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Abstract: Polylactic acid (PLA) and polycaprolactone (PCL) are synthetic polymers that are exten-
sively used in biomedical applications. However, the PLA/PCL blend produced by ball milling,
followed by pressure compaction and sintering, has not been extensively explored. The goal of this
research is to investigate the effect of the composition of biomaterials derived from PLA and PCL
prepared by ball milling, followed by pressure compaction and sintering, on mechanical and physical
properties. PCL and PLA with various concentrations were blended utilizing a ball milling machine
for 2 h at an 80-rpm rotation speed. The obtained mixture was placed in a stainless steel 304 mold
for the compacting process, which uses a pressure of 30 MPa to create a green body. The sintering
procedure was carried out on the green body created at 150 °C for 2 h using a digital oven. The
obtained PLA /PCL blend was tested using Fourier transform infrared spectroscopy (FTIR), X-ray
diffraction (XRD), Scanning electron microscopy (SEM), density, porosity, and three-point bending.
Following the interaction between PCL and PLA in the PLA/PCL blend, the FTIR spectra and XRD
diffractograms obtained in this work revealed a number of modifications in the functional groups and
crystal phase. The 90PLA specimen had the best mechanical properties, with a maximum force and
displacement of 51.13 N and 7.21 mm, respectively. The porosity of the PLA/PCL blend decreased
with increasing PLA concentration so that the density and flexural properties of the PLA /PCL blend
increased. The higher PCL content decreased the stiffness of the PLA molecular chain, consequently
reducing its flexural properties.

Keywords: polylactic acid (PLA); polycaprolactone (PCL); ball milling; pressure compaction; sintering

1. Introduction

When the load on a bone surpasses the inherent strength of the bone, fractures happen.
Bone fractures can be repaired by placing fragmented bones in close proximity to one
another, preventing them from shifting, and keeping them together. Over time, the bones
can mend themselves. External and internal fixation are two methods of bone repair that
are frequently used in the field of medicine [1,2].

External fixing entails the application of gypsum, a hard substance wrapped around
the outside of the body to prevent displacement of the fractured bone. However, the
installation of gypsum can restrict the patient’s mobility. Therefore, internal fixation is a
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prevalent strategy today. This procedure involves the surgical placement and attachment of
a metal plate strengthened with screws to the broken bone. These implants are temporary;
after the bones have healed, the plate and screws can be removed surgically [2,3].

In recent times, the research in advanced fields—for instance, medical applications—on
biomaterials to replace or recover the tissue functions of the human body or in order to
enhance the quality of life has risen substantially [4]. Regenerative medicine and tissue
engineering, surgical implants or bone-fixing devices in orthopedic applications, porous
structures in tissue engineering, implantable matrices for controlled medication release
within the body, as well as absorbable sutures or closures are just a few of the applicable
biomaterial applications [4,5]. In both basic research and clinical applications, polymer
biomaterials have drawn a lot of attention. Polymers were utilized in the development of
biomaterials due to their chemical structures’ adaptability, biocompatibility, biodegradabil-
ity, and compatibility with required biomolecules [5-7]. Polymer biomaterials are classified
according to their natural or synthetic origin [7-9].

Generally, natural polymers consist of proteins (silk fibroin, collagen) as well as
polysaccharides (cellulose, hyaluronic acid, alginate, and chitosan). Biofunctional chem-
icals present in natural polymers ensure bioactivity, biomimetic surfaces, and natural
remodeling [9,10]. However, their significant disadvantages, for instance, insufficient
mechanical strength, uncontrollable degradation rate, limited tunability, microbial contam-
ination (for example, endotoxin), as well as immunogenic response, limit their use with
respect to bone tissue regeneration [10,11]. On the other hand, the structure and properties
of synthetic polymers can be modified by attentively designing the polymer’s functional
groups. This advantage guarantees predictable, reproducible, and tunable properties to
suit a particular application.

For example, the rate of degradation can be changed by adjusting the chemical com-
position, crystallinity, and molecular weight. Additionally, synthetic polymers displayed
lower osteoconductivity, and cell recognition sites, as well as lower bioactivity when com-
pared with natural polymers. Bioceramics have been tested in this situation to enhance
their surface performance with respect to bone tissue regeneration [9,12]. Among the most
broadly utilized synthetic polymers are aliphatic polyesters, namely, polylactide (PLA),
polycaprolactone (PCL), as well as poly (lactide-co-glycolide) (PLGA) [13,14].

Given their ability to meet a variety of functional requirements for medical devices,
including mechanical properties, biodegradability, and biocompatibility, synthetic polymers
are increasingly being employed in the medical sector. An additional deciding aspect is
the bioactivity or antimicrobial properties when polymers or particle-reinforced coatings
are applied [5,9,15,16]. PLA and PCL are extensively utilized synthetic polymers whose
properties are being explored for biomedical applications. Further, PLA and PCL also
exhibit excellent biocompatibility and biodegradability. In addition, they are non-toxic and
degrade at a controlled rate once injected into the human body.

Compared to PCL, glassy PLA is more brittle and breaks down more quickly, and
its flexibility and suppleness are also diminished [17]. Nevertheless, since PCL has low
surface energy, there is no attachment signal and less cell adherence to the surface as a
consequence [9,18]. In order to create novel biomaterials that go beyond what each polymer
can do on its own, these two polymers can be combined effectively [19-21].

Regardless of the fact that PCL and PLA are compatible [22,23], research has revealed
that when combined using the melt blending process, there is only a relatively faint
connection between the two materials [24,25]. According to the research findings by
Broz et al. (2003), PCL blends with a PCL concentration of more than 50% showed increased
interactions between PLA and PCL [26]. Moreover, Zhai et al. (2009) discovered that the
best PCL and PLA mixing was found at the ratio of PLA70/PCL30 [27].

The results of the Dynamic Mechanical Thermal Analysis (DMTA) test conducted by
Lopez-Rodriguez et al. (2006) show that there exists a poor interaction between PCL and
PLA blends [28]. The impact strength of the PLA /PCL blend increased by around 200%
and 350%, respectively, having 30% and 40% PCL [29]. Differential Scanning Calorimetry
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(DSC), as well as DMTA analysis of the PLA /PCL mixture, showed two Tg (glass transition
temperature) values at positions near the raw components, demonstrating a distinct phase
separation. This indicates a weak interaction in PLA /PCL blends [22]. It has been reported
that PLA and PCL have minimal phase miscibility, as well as numerous coupling agents,
which were presented to improve stress transfer from one matrix to another. However, the
addition of these compatibilizers has not been seen to make a big difference [5].

The PLA /PCL blend in this research was performed by a ball milling process followed
by pressure compaction and sintering. The purpose of this research is to identify the effect
of the composition of biomaterials derived from PLA and PCL prepared by ball milling,
followed by pressure compaction and sintering, on the physical and mechanical properties.
The method in this study is expected to result in a rise in the PLA /PCL blend strength and
create a good interface bond. This is required since the method of combining PLA /PCL
with ball milling, followed by pressure compaction and sintering, is yet to be researched.

2. Materials and Methods

The materials employed in this research were commercial polylactic acid (PLA) and
PCL, which had been in the form of powder and pellets, respectively. The PLA utilized
was manufactured by Reprapper Tech Co., Kowloon, Hong Kong, with densities, melting
temperatures, and grain sizes of 1.24 g/cm?3, 175-220 °C, and 5-10 um, respectively [30].
Meanwhile, the PCL material utilized in this study was a small granule manufactured by
Solvay Interox Limited, Warrington, UK, with diameters, densities, and melting points
of 0.5 mm, 1.1 g/cm?, and 58-60 °C, respectively [31]. Fourier transform infrared (FTIR-
microscope Spotlight 400, Perkin Elmer, Boston, MA, USA) and X-ray diffraction (Shimadzu
XRD-7000 diffractometer, Tokyo, Japan) were used to test PLA and PCL.

The formulation of a PLA/PCL blend is shown in Table 1. The schematic diagram
of the procedure for producing a PLA/PCL blend is depicted in Figure 1. PCL and PLA
were blended for 2 h in a Laboratory Ball Mill Machine (Bexco; Haryana, India) at an
80-rpm rotation speed. The obtained mixture was placed in a stainless steel 304 mold
with a 17-mm diameter and a 3-mm thickness, accordingly. The following stage was the
compacting process, which used a pressure of 30 MPa to create a green body. Then, the
sintering procedure was carried out on the created green body at 150 °C for 2 h using a
digital oven model D1570 made in Taiwan. The obtained PLA /PCL blend was tested using
FTIR, XRD, SEM (JSM-6510 Series Scanning Electron Microscope, Tokyo, Japan), density,
porosity, and three-point bending.

Table 1. Labels and composition of samples studied.

Sample Codes PLA (wt.%) PCL (wt.%)
90PLA 90 10
80PLA 80 20
70PLA 70 30
60PLA 60 40

Ball milling .
Compacting
PLA+ PCL . (80 rpm for 2 . (30 Mpay

hours)
@

Characterization Sintering
of the obtained ‘ Polymeric blends ‘ (150°C for 2
materials. hours)

Figure 1. The preparation process of PLA/PCL blend.
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The Fourier transform infrared (FTIR) method was employed to determine the func-
tional groups composing the material as well as to identify the molecular chain ori-
entation in the PLA/PCL blends [32,33]. The structural changes caused by the pro-
cessing procedure—for instance, bending or stretching of the functional groups in the
polymer—could be examined utilizing FTIR spectra [34].

The functional groups that exist in the PLA /PCL blends, PCL and PLA, were deter-
mined using FTIR-microscope Spotlight 400 (Boston, MA, USA). Other than that, each
spectrum was documented between 400 cm ! and 4000 cm ™. Thus, the spectral correction
of FTIR spectra was done using Spectrum 10 ES™ software.

X-ray diffraction (XRD) was utilized to examine changes in the crystallinity of the
patch, for example, PLA /PCL blend, PCL, and PLA [34]. Additionally, XRD patterns on
the PLA/PCL blend, PCL, and PLA were recorded utilizing a Shimadzu XRD-7000 diffrac-
tometer (Tokyo, Japan). Scans were performed at 26 from 10° to 30° at a scanning speed of
2° /min using Ni-filtered CuK« radiation at 40 kV as well as 30 mA. A scanning electron
microscope (SEM) (JSM-6510 Series Scanning Electron Microscope, Tokyo, Japan) was also
employed to observe the materials’ morphology at a 15 kV accelerating voltage [35,36].

The three-point bending test was employed to identify the flexural modulus, flexural
strength, and maximum force of the PLA /PCL blend performed under American Society
for Testing and Materials (ASTM) D790-17 [37]. Density testing was conducted to identify
the PLA/PCL blend density, and the Archimedes method was utilized to calculate the
mixture’s actual density based on the ASTM D792-20. As the test medium, water distillate
was utilized. The mass of the PLA /PCL blend was identified using an analytical balance.
The determination of the actual density, theoretical density, and void volume fraction of the
biocomposites was based on studies conducted by Taib et al. (2018) [38] and Satapathy et al.
(2017) [39].

3. Results and Discussion

Figure 2 displays the samples” Fourier transform infrared (FTIR) spectra. Figure 2
demonstrates the FTIR spectrum with changes in chemical structure due to the interaction
between the PCL and polylactic acid (PLA) in the PLA /PCL blends. In this research, the
acquired PLA /PCL blends formed functional groups with identical wavenumbers. The
existence of CHj, C=0, as well as C-O peaks in the PLA/PCL blends (90PLA, 80PLA,
70PLA, and 60PLA), indicated the existence of PLA, whereas the presence of C-O, C=0,
and CHj peaks reflect PCL content in the PLA /PCL blends (90PLA; 80PLA; 70PLA; as well
as 60PLA). A peak at a wavelength of 2915-2940 cm~! implies CH, asymmetric stretch,
whereas the peak at 1346-1480 cm ! exhibits CH3 symmetric stretch. In addition, the
C=0 stretch and the C-O stretch are noticed at 1670-1760 cm ! and 1000-1100 em 1,
respectively [40-43]. In the case of the PCL/PLA blend, a spectrum consisting of PCL and
PLA was obtained. All these findings clearly indicate that PCL and PLA are present in
PCL/PLA mixtures [44]. Per the test results using FTIR, PCL and PLA did not produce
new peaks in the spectrum. This demonstrates that PLA and PCL bond mechanically.
Alternatively, Chomachayi et al. (2020) and Decol et al. (2018) both achieved identical
outcomes obtained from this study. According to their findings, PLA/PCL did not form
any new bonds [45,46]. The lack of a significant change in wavenumber shows that the
PLA and PCL components did not interact at all when they were blended [47].

The addition of PCL in this study decreased the intensity of bands at C-O, C=0, and
CHj3 in PLA/PCL blends contrasted with pure PLA. The band between 16701760 cm ™!
had less intensity once PCL was added. This occurs because the C=O group in PLA
interacts through hydrogen bonding with the -OH group in PCL. This phenomenon was
also identified in Sundar et al.’s (2020) investigation [48]. Furthermore, the PLA /PCL blend
exhibits the same CHj asymmetric stretching vibrations as pure PLA. The CHj group is
pertinent to the PLA material’s hydrophobic nature. The PLA /PCL blend became more
hydrophobic because the CH3 group did not change [48].
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Figure 2. FTIR spectra of samples.

Figure 3 displays the XRD patterns of pure PLA, PCL, and PLA/PCL blends. The X-ray

diffraction (XRD) spectra of the PLA/PCL blend were contrasted with those of pure PCL
and PLA to locate the characteristic peaks. The three distinct diffusion bands characteristic
of the crystalline phase are primarily visible in the diffraction pattern of pure PLA, together
with these prominent crystalline peaks at 20 = 19.66°, 22.82°, and 28.82°. These diffractions
could be attributed to the PLA’s a-form crystal, as per the literature. Meanwhile, the PCL
pattern has peaks that are roughly at 20 = 23.33° [49,50]. In this study, the blend of PLA
and PCL showed an amorphous nature with a broad hump in all variations of PCL content.
The broad hump of the PLA/PCL blend is positioned between 10.00° and 40.00°.

Intensity (a. u)

10

—PLA —PCL

20

T

30 40 50 60 70 80 90
2 Theta

PLA60 —PLA70 —PLA8O PLA90

Figure 3. X-ray diffraction (XRD) patterns of samples.
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Furthermore, the addition of PCL lowered the percentage of crystallinity in the
PLA/PCL blend compared with pure PLA. This might be caused by PLA crystallization in-
terfering with PCL crystallization during cold crystallization. The PLA cold crystallization
temperature is roughly 100 °C [51]. Meanwhile, PCL has melted at this stage [23].

The absence of crystal peaks in the PLA /PCL blend indicates that the structure formed
is amorphous. This mixture showed an increase in the distance between layers, which was
indicated by a broadening of the peak between 20 of 10.00° and 40.00°. The increase in
the distance between the layers of PLA indicated that this mixture had a more amorphous
region, whereas the incorporation of PCL resulted in a less regular structure, making
crystallization more difficult.

The results of this investigation are consistent with the findings of Silverajah et al.
(2012) [52]. Using a melt blend technique, they combined polylactic acid (PLA) and
epoxidized palm oil (EPO). The absence of crystal peaks in the mixture of PLA /1 wt%
EPO(3) indicated the formation of an amorphous structure. This mixture showed an
increase in the distance between the layers, with the distance d increasing from 5.49 A (pure
PLA) to 5.79 A at the diffraction peak centered at 15.28°. When the distance between PLA
layers increased, it showed that this mixture had more amorphous areas than crystalline
areas [52].

Hou et al. (2019) obtained the XRD pattern of a PLA /PCL mixture with overlapping
PCL phase crystal peaks in the amorphous phase of PLA. The large and broad peaks at 26
located between 10° and 30° show the amorphous zone of PLA [25]. Amorphous PLA in
a blend of PLA /PCL, which is characterized by an indistinct peak with a low absorption
intensity, was also found in a study conducted by Lu et al. (2016) [53]. This is due to the
difference in the degree of deformation in the PLA and PCL molecules during the sample
manufacturing (electrospinning) process. The mixed diffraction pattern of PLA /PCL has
PLA and PCL peaks with the dominance of the amorphous phase with broad peaks and
low absorption intensity. The addition of a low molecular weight PCL polymer to PLA
resulted in a sharp decrease in the degree of crystallinity of the PLA/PCL blend and a
relatively high amorphous morphology, making it suitable for increasing drug loading
efficiency and promoting drug release. In addition, the low level of crystallinity can shorten
the degradation time. This can be a solution to the problem of the low degradation rate of
the PLA and PCL [53].

All of the PLA/PCL blends developed in this study had smaller diffraction peaks
than pure PLA. The filler, which can be either PLA or PCL, has a big effect on the XRD
diffraction pattern of the polymer matrix [49]. Sintering carried out on the green body at
a temperature of 150 °C for 2 h is responsible for this phenomenon. The most important
aspect in influencing the polymers’ mechanical properties is their crystallinity degree. The
heat effect, stereoisomer ratio, and production parameters have an effect on the crystallinity
of polymers. Here, the crystallinity of polymers is dependent on their thermal history [54].

The findings of this study are identical to those obtained by Thunsiri et al. (2020).
According to their findings, the PLA/PCL mixture was also amorphous in nature, with a
broad peak ranging between 10° to 25° [55].

Additional research found that the PLA /PCL blend’s crystallization would constantly
be lower than that of pure PLA and would worsen as the PCL content rose [49].

Even though it had little influence on the early stages of water transport in the polymer
matrix, crystallinity was shown to reduce the pace of PLA degradation. However, it had a
substantial effect on the final swelling of specimens and the rate of their biodegradation.
Therefore, it could be claimed that the denser structure of the original crystalline material
was more resistant to enzyme attachment and oligomer diffusion. Subsequently, this was
supported by the observation that the degradation rate rose substantially more quickly and
approached that of the amorphous material if the characteristic dimension of the crystalline
sample was diminished [54,56].

The SEM micrographs of the PLA /PCL blend surfaces consisting of 90PLA, 80PLA,
70PLA, and 60PLA samples are presented in Figure 4. The morphological structure of the
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white material is PCL, and the black material is PLA [23]. The 90PLA sample in Figure 4a
shows less white material than black and is attached to the surface of the PLA material.
Meanwhile, the 80PLA sample in Figure 4b for white material is due to the increase in
PCL content attached to the PLA surface. The PCL content increases, so the white material
is more common in the 70PLA samples, as shown in Figure 4c. The percentages of the
white and black colored material are almost the same in the 60PLA sample, where the PCL
content is 40 wt% (Figure 4d).

W a 4
SEl 10V WD10mm SS30 x5000 lTl SEI  10kVv.  WD10mm SS30
o]

|
SEI  10kV.  WD10mm SS30 X5000

(c) (d)
Figure 4. SEM images of surfaces (a) 90PLA, (b) 8OPLA, (c) 70PLA, and (d) 60PLA at 5000x magnification.

PCL particles dispersed in a matrix of PLA largely formed a bond of PLA /PCL that
occurred at the branches and the ends of the white color because they have good adhesive
properties [57].

PLA/PCL blends are partially immiscible in the form of small flakes attached to the
material’s surface. The morphological structure of phase separation, given the immisci-
bility between PCL and PLA, is evident in the vastly different melting temperatures [58].
Although some flakes are immiscible and some voids are caused by their detaching, this
indicates that PCL can improve PLA compatibility. The increase in PCL content resulted in
a rougher surface with many voids and flake structures in the 80PLA, 70PLA, and 60PLA
specimens. This demonstrates that when PCL concentration rises, plastic deformation also
rises [59].

The density test results depict that the 90PLA sample had a maximum density of
1.19 g/cm3 (Figure 5). Conversely, the rise in PCL content in 80PLA, 70PLA, and 60PLA
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samples resulted in a decrease in density of 1.14 g/ cm?, 1.13 g/ cm?, and 1.09 g/ cm?,
respectively. Since PCL has a lower density than PLA, the density of the PLA/PCL blend
decreased. Furthermore, PCL has a density of 1.1 g/cm?, whereas PLA has a density of
1.24 g/cm3 [60]. The lowest porosity was found in the 90PLA sample, with a porosity of
8.62%, and the highest porosity was found in the 60PLA sample, at 15.69%. The density of
the PLA /PCL blend was fully affected by the porosity value, and the density decreased
with the increase in porosity [61]. According to the findings of this study, the density
of PLA/PCL blends increased as their PLA content increased. This study resulted in a
PLA/PCL blend with densities (90PLA, 80PLA, and 70 PLA) that matched the density
values in the human cortical bone, which denotes 1.1-1.3 g/ cm? [37].

120 - - 16.00
1569
L 14.00
115 -
g s
= X &
& 12,00 &
: :
=] 5]
1]
A1 1.09 a
L 10,00
862
105 . . . 2.00
90PLA S0PL A F0PLA 60PL A

Figure 5. The density and porosity of PLA/PCL blends.

The findings of this research are consistent with those of Qiao et al.’s (2021) investi-
gation, which found that when the PLA content was raised, the density of the PLA/PCL
blend also increased [62]. The mixing ratio had a significant influence on the values of bulk
density, apparent density, and porosity. The porosity of the PLA/PCL blends decreased
as the PLA concentration increased. Additionally, the bulk density and apparent density
of PLA/PCL blends increased linearly as PLA content increased [63]. Zihui et al. (2020)
produced a variety of melt-blended PCL/PLA blends with distinct dispersed phase mor-
phologies dependent on the PCL matrix. As PLA content increased, pore size decreased,
pore density increased, pore distribution became more uniform, and apparent density
increased [64].

The results of the three-point bending test on the PLA/PCL blend are shown in
Figure 6. The highest flexural strength is produced at 90PLA with a maximum force and
displacement of 51.13 N and 7.21 mm, respectively. The increase in PCL content caused a
decrease in flexural strength and displacement in the PLA /PCL blend. The lowest flexural
strength and displacement were found in the 60PLA specimen, with a maximum force and
displacement of 28.81 N and 3.28 mm, respectively. The greater the PLA composition, the
higher the mechanical strength [19,65]. The increase in PCL content resulted in decreased
flexural strength because PCL had low mechanical properties [57]. In addition, the ability
to absorb energy would decrease with increasing PCL composition so that the flexural
strength would also decrease. These findings aligned with the research by Ferri et al.
(2016), stating that the specimen’s flexural strength would decrease with increasing PCL
content [22].
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Figure 6. The flexural test results on PLA /PCL blend.

The good interfacial adhesion between PCL and PLA in the 90PLA specimens led
to an increase in maximum stress and flexural strength. The increase in PCL content
in the 80PLA, 70PLA, and 60PLA specimens caused the flexural strength to decrease
because the dispersion state of PCL in the PLA matrix deteriorated at the high PCL content.
Furthermore, the addition of 10 wt.% PCL to the 90PLA specimens can improve the stress
transfer and allow the formation of a stiffer bond, thereby contributing to the improvement
of the flexural properties of the PLA/PCL blends. The high PCL content can reduce the
stiffness of the PLA molecular chains, causing a decrease in flexural properties. Increasing
the PCL content above 10 wt.% can increase the occurrence of cavities in the mixture.
This causes a stress riser to form in the PLA /PCL mix, which causes the flexural strength
to decrease.

Chen et al. (2018) revealed that the flexural strength of the mixture increased with
increasing PCL content up to 2.5 wt.%. This is due to the good interfacial adhesion between
the PCL and PLA matrices in the PLA /PCL mixture. If the amount of PCL in the mixture
increases by more than 2.5 wt%, the flexural strength of the mixture decreases because the
PCL is less evenly distributed in the PLA matrix [66]. The findings in this study are in
accordance with research conducted by Silverajah et al. (2012). Their research demonstrated
that the inclusion of 1 wt.% EPO in a PLA /EPO blend permitted the creation of stronger
bonds, which contributed to the improvement of flexural properties. Flexural strength and
modulus decrease of 43% and 13%, respectively, with 5% EPO loading [52].

4. Conclusions

The PLA/PCL blend has been successfully made using ball milling, followed by
pressure compaction and sintering. The morphology, physical properties, and mechanical
properties of the obtained PLA /PCL blends were examined using multiple techniques. The
results of this study show that the amount of PCL had a huge effect on the characterization
of the PLA/PCL blend. The incorporation of PCL in this study decreased the intensity of
bands at C-O, C=0, and CHj in PLA /PCL blends as contrasted with pure PLA relying
on the Fourier transform infrared (FTIR) spectrum. In the case of the PCL/PLA blend,
a spectrum consisting of PCL and PLA was obtained. All these findings clearly indicate
that PCL and PLA were present in PCL/PLA mixtures. The lack of a significant change in
wavenumber shows that the PLA and PCL components did not interact at all when they
were blended.

Furthermore, the absence of crystal peaks in the PLA /PCL blend indicates that the
structure formed was amorphous. This mixture showed an increase in the distance between
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layers, which was indicated by a broadening of the peak between 20 of 10.00° and 40.00°.
The increase in the distance between the layers of PLA indicated that this mixture had
a more amorphous region, whereas the incorporation of PCL resulted in a less regular
structure, making crystallization more difficult. The increase in PCL content resulted in
a rougher surface with many voids and flake structures in the 90PLA, 80PLA, 70PLA,
and 60PLA specimens. This proves that plastic deformation increased with the rise in
PCL content. The mixing ratio had a significant influence on the values of bulk density,
apparent density, and porosity. The porosity of the PLA/PCL blends decreased as the PLA
concentration increased.

Additionally, the density of PLA/PCL blends increased linearly as PLA content in-
creased. The 90PLA sample had the highest density (1.19 g/cm?®) and the least amount
of porosity (8.62%). The flexural strength of the PLA /PCL blend increased as its density
increased. The 90PLA sample had the best mechanical properties, with a maximum force
and displacement of 51.13 N and 7.21 mm, respectively. The addition of 10 wt.% PCL to the
90PLA sample can improve the stress transfer and allow the formation of a stiffer bond,
thereby contributing to the improvement of the flexural properties of the PLA/PCL blends.
Furthermore, the high PCL content can reduce the stiffness of the PLA molecular chains,
causing a decrease in flexural properties.
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