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Abstract: A comfortable indoor environment contributes to a better quality of life and wellbeing for
its occupants. The indoor temperature, lighting, and air quality are the main controlling factors of
user comfort levels. The optimum control of the lighting, air conditioners, and air ventilators helps
in maximizing the user’s comfort level. Nonetheless, the energy consumption of these appliances
needs to be taken into consideration to minimize the operational cost and at the same time provide an
environmentally friendly system. Comfort level maximization and energy consumption minimization
are optimization problems. This issue is becoming more important due to the lifestyle changes
caused by the COVID-19 pandemic that resulted in more time spent at home and indoors. Inertia
weight artificial bee colony (IW-ABC) algorithms using linearly increasing, linearly decreasing, and
exponentially increasing inertia are proposed here for the optimization of the indoor comfort index
and energy usage. The multi-objective problem is tackled as a weighted single objective optimization
problem. The proposed solution is tested using a dataset of 48 environmental conditions. The
results of the simulation show that the IW-ABC performs better than the original ABC and other
benchmark algorithms and the IW-ABC with linear increasing inertia weight has the most improved
convergence behavior.

Keywords: artificial bee colony; comfort index; energy consumption; inertia weight; residential building

1. Introduction

The global population spends most of its time indoors, with a higher percentage at
home than any other premises. Americans were reported to spend more than 65% of their
time at home [1], while New Zealander and Canadian adults spend 60–70% at home [2].

The outbreak of the COVID-19 pandemic late in 2019 caused the “stay at home”
campaign to grow into a worldwide phenomenon as an effort to combat the pandemic
and break chains of transmission. Lockdown, social distancing, and movement control
orders are enforced in many countries, while remote working specifically from home is
now the new norm. This further increases the amount of time we spend indoors at home.
The Google COVID-19 Community Report (https://www.google.com/covid19/mobility/,
accessed on 1 August 2022) data up to 5 October 2022 show an increase of time spent at
home for most countries, with a rise of +4% observed in the United State and Canada,
+6% in the United Kingdom and New Zealand, +9% in Malaysia, and +10% in Singapore.
Additionally, time spent in the workplace is declining up to −26% in these countries. At
the height of the pandemic, venturing outdoors was allowed only for absolute necessary
reasons such as for medical appointments. Most social and leisure activities were restricted
in efforts to reduce the risks of close contacts and exposure to the virus. This abrupt change
of lifestyle caused a rise in mental health issues due to loneliness, lack of physical and social
interaction, anxiety due to changes in daily life, and many other reasons [3,4]. These mental
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health issues are part of the domino effects of COVID-19. However, life is now getting
back to normalcy, though some of the policies adopted during the height of the COVID-19
outbreak are anticipated to be maintained, particularly remote working. Employers and
employees are responding positively toward the continuation of this arrangement even
after the pandemic [5,6].

Providing a comfortable indoor environment helps in improving productivity for the
occupants [7] and also helps the occupants’ physical and mental health [8]. Therefore,
ensuring a pleasant and comfortable indoor environment is important. The indoor tem-
perature, illumination, and air quality are known to be the major parameters that affect an
occupants’ comfort [8–11]. Lighting, air conditioners, and air ventilators can be utilized to
control these parameters so that a desirable condition is achieved, and the comfort level
is maximized. Although the usage of these appliances contributes to better comfort, it
increases the energy consumption. Reducing the energy consumption on the other hand
may require the occupants to be less comfortable. Therefore, maximization of user comfort
and minimization of energy consumption are two objectives that are related but conflict
with each other.

Metaheuristic algorithms are effective approaches for solving this type of optimization
problem where a near optimal solution is provided within a reasonable computational
time [12]. Natural phenomena has inspired many metaheuristics such as the bird flocking
behavior that inspired particle swarm optimization (PSO) [13], honey bee foraging that
inspired the artificial bee colony algorithm (ABC) [14], bat echolocation for the bat algo-
rithm (BA) [15], firefly communication via light emission that was mimicked by the firefly
algorithm (FA) [16], and natural evolution that inspired the genetic algorithm (GA) [17].

ABC has been reported to outperform or perform as good as other state-of-the-art
metaheuristic algorithms such as PSO, genetic algorithm (GA), and differential evolution
(DE) [18,19]. It has been successfully applied for solving numerous real-world problems,
such as protein structure prediction [20], segmentation of synthetic aperture radar im-
ages [21], pollution source identification [22], balancing loads and minimizing energy
consumption in mobile sink wireless sensor networks [23], minimization of truss structure
weight [24], and many others. In the meantime, there is room for improvement to enhance
the ABC algorithm efficiency [19]. For example, the issue of premature convergence and
balancing the exploration and exploitation of the ABC’s search agents need to be addressed.
Inertia weight is commonly used in metaheuristics for this purpose, especially for PSO [25].
A number of works have also been reported on the integration of inertia weight with ABC.
Dynamic increasing inertia weight-ABC (DIW-ABC) is proposed in [26]. The inertia weight
is multiplied by the previous food in the food update equation to control its influence on
the generation of new food. There are two type of time dependent inertia weights proposed,
exponentially increasing and linearly increasing. The findings show that the inertia weight
changes and improves the convergence of the ABC. Meanwhile, in [27] the authors apply a
linearly decreasing inertia weight. Similar to [26], the inertia weight is incorporated into the
employed bee’s food update equation, however the inertia weight is applied to the distance
of the current food source with another food source. The larger inertia at the beginning of
the search is claimed to encourage exploration, while the smaller inertia towards the end
focuses on the fine tuning of the solution. The algorithm is found to have better results
when compared to the original ABC and PSO.

These promising findings on the successful applications of ABC to various real-world
optimization problems and the improved performance of ABC with inertia weight moti-
vates this work. The real-world problems tackled in the previous research are complex
and are mostly nonlinear problems, similar to the problem considered here. Therefore, in
this work, inertia weight-ABC (IW-ABC) is proposed for user comfort index maximization
and energy consumption minimization. The comfort index is determined by three factors,
namely the indoor temperature, air quality and illumination, while the energy consumption
is based on the energy usage of the appliances used in controlling these factors. Three vari-
ants of the inertia weight, namely exponential, linearly increasing, and linearly decreasing
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are applied here. The IW-ABC search for the best temperature, air quality, and illumination
and their efficiencies are tested using a dataset with 48 environmental temperatures, illumi-
nations, and indoor air qualities. The findings show that statistically the proposed IW-ABC
significantly improves the comfort index and lowers the energy consumption. The IW-ABC
is also showing a better convergence behavior that allows more exploration and overcomes
the premature convergence of the original ABC. This contributes to a better performance.
The IW-ABC with linear increasing inertia has the best improved convergence.

In the next section, existing works using various swarm intelligence algorithms are
reviewed. The proposed solution is introduced in Section 3. The experimental setting is
discussed in Section 4. In Section 5, the results and findings are presented and analyzed
before the paper is concluded in Section 6.

2. Related Works

Metaheuristic and other intelligent algorithms are frequently chosen in solving the
comfort index maximization and energy consumption minimization problem [28,29].

The authors in [30] used GA to search for the best set of temperature, illumination,
and air quality that offers the maximum comfort index and minimizes their difference
with respect to the user’s demand. The fuzzy controller is then used to reduce the power
consumption in the building. Similarly, in [31], the authors optimized the user’s comfort
index using the three parameters. However, they applied the original ABC algorithm. Later,
an enhanced ABC for the comfort index maximization named, ABC with a knowledge base
is proposed in [32]. The knowledge base extension saved several optimal parameters from
previous environmental conditions to help with the selection of the illumination, tempera-
ture, and air quality parameters of the next condition. In both [31,32], a fuzzy controller is
used for energy minimization. A hybrid FA-GA algorithm for comfort index maximization
is proposed in [33,34]. The GA operators are incorporated to address the drawbacks of the
imbalanced exploration and exploitation in FA. The optimized parameters are also fed to
fuzzy controllers for energy minimization. The performance of the hybrid algorithm is
better than the original FA and GA. In [35], the authors proposed the application of BA for
selecting the actuators’ temperature, illumination, and air quality for the optimization of
the comfort index and energy consumption of a building. On the other hand, deep extreme
machine learning is used to predict the user’s preference.

The comfort index maximization and energy consumption minimization are ap-
proached as a single-objective optimization using a weighted technique in [36]. The
user comfort gain and energy saving gain are combined into one objective function.
Both PSO and GA are applied in this work for the optimization. The results show
that PSO performs better for user comfort optimization, while GA is better in energy
consumption minimization.

Thermal comfort and indoor air quality are enhanced using an improved PSO and
an adaptive network-based fuzzy inference system (ANFIS) in [37]. The improved PSO
optimized the thermal comfort indicators layer-wise so that the best air conditioning param-
eters are obtained. The proposed system contributes to better thermal comfort and uniform
temperature distribution within the room. In [38], non-dominated sorting GA-II (NSGA-
II) is used for the minimization of energy used for providing thermal comfort through
humidity, air speed, and temperature, as well as the percentage of people dissatisfied in
the venue.

The harmony enhanced differential evolution (HEDE), which is a hybrid of the en-
hanced differential evolution (EDE) and harmony search algorithm (HSA), is applied for a
peak-to-average ratio reduction and appliances scheduling for the minimization of electric-
ity costs in [39]. The home appliances’ power consumption pattern is used to group them
into three different classes, which are interruptible, non-interruptible, and base appliances.
The classes are used to determine whether the appliances are interruptible and can be
shifted to other time slots or not. A similar approach is taken in [40], where a cuckoo
search (CS) algorithm is used for a multi-objective home energy management system
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(HEMS). The system schedules appliances based on their category, whether interruptible,
non-interruptible, or non-schedule.

Meanwhile, machine learning algorithms are used to forecast the home appliances’
energy consumption in [41]. The forecasting allows the classification of the appliances
by low- and high-power consumption. This categorization contributes to better energy
management in the residential sector. From the four algorithms used in the work, logistic
regression provides the highest accuracy.

The K-nearest neighbor (KNN), multi-layer perceptron (MLP), and random forest
(RF) are proposed in [42,43] for the classification of high- and low-energy consumption
residences. The classification is performed using the mean, standard deviation, skewness,
and kurtosis data of the energy consumption. The finding show that the training–testing
ratio influenced the performance of KNN, while MLP achieved better performance than RF.

An hourly energy consumption prediction in residential buildings using the MLP
proposed in [44] has been reported to achieve small prediction error. In [45], a hybrid
deep learning algorithm using a convolutional neural network (CNN) and a multilayer
bidirectional gated recurrent unit (MLBi-GRU) are used for residential building energy
prediction. The data went through a refinement stage prior to the prediction to remove any
abnormalities from the data so that better predictions with less errors are obtained.

The author of [46] proposed a multi-objective GA (MOGA) to design ensembles of
radial basis function (RBF) neural networks for the prediction of smart home’s power usage.
The MOGA searched for a non-dominated RBF. PSO has been applied for RBF parameter
optimization in [47]. The RBF optimized by PSO had less errors in the prediction of energy
consumption in comparison to RBF with parameters that had not been tuned by PSO. A
multilayer feedforward neural network (MFNN) was paired with several metaheuristic
algorithms, namely multi-objective PSO (MOPSO), multi-objective GA (MOGA), and
NSGA-II in [48], for the minimization of annual energy usage for cooling and heating as
well as the thermal discomfort hours in Moroccan residential building.

Table 1 summarizes the literature presented above, listing the algorithms used, the
determinants used for occupant’s comfort, and the energy consumption issue tackled by
them. The limitations of the works are also noted in the last column. The research trends
observed and the success of the intelligent algorithms, particularly the metaheuristics
algorithms, motivate this study. Based on the review conducted, even though ABC had
been adopted [31], the application of an improved ABC is observed to provide better results
especially in terms of energy consumption [49]. Similarly, an improved FA is reported
to provide a better solution than the original FA [33,34]. On the other hand, IW-ABC
has not been applied for indoor comfort index maximization and energy consumption
minimization prior to this. Therefore, it is expected that this improved ABC is able to
provide better results for this problem.

Table 1. Algorithms and Usage for Comfort and Energy Consumption Improvement.

Source Algorithm Comfort Energy Consumption Remarks

[30] GA and fuzzy
controller

Temperature, illumination,
air quality of environment,

and user’s preference

Change of temperature,
illumination, air quality

Complex two
phases approach

[31] ABC and fuzzy
controller

[32]
ABC with knowledge

base and fuzzy
controller

[33,34] Hybrid FA-GA and
fuzzy controller
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Table 1. Cont.

Source Algorithm Comfort Energy Consumption Remarks

[35]
BA, deep extreme

machine learning, and
fuzzy controller

Temperature, illumination,
air quality of environment,

and user’s preference

Change of temperature,
illumination, air quality

Complex deep learning
is applied

[36] PSO and GA

Comfort index and energy
consumption optimization
problems are simplified as

single objectives using
weighted technique

[37] Improved PSO
and ANFIS

Thermal and air quality
comfort using PMV, PPD,

and mean age of air
- Energy consumption

minimization is not tackled

[38] NSGA-II Thermal discomfort Classroom total
energy usage

Only temperature is
considered in this study

[39] Enhanced DE and HSA - Scheduling of appliances

No consideration is given
for occupant’s
comfort level

[40] CS -

[41] MLP, KNN, RF, LR -

Energy consumption
prediction and

categorization of low- and
high-power consumption

[42,43] KNN, MLP, RF -
Classification of high- and
low-energy consumption

residences

[44] MLP -

Energy usage prediction[45] CNN and MLBi-GRU -

[46] MOGA and RBF -

[47] PSO and RBF -

[48] MFNN, MOPSO,
MOGA, NSGA-II Thermal discomfort hours Annual energy usage

minimization
Only temperature is

considered in this study

3. Methodology: IW-ABC

The search agents in ABC look for the optimal solution by mimicking the foraging
behavior of honeybees. The bees are grouped as employed, onlooker, or scout bees. They
work with each other when looking for a food source with abundant nectar. The food
source and nectar are analogous to the optimization solution and its fitness or quality.
The optimization solution search process can be divided into four phases: initialization,
employed bee phase, onlooker bee phase, and scout bee phase. The employed, onlooker,
and scout bee phases are iterative processes that are repeated until the stopping condition
is satisfied. The stopping condition could either be a maximum number of iterations or
the ideal fitness or minimum error. In this research, the maximum number of iterations is
adopted as the stopping condition. The general flowchart of the ABC algorithm is shown
in Figure 1.

3.1. Initialization

The search process starts with an initialization phase where the population’s food
sources are randomly generated according to the problem’s search space and dimension, D.
The population size, SN, determines the number of food sources generated and evaluated.
An agent ith food source is represented as xij where (i = 1, 2, . . . , SN, j = 1, 2, . . . , D).
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3.2. Employed Bee Phase

The employed bee phase is the first iterative procedure of the ABC where food source
information is shared by employed bees in the dance area to the onlooker bees. The
onlooker bees then select and remember the food sources according to their nectar amount,
f (xi), which is the fitness function of the problem to be optimized.

In the IW-ABC, a new candidate food source, vij, is generated using Equation (1).

vij = ωxij + ϕij

(
xij − xkj

)
(1)

where ω is the inertia weight. It controls the influences of the current food source in the
generation of the new one. Three type of inertia weight are used here: exponentially
increasing inertia weight, linearly increasing inertia weight, and linearly decreasing inertia
weight. All of these variants are adaptive according to the iteration number. The exponential
inertia weight is shown in Equation (2).

ω = exp
(

t
tmax

− 1
)

(2)

where t is the iteration number, and tmax is the maximum iteration number. On the other
hand, the linear inertia weight is calculated using Equation (3).

ω =

(
tmax − t

tmax

)(
ωinit −ω f inal

)
+ ω f inal (3)

The linear increasing inertia weight is ωinit < ω f inal , while the linear decreasing
inertia weight is ωinit > ω f inal . The rate of the changes for these inertia weights is shown
in Figure 2. High inertia encourages exploration and prevents convergence, while small
inertia encourages convergence and fine tuning.
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Based on the second part of Equation (1) it can be seen that the new candidate food
source is generated around the current solution, xi, and a randomly selected solution, xk,
where k 6= i and is randomly selected in the range of 1− SN. The ϕij is a random number
between −1 and 1.

Figure 3 shows the pseudocode for the employed bee phase. For each of the food
sources the new candidate food source, vi, is generated using Equation (1) (line 3 in
Figure 3). The fitness of the new candidate food source is then evaluated and if it is better
than the current food source, xi, it is adopted as the food source of the agent.
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3.3. Onlooker Bee Phase

In the onlooker bee phase a probability value is associated with each food source as
given in Equation (4).

pi =
f (xi)

∑SN
k=1 f (xk)

(4)

Based on this probability value, the onlooker bees determine which of the food sources
presented by the onlooker is to be selected.

The pseudocode of the onlooker bee phase is shown in Figure 4. The phase starts
with the selection of the random threshold value, rand. This value is then compared with
the sum of the probability calculated using Equation (4). The food source with a sum
probability of more than the random threshold is selected and the candidate food source
is calculated using Equation (1). Similar to the employed bee phase, if the new candidate
food source is better it is adopted.
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3.4. Scout Bee Phase

A food source is abandoned if no improvement is observed after a number of iterations.
These abandoned food sources are then replaced by scout bees who randomly look for new
food sources within the search area that is limited by

[
xj_min, xj_max

]
. The random search

by scout bees is represented using Equation (5).

xij = xj_min + rand[0, 1]
(
xj_max − xj_min

)
(5)

The pseudocode in Figure 5 is the algorithm of the scout bee phase. The “limit” is an
important parameter that decides when a food source is abandoned after no improvement
for the predetermined number of iterations. The abandoned food source is replaced using
Equation (5).
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3.5. Fitness Function

The quality of the solution, xi, is evaluated using the fitness function, f (xi), which
is defined according to the optimization problem. There are two objectives considered
here. The first objective is the occupant’s comfort level maximization, which is measurable
using the user comfort index (CI), while the second objective is the minimization of energy
consumption of the appliances used to control the room lighting, temperature, and air
quality. The fitness function adopted here follows the work of [36].

The comfort index ranges between 0 and 1, where 0 indicates the least comfortable and
1 is when the most comfortable environment is achieved. The comfort index is measured by
taking into account the gap between the user’s preference and the room’s environmental
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values. The lesser the gap the better it is for the occupant. The CI is calculated using
Equation (6).

CI = p1

[
1−

(
e1

Ts

)2
]
+ p2

[
1−

(
e2

Is

)2
]
+ p3

[
1−

(
e3

As

)2
]

(6)

where p1, p2, and p3 are the coefficients that control the importance of temperature, illumi-
nation, and air quality toward a user’s comfort. These coefficients are defined by the users.
The equal values of p1, p2, and p3 indicate the equal importance of all three parameters
in providing comfort to the occupant. The errors or differences between the optimized
temperature, illumination, and air quality (To, Io, and Ao) and the environmental values
(Tc, Ic, and Ac) are represented by e1, e2, and e3, respectively. On the other hand, Ts, Is, and
As are the user’s preferred temperature, illumination, and air quality, respectively. The
optimized value (To, Io, and Ao) is the evaluated solution i.e., the food source, xi.

The difference between the optimized values and the environment is used for the
energy consumption calculation. The amount of energy required by respective appliances is
based on this difference. Smaller difference requires smaller energy usage, bigger difference
cause higher energy consumption. The total energy consumption is calculated using
Equation (7).

EC = ET + EI + EA (7)

The energy required by the temperature control actuator is denoted by ET , light-
ing actuator, EI , and actuator to control the indoor air quality, EA. Each of these energy
requirements can be calculated using Equations (8)–(10), respectively.

ET = PT(TO − TC) (8)

EI = PI(IO − IC) (9)

EA = PA(AO − AC) (10)

where PT is the energy required per-unit change of the temperature, whereas PI is the
energy required per-unit change of the illumination, and lastly PA is the energy required
per-unit change of the air quality.

The energy saving gain (Ges) has an inverse relation with the energy consumption. A
lower energy consumption leads to higher energy saving gain, where the energy saving
gain formula is given in Equation (11).

Ges =

(
1−

(
EC− Emin

Emax − Emin

)2
)

(11)

The Emin and Emax are the minimum and maximum energy and are based on the
maximum and minimum of the user preferred temperature, illumination, and air quality.

The two objectives of the user comfort index maximization and energy consumption
minimization is tackled as a single objective using the weighted penalty method as shown
in Equation (12).

Maximize(a1•CI + a2•Gec) (12)

where a1 and a2 determine the importance of CI and Gec, respectively, and a1 + a2 = 1.
Equation (12) is the fitness function of the IW-ABC.

4. Experimental Setting

The performance of the IW-ABC is tested using 48 readings of the environmental
lighting, temperature, and air quality. The test data are tabulated in Table 2. This dataset
is from [33,34], where the data were collected in a laboratory at the Faculty of Computer
Science and Information Technology, Universiti Tun Hussein Onn Malaysia for a period
of 48 h. The environmental data were periodically recorded on an hourly basis. Many
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fluctuations in the environmental conditions can be observed during the data collection.
The temperature was recorded in the unit of Fahrenheit (◦F), illumination in lux, and indoor
air quality (IAQ) is in terms of the CO2 concentration. The preferred setting of the user is as
follows: 73 ◦F, 800 lux, and 800 IAQ. Additionally, the optimized parameters are bounded
between 68 and 78 ◦F, 720 and 880 lux, and 700 and 880 IAQ.

Table 2. Environment’s Temperature, Illumination and Indoor Air Quality.

Time Instances (I) Temperature (◦F) Illumination (Lux) Indoor Air Quality (IAQ)

1 60 711 610
2 65 717 670
3 67 718 650
4 66 717 640
5 67 700 600
6 63 713 620
7 62 724 670
8 81 710 920
9 80 914 920
10 81 900 960
11 83 897 900
12 80 895 930
13 79 904 950
14 82 903 960
15 81 906 970
16 80 898 925
17 66 728 610
18 63 703 670
19 66 714 630
20 66 721 645
21 66 722 650
22 67 703 600
23 66 701 670
24 81 728 980
25 81 891 930
26 82 906 948
27 80 901 965
28 81 901 916
29 79 915 900
30 83 914 960
31 79 890 970
32 81 912 930
33 65 717 610
34 67 714 620
35 65 724 670
36 67 726 680
37 66 723 650
38 64 726 660
39 65 708 640
40 80 712 900
41 83 917 910
42 79 905 920
43 82 893 980
44 80 920 940
45 81 913 950
46 81 905 940
47 82 896 970
48 80 898 980

Each of the 48 environmental settings are optimized 30 times. The two objectives
of the comfort index maximization and energy consumption minimization have equal
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importance in this work (a1 = 0.5, a2 = 0.5), this is similar to [36], while the environ-
mental parameters’ influence toward the comfort levels is also set to be equally important
(p1 = 1

3 , p2 = 1
3 , p3 = 1

3 ). The energy usage per unit change for temperature, illumination,
and air quality (PT , PI and PA) are also set according to [36]. The range for (ωinit, ω f inal) of
linear increasing and decreasing the IW-ABC is selected based on [26,27]. The parameter
setting of the algorithm is shown in Table 3.

Table 3. Algorithms Parameters.

Parameter Value

Runtime 30
Maximum iteration, tmax 100

Population size 50
Onlooker Np/2

Limit (Np/2)*D
Fitness function ratio a1 : a2 0.5:0.5

p1 1/3
p2 1/3
p3 1/3
PT 5
PI 1
PA 1

Increasing inertia weight
[
ωinit , ω f inal ] [0.6, 1.0]

Decreasing inertia weight
[
ωinit , ω f inal ] [0.9, 0.4]

The comfort index (Equation (6)), energy consumption (Equation (7)), and fitness
(Equation (12)) obtained are recorded for a performance measurement. The IW-ABC
using exponential, linearly increasing, and linearly decreasing are compared with the
original ABC and BA. As discussed before, both ABC and BA had been applied for comfort
index maximization and found to outperform other algorithms; hence they are chosen for
benchmarking purposes.

The data are then statistically analyzed using non-parametric tests; the Friedman test
is used to detect any significant differences, while the Holm post-hoc procedure is used to
identify the difference. A significant level of 0.05 or 95% is used here. The Friedman test is
a nonparametric statistical analysis that is frequently used for the comparison of three or
more metaheuristic algorithms [50,51]. While the Holm post-hoc test is usually paired with
the Friedman test to find the algorithms that are on par or are significantly worse than the
best algorithm. In this work, the statistical analysis is done using KEEL, an open source
software developed to assess algorithm performance [52–54].

5. Results and Discussion

The algorithms’ average, maximum, and minimum of fitness, comfort index, and
energy consumption from the 30 runs are tabulated together with the Friedman rank and
the Holm post hoc procedure p-values in Table 4. The best of the average, maximum,
minimum, and Friedman rank are highlighted in grey, while the Holm’s p-values that
indicate significant differences are in bold.

The results of the fitness optimization, which combines both the comfort index max-
imization and energy consumption minimization, show that the IW-ABC with linearly
decreasing inertia in the range between 0.9 and 0.4 is better than the others. The Friedman
rank of this variant of IW-ABC is the best at 2.3333, while the Friedman statistic value
is 37.695833. This shows significant differences exist between the algorithms. The Holm
post hoc test shows that the linearly decreasing IW-ABC is significantly better than the
original ABC, but is on par with BA. All variants of the IW-ABC investigated here show
on-par performance.
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Table 4. Algorithms Performance.

Average Max Min Friedman Rank Holm Post Hoc

Fitness

ABC 0.9799 0.9975 0.9633 4.1771 0 < 0.0125
IW-ABC (exponential) 0.9853 0.9999 0.9596 2.9687 0.04898 > 0.016667

IW-ABC (linear increasing) 0.9863 0.9999 0.9608 2.6667 0.3017 > 0.05
IW-ABC (linear decreasing) 0.9869 0.9999 0.9722 2.3333

BA 0.9838 0.9977 0.9684 2.8542 0.106583 > 0.025

Comfort Index

ABC 0.9913 0.9966 0.9821 5.9583 0 < 0.01
IW-ABC (exponential) 0.9960 0.9997 0.9883 2.5521 0.518387 > 0.025

IW-ABC (linear increasing) 0.9963 0.9997 0.9917 2.2292
IW-ABC (linear decreasing) 0.9962 0.9997 0.9910 2.2396 0.983379 > 0.05

FA 0.9915 0.9961 0.9752 5.7083 0 < 0.0125
ACO 0.9909 0.9975 0.9796 6.5000 0 < 0.008333
GA 0.9901 0.9978 0.9793 6.8542 0 < 0.007143
BA 0.9945 0.9994 0.9839 3.9583 0.000544 < 0.016667

Energy
Consumption

ABC 147.6226 214.8538 68.1349 4.1458 0 < 0.0125
IW-ABC (exponential) 120.9565 222.4773 31.0000 2.8229 0.258636 > 0.025

IW-ABC (linear increasing) 116.1257 202.4568 31.0000 2.5312 0.821261 > 0.05
IW-ABC (linear decreasing) 117.0123 214.2358 27.6068 2.4583

BA 131.1864 216.9695 68.0068 3.0417 0.070701 > 0.016667

The effect of the optimization algorithms toward each of the objectives is then studied
using the optimized parameters. The dataset comes with results from the comfort index
maximization using FA, ACO, GA, and BA, where the results are optimized without taking
the energy consumption into consideration. Hence, for fairness, only the comfort index
is statistically analyzed against these algorithms. The IW-ABC with linearly increasing
inertia weight from 0.6 to 1 reported the best comfort index optimization performance.
The comfort index found by the linearly increasing IW-ABC has the best Friedman rank
followed by linear decreasing and exponential inertia weight. The comfort index found by
BA and FA are better than the original ABC. However, the original ABC is better than ACO
and GA in optimizing the comfort index. The Friedman statistic of 219.862847 showed
a significant difference between the algorithms. The p-values of the Holm post hoc test
indicate that the linearly increasing IW-ABC is significantly better than the original ABC,
FA, ACO, GA, and BA, and has an on-par performance with the other two variants of the
IW-ABC investigated here.

In terms of the energy consumption minimization, the linear decreasing IW-ABC has
the best Friedman rank. The Friedman statistic is 35.695833, rejecting the null hypothesis
of on-par performance for all algorithms tested. The Holm post hoc p-values indicate the
linear decreasing IW-ABC is significantly better than the original ABC but not significantly
better than the BA. All the variants of the IW-ABC have on-par performance.

The fitness of the optimization algorithms over the 48 time instances are illustrated
in Figure 6. The optimization algorithms are able to improve the fitness value. As shown
in the graph, after optimization using exponential the IW-ABC (green), linear increasing
IW-ABC (orange), linear decreasing IW-ABC (purple), ABC (red), and BA (sky-blue), all the
fitness values are above the dark blue line, which is the fitness value before optimization.
The IW-ABC with linearly decreasing inertia weight provides the highest fitness value in
comparison to the other algorithms in most of the time instances as can be seen from the
purple line in the figure.

The user comfort index of the optimization process is shown in Figure 7. The optimized
comfort index values regardless of the optimizer used are constantly better than the comfort
index value of the non-optimized system shown by the dark blue line. This shows the
optimization algorithms are able to optimize the user comfort index. However, among
all the algorithms, the three variants of IW-ABC (exponential in orange, linear decreasing
in green, and linear increasing in purple) show better performance where the lines are
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closer to 1. The BA (apricot) and FA (sky-blue) are close to the proposed variants of IW-
ABC. Meanwhile, the ABC (red), ACO (maroon), and GA (blue) perform worse but are,
nonetheless, better than without optimization. The fluctuation of the comfort index is
influenced by the fluctuation in the environment.

Algorithms 2022, 15, x FOR PEER REVIEW 13 of 23 
 

The comfort index found by the linearly increasing IW-ABC has the best Friedman rank 

followed by linear decreasing and exponential inertia weight. The comfort index found 

by BA and FA are better than the original ABC. However, the original ABC is better than 

ACO and GA in optimizing the comfort index. The Friedman statistic of 219.862847 

showed a significant difference between the algorithms. The p-values of the Holm post 

hoc test indicate that the linearly increasing IW-ABC is significantly better than the origi-

nal ABC, FA, ACO, GA, and BA, and has an on-par performance with the other two vari-

ants of the IW-ABC investigated here. 

In terms of the energy consumption minimization, the linear decreasing IW-ABC has 

the best Friedman rank. The Friedman statistic is 35.695833, rejecting the null hypothesis 

of on-par performance for all algorithms tested. The Holm post hoc p-values indicate the 

linear decreasing IW-ABC is significantly better than the original ABC but not signifi-

cantly better than the BA. All the variants of the IW-ABC have on-par performance.  

The fitness of the optimization algorithms over the 48 time instances are illustrated 

in Figure 6. The optimization algorithms are able to improve the fitness value. As shown 

in the graph, after optimization using exponential the IW-ABC (green), linear increasing 

IW-ABC (orange), linear decreasing IW-ABC (purple), ABC (red), and BA (sky-blue), all 

the fitness values are above the dark blue line, which is the fitness value before optimiza-

tion. The IW-ABC with linearly decreasing inertia weight provides the highest fitness 

value in comparison to the other algorithms in most of the time instances as can be seen 

from the purple line in the figure.  

 

Figure 6. Fitness vs. Time Instance. 

The user comfort index of the optimization process is shown in Figure 7. The opti-

mized comfort index values regardless of the optimizer used are constantly better than 

the comfort index value of the non-optimized system shown by the dark blue line. This 

shows the optimization algorithms are able to optimize the user comfort index. However, 

among all the algorithms, the three variants of IW-ABC (exponential in orange, linear de-

creasing in green, and linear increasing in purple) show better performance where the 

lines are closer to 1. The BA (apricot) and FA (sky-blue) are close to the proposed variants 

Figure 6. Fitness vs. Time Instance.

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 23 
 

of IW-ABC. Meanwhile, the ABC (red), ACO (maroon), and GA (blue) perform worse but 

are, nonetheless, better than without optimization. The fluctuation of the comfort index is 

influenced by the fluctuation in the environment. 

 

Figure 7. Comfort Index vs. Time Instance. 

The total power consumption of the optimization process can be seen in Figure 8. 

Similar to the fitness and comfort index, the energy consumption using the optimized pa-

rameters is better than the non-optimized system in the dark blue line. The optimization 

algorithms successfully reduce the energy usages. The exponential IW-ABC (green), linear 

increasing IW-ABC (orange), and linear decreasing IW-ABC (purple) are lower than ABC 

(red) and BA (sky-blue) for most of the time instance.  

Figure 7. Comfort Index vs. Time Instance.



Algorithms 2022, 15, 395 14 of 21

The total power consumption of the optimization process can be seen in Figure 8.
Similar to the fitness and comfort index, the energy consumption using the optimized
parameters is better than the non-optimized system in the dark blue line. The optimization
algorithms successfully reduce the energy usages. The exponential IW-ABC (green), linear
increasing IW-ABC (orange), and linear decreasing IW-ABC (purple) are lower than ABC
(red) and BA (sky-blue) for most of the time instance.
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5.1. Convergence Analysis

The inertia weight is frequently introduced to improve the exploration and exploitation
of metaheuristic algorithms. This is the motivation for the application of the IW-ABC here.
The contribution of inertia weight can be observed using the convergence curve for a
selected time instance.

The convergence of the comfort index and energy consumption of the IW-ABC with
exponential, linear increasing, and linear decreasing are compared with the original ABC
in Figure 9. It could be observed (Figure 9a,e) that the original ABC suffers from fast
convergence and imbalanced exploration and exploitation. The original ABC started to
converge even before the 10 th iteration.

The convergence of the linear increasing IW-ABC (Figure 9c,g) is delayed the most
followed by linear decreasing (Figure 9b,f) and exponential (Figure 9d,h). This is desired as
it balances between exploration during the first half of the iteration and exploitation in the
later half.

5.2. Optimized Parameters

Figure 10 shows the environmental temperature, user set temperature, and the opti-
mized temperatures according to the algorithms. The optimized values oscillate within the
bounded limit of [68 ◦F, 78 ◦F] and all are in between the environmental temperature value
(dark blue) and approaching the user set value (red). The oscillation is influenced by the
change of the environmental temperature. The optimizers aim to minimize the error differ-
ence between the optimized temperature and user’s preference so that the comfort index is
maximized, while at the same time reducing the difference of the optimized temperature
with the environment so that the energy usage is reduced. The energy consumption in
optimizing the temperature is shown in Figure 11. The energy required for the system using
optimized temperatures are lower than the non-optimized system in most of the settings.
The exponential IW-ABC (in green) is observed to contribute to lower energy usage.
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For the illumination parameter optimization, the results are shown in Figure 12. Simi-
lar to the temperature, as the optimizers balanced between the comfort index maximization
and power consumption minimization, the optimized illumination values obtained are
between the environmental value and the user’s demand. The optimized illumination
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was also in the predefined limit. Figure 13 shows the required energy of illumination.
The optimized energy consumption is lower than the non-optimized system for all time
instances. Thus, the required energy consumption of the lighting system is successfully
reduced using the optimization system. The IW-ABC with linear decreasing inertia weight
(in purple) found the best illumination level with the lowest energy usage.
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The optimized air quality with respect to the environmental and user preferred air
quality are shown in Figure 14. The optimized air quality values are in between the
environmental value, the user set value, and the limit of 700, 880 IAQ. The optimized air
quality compromises between the comfort index and energy consumption. Figure 15 shows
the required energy for air quality optimization. The ventilation system requires lesser
energy after optimization. Moreover, the three variants of IW-ABC offer better energy
efficiency than ABC and BA.
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6. Conclusions

This project aimed to optimize the residential user comfort index and energy con-
sumption using an improved version of the ABC algorithm. The ABC is improved using
inertia weight, IW-ABC. Inertia weight is popularly adopted in many metaheuristic algo-
rithms for a convergence improvement, so that the exploration and exploitation can be
better controlled and premature convergence can be avoided. The findings show that the
IW-ABC improves the ABC and performs better than the BA. In terms of comfort index
maximization, the IW-ABC is better than the original ABC, FA, ACO, GA, and BA. The
linear increasing inertia has the most improved convergence rate where the algorithm
only converges after 40% of the total iteration. The variant of IW-ABC also has the best
comfort index of 0.9997. This research is conducted using secondary data from [33,34]. In
the future, the proposed optimization system is to be implemented and integrated in smart
home controllers where the IW-ABC acts as the brain and searches for optimized parameter
values for the actuators’ input.
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