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Abstract: Perovskite solar cells (PSCs) offer advantages over widely deployed silicon solar cells in
terms of ease of fabrication; however, the device is still under rigorous materials optimization for
cell performance, stability, and cost. In this work, we explore a version of a PSC by replacing the
polymeric hole transport layer (HTL) such as Spiro-OMeTAD, P3HT, and PEDOT: PSS with a more
air-stable metal oxide, viz., nitrogen-doped titanium dioxide (TiO2:N). Numerical simulations on
formamidinium (FA)-based PSCs in the FTO/TiO2/FAPbI3/Ag configuration have been carried out
to depict the behaviour of the HTL as well as the effect of absorber layer thickness (∆t) on photovoltaic
parameters. The results show that the cell output increases when the HTL bandgap increases from
2.5 to 3.0 eV. By optimizing the absorber layer thickness and the gradient in defect density (Nt), the
device structure considered here can deliver a maximum power conversion efficiency of ~21.38% for
a lower HTL bandgap (~2.5 eV) and ~26.99% for a higher HTL bandgap of ~3.0 eV. The results are
validated by reproducing the performance of PSCs employing commonly used polymeric HTLs, viz.
Spiro-OMeTAD, P3HT, and PEDOT: PSS as well as high power conversion efficiency in the highly
crystalline perovskite layer. Therefore, the present study provides high-performing, cost-effective
PSCs using TiO2:N.

Keywords: perovskite solar cell; n-i-p structure; nitrogen-doped titanium dioxide; hole transport
layer; formamidinium recipe; SCAPS simulation

1. Introduction

The demand for energy and crises of fossil fuels in today’s world has led to the
interest in alternative energy sources [1]. Solar energy offers a clean mode of energy
generation with a broad domain of various user applications. To aspire to the energy
sustenance goals for 2030, researchers worldwide have explored energy generation sources
using renewables. Solar photovoltaics is deemed a well-known renewable source with
the potential to meet the demands and sustain its existence [2]. The evolution of solar
cells using sophisticated material has led to a technological revolution for developing
energy generation solutions in diverse applications such as buildings, aircraft, and satellites.
With advanced semiconductor physics and the accessibility to diverse materials, modern
photovoltaic solar cells have raised the barrier by attaining more efficient outputs with
longer life sustainability. Photovoltaic technology is predominant with the crystalline silicon
solar cells that render the opportunity for efficient energy generation on the commercial
platform [3,4]. The other classification of solar cells, i.e., thin films such as organic cells and
perovskite cells, can be developed cost-effectively with technological advancement using
low-cost, flexible substrates to ascertain efficient outputs [5]. Perovskite solar cells (PSCs)
are categorized as third-generation thin-film solar cells that counter the Shockley Queisser
Limit (SQL) under laboratory conditions [6]. In addition, PSCs acquire intrinsic properties
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such as tunable bandgap, longer diffusion length, and suitable carrier transport mechanism,
which are processable at lower fabrication costs [7]. Hence, modern research confers PSCs
as desired photovoltaic devices that are significant in achieving energy sustenance [8].
Researchers have recently developed unique recipes that achieved a power conversion
efficiency (PCE) of 25.2%, which was the apex reported in 2020 [9]. Further findings
show that PSCs reached an efficiency of 26.1% in 2021, and a multi-junction PSC with a
Si-tandem structure attained an efficiency of 29.8% [10]. Henceforth, the recipe or chemical
composition of the absorber and supporting layers possess crucial roles that foster the cell
output. Intuitively, the stability and upscaling properties of the cell are distinct concepts
that are critically considered while fabricating the cell [11].

Laboratory-scale development of the ABX3-driven metal halide organic and inorganic
perovskite cell structure began in 2009 [3]. Methylammonium lead halide (MAPbX3) and
formamidinium lead halide (FAPbX3) are most endorsed in formulating the cell recipe in a
planar or mesoporous structure. The metals (B) and anions (X) are engineered with different
elements in view to enhance stability and improve cell efficiency [12]. One major hurdle is
the presence of lead (Pb), which increases the toxicity of the cell. So, several studies reported
lead being replaced with group IVA and VA elements such as Tin (Sn2+), Germanium (Ge2+),
and Antimony (Sb2+) [7,13,14]. On the other hand, organic elements (MA and FA) have
depicted an intrinsically unstable behavior, which led to the presage of inorganic elements
such as cesium (Cs), rubidium (Rb), and potassium (K), respectively [15,16]. Most of the
recipes in the literature for PSC development reported the anionic halogen element as Cl−,
Br−, and I− [17].

The perovskite absorber layer is held between the electron transport layer (ETL) and
hole transport layer (HTL) in most of the PSC configurations that act as profound charge
transport mediums [18]. According to semiconductor physics, ETL and HTL provide carrier
separation paths responsible for avoiding recombination, boosting charge transportation,
preventing cell degradation, and efficiently transmitting light. The arrangement of ETL and
HTL in a perovskite solar cell is either the n-i-p or p-i-n configuration [19]. These transport
layers also act as blocking layers to their opposite counterparts, which help in improving
cell stability and life. HTLs are chosen based on the organic and inorganic material band
structure and band edge position. Organic HTLs are advantageous over inorganic HTLs
in biodegradability and layer processing [20]. However, the drawbacks such as instability,
high cost, and multi-step synthesis have led to the adoption of inorganic HTLs. In addition,
inorganic HTLs promote appealing features such as hole mobility, chemical stability, and
low cost [21]. Typical organic HTLs such as Spiro-OMeTAD, PEDOT: PSS, P3HT, and
PTTA; and inorganic HTLs such as CuOx, CuSCN, CuI, NiOx, MoS2, and WS2 are widely
employed in the PSC structure [22].

The selection of the suitable ETL during cell fabrication is based on efficient electron
extraction ability and stability. Due to their surface and electrical properties, the most
common ETLs preferred for PSC development are TiO2, ZnO, and SnO2 [23]. In the recent
past, extensive research has been carried out in modulating different ETLs suitable for PSCs
to envisage better energy yield. For example, Bendib et al. [24] numerically simulated a
P3HT/MAPbI3 perovskite structure with ZnSe and ZnS as the ETLs. In contrast, Hima
and Lakhdar [25] developed a CH3NH3GeI3 cell structure with C60 as the ETL that yields
23.58% PCE. Bhavsar and Lapsiwala [26] also performed numerical simulations on a
Cu2O/MAPbI3 cell with different ETLs such as PCBM, CdZnS, WS2, IGZO, and CdS that
yielded a PCE lower than TiO2, ZnO, and SnO2. Research reveals that ETLs derived from
titanium and tin oxide have resulted in stable operation and consistent efficiencies [27,28].

Titanium dioxide (TiO2) emerges as a practical and prevalent photocatalyst with
chemical stability, nontoxicity, and low cost [29]. Furthermore, cationic or anionic doping
modifies the bandgap, optical, and electrical properties of TiO2 [30]. With tunable bandgap
and Fermi-level shift, TiO2 doped with various elements has been demonstrated to be
a good ETL with improved efficiency and cell parameters such as open-circuit voltage
(Voc) [31]. Consequently, the limitation of TiO2-based ETL is hindered by its poor absorption
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of visible light in the solar spectrum. Hence, the development of nitrogen-doped TiO2
(ETL) with reduced bandgap possesses photocatalytic properties due to enhanced visible
light absorption and reduced recombination rate [32]. Compared to other anion dopants,
such as sulphur and phosphorus, nitrogen is a suitable doping element in TiO2 that forms
a metastable center, reduced atom size, and low ionization energy [33].

Interestingly, a breakthrough was recently reported by Panepinto et al. [34] in devising
a nitrogen-doped TiO2 (TiO2:N) layer as an HTL for application in dye-sensitized solar
cells. The p-type TiO2:N layer was deposited through co-reactive magnetron sputtering
by tuning the O2 and N2 reactive gases mixture. The bandgap of the HTL is tuneable, and
the value depends on the dopant concentration (%) of nitrogen. However, the usage of
TiO2:N as a low-cost HTL in perovskite solar cell structures has not been explored. With
enhanced photocatalytic properties, the applicability of TiO2:N as an HTL is suitable for
semi-transparent and transparent PSCs as the bandgap is tunable.

We present a novel PSC configuration with TiO2:N as the HTL and undoped TiO2 as
the ETL in a planar formamidinium lead halide recipe by SCAPS numerical simulation. The
PSC recipe that yields better performance in terms of PCE corresponding to the variance in
absorber layer thickness (∆t) and defect density (∆Nt) is put forward. In future research, this
concept would foster the feasibility of developing stable and semi-transparent PSCs with a
low-cost HTL. The influence of physical changes on device performance concerning doping
gradient, doping composition, and interface defect density is reported in this research.

2. Methodology
2.1. SCAPS Simulation

The solar cells capacitance simulator (SCAPS 3.10) one-dimensional software is a
modern computational tool developed to simulate solar cell physics numerically. SCAPS
provides a theoretical understanding of solar cell behaviour that helps compare results
with experimental analysis [35]. SCAPS’s built-in program is designed to numerically
solve semiconductor equations in 1-D steady-state conditions [7]. Global researchers
recognized SCAPS as a suitable analytical tool to determine I-V characteristics, fill factor,
band diagrams, quantum efficiencies, spectral responses, current-voltage density, PCE, and
recombination profile within the charge transport layers [26,36,37]. The performance of the
fabricated solar cell is persisted based on the semiconductor Equations (1)–(3) [11];

Electron continuity eqn.,
dnp

dt
= Gn −

np − npo

τn
+ np µn

dξ

dx
+ µnξ

dnp

dx
+ Dn

d2np

dx2 (1)

Hole continuity eqn.,
dpn

dt
= Gp −

pn − pno

τp
− pn µp

dξ

dx
− µpξ

dpn

dx
+ Dp

d2 pn

dx2 (2)

Poissons eqn.,
d

dx

(
−ε(x)

dψ

dx

)
= q

[
p(x)− n(x) + N+

d (x)− N−
a (x) + pt(x)− nt(x)

]
(3)

2.2. TiO2:N as a p-Type HTL

As discussed in the introduction, the most commonly adopted HTLs are organic or
inorganic materials. TiO2 is a widely used ETL in PSC structures designed so far. As an
alternative to expensive HTLs, this research examines the applicability and feasibility of
implementing TiO2:N as an HTL. However, the validation that confers nitrogen-doped
TiO2 as a suitable HTL for thin-film solar cells is a point to prove. Several studies revealed
that N-doped TiO2 exhibits stable p-type conductivity. Vasu et al. [38] employed the atomic
layer deposition technique to develop a p-type epitaxial N-doped TiO2 thin film. The
results depict a reduced optical bandgap and better hole concentration and mobility. To-
wards analysing the cation vacancies in TiO2, Lee et al. [39] reported that n-type TiO2 and
p-type TiO2 exhibit similar morphology, surface area, and crystal structure. Comparatively,
p-type TiO2 has better stability and performance rate. Outwardly, Vasilopoulou et al. [40]
stated that p-type nitrogen doping enhances the photocatalytic efficiency of TiO2 in the
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visible spectrum, while Anitha et al. [41] reported that the charge transportation could be
eased in TiO2 due to additional bands, which can be achieved through cationic doping.
Panepinto et al. [34] synthesized the p-type TiO2:N film with different nitrogen doping
concentrations. As the N-doping increases, results show a change in light transmittance
(%), optical bandgap (Eg), Hall coefficient (cm3/C), carrier density (cm−3), conductivity
(Ω−1·cm−1), and mobility (cm2·v−1·s−1). Additionally, a further increase in nitrogen con-
centration would lead to short-circuit in the cell, making it inappropriate as a photocathode.
Previous studies inferred that TiO2 has a tuneable bandgap nature that depends on the
nitrogen concentration [40,42].

2.3. Recipe of the PSC Structure

A formamidinium lead iodide (FAPbI3) active layer recipe was considered to inves-
tigate the performance, and the optimum high responsive match in power output was
reported. Certain characteristics of the FA present in the absorber layer of PSCs include
a lower bandgap of 1.48 eV, lower defect states, and better thermal stability compared to
methylammonium (MA). Hence, FA-based PSCs are considered one of the most promising
light-absorbing perovskite materials [43]. In view of accomplishing better cell stability,
MAPbI3 absorber layer has gradually been replaced with FAPbI3 [44]. However, α-FAPbI3
tends to form an undesirable metastable non-perovskite phase transition and a thermo-
dynamically stable photoinactive δ-polymorph state on exposure to ambient conditions.
This causes a defects-induced non-ideal interfacial recombination leading to quicker cell
failure [45–47]. Due to this fatal issue, the commercialization of FAPbI3-based perovskite
solar cells is hampered. Therefore, nano-localization effects are one of the potential methods
to stabilize the pure α-FAPbI3 phase. Table 1 reports the recent approaches that modern
researchers have identified to stabilize the crystal structure of the pure α-FAPbI3 state.

Table 1. Recent research that reports the techniques to stabilize the pure α-FAPbI3 state.

S. No. Year Author [Reference] Recipe Remarks

1 2022 Wang et al. [46] SnO2/FAPSC/
Spiro-OMeTAD

4-fluorophenylmethylammonium iodide (F-PMAI) was
used to modulate surface structure and energy
level alignment.

2 2022 Kundu et al. [47] FAPbI3 crystals

The α-FAPbI3 single crystals are stabilized through Pb-site
doping with a heterovalent metal–bismuth (Bi). The
optimum concentration of Bi extends the phase change by
four orders of magnitude.

3 2022 Bu et al. [48] (FA-Cs) lead halide

Controlled the formation of intermediate phases during the
growth of formamidinium–caesium lead triiodide
perovskite films by using methylammonium chloride
additives in the co-solvent system of
N-methyl-2-pyrrolidone/N, N-dimethylformamide.

4 2022 Liu et al. [49] FA-Cs + NiOx (HTL) A molecular additive—the organic dye coumarin 343—was
used to reduce Voc loss and improve efficiency.

5 2022 Li et al. [50] (FA-Cs) lead halide Additives reduced crystallization and defects of the FA-Cs
perovskite film.

The HTL medium used in an FA-based PSC structure is a novel concept in this
research. The literature reports about the organic and inorganic-based HTLs to date, while
oxide-based elements used as HTLs are still scarce. Recent adoptions in the HTL medium
pertaining to formamidinium recipes are tabulated in Table 2. The adoption of TiO2:N as
an HTL delivers an air-stable charge transport medium that was never performed earlier.
Henceforth, the current study proposes simulating a planar n-i-p FA-based perovskite
structure with TiO2:N as the HTL layer in the conventional TiO2-based ETL recipe.
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Table 2. Recent simulations that report various organic and inorganic HTLs adopted in an FA-based PSC structure (2022–2021).

S. No. Year Author Perovskite Solar Cell Structure
(ETL/Absorber/HTL)

Performance Factors (Voc (V), Jsc (mA/cm2),
FF (%), PCE (%) Remarks Reference

1 2022 Vishnuwaran et al. TiO2/FASnI3/CuO2 Voc: 0.7921, Jsc: 29.61, FF: 78.14, PCE: 18.10 Varied absorber layer thickness—350 nm
yielded the best results [51]

2 2022 Niloy et al. SnO2/FA0.83Cs0.17PbI0.5Br2.5/MoOx PCE up to 22.89% for absorber thickness of
169 nm Absorber layer thickness influences the PCE [52]

3 2022 Sabbah et al. (TiO2, ZnOS)/FA1−xCsxSnI3/CuO2 Voc: 0.89, Jsc: 31.4, FF: 78.7, PCE: 22 ZnOS exhibited stable behaviour and was
better than TiO2

[53]

4 2022 Vishnuwaran ZnOS/FASnI3/CuI Voc: 6.20, Jsc: 30.77, FF: 12.68, PCE: 24.22 CuI and ZnOS are considered ideal
replacements for Spiro-OMeTAD and TiO2

[54]

5 2022 Teimouri et al. Cs0.05 (FAxMA[1−x])0.95Pb(I0.83Br0.17)3 Attained a PCE of up to 20.98%
Analyzed bandgap ratios between 2.175 eV
to 1.5 eV and x factor influenced the
power output

[55]

6 2021 Jannat et al. SnO2/FA0.83Cs0.17 PbI1.5Br1.5/MoOx Voc: 1.44, Jsc: 17.04, FF: 81.83, PCE: 20.10 MoOx exhibited a low valence band offset.
HTL and absorber thickness was varied [56]

7 2021 Stanić et al. TiO2/Rb0.05Cs0.1FA0.85PbI3/Spiro-OMeTAD Voc: 0.80, Jsc: 20.60, FF: 45.51, PCE: 7.35
Absorber layer thickness, defect density
concentration, and the influence of the
resistivity were analyzed

[57]

8 2021 Alipour and Ghadimi PC61BM/FASnI3/PEDOT: PSS+WO3 Voc: 1.12, Jsc: 24.65, FF: 86.02, PCE: 23.69 FA depicted better outputs that MA
based structures [58]

9 2021 Tara et al. Zn (O0.3, S0.7)/FASnI3/CuSCN Voc: 1.08, Jsc: 28.12, FF: 84.96, PCE: 25.94
Variations in electron affinity, CBO, doping
density, and thickness of Zn (O0.3, S0.7)
were analyzed

[59]

10 2021 Patil et al. ZnO/FAPbI3/Spiro-OMeTAD Voc: 0.99, Jsc: 26.75, FF: 79.80, PCE: 21.26 FA-based PSC structures have depicted
higher efficiency than MA [60]

11 2021 Kanoun et al. TiO2/FAPbI3/PTAA and Cu2O PCE of up to 24% for absorber thickness
of 400 nm

PTAA and Cu2O as HTLs enhance
change carriers [61]

12 2021 Bhardwaj et al. SnO2/FA0.85Cs0.15Pb(I0.85Br0.15)3/
Spiro-OMeTAD and Cu2O

Spiro-OMeTAD (HTL)—PCE: 15.36%
Cuprous oxide (HTL)—PCE: 19.38%

CuO2 delivers the highest efficiency when
compared to other inorganic HTLs [62]
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The planned n-i-p PSC configuration structure is illustrated in Figure 1a. The idea
of adopting TiO2 as HTL is a unique technique for developing a low-cost PSC. The liter-
ature reports that the bandgap and light transmission (%) is significantly reduced as the
doping concentration increases. To develop a p-type epitaxial N-doped TiO2 thin film,
Vasu et al. [38] optimized the bandgap of TiO2:N. The initial bandgap of bulk anatase n-type
TiO2 is noted to be 3.23 eV; upon doping with 4.0% concentration (from XPS analysis) of ni-
trogen, the bandgap was reduced to 3.07 eV in the TiO2:N film, which also reported p-type
behaviour due to the decrease in the fermi-energy levels. Preliminary simulations were
performed in this research, and it was observed that the increase in nitrogen concentration
would induce a short circuit when the HTL bandgap falls below 2.5 eV. Panepinto et al. [34]
also reported a similar pattern when developing TiO2:N layers for dye-sensitized solar cells.
Therefore, the doping concentration of nitrogen must be modulated to attain a bandgap
of more than 2.5 eV for an ideal HTL medium with optimum light transmission prop-
erties. However, by considering previous experimental studies, this study investigates
the behaviour of the PSC structure (FTO/TiO2/FAPbI3/TiO2:N) with two proposed HTL
bandgaps of 3.0 eV and 2.5 eV.

The bandgap values of the corresponding layers in the proposed PSC structure are
illustrated in Figure 1b.
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Figure 1. (a) Structure of the PSC with TiO2 as ETL and TiO2:N as HTL; (b) energy band diagram of
the PSC layers with FAPbI3 absorber layer and different bandgap HTLs.

The HTLs that pertain to nitrogen as a doping element result in two different bandgaps
based on the doping concentration, i.e., a lower value of 2.5 eV for TiO2:Na and a higher
value of 3.0 eV for TiO2:Nb. Consequently, the numerical simulation is performed with a
combination of TiO2-based ETL and PSC active layer. SCAPS simulation for the proposed
recipe is performed using distant parameters collected from various experimental and
simulation studies, reported in Table 3. Based on HTL bandgaps, the two different recipes
proposed for this study are:

Recipe-1: FTO/TiO2/FAPbI3/TiO2:Na/Ag
Recipe-2: FTO/TiO2/FAPbI3/TiO2:Nb/Ag
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Table 3. Simulation parameters of different layers within the PSC structure [34,38,63,64].

Parameter FTO TiO2 FAPbI3 TiO2:Na TiO2:Nb

Thickness ‘t’ (nm) 400 50 300 * 100 100
Band gap ‘Eg’ (eV) 3.5 3.2 1.51 2.5 3.0
Electron affinity ‘χ’ (eV) 4 4 4 2.2 2.2
Dielectric Permittivity ‘εr’ 9 9 6.6 3 3
CB EDOS ‘Nc’ (cm−3) 2.2 × 1018 2.1 × 1018 1.2 × 1019 1.3 × 1018 1.3 × 1014

VB EDOS ‘Nv’ (cm−3) 2.2 × 1018 2.2 × 1017 1.2 × 1019 1.3 × 1019 1.3 × 1015

e− thermal velocity (cm·s−1) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

h+ thermal velocity (cm·s−1) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Electron mobility ‘µn’ (cm2/V·s) 20 20 2.7 1.5 2.0
Hole mobility ‘µh’ (cm2/V·s) 10 10 1.8 1.5 2.0
Shallow donor density ‘N.D.’ (cm−3) 2 × 1019 9 × 1016 1.3 × 1016 0 0
Shallow Acceptor density ‘N.A.’ (cm−3) 0 0 1.3 × 1016 1.3 × 1019 1.3 × 1014

Defect density ‘Nt’ (cm−3) 1015 1015 1 × 1013 * 1015 1015

* Varied parameter.

Further investigations are conducted to examine the cell performance and behaviour
concerning modulating the absorber layer thickness and defect density. The absorber
layer thickness (∆t) is varied from 300 nm onwards. In contrast, the defect density of
the perovskite absorber layer is varied (∆Nt) for four different attributes from 1 × 1013

to 1 × 1016 cm−3, respectively. The simulations in this current study were performed by
considering specific assumptions.

(a) The phase of the formamidinium crystal structure is stable at the α-phase; there is no
drift into the δ-phase.

(b) The temperature coefficient on the perovskite recipes is precluded.

3. Results and Discussion

Considering the electrical parameters in Table 3, and no resistances, numerical simula-
tions were performed to estimate the performance output for the proposed recipes from
the lowest absorber layer thickness of 300 nm. Results attained through SCAPS simulation
are presented in Table 4. The current-voltage characteristics (J-V) pertaining to the recipes
are displayed in Figure 2a.

Table 4. Summarised photovoltaic parameters of the two recipes from SCAPS simulation.

PSC Recipe Jsc (mA/cm−2) FF (%) Voc (V) PCE (%)

FTO/TiO2/FAPbI3/TiO2:Na/Ag 21.798 71.83 1.25 19.71
FTO/TiO2/FAPbI3/TiO2:Nb/Ag 21.760 83.44 1.25 22.83

The results infer the significance of N-doped TiO2 as an HTL with reasonable PCE
attained from both recipes. However, it is observed that the TiO2:Nb HTL with a bandgap
of 3.0 eV has attained higher output when compared to the TiO2:Na HTL with a bandgap
of 2.5 eV. Interestingly, a minimal change in Jsc and Voc was observed for the recipes. With
the increase in HTL bandgap from 2.5 eV to 3.0 eV, the fill factor (FF, %) increased by
11.61%, which is reflected in the rise of power conversion efficiency (%) by 3.12%. The
enhancement of performance with the increase in HTL bandgap can be inferred from
the bandgap grading that induces efficient hole transport. This analysis can theoretically
support the combination ideology of TiO2/FAPbI3/TiO2:N as a suitable PSC structure
that can attain considerable power outputs on par with organic and inorganic HTLs. The
patterns depicted indicate the wider area of the TiO2:Nb curve that specifies a higher
power output than the TiO2:Na curve. From the quantum efficiency spectrum depicted in
Figure 2b, it is evident that the FAPbI3 recipe encounters a similar profile for different HTL
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bandgaps. However, recipe-1 reported a slightly higher output between 375 nm to 500 nm
but was surpassed by recipe-2 by the end.
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3.1. Effect of Perovskite Absorber Layer Thickness

In this section, a numerical analysis is carried out to investigate the performance
output for the designed recipes when the perovskite absorber layer thickness is varied. The
PCE is one of the vital factors that is expected to invariably respond to the degree of change
in absorber layer thickness. Hence, this attempt would project the optimum and maximum
thickness of the absorber layer to yield better output.

Conceptually, the increase in the absorber layer thickness influences the performance
parameters of a PSC. With the increase in thickness, the short circuit current (Jsc, mA/cm2)
tends to increase since it is attributed to more electron-hole pairs in the absorber layer,
whereas the open circuit voltage (Voc, V) decreases due to the increment in the dark
saturation current that increases the recombination of charge carriers. Seemingly, the fill
factor (FF, %) holds an inversely proportional relationship with an increase in thickness
due to the increase in series resistance and internal power dissipation. Additionally, the
increase in Jsc and a drop in FF would reflect in the increase of device performance due to
the balanced charge transport [5]. Lastly, the power conversion efficiency (PCE, %) tends
to increase with thickness but decreases beyond a saturation level (maximum diffusion
length). Beyond the saturation point, the fill factor is reported to drop due sheet resistance
of the active layer, which is a material perspective phenomenon.

These numerical simulations reveal that the photovoltaic parameters report a change
when the layer thickness varies. The primary electrical parameters from Table 3 are
considered while the thickness is varied proportionally from 300 nm until the satura-
tion level and maximum allowable thickness is observed. The simulation results show
that both recipes’ performance profile has a divergent pattern. The point of conver-
gence for the FTO/FAPbI3/TiO2:Na recipe with 2.5 eV HTL bandgap is below 1.1 V. The
FTO/FAPbI3/TiO2:Nb recipe with 3.0 eV HTL bandgap reported the convergence point at
1.2 V, thereby depicting the influence of the HTL bandgap on the cell performance.

Figure 3a,b illustrate the J-V characteristic curve for both recipes based on different
HTL bandgaps. It shows that the influence of perovskite absorber layer thickness gradient
(∆t) on the performance output is apparent. For both recipes, the absorber layer thickness
had a high initial power output that was observed to reduce gradually as the voltage and
current increased. As ∆t increased, the PCE (%) was observed to show an incremental
pattern. The increase in absorber thickness will enhance electron/hole pair generation and
electron mobility. Indeed, the peak of the absorber thickness corresponding to the saturation
point is 600 nm FTO/FAPbI3/TiO2:Na recipe and 1000 nm for the FTO/FAPbI3/TiO2:Nb
recipe, combinedly depicted in Figure 4, respectively. The patterns obtained in Figure 4
depict a proportionate behaviour among the power conversion efficiency and absorber
layer thickness. The increase in HTL bandgap from 2.5 eV to 3.0 eV has fostered the
ability to increase the perovskite absorber layer thickness to 1000 nm in recipe-2 before the
saturation point can be observed. This is the point beyond which the thermal recombination
happens, and the PCE gradually tends to decline. Increasing the absorber layer thickness
to up to 1000 nm can attain a higher PCE of up to 26.99% for the corresponding recipe.
The performance characteristic attained due to the gradient in ∆t is tabulated in Table 5
and the relation between Jsc, Voc, FF and PCE are illustrated in Figure 5a,b. Therefore, this
simulation identifies the peak threshold absorber layer thickness for the FAPbI3 recipes
that employ TiO2:N as the HTL and TiO2 as the ETL, respectively.
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Table 5. Performance parameters for both recipes with varied ∆t.

Recipe ∆t (nm) Jsc (mA/cm−2) FF (%) Voc (V) PCE (%)

FTO/TiO2/FAPbI3/
TiO2:Na/Ag

300 21.79 71.83 1.25 19.71
400 23.81 70.01 1.24 20.80
500 25.06 68.46 1.23 21.26

600 # 25.87 67.10 1.23 21.38
700 26.41 65.88 1.22 21.31
800 26.81 64.76 1.21 21.15
900 27.09 63.74 1.21 20.94

1000 27.30 62.79 1.20 20.70

FTO/TiO2/FAPbI3/
TiO2:Nb/Ag

300 21.76 83.44 1.25 22.83
400 23.79 83.17 1.24 24.68
500 25.05 82.95 1.23 25.73
600 25.87 82.75 1.23 26.34
700 26.42 82.51 1.22 26.68
800 26.81 82.33 1.21 26.87
900 27.09 82.16 1.21 26.97

1000 # 27.29 81.94 1.20 26.99
1100 27.45 81.75 1.20 26.98
1200 27.57 81.58 1.19 26.95
1300 27.67 81.41 1.19 26.90
1400 27.75 81.24 1.19 26.83

# Saturation point.
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3.2. Effect of Defect Density in the Perovskite Absorber Layer

The quality and structure of the PSC absorber layer play a significant role in delivering
an efficient power output. The defect density (Nt) of the absorber layer influences the
performance parameters as the film quality deteriorates. This phenomenon causes a density
trap and rise in the recombination of charge carriers, which reflects on the cell output [65].
Madan et al. [66] described that the performance of the PSC is directly influenced by the
defect densities on both the perovskite/ETL and the perovskite/HTL. The effect is more
intense when light is illuminated from the ETL side due to the high rate of photons being
absorbed near the perovskite/ETL interface. This research investigates and reports the
impact of defect density from the perovskite/ETL side as the illumination is projected from
the ETL side. Hence, this simulation studies the performance of the proposed perovskite
recipes with a gradient in defect density (∆Nt) from 1 × 1013 to 1 × 1016 cm−3 for the
lowest ∆t of 300 nm and the saturation peak ∆t value of 600 nm for recipe-1 and 1000 nm for
recipe-2. The J-V characteristics for both recipes are reported in Figure 6a,b. Furthermore,
the simulation results notify a consequent drop in the performance output parameters, as
reported in Table 6. The simulation results for both recipes infer the impact of the ∆Nt on
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the PCE (%). With the increase in defect density by 1 × 101 cm−3, the Jsc, FF (%), and Voc
were observed to reduce logarithmically, resulting in a drop in the PCE (%) in both the
recipes. However, it is observed that the increase in defect density has a lesser influence on
the Jsc, but the Voc was observed to respond in proportional change. The FF (%) in recipe-1
was noted to drop drastically with the increased defect density for both the ∆t gradients.
Interestingly, though the defect density in recipe-2 increased to 1 × 1016 cm−3, the FF (%)
for both the ∆t gradients was attributed to being 54.16% and 44.63%, resulting in the PCE
of 11% and 9.17%, which is nearly 1.7 times the PCE attained in recipe-1, respectively.
Additionally, it is identified that a reasonable PCE (%) of nearly 16% is attained even if the
defect density is increased to 1 × 1015 cm−3 in recipe-2. This output infers the role of the
HTL bandgap that increased from 2.5 eV to 3.0 eV in the proposed recipes.
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Figure 6. (a) J-V curve for the FTO/FAPbI3/TiO2:Na recipe with ∆Nt. (b) J-V curve for the
FTO/FAPbI3/TiO2:Nb recipe with ∆Nt.
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Table 6. Performance parameters for proposed recipes with ∆Nt and ∆t.

Recipe Absorber Layer
Thickness (∆t) Defect Density (Nt) Jsc (mA/cm−2) FF (%) Voc (V) PCE (%)

FTO/TiO2/FAPbI3/
TiO2:Na/Ag

300 nm

1 × 1013 21.79 71.83 1.25 19.71
1 × 1014 21.79 55.15 1.14 13.92
1 × 1015 21.75 45.68 1.05 10.44
1 × 1016 21.31 33.12 0.99 7.06

600 nm #

1 × 1013 25.87 67.10 1.23 21.38
1 × 1014 25.85 48.79 1.11 14.08
1 × 1015 26.62 37.12 1.01 9.62
1 × 1016 23.72 22.17 0.93 4.94

FTO/TiO2/FAPbI3/
TiO2:Nb/Ag

300 nm

1 × 1013 21.76 83.44 1.25 22.83
1 × 1014 21.75 81.76 1.14 20.31
1 × 1015 21.71 72.57 1.03 16.33
1 × 1016 21.31 54.16 0.95 11.00

1000 nm #

1 × 1013 27.29 81.94 1.20 26.99
1 × 1014 27.27 74.82 1.08 22.22
1 × 1015 26.99 63.02 0.97 16.59
1 × 1016 24.45 44.63 0.84 9.17

# Saturation point.

3.3. Comparison of Different Polymeric HTLs Used in an FA-Based PSC Recipe

From the previous sessions, it is evident that the HTL derived from TiO2:N has the po-
tential to deliver adequate electrical performance. Nitrogen doping on c-TiO2 corresponds
to developing different bandgaps, which play a functional role in the cell performance.
The literature reports (Table 2) that polymeric HTLs such as Spiro-OMeTAD, P3HT, and
PEDOT: PSS are most used and viable to feed the role of charge transport mediums in
an FA-based cell structure. However, the intrinsic instability, high cost [18,19,67], and
multi-step synthesis of these polymeric layers still creates a vacuum for alternative HTLs to
be developed.

From the gist of the previous analysis, this further session studies and numerically
compares the cell performance output between TiO2:N and polymeric HTLs. The electrical
parameters from Table 3 are considered, focusing on attaining a better result with the PSC
absorber layer thickness of 600 nm and higher TiO2:N bandgap of 3.0 eV. The polymeric
layers’ parameters are considered from the literature in Table 2, which collectively reported
simulation and experimental results. Table 7 tabulates the simulative electrical parameters
pertaining to this analysis. The J-V curve obtained from numerical simulation is pictured in
Figure 7, while the corresponding output performance parameters are tabulated in Table 8.
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Table 7. Simulation parameters for TiO2:N and Polymeric HTLs.

Parameters
Substrate ETL Perovskite Absorber Layer Novel HTL Polymeric HTLs

FTO TiO2 FAPbI3 TiO2:N Spiro-OMeTAD [62] P3HT [68] PEDOT: PSS [58]

Thickness ‘t’ (nm) 400 50 600 100 200 50 200
Band gap ‘Eg’ (eV) 3.5 3.2 1.51 3.0 2.88 1.1 1.8

Electron affinity ‘χ’ (eV) 4 4 4 2.2 2.05 4.6 3.4
Dielectric Permittivity ‘εr’ 9 9 6.6 3 3 13.6 18

CB EDOS ‘Nc’ (cm−3) 2.2 × 1018 2.1 × 1018 1.2 × 1019 1.3 × 1014 2.2 × 1018 3 × 1018 2.2 × 1018

VB EDOS ‘Nv’ (cm−3) 2.2 × 1018 2.2 × 1017 1.2 × 1019 1.3 × 1015 1.8 × 1019 2 × 1019 1.8 × 1019

e− thermal velocity (cm·s−1) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

h+ thermal velocity (cm·s−1) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Electron mobility ‘µn’ (cm2/V·s) 20 20 2.7 2 2 × 10−4 25 4.5 × 10−2

Hole mobility ‘µh’ (cm2/V·s) 10 10 1.8 2 2 × 10−4 25 4.5 × 10−2

Shallow donor density ‘N.D.’ (cm−3) 2 × 1019 9 × 1016 1.3 × 1016 0 0 0 0
Shallow Acceptor density ‘N.A.’ (cm−3) 0 0 1.3 × 1016 1.3 × 1014 2 × 1019 3 × 1016 1 × 1020

Defect density ‘Nt’ (cm−3) 1 × 1015 1 × 1015 1 × 1013 1 × 1015 1 × 1015 1 × 1013 1 × 1015
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Table 8. Performance parameters attained from the HTL comparative analysis.

PSC Recipe Jsc (mA/cm−2) FF (%) Voc (V) PCE (%)

FTO/TiO2/FAPbI3/TiO2:N/Ag 25.87 82.75 1.23 26.34
FTO/TiO2/FAPbI3/
Spiro-OMeTAD/Ag 25.86 79.83 1.23 25.42

FTO/TiO2/FAPbI3/P3HT/Ag 25.81 87.62 1.01 22.85
FTO/TiO2/FAPbI3/PEDOT: PSS/Ag 25.95 83.30 1.23 26.61
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Figure 7. J-V characteristic curve for the HTL comparative analysis with a magnified view that
depicts the drift patterns between 0.8–1.2 V.

The performance parameters and the J-V patterns explain the positive potential that is
attainable with TiO2:N when used as an HTL in an FTO/TiO2/FAPbI3/HTL/Ag recipe.
The magnified view in Figure 7 reports the drift in the short circuit current for the respective
HTLs. TiO2:N resulted in a PCE rise of 1.03% and 1.15% over Spiro-OMeTAD and P3HT.
It reported a similar trend with 0.9% less PCE against PEDOT: PSS. The Jsc for these
recipes was observed to be similar with minor variation, whereas the fill factor was seen to
modulate, reflected in the final PCE.

4. Conclusions

In this present study, a formamidinium lead iodide (FAPbI3) perovskite solar cell
was optimized with a novel low-cost HTL in the form of nitrogen-doped titanium dioxide
(TiO2:N). The performance output influenced by two different HTL bandgaps (2.5 eV
and 3.0 eV) was investigated and significantly compared through SCAPS simulation. In
addition, the effect of modulation in the absorber layer thickness (∆t) and defect density
(∆Nt) was studied, with optimum results reported. The increase in perovskite absorber
thickness and increase in HTL bandgap has witnessed a rise in the PCE (%), reaching
nearly 26.99%, an exceptional output for a low-cost FAPbI3 solar cell. Though the defect
density in the absorber layer increased, the recipe with a high HTL bandgap achieved a
reasonable bandgap of 16.59%. Lastly, the behaviour of this HTL was compared with three
other polymeric mediums on a standard FA recipe. The simulation results denote a PCE of
26.34%, which is compatibly higher than Spiro-OMeTAD and P3HT. However, the practical
feasibility of TiO2:N as a low-cost and stable HTL is undetermined until experimentation
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is performed, which is considered the future work in this research. Based on simulations,
these results conclude that TiO2:N is a suitable HTL that could attain a PCE (%) equivalent
to organic and inorganic HTLs. Additionally, with the rendering optical properties in
N-doped TiO2, these recipes could aid in developing semi-transparent perovskite cells
suited for various applications. Based on the insights gained from this research, this work
provides preliminary ways to lower the cost of an FA-based perovskite structure that can be
developed soon. Finally, by considering the approaches in Table 2, the viability of different
techniques is feasible to confront the phase stability of the α-FAPbI3 structure.
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