optimization in general. In this study, FCD is used because there is
a common area of interest and operability, and the trials are based on the design matrix.
Each parameter includes three levels of variation: (i) high (+1), (ii) low (−1), and (iii) center
points (coded as level 0). Six central points, six axial points, and eight factorial points were
used in this study, with alpha α = 1. The α value is denoted as the distance between
each axial point and the CCD’s center [24]. Multi-objective responses of AAC performance
optimization of optimum design, with the highest desirability, are sought. Three AAC
system parameters, with their levels according to RSM analysis, were investigated. Twenty
experimental runs, including six replicates at the center point, were used in an FCD with
three factors and three levels. The factor levels of the independent variables for AAC system
performance were previously shown in Table 4. Table 5 illustrates the complete design
matrix for the experiments to be conducted, as well as the collected findings, which were
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analysed using analysis of variance (ANOVA) by Design–Expert Software (V13, Stat-Ease
Inc., Minneapolis, MN, USA).

Table 4. AAC system design parameter.

Level A-Volume
Concentration, ϕ (%)

B-Compressor
Speed (rpm)

C-Refrigerant
Charge (g)

−1 0.005 900 95
0 0.025 1500 125
1 0.045 2100 155

Table 5. The design of the experiment (DOE) and the results from the experiments.

ϕ (%) Speed (rpm) Refrigerant
Charge (g)

Cooling
Capacity (kW)

Compressor
Work (kJ/kg) COP Power

Consumption (kW)

0.005 900 95 0.665 23.10 8.13 0.61
0.045 900 95 0.477 24.80 7.65 0.59
0.005 2100 95 0.860 39.20 4.72 1.07
0.045 2100 95 0.568 43.10 4.31 1.06
0.005 900 155 0.777 19.70 9.16 0.68
0.045 900 155 0.873 20.20 8.66 0.73
0.005 2100 155 1.452 32.20 5.15 1.42
0.045 2100 155 0.954 34.50 4.87 1.34
0.005 1500 125 0.956 32.80 6.06 0.94
0.045 1500 125 0.770 33.30 5.62 0.89
0.025 900 125 0.797 21.90 8.52 0.60
0.025 2100 125 0.891 37.35 4.81 1.08
0.025 1500 95 0.667 33.00 5.49 0.71
0.025 1500 155 1.168 26.60 6.27 0.89
0.025 1500 125 0.832 31.00 5.85 0.85
0.025 1500 125 0.832 31.00 5.85 0.85
0.025 1500 125 0.832 31.00 5.85 0.85
0.025 1500 125 0.832 31.00 5.85 0.85
0.025 1500 125 0.832 31.00 5.85 0.85
0.025 1500 125 0.832 31.00 5.85 0.85

2.3. Data Analysis Using RSM

The model’s adequacy is further determined using ANOVA. The significance of each
term in the model equation is used to calculate the goodness of fit in each case. The data is
subjected to regression analysis to obtain the coefficient of the regression equation. Three-
dimensional surface plots are then generated from the validated models. The normal plot of
the residuals, predicted against the actual plots for all responses, were presented to ensure
that the chosen model was suitable for predicting the response variables in the experimental
values. Good agreement of both values is important for verification of the model [25]. The
distribution of the close points along the straight lines indicates a good agreement between
the test values and the calculated response values [22]. The normal probability is plotted
to check for the residual range. Response surface plots as a function of two independent
variables or factors, with the other parameters held constant, are useful tools for evaluating
the interaction and correlation of the variables, as well as comprehending the main and
interactive effects [66,67]. These surface plots are used to locate the optimum points of
operating parameters to attain maximum performance of the AAC system. The desirability
technique of RSM can ultimately be used to find the best combination of speed, refrigerant
charge, and volume concentration of composite nanolubricants.
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3. Results and Discussion
3.1. ANOVA Analysis

A summary of p-value and model statistics for cooling capacity are shown in Table 6.
The CCD module suggested that a linear and 2FI model to be use for analysis. In order
to analyse the cooling capability, linear and two-way interaction (2FI) models were both
employed. The model has been improved by the addition of linear and interaction compo-
nents, as shown by the low p-value (Prob > F). The quadratic model is not suggested for
this case. The Qubic model was noted as aliased because of the existence of aliased terms.
The Qubic model was not suggested, due to the insufficient running of experiments to
independently estimate all the terms. Table 7 shows ANOVA analysis for cooling capacity.
The model F value is noted at 25.16. This indicates that the proposed model is significant.
A 95% significant level was used throughout all response analyses. Model terms with
p-values less than 0.05 are considered as significant. The model terms are not significant
if the value is larger than 0.10. All terms except AC, which is the combination of volume
concentration and refrigerant charge, were significant. The fitness of model equation is
validated by referring to the coefficient of regression R2. R2 = 92.07% for cooling capacity,
demonstrating that the model could accurately predict the response. The closer the R2 value
to 1, the better the models fits the experimental data [68]. Pred R2 of 0.3576 showed a great
difference to the adj R2 of 0.8841. Thus, model reduction was suggested. The signal-to-noise
ratio is measured by Adeq precision, and a ratio greater than 4 is desired [22]. The signal
was adequate in this case, with a ratio of 21.986.

Table 6. P-value and model summary statistics for cooling capacity.

Source p-Value Std. Dev R2 Adj R2 (%) Pred R2 (%) Remark

Linear <0.0001 0.097 0.8075 0.7714 0.5784 suggested
2FI 0.0076 0.069 0.9207 0.8841 0.3576 suggested

Quadratic 0.7544 0.075 0.9293 0.8656 −0.1099 not suggested
Qubic 0.0088 0.035 0.9905 0.9698 −10.7188 aliased

Table 7. ANOVA response for cooling capacity.

Source Sum of Squares df Mean Square F Value p-Value

Model 0.70 6 0.17 25.16 <0.0001 significant
A 0.11 1 0.11 23.62 0.0003
B 0.13 1 0.13 26.84 0.0002
C 0.39 1 0.39 81.94 <0.0001

AB 0.061 1 0.061 12.66 0.0035
AC 7.849 × 10−4 1 7.849 × 10−4 0.16 0.6931
BC 0.028 1 0.028 5.7 0.0325

Residual 0.063 13 4.819 × 10−3

Lack of fit 0.063 8 7.830 × 10−3

Pure error 0.000 5 0.000
R2 0.9207

Adj R2 0.8841
Pred R2 0.3576

Adeq Precision 21.986

Table 8 represents p-value and model summary statistics for compressor work. The
CCD module suggested that a quadratic model be use for analysis. The Qubic model
was not suggested for this case. The ANOVA analysis for compressor work was recorded
in Table 9. The model F value = 536.88 implicated that the model was significant. All
terms were significant. The fitness of the model equation is validated by referring to the
coefficient of regression R2. For compressor work, with an R2 of 99.79%, the model was able
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to accurately predict the response. The Pred R2 of 0.9852 was in reasonable agreement with
the adj R2 of 0.9961. An adequate signal was confirmed by the Adeq precision of 84.751.

Table 8. P-value and model summary statistics for compressor work.

Source p-Value Std. Dev R2 Adj R2 (%) Pred R2 (%) Remark

Linear <0.0001 1.47 0.9520 0.9429 0.9133 not suggested
2FI 0.1947 1.37 0.9661 0.9505 0.8683 not suggested

Quadratic <0.0001 0.39 0.9979 0.9961 0.9852 suggested
Qubic 0.0377 0.24 0.9995 0.9985 0.4299 aliased

Table 9. ANOVA response for compressor work.

Source Sum of Squares df Mean Square F Value p-Value

Model 718.55 9 79.84 536.88 <0.0001 significant
A 7.92 1 7.92 53.27 <0.0001
B 587.52 1 587.52 3950.82 <0.0001
C 90.00 1 90.00 605.21 <0.0001

AB 2.00 1 2.00 13.45 0.0043
AC 0.98 1 0.98 6.59 0.0280
BC 7.22 1 7.22 48.55 <0.0001
A2 8.25 1 8.25 55.46 <0.0001
B2 7.88 1 7.88 53.02 <0.0001
C2 6.34 1 6.34 42.62 <0.0001

Residual 1.49 10 0.15
Lack of fit 1.49 5 0.30
Pure error 0.000 5 0.000

R2 0.9979
Adj R2 0.9961
Pred R2 0.9822

Adeq Precision 84.751

Table 10 represents p-value and model summary statistics for COP. The CCD module
suggested that a quadratic model be use for analysis. The Qubic model was not sug-
gested for this case. The ANOVA analysis for COP was recorded in Table 11. The model
F value = 4604.92 implicated that the model was significant. Only the combination of A
(volume concentration), B (compressor speed), C (refrigerant charge), and between the
AB, BC, A2 and B2 terms, were considered significant. Thus, all insignificant terms were
eliminated. R2 = 99.98% for COP, indicating that the model was capable of accurately
predicting the response. The adj R2 of 0.9974 and the Pred R2 of 0.9995 were in reasonable
agreement. A signal with a precision of 225.476 was considered adequate.

Table 10. P-value and model summary statistics for COP.

Source p-Value Std. Dev R2 Adj R2 (%) Pred R2 (%) Remark

Linear <0.0001 0.43 0.9236 0.9093 0.8706 not suggested
2FI 0.8700 0.46 0.9276 0.8941 0.5939 not suggested

Quadratic <0.0001 0.030 0.9998 0.9995 0.9974 suggested
Qubic 0.1951 0.025 0.9999 0.9997 0.8774 aliased

The summary of p-value and model statistics for power consumption are shown in
Table 12. The CCD module suggested that a linear and quadratic model be used for analysis.
Due to their superior accuracy over linear models, quadratic models were chosen. The
Qubic model was noted as aliased and was not suggested due to insufficient running
experiments to independently estimate all the terms. Table 13 shows the ANOVA analysis
for power consumption. The F value for the model is 151.49, implying that the model is
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adequate. A 95% significant level was used throughout all response analyses. Model terms
with p-values less than 0.05 are considered significant. All values greater than 0.10, on the
other hand, imply that the model terms are not significant. In this case A, B, C, BC, and
A2 are significant model terms. The fitness of the model equation is validated by referring
to the coefficient of regression R2. The model was able to predict the reaction with a high
accuracy for power consumption, with R2 = 99.27%. Pred R2 of 0.9862 showed a great
difference compared to the Adj R2 of 0.9181. Thus, model reduction was suggested. Adeq
presicion was noted at 41.908, which indicated an adequate signal model.

Table 11. ANOVA response for COP.

Source Sum of Squares df Mean Square F Value p-Value

Model 38.21 9 4.25 4604.92 <0.0001 significant
A 0.45 1 0.45 489.34 <0.0001
B 33.40 1 33.40 36228.04 <0.0001
C 1.45 1 1.45 1570.68 <0.0001

AB 0.010 1 0.010 11.22 0.0074
AC 1.886 × 10−3 1 1.886 × 10−3 2.05 0.1831
BC 0.14 1 0.14 149.91 <0.0001
A2 6.006 × 10−3 1 6.006 × 10−3 6.51 0.0288
B2 1.66 1 1.66 1798.26 <0.0001
C2 3.415 × 10−4 1 3.415 × 10−4 0.37 0.5564

Residual 9.220 × 10−3 10 9.220 × 10−4

Lack of fit 9.220 × 10−3 5 1.844 × 10−3

Pure error 0.000 5 0.000
R2 0.9998

Adj R2 0.9995
Pred R2 0.9974

Adeq Precision 225.476

Table 12. P-value and model summary statistics for power consumption.

Source p-Value Std. Dev R2 Adj R2 (%) Pred R2 (%) Remark

Linear <0.0001 0.024 0.9556 0.9473 0.9230 suggested
2FI 0.5746 0.025 0.9617 0.9440 0.8285 not suggested

Quadratic 0.0006 0.012 0.9927 0.9862 0.9181 suggested
Qubic 0.3124 0.011 0.9964 0.9885 −3.4727 aliased

3.2. Regression Analysis

Regression analysis was used to fit the supplied RSM response to a quadratic equation,
to analyse the link between the inputs and outputs of the models, and to determine the
ideal input parameters [25]. All insignificant terms are deleted to reduce the regression
model. For cooling capacity, only A, B, C, and AB are chosen as significant model terms.
Meanwhile, for compressor work, all terms are significant model terms. Significant model
terms A, B, C, AB, BC, A2, and B2 were selected for COP, and A, B, C, BC, and A2 were
chosen for power consumption. The difference between Pred R2 and the Adj R2 of less than
0.2 was desired [24]. The final equation in terms of coded factors can be completed after
removing insignificant terms, as shown in Equations (2)–(5) as follows:

Cooling capacity = 0.84 − 0.11 A + 0.11 B + 0.20 C − 0.087 AB (2)

Compressor work = 31.13+ 0.89A + 7.66B − 3.00C + 0.50AB − 0.35AC − 0.95BC + 1.73A2 + 1.73A2− 1.69B2 − 1.52C2 (3)

COP = 5.87 − 0.21A − 1.83B + 0.38C + 0.036AB − 0.13BC − 0.051A2 + 0.77B2 (4)
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Power consumption = 0.84 − (9.041 × 10−0.03)A + 0.28B + 0.10C + 0.052BC + 0.096A2 (5)

where A is the volume concentration of the composite nanolubricants (%), B is the speed
(rpm), and C is the refrigerant charge (g).

Table 13. ANOVA response for power consumption.

Source Sum of Squares df Mean Square F Value p-Value

Model 0.21 9 0.023 151.49 <0.0001 significant
A 6.882 × 10−5 1 6.882 × 10−5 0.45 0.005179
B 0.18 1 0.18 1176.19 <0.0001
C 0.021 1 0.021 135.83 <0.0001

AB 2.977 × 10−4 1 2.977 × 10−4 1.94 0.1935
AC 5.249 × 10−5 1 5.249 × 10−5 0.34 0.5713
BC 9.312 × 10−4 1 9.312 × 10−4 6.08 0.0334
A2 5.971 × 10−3 1 5.971 × 10−3 38.97 <0.0001
B2 2.481 × 10−4 1 2.481 × 10−4 1.62 0.2320
C2 5.313 × 10−4 1 5.313 × 10−4 3.47 0.0922

Residual 1.532 × 10−3 10 1.532 × 10−4 1.532 × 10−3

Lack of fit 1.532 × 10−3 5 3.064 × 10−4 1.532 × 10−3

Pure error 0.000 5 0.000 0.000
R2 0.9927

Adj R2 0.9862
Pred R2 0.9181

Adeq precision 41.908

3.3. Residual and Response Surface Plots

Figures 5 and 6 depict a normal plot of residuals, as well as the normal plot projected
against the actual plots for all responses. To compare the two values and examine the
distribution of the residuals, the predicted and actual values of cooling capacity, compressor
work, COP, and power consumption were plotted. All residuals in the graphs are located on
a straight line, indicating that the errors have a normal distribution. The normal probability
plot for any ANOVA should be evaluated for the range of residuals near the mean line,
showing that residuals are generally fitted for all responses. Therefore, it can be concluded
that the model for predicting AAC performance using RSM’s design factors, when applied
to a specific set of parameters, has a high level of accuracy.
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effects [66,67]. Figure 7 represents the interaction of volume concentration (0.005 to 0.045%)
and speed (900 to 2100 rpm) and its effect on cooling capacity when the refrigerant charge
is kept constant at 125 g. Increasing volume concentrations with increment of speed
reduced the cooling capacity rate. Compressor speed has a greater effect on cooling
capacity, as shown through the comparison of the slope between the volume concentration
of composite nanolubricants and speed. Figure 8 shows the variation of the compressor
work with speed for different refrigerant charges, while volume concentration is fixed
at 0.025%. From the figure, compressor work increases against the increasing speed, but
decreases with refrigerant charge. The interaction of volume concentration and speed on
COP is shown in Figure 9. Refrigerant charge was fixed at 125 g. It was observed that
volume concentration had a greater influence on COP, as increasing volume concentrations
increased COP, whereas an increase in speed lowered the COP. Figure 10 shows the variation
in the power consumption for different refrigerant charges and speeds, with the volume
concentration fixed at 0.025%. An increase in refrigerant charge and speed resulted in
significant increments in power consumption.
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3.4. Optimization and Validation

A confirmation experiment of the control parameters [69] indicated by the RSM
optimization technique is required for confirming the improved conditions [70]. Table 14
represents the optimal conditions, with a high desirability of 81.6%. As stated in Table 15,
five trial runs at the optimal level were carried out to test and evaluate the reliability
of the constructed regression model against the experimental results. The expected and
experimental values in the table are quite close to each other. For valid statistical analysis,
error values should be less than 20% [71,72]. For all runs, the computed error values were
less than 10% and were within acceptable bounds. The validation results were consistent
with the current experimental data, reflecting a successful optimization.

Table 14. Optimum operating condition.

Parameter Optimum Operating Condition

A—Volume Concentration, ϕ (%) 0.019
B—Compressor Speed (rpm) 900

C—Initial Refrigerant Charge (g) 155

Table 15. Validation Results.

No.

Responses

Cooling Capacity Compressor Work COP Power Consumption

Pred. Exp. % Pred. Exp. % Pred. Exp. % Pred. Exp. %

1

0.935

0.976 4.23

19.23

19.6 1.89

9.05

9.34 3.10

0.621

0.650 4.43
2 0.897 4.23 18.6 3.39 9.87 8.31 0.655 5.23
3 0.868 7.73 19.9 3.37 9.19 1.52 0.656 5.33
4 0.987 5.27 19.3 0.36 9.47 4.44 0.674 7.86
5 0.874 6.93 21.3 9.72 8.55 5.85 0.671 7.38

Avg 5.68 3.74 4.64 6.05
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4. Conclusions

The effects of experimental operating conditions, such as by volume concentration
of composite nanolubricant, the compressor speed, and refrigerant charge, on cooling
capacity, compressor work, COP, and power consumption were assessed. The optimization
of operating conditions for an AAC system was performed in the present work using the
RSM method. Based on the results of the RSM model, the optimal operation suggested for
optimal AAC performance were found at a compressor speed of 900 rpm, refrigerant charge
of 155 g, and volume concentration of 0.019%; cooling capacity = 0.9346 kW, compressor
work = 19.2296 kJ/kg, COP = 9.051, and power consumption = 0.6209 kW. The validation
test runs were carried out to validate predicted results against the experimental results.
The developed model shows that the predicted results are in excellent agreement with the
experimental results, with an error value of less than 10%. Therefore, it was recommended
to use Al2O3-SiO2/PAG composite nanolubricants with these operating conditions for
optimum performance in the AAC system.
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