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Abstract: The environment and the economy are negatively impacted by conventional energy sources,
such as coal, gasoline, and other fossil fuels. Pakistan’s reliance on these resources has resulted in a
catastrophic energy crisis. This has driven the government to make critical decisions such as early
retail closures, power outages for the industrial sector, and an increase to two days a week vacations.
Wind energy, accessible and affordable, will become a viable option for meeting Pakistan’s present
and future energy demands. Approximately 3% of Pakistan’s land can produce nearly 132 GW of
power with an installed capacity of 5 MW per km2. In this study, four zones (Karachi, Thatta, Badin,
and Jamshoro) in Sindh province are assessed for the feasibility of wind energy generation. The
installed capacity, generator types, and detailed specifications are provided for each zone. Moreover,
the wind mapping of Pakistan is presented considering the four potential zones. The zones are
analyzed using annual wind speed and power output considering wind data measured at 50 m
height over one year. The higher mean speed is recorded at Jamshoro compared to other zones. The
analysis indicates that all four sites are suitable for large-scale wind power generation due to their
energy potential.

Keywords: wind energy; wind turbine generators; wind mapping; Sindh case; wind energy integration

1. Introduction

Electric power is a fundamental human need and plays a crucial role in every country’s
social and economic growth [1]. In most developing countries, non-renewable energy
resources, such as coal and fossil fuels, are mainly used to generate electrical power,
which has numerous repercussions for the ecosystem, human well-being, and government
expenditure. Moreover, resource constraints, production challenges, market price volatility,
and thermal-power plant management issues place fossil fuels at the forefront of global-
level policy [2]. Consequently, the energy deficit is apparent if new energy sources are not
discovered and the current source of energy generation is not modified. Over the past few
decades, researchers have continuously developed novel solutions for addressing future
energy needs and reducing reliance on fossil fuels [3]. Several countries have initiated
the creation of a more environmentally sustainable and less harmful energy infrastructure
that could meet the rapidly growing energy demands [4]. Integrating renewable energy
sources into the energy mix would reduce the adverse effects on the environment and the
healthcare expenses associated with economic growth while reducing debt and stabilizing
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energy prices in the long run [5]. Hence, there has been a lot of emphasis on developing
renewable energy globally. Wind and solar energy may be the most sustainable options
when considering ecosystem health, human well-being, and resource availability [6]. In
2016, wind energy generated more than 487 GW of power, a 16% increase over 2015 [7],
while offshore wind energy capacity increased by 4.5 GW.

The energy supply in Pakistan is highly dependent on thermal power generation,
which accounts for 60 percent of total energy. Any price surge in the foreign petroleum
and natural gas market substantially impacts power generation in Pakistan, which could
make circular debt issues much more crucial [8,9]. Due to its reliance on thermal resources,
the country has recently experienced a severe energy crisis, resulting in widespread load
shedding and the near suspension of daily activity. This has driven the Government of
Pakistan (GOP) to make crucial decisions such as the early closure of malls, power reduction
for the industrial sector, and two days of vacation a week that significantly influenced
academia, industry, and business [10–12]. Another worst scenario for the GOP is the most
significant Green House Gas (GHG) emissions from the energy sector, roughly 48. Sixty-
two million tons and consuming almost 14.19 Mtoe of fossil fuels [13,14]. The detail of
GHG emissions percentage from various sectors in Pakistan is shown in Figure 1. The
Intergovernmental Panel on Climate Change (IPCC) has recently confirmed that human
activities in South Asia are responsible for a 90 percent rise in GHG emissions [3,15].
Temperatures in South Asia are anticipated to rise by an average of 3.3 ◦C by the end of the
century, with Pakistan and India experiencing more significant rises than the average [3].
Pakistan is particularly vulnerable to the impacts of climate change due to its economic
dependence on agribusiness and natural resources [16]. Wheat production in Pakistan is
projected to decrease by 6–7 percent with a 1 ◦C temperature increase [17,18]. At the same
time, cash crops such as mangoes and cotton would be badly impacted by a temperature
increase of even less magnitude.
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Additionally, human settlements in coastal regions are particularly vulnerable to the
impacts of climate change. Several coastal settlements and villages risk entirely submerging
by increasing sea levels and rainfall in some areas [20]. Therefore, to overcome the chal-
lenges mentioned above, the energy sector needs to transform from thermal-based power
generation into renewable and environmentally sustainable alternatives. The essential
requirement for this transition is the support and financing from the local and interna-
tional stakeholders that will facilitate the GOP to take advantage of rapidly advancing
renewable energy technology. Pakistan Meteorological Department (PMD) has performed
a preliminary assessment of wind energy and developed a map indicating that the opti-
mum potential for harvesting wind energy exists at 50 m, with a total capacity of about
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300,000 MW [21–23]. The GOP also promised to mitigate the effects of climate change and
environmental damage by increasing the percentage of renewable energy to about 30% by
the end of 2030 during a Green Grids Initiative (GGI) conference on climate change [24].
However, despite the availability of technical data, the potential to capture renewable
energy, particularly wind energy, in Pakistan has not been thoroughly explored [25]. There
was just a 200 MW increase in total wind energy output in 2018, and no new projects were
completed after that year.

In contrast, neighboring countries such as India and China witnessed a spectacular
increase of 4.7 GW and 144.2 GW within the same time frame. Constructing wind farms
in coastal Sindh and Baluchistan would decrease energy shortfalls and drastically reduce
import oil expenses by roughly USD12 billion annually [3,20]. Consequently, it is vital to
monitor the transitional challenges and design a more positive and effective strategy for
optimizing the wind energy potential in the country.

This paper explains a detailed description of the energy production and wind potential
scenario in different regions of Pakistan. For this purpose, fourteen possible sites have been
identified and divided into four different zones. One-year wind speed data were collected
for 30 m and 50 m heights of these proposed zones. These wind speed data are classified
into seven classes: poor (0–5.1 m/s) to superb (8.2–11.0 m/s). Goldwind wind turbines
GW 140/3 MW and GW 136/4.2 MW were analyzed for power generation from these four
zones. Based on the analysis, it is estimated that GW 140/3 MW can extract 130 GWh from
Zones 1–3. Similarly, Zone 4 can produce 43.6 GWh of electricity from a single GW 140/3
MW. Hence, this paper highlights wind energy as a potential resource that can be tapped
immediately to overcome the current energy crises and warrants energy security.

The remainder of our paper is arranged as follows: Section 2 reviews the wind energy
conversion system. The geographical features and generation capacity of Pakistan are com-
prehensively discussed in Section 3. Section 4 provides a discussion of the results. Section 5
discusses wind energy integration into the power system, while Section 6 concludes the
paper with a summary and future directions.

2. Wind Energy Conversion System (WECS)

A WECS is a complex framework that integrates various aerodynamic, automotive,
structural, and computational technologies [26,27]. The WECS framework employs a
turbine to convert the wind’s kinetic energy into mechanical energy that may be used to
power generators or produce electricity [28,29]. The mechanical power generated by the
Wind Turbines (WTs) can be calculated using the following equations:

dm
dt

= ρA
dx
dt

(1)

dK.E
dt

=
1
2
ρA V3 (2)

Pm =
1
2
ρAV3Cp (λ,α) (3)

where A, ρ, α are the WTs’ swept area, air density, and pitch angle. Considering the WT
structure, the tip speed λ and power coefficient Cp are critical determinants that evaluate
and influence the power extracted by a WT. The λ can be described as the ratio of the
turbine’s tangent speed to the actual wind speed, whereas the Cp is the ratio of the true
power generated to the maximum wind power available at the blades [30].

λ =
ωR
V

(4)

Cp(λ,α) = 0.5176
(

116
λi

− 0.4α− 5
)

e−
21
λi + 0.0068λ (5)
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where
1
λi

=
1

λ+ 0.08α
− 0.035
α3 + 1

The estimated potential power efficiency of a WT is 0.593, which indicates that the
currently available WT can extract only 59.3 percent of the wind power. This 0.593 factor is
called the Betz’s or Lanchester limit [31]. Therefore, it is important to calibrate the speed at
the turbine’s shaft to achieve the maximum tip speed and power coefficient to maximize
active power generation.

A turbine’s annual power density (PDensity) is the amount of wind energy produced
by the turbine divided by the area of the turbine in a given wind zone and is expressed
as [32]:

PDensity =
Pave

πR
(6)

where Pave is the average power. In contrast to rated power Prated, average power is an
important metric for determining energy in a given period, which may affect the cost-
effective viability of a wind power generation system. Electrical power output Pe may be
calculated in terms of rate power as follows:

Pe =


0 Vcut−in > Vω

Prated
Vk

cut−in− Vk
ω

Vk
rated− Vk

cut−in
Vrated ≥ Vω ≥ Vcut−in

Prated Vf ≥ Vω ≥ Vrated
0 Vω > Vf

(7)

where Vω, Vf, Vcut−in, and k are the maximum speed, cut-in speed, cut-out speed, and
shape factor, respectively. The normal range for the k is anywhere between 1 and 3. A
low value implies a broad range of wind speeds around the average, while a high value
suggests a narrow range of wind speeds [33]. Similarly, average power can be determined
from the following equation:

Pave = Prated
e−(Vcut−in/C)k

− e−(Vrated/C)k

(Vrated/C)k − (Vcut−in/C)k − 1

e (Vcut−in/C)k (8)

where C is the Weibull factor.

2.1. Wind Turbine Generator (WTG) Technology

The generator design of wind turbines is a determining factor, and there is no consen-
sus among researchers and industries on the optimal WTGs [34,35]. The primary criteria
for WTGs are significant torque and power density, minimal mechanical components,
high accuracy, simple construction, high dependability, and adaptability to varying wind
patterns. In addition, generators must operate under challenging conditions despite fail-
ures, and the commercial acceptability of any generator technology is closely related to its
power conversion system’s relative availability and cost [36]. Two primary classes of WTGs
can be used for different wind energy applications, for instance, Direct Current (DC) and
Alternating Current (AC) (synchronous and asynchronous) generators. Table 1 shows these
two types of WTGs and their detailed performance. Table 2 also lists the most popular
manufacturers of wind turbines and their power ranges. In principle, they may operate at
either constant or variable speeds; however, due to the fluctuating nature of wind power, it
is preferable to operate the WTGs at variable speeds, which reduces the mechanical stress
on the propellers and drivetrain components.
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Table 1. Comparison between various WTGs.

Parameters DC Generators
Synchronous Generator Asynchronous Generator

Electromagnetic PM Reluctance HTS FISG DFIG

Efficiency Low High Highest Moderate Highest Low High
Outlay Low Moderate Highest Moderate Highest Low Moderate
Dependability Fair High Highest Highest Moderate Moderate High
Controllability Inferior Better Better Better Best Better Better
Speed Constant Variable Variable Variable Variable Variable Variable
Fault response Lower Moderate Moderate Moderate High Lower Moderate
Converter size Full Full Full Full Full Not Required 20–30%
Grid-Provision
Ability Lower Moderate Highest Moderate High Lower High

Mass saving Lower Moderate Highest Lower Highest Lower Moderate

Power supply Direct Grid
Connection Total Total Total Total Direct Grid

Connection Partial

Maximum
Power Low Moderate High Low Moderate Low High

Active–reactive
power No Separate Separate Separate Separate Dependent Separate

Voltage
fluctuation High Low Low Moderate Very Low High Low

Application
Domestic/Small-
Scale wind
application

Small–
Medium Wind
Application

Small–
Medium Wind
Application

Developing
Phase

Developing
Phase

Small-Scale
wind
applications

Medium–
Large Wind
Application

Table 2. Large wind turbine generators in the market.

Name Manufacturer Country Rotor
Dia. (m)

Swift Area
(m2)

Rated Power
(MW)

Generator
Types On/Offshore Status

Acciona Acciona Energy S.A. Spain 70–148 3848–17,203 1.5–3.3 Asyn Yes/No Active
Adwen Adwen Offshore, S. L Spain 116–180 10,568–25,447 5.0–8.0 Syn, Asyn Yes/Yes Active

AMSC American
Superconductor America 82–190 5281–28,353 1.65–10.0 Syn, Asyn Yes/Yes Active

Bard BARD Holding Germany 122 11,690 5.28–6.5 Syn, Asyn Yes/Yes Active
Dongfang Dongfang Electric Co. China 70–185 3848–26,880 1.5–10.0 Syn Yes/Yes Active
Envision Envision Energy China 70.6–161 3915–20,358 1.5–5.0 Asyn Yes/No Active
Fuhrlander Fuhrländer AG Germany 12.8–132 130–13,685 0.02–3.0 Syn, Asyn Yes/No Inactive
GE GE Renewable Energy America 46–220 1662–38,000 0.6–14.0 Syn, Asyn Yes/Yes Active
HITACHI Hitachi, Ltd. Japan 80–136 4978–14,540 2.0–5.2 Syn, Asyn Yes/Yes Active
MingYang MingYang Smart Energy China 77.1–242 4369–46,000 1.5–16.0 Syn, Asyn Yes/Yes Active
Mitsubishi Mitsubishi Power, Ltd. Japan 25–167 490.9–21,900 0.25–7.0 Syn, Asyn Yes/Yes Active
Nordex Nordex SE Germany 17–163 227–20,867 0.6–5.0 Syn, Asyn Yes/Yes Active
REpower REpower Systems Germany 48.4–152 1840–18,146 0.6–6.15 Syn, Asyn Yes/Yes Inactive

Siemens Siemens Wind Power
A/S Denmark 62–154 3020–18,600 1.3–7.0 Syn, Asyn Yes/Yes Inactive

Siemens
Gamesa Siemens Energy AG Spain 114–222 10,207–39,000 2.1–14.0 Syn, Asyn Yes/Yes Active

Unison Unison Co., Ltd. Korea 50–146.3 1963–16,812 0.75–4.2 Syn Yes/No Active
Vestas Vestas Wind Systems Denmark 10–236 78.5–43,742 0.2–15.0 Syn, Asyn Yes/Yes Active
W2E Wind to Energy GmbH Germany 116–215 10,568–36,305 2.0–9.0 Syn, Asyn Yes/Yes Active

Windtec American
Superconductor America 80–190 - 2.0–10.0 Syn, Asyn Yes/Yes Active

2.1.1. DC Generators

Traditional DC machines have output coils that rotate in a magnetic field to provide
the appropriate magnetic flux, with the primary winding at the stator and the armature
winding at the rotor [34]. The magnetic field that controls the power is either permanent or
electromagnetic and is obtained directly from the rotor through carbon brushes. Normally,
when the machine is electrically powered, it runs according to the shunt-wound generator
concept [37]. There are several DC generators, but the permanent Magnet DC (PMDC)
or the Dynamo are the most prevalent for wind applications. For the PMDC generator’s
output terminals to deliver power, the armature-generated current must flow through a
slip ring and carbon brush [38]. PMDC generators are a viable option for small-scale wind
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energy systems due to their reliability, ability to operate at low rotational speeds, and high
performance. These generators can produce power even in low-wind situations owing to
their low cut-in speed. Moreover, PMDC generators react rapidly to any variations in wind
speed due to their uniform stator field. These generators are compact and more efficient
than other types because they lack field windings and field coil losses. Figure 2 shows a
PMDC wind-generating system that contains a turbine, a DC generator, an inverter’s circuit,
a step-up transformer, and a grid. A virtual DC machine (VDCM) control and an improved
VDCM control with differential compensations for the converter are presented [39,40],
which may increase damping with varying wind speed and load. The major drawback
of DC generators for high-energy applications is that the maintenance and operation of
brushes and controllers are expensive [41]. In addition, they needed fully fledged converters
to connect to the electrical grid. Consequently, these generators are often used in low-
energy applications where the load is relatively close to the turbine, in high-temperature
applications, or in rechargeable batteries [42].
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2.1.2. AC Synchronous Generators

Since the early stages of WTs’ development, significant efforts have been made to use
three-phase SGs. The SG is simply a synchronized electromechanical device consisting
of a Rotating Magnetic Field (RMF) on the rotor and a static stator with several coils
delivering the generated output [43]. The rotor winding is energized electromagnetically
by an auxiliary DC supply connected across the rotor-circuit windings or by permanent
magnets attached [44]. When the turbine rotates the rotor, the stator generates three-phase
electricity, which is then transferred to the electrical grid through inverters and transformers.
SGs are an established technology since their capacity to produce electricity has been
thoroughly investigated and utilized for decades [45]. They play an essential role in
both power generation and specific driving applications. In recent years, the Permanent
Magnet Synchronous Generator (PMSG) has become more prevalent in wind turbines
due to its better reliability, lower maintenance costs, and compact size [46]. The absence
of a commutator, slip-ring, and brush in the PMSG makes the machine more robust,
economical, and straightforward. Figure 3 depicts a wind turbine employing PMSGs with
an AC/DC/AC converter. The Machine Side Converter (MSC), linked between the PMSG
and a DC-Link capacitor, controls the maximum power tracking. Similarly, the Grid Side
Converter (GSC), connected to the power grid and the DC-Link capacitor, maintains a
constant DC-link voltage for reliable operation. Different control strategies for variable
speed operation of WTs with PMSG have been proposed. These include linear control,
Proportional Integral (PI) control [47], Proportional Integral Derivative (PID) control [48],
and non-linear control, such as Sliding Mode Control (SMC) [30] and Model Predictive
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Control (MPC) [49]. These controllers’ performance is demonstrated using simulation
results for various wind speeds.
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Even though PM removes field winding, flux through the rotor cannot be adjusted,
and it can only attain maximum efficiency under certain conditions, such as a certain wind
speed [43]. In addition, demagnetization generated by a too high current or temperature
and the extravagant cost of permanent magnets are additional disadvantages of these
generators. PMSGs cannot produce power with consistent frequency; hence, they must
always be coupled to the grid through converters [50,51]. Modern PMSGs are desirable
for direct drive applications because they may eliminate complex gearbox systems, which
are the root cause of most WTs failures. The High-Temperature Superconducting (HTS)
generator is another type of SG with a stator core, HTS field circuit, rotor core, rotor cooling
mechanism, external chiller, electromagnetic shielding, and casing [52]. In mechanical
design, the stator, rotor, refrigeration, and transmission configuration may be particularly
difficult for maintaining HTS coils under ambient temperatures. Superconducting coils can
transport ten times the current of copper wire despite their low electrical resistance and
conduction loss [53]. Since superconductors may improve current density and, thus, reduce
weight and dimension even more, they are an excellent choice for use in WTG excitation
circuits because of their ability to minimize energy losses drastically.

2.1.3. AC Asynchronous Generators

Induction Generators (IGs) are generally compact, durable, and cost-effective, with a
significant damping capacity that enables them to withstand rotor speed variations and
external transmission disturbances [54,55]. These generators are ideal for residential and
industrial wind power applications since their electrical sizes range from a few horsepower
to several megawatts. There are two main types of IGs: Fixed Speed Induction Generators
(FSIGs) with squirrel cage rotors and Doubly-Fed Induction Generators (DFIGs) with
wound rotors. These generators need reactive power adjustment, such as a capacitor bank
or bidirectional converter, since they consume reactive power from the utility. Before the
1990s, most wind turbine manufacturers produced FSIGs directly connected to the grid
through a transformer [56]. The main advantage of the FSIG is that it does not need a
voltage regulator or a complex microprocessor, has a straightforward design, and has
relatively low operating and maintenance costs [55]. While FSIGs dominated the market
for many years, variable speed generators have replaced them in most applications.

FSIG has certain downsides, including the fact that the blades may not be in the
optimal operating position for a range of scenarios and the inability to produce energy
quickly, owing to the blades’ pitch angle being the only variable. In addition, FSIGs
have intrinsic issues such as low energy conversion, inflexibility in allowing grid voltage
regulation, inherent power fluctuations, and mechanical stress concerns resulting from
high wind speeds [55]. These generators have been found to cause catastrophic failures and
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subsequent maintenance, and since the voltage level is unregulated, reactive power must be
delivered separately. As a result, FSIGs can only operate within a minimal and well-defined
constant speed range. The extensive deployment of DFIGs has dominated the wind turbine
market; nowadays, more than 85 percent of operational wind turbines utilize DFIG owing to
its lower startup cost, compact size, and voltage control assistance [7,57]. The stator is linked
to the power grid through a transformer, whereas the rotor is coupled with PWM converters,
which control the rotor circuit current, frequency, and phase angle. As illustrated in
Figure 4, the Rotor Side Converter (RSC) that connects the DFIG and the DC-Link capacitor
guarantees that the rotor speed remains constant irrespective of wind speed. Similarly,
coupled to the power grid and the DC-Link capacitor, the GSC maintains a constant DC-
Link voltage while supporting the grid voltage with reactive power independent of wind
speed variations [7]. Variable speed operation of WTs with DFIG has been achieved by
using different control strategies. These include fuzzy PI [58], backstepping [59], SMC [7],
MPC [60], robust [61], and so on, and the simulation results demonstrate the operation
of these controllers for a broad range of wind speeds. Due to their wide-operating slip
range, such generators are helpful in many ways. These include higher efficiency, reduced
compressive stresses, and more stable voltage control. In addition, DFIG’s fractional-
rated converter resulted in lower converter prices, less power consumption, enhanced
performance, and lower noise output [55]. Despite these advantages, magnetic circuits rely
on a constant supply of reactive power from the system or local passive components, which
makes them vulnerable to voltage fluctuations. Furthermore, there is no effective control
over operating voltage or prolonged fault current, and the damping effect may cause rotor
power loss.
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3. Geographical Features and Generation Capacity of Pakistan

The Islamic Republic of Pakistan is situated between (24.50, 36.75) latitudes north and
(61, 75.5) longitudes east. The country is separated from Central Asia and the Middle East
by hilly terrain. Pakistan is a semi-industrialized market with a Gross Domestic Product
(GDP) per capita of USD1562, supported by the prominent textile, food processing, and
agricultural sectors [62]. The World Bank ranks Pakistan’s economy as the 67th best in
the world in terms of exports and its labor market as the 10th biggest in the world [63].
Moreover, Pakistan is the world’s 36th biggest country, with 881,913 square kilometers, and
is home to five provinces: Sindh, Baluchistan, Punjab, Khyber Pakhtunkhawa (KPK), and
Gilgit-Baltistan. There are four seasons in Pakistan: (1) a chilly, dry winter from November
to February; (2) a hot, dry spring from March to May; (3) the late spring stormy season,
or southwest rainfall period, from June to August; (4) the monsoon season’s retreat in
September and October [64]. Rainfall can fluctuate dramatically yearly, and flood and
drought cycles are not unusual. Pakistan is home to the biggest mountain ranges in the
world, including the Karakorum, Himalaya, and Hindukush, as well as the northern
uplands of KPK and the northern tribal territories [65]. The Punjab province is almost
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plain, and five of the country’s primary and important rivers run through it. The Thar
Desert, also known as the Lower Indus Valley, is a large desert area in the southern part of
Pakistan’s Sindh province that extends into neighboring India. Baluchistan, along with the
mountainous regions, is the most barren part of the country.

Energy is the backbone of all economies and is often described as the driving force
behind national progress and prosperity [66]. Economic progress, human well-being,
and a higher living level depend on an adequate and affordable electricity supply. The
state’s socioeconomic growth and international viability depend on supplying reliable,
adequate electricity at reasonable prices to all consumers. In a developing country such as
Pakistan, energy consumption is quite high and has been steadily rising since independence.
Pakistan’s total power generation was about 60 MW in 1947, when the country gained
independence, for its 31.5 million people [67]. By the end of the 1970s, it had risen to
1.3 GW, thanks to the building of various power plants. After the 1980s, electricity output
grew to about 3 GW; ten years later, it reached around 7 GW. Pakistan’s installed power-
generating capacity rose 65 percent in six years, from 23,337 MW in 2014 to 38,719 MW
in June 2020 [68]. Figures 5 and 6 depict Pakistan’s total installed generating capacity
and the proportion of all generating sources during the last six years. The results show
that the energy generated by thermal resources is quite significant, but wind and solar
energy have the least value. During this time, 14.3 GW of power was added to the total
generating capacity, with over 77% coming from conventional energy sources and just
6.7% from wind and solar. In addition, the capacity of public thermal power plants has
remained almost unchanged, although the thermal power output of independent power
producers has increased by 9.2 GW. As a result of these power increases from independent
power producers, the present circular debt issue in the electrical sector has expanded to
over Rs2.5 trillion. It is expected to reach Rs4.0 trillion by 2025 if it continues to expand
at the same pace [69,70]. Hence, there is an urgent need for power sector reform and an
increase in the use of renewable energy sources such as wind and solar. The Government
of Pakistan (GOP) has recently promoted the use of indigenous, eco-friendly renewable
energy sources. Numerous attempts have been made to stimulate the long-term growth of
the renewable energy sector and capitalize on these resources’ potential while determining
the optimal strategy for profiting from lowering alternative energy prices. The Ministry of
Energy, in consultation with other relevant parties, developed the renewable energy policy
ARE-2019, which the government then approved in August 2020 [71]. This policy aims
to provide a stable environment in which the proportion of renewable energy in Pakistan
may steadily rise. In addition, this policy is intended to promote energy security, financial
benefits, the protection of natural resources, long-term growth, and economic equality by
using locally available resources. The GOP has initiated ten large hydropower projects,
which will be completed by 2028, to enhance the renewable energy share [72]. Aside
from major renewable energy projects, small-scale micro and mini projects for lighting,
pumping systems, and power production are promoted in northern regions and the Chitral
district [73]. These small-scale initiatives will produce power ranging from 30 kW to 800 kW
and reduce 80 kilotons of CO2e. Although these efforts will be favorable in the long run, in
the short and medium term, wind energy is a more practical choice than hydro projects
owing to the shorter time between pre-construction and commissioning [74]. Wind and
solar energy also have lower per-kilowatt installation costs than hydro and other renewable
energy sources, as shown in Figure 7 [75]. Wind and solar energy installation costs have
decreased dramatically since 2016, and this trend is expected to continue in subsequent
years as cumulative deployment increases. Private enterprises in Pakistan have initiated
some wind energy projects. However, this would not fulfil the country’s current energy
demand of 41.5 GW [76,77]. Due to low public engagement and a reluctance to issue Power
Purchase Agreements (PPAs) for new solar and wind projects, the country’s huge potential
remains unexplored. This potential can be exploited through close collaboration between
public and private sector organizations. In the present scenario, large-scale capacity projects
such as Muppandal and Jaisalmer wind farms [78,79] in a neighboring country would
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swiftly alleviate the country’s energy crisis. Such large-scale projects are now integral to our
medium- to long-term energy pricing schemes. This would not only alleviate the burden
of oil expenses, which has resulted in the closure of 14 power plants with a combined
capacity of 7 GW [77], but would also provide electricity to 70% of the remote population.
These large-scale projects can be implemented through effective regulatory frameworks
that are more competitive than those of neighboring nations and beneficial to both public
and private firms. Since without offering benefits such as incentives and streamlining
the financing plan, it would be difficult to attract private enterprises for participating in
large-scale projects.
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Wind Mapping of Pakistan

The GOP is determined to construct wind energy projects across the country to meet
a substantial portion of the nation’s electrical demands using environmentally friendly
technologies. According to the Alternative Energy Development Board (AEDB) and PMD
assessments, coastal Sindh and Baluchistan, as well as some northern regions, had signif-
icant wind energy potential [80]. According to these estimations, the districts of Thatta,
Karachi, Jamshoro, and Badin in Sindh province, as well as the districts of Gwadar and
Makran Coastlines in Balochistan province, have suitable locations for wind energy con-
struction, deployment, and operation. Another study discovered that Pakistan could
produce 3200 GW from clean energy sources, including 340 GW from wind, 2900 GW
from solar, 50 GW from hydropower, 3.1 GW from micro hydro, 1.8 GW from bagasse
energy conversion, and 0.5 GW from wastes [81,82]. NREL has As per research reported by
National Renewable Energy Laboratory (NREL), Pakistan has a total wind energy potential
of approximately 132 GW [83]. Table 3 summarizes NERL’s analysis of Pakistan’s wind
energy potential at 50 m altitude for classes 4 to 7. According to the Table, around 3% of the
land can produce nearly 132 GW of power with an installed capacity of 5 MW per km2. In
these estimates, more than 6 percent of Pakistan’s land, classified as Class 3, or moderate,
and suitable for wind energy generation, is omitted. As a result, these estimates may be
refined further using advanced modelling and analytic techniques to generate complete
wind resource maps for Pakistan. Apart from low-wind and metropolitan regions, 40
to 35 per cent of Sindh and Baluchistan’s coastlines could be assessed for wind energy
production [81]. The theoretical production capacity of wind energy has been estimated
to reach 123 GW, assuming a density factor of 5.40 MW/km2. The annual wind power
generation along Pakistan’s coastlines is expected to be 212 TWh or 2.15 times the nation’s
combined conventional power output. NREL has further evaluated the coastlines of Sindh
and Balochistan, and various viable sites for wind energy have been identified, as seen in
Table 4 [84]. Data from 47 wind observation sites were gathered and analyzed for the coast-
lines of Sindh and Balochistan [83]. The analyses indicate that a wind corridor extending
from Hyderabad to Keti Bandar and Quetta to Gwadar has considerable potential for power
production. In addition to reducing energy shortages, constructing wind energy projects in
the Jhimpir, Gharo, and Keti Bandar corridors would alleviate the burden of $12 billion
in annual oil imports. According to Table 5, the GOP has currently captured 1235 MW of
wind power from this corridor. This corridor may produce consistent power from June to
September when the southwest monsoon passes through Pakistan. The Indian government
has built multiple wind farms along this wind corridor, extending into Rajasthan state.
Rajasthan is one of India’s leading states for harnessing wind energy to generate power,
with a capacity of 18.7 GW [85,86]. 4.3 GW of wind power capacity has been commissioned
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from 15 separate projects in Rajasthan, with Suzlon and Enercon accounting for around 68
percent of the total capacity.

Table 3. Analysis of Pakistan’s wind power capacity at 50 m [83].

Resource
Potential

Wind Speed at
50 m (m/s)

Wind Power
Class

Covered Area
(km/s)

Output Power
(W/m2)

Area
Percentage

Total Output
Power (GW)

Good 6.9–7.4 4 18,106 400–500 2.05 90.53
Excellent 7.4–7.8 5 5218 500–600 0.59 26.09

Outstanding 7.8–8.6 6 2495 600–800 0.28 12.48
Superb >8.6 7 543 >800 0.06 2.72
Total 26,362 2.98 131.82

Table 4. Wind Potential of Pakistan [84].

Wind Class Description Wind Speed (m/s) Power Density (W/s2)

1 Poor 0–5.4 0–200
2 Marginal 5.4–6.2 200–300
3 Moderate 6.2–6.9 300–400
4 Good 6.9–7.4 400–500
5 Excellent 7.4–7.8 500–600
6 Outstanding 7.8–8.6 600–800
7 Superb Greater than 8.6 Greater than 800

Table 5. Wind Power facilities in Pakistan.

Project Company Location District (MW) Status Cost ($) Completed

Jhimpir Wind Energy Project Burj Capital Jhimpir Thatta 49.7 Active 134 million 2013
Jhimpir Wind Power Plant Morlu Enerji Jhimpir Thatta 56.4 Active 143 million 2013
FFC Energy Ltd. Fauji Fertilizer Company Jhimpir Thatta 49.5 Active 134 million 2013
Three Gorges First Wind Farm China Three Gorges Corporation Jhimpir Thatta 49.5 Active 125 million 2014
Foundation Wind Energy–II Fauji Foundation Gharo Thatta 50 Active 127 million 2014
Foundation Wind Energy–I Fauji Foundation Gharo Thatta 50 Active 128 million 2015
Sapphire Wind Power Sapphire Group Gharo Thatta 52.8 Active 127.7 million 2015
Yunus Energy Lucky Cement Limited Jhimpir Thatta 50 Active 110.2 million 2016
Metro Wind Power Infraco Asia Development Pvt Ltd. Jhimpir Thatta 50 Active 136 million 2016
Tenaga Generai Ltd. Tenaga Generasi Limited Gharo Thatta 49.5 Active 117 million 2016
Gul Ahmed Wind Power Gul Ahmed Energy Limited Jhimpir Thatta 50 Active 131 million 2016
Master Wind Energy Master Group of Industries Jhimpir Thatta 52.8 Active 125 million 2016
Tapal Wind Energy Tapal Group and Akhtar Group Jhimpir Thatta 30 Active - 2016
Hydro-China Dawood Power Hydrochina Corporation Gharo Thatta 49.5 Active 115 million 2017
Sachal Energy Wind Farm Arif Habib Group Jhimpir Thatta 49.5 Active 134 million 2017
United Energy Pakistan United Energy Group Jhimpir Thatta 99 Active 250 million 2017
Hawa Energy Ltd. Hawa Energy and JS Group Jhimpir Thatta 49.6 Active 130.2 million 2018
Artistic Energy Pvt Ltd. General Electric and Artistic Milliners Jhimpir Thatta 49.5 Active 120 million 2018
Three Gorges Second Wind Farm China Three Gorges Corporation Jhimpir Thatta 49.6 Active 113.1 million 2018
Three Gorges Third Wind Farm China Three Gorges Corporation Jhimpir Thatta 49.6 Active 113 million 2018
Tricon Boston Corporation General Electric and Tricon Boston Jhimpir Thatta 148.8 Active 342 million 2018
Zephyr Power Ltd. CDC Group PLC Gharo Thatta 50 Active 103.3 million 2019

4. Results and Discussion

In this paper, we examine and assess the wind patterns and potential of Karachi,
Thatta, Badin, and Jamshoro, all located in Sindh’s southern region, as shown in Figure 8.
A seasonal and monthly wind speed trend analysis is performed for each zone. One-
year wind speed data were collected for 30 m and 50 m heights. Accordingly, these sites
were divided into different classes, as shown in Table 6, specified by NREL for heights of
30 m and 50 m. Data collected from all zones were analyzed to determine the amount of
electricity generated by GW 140/3 MW and GW 136/4.2 MW. We use these generators
because they are a low cut-in and rated speed, which makes them ideal for use at the
proposed sites.
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Table 6. Classification of four zones based on wind speed.

Zone District Region
30 m 50 m

Class (30 m) Class (50 m)
Low Average High Low Average High

1 Karachi
DHA Karachi 2.9 5.0 7.4 3.6 5.9 9.0 1 2
Hawks Bay 2.8 5.1 6.8 3.2 5.4 7.1 1 2

2 Thatta

Chuhar Jamali 2.9 4.6 7.4 3.9 5.8 8.0 1 2
Gharo 3.0 5.9 9.1 3.8 6.6 9.4 2 3
Jati 3.5 5.4 8.5 4.4 6.4 9.1 2 3
Keti Bandar 4.1 6.1 9.1 4.4 7.0 10.2 2 4
Mirpur sakro 2.8 5.2 9.2 3.6 6.4 10.7 1 3
Sajawal 3.0 5.0 7.7 4.2 6.6 9.7 1 3
Shah Bandar 3.8 5.8 8.9 4.5 6.5 9.6 2 3

3 Badin
Golarchi 3.2 5.1 7.5 4.3 6.7 9.4 1 3
Talhar 2.0 4.6 7.3 2.7 6.3 10.3 1 3

4 Jamshoro
Jamshoro 3.7 6.9 11.6 5.0 8.5 13.9 4 6
Nooriabad 3.5 6.4 9.7 4.2 7.0 10.6 3 4
Thano Bula Khan 2.1 4.7 8.7 2.7 5.5 9.8 1 2

(1) Zone 1—Karachi

At the height of 50 m, the average wind speed at the Defense Housing Authority
(DHA) Karachi and Hawke’s Bay was 5.9 and 5.4 m/s, respectively. During the monsoon
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season, the highest average wind speed for DHA Karachi and Hawke’s Bay occurred in
July. The maximum speed recorded for DHA Karachi is 9.0 m/s, while the maximum speed
recorded for Hawke’s Bay was 7.1 m/s, as shown in Figure 9. In November, DHA Karachi
and Hawke’s Bay experienced minimal wind speeds of 3.6 and 3.2 m/s, respectively.
Therefore, the Goldwind GW 140/3 MW, rated at 3.0 MW MW at a wind speed of 10.5 m/s,
is the most suitable WTG for these conditions. It has a low cut-in speed of 2.5 m/s and can
operate in harsh climatic conditions with a cut-out speed of 20 m/s. This turbine uses a
PMSG with a rotor diameter of 140 m. At a height of 50 m, the average wind speed from
January to October is above 5.7–6.3 m/s, which is ideal for these types of turbines. Figure 10
depicts the monthly wind-generated power outputs at DHA Karachi and Hawke’s Bay. In
Zone 1, a single GW 140/3 MW generator is expected to produce 3.2 GWh in July, with
the lowest output of 0.45 GWh in November. Zone 1 winds have a higher potential in
the summer (May to August) than in the winter (November to January). A single 3 MW
wind turbine in Zone 1 produces 18.1 GWh of electricity per year, which may significantly
contribute to narrowing the supply–demand imbalance in Karachi.
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(2) Zone 2—Thatta

There are six regions in Zone 2: Chuhar Jamali; Gharo; Jati; Keti Bandar; Mirpur Sakro;
Sajawal; and Shah Bandar. Chuhar Jamali is classified as class 2, while the other six are
all classified as class 3. Figure 11 shows that Chuhar Jamali has the lowest average wind
speed of 5.8 m/s in Zone 2, while Keti Bandar has the highest average of 7.1 m/s. Similarly,
Gharo and Mirpur Sakro have the lowest and highest monthly wind speeds, with 3.8 m/s
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and 10.7 m/s, respectively. Goldwind GW 140/3 MW was also selected for Zone 2 due to
its low cut-in and rated speed. At a hub height of 50 m, Figure 12 shows monthly MWh
production estimates for Zone 2 of the specified wind turbine. It is estimated that Chuhar
Jamali, Gharo, Jati, Keti Bandar, Mirpur Sakro, Sajawal, and Shah Bandar produce 9.8 GWh,
13.3 GWh, 11.2 GWh, 14.3 GWh, 11.5 GWh, 13.1 GWh, and 12.0 GWh, respectively. Most
of the power is generated during the summer, between April and September, with the
highest output in July. In this way, Zone 2 can meet the peak power demand in Sindh
province, which occurs between April and September. Consequently, anticipated power
may resolve the energy shortage concerns in these regions that negatively impact human
living conditions.
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(3) Zone 3—Badin

Zone 3 consists of two regions, Golarchi and Talhar, which are classified as class 3
according to their average wind speed. At 50 m in altitude, the average wind speed was
6.7 m/s in Golarchi and 6.3 m/s in Talhar. The maximum speed in Talhar in June reached
10.3 m/s, but in Golarchi in June and July, the maximum speed remained at 9.4 m/s. A
comparison of the wind speeds in the two regions is shown in Figure 13. GW 140/3 MW is
the most practical wind turbine at these wind speeds, generating 3 MW of rated electricity
when the wind speed is between 10.5 and 11.0 m/s. The monthly electric power generated
at Zone 3 is shown in Figure 14. The peak production of 2.2 GWh is estimated at Talhar
in May with a single 140/3 MW wind generator, and the lowest output of 57.6 MWh is
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estimated in November. The peak production of 2.16 GWh is estimated in Talhar in June
with a single GW 140/3 MW wind generator, and the lowest output of 36 MWh is estimated
in November at Talhar.
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Similarly, Golarchi’s peak production was estimated to be 2.12 GWh in July, and its
lowest production was 386 MWh in October. Zone 3 is estimated to produce 26.6 GWh
annually from a single GW 140/3 MW WTG. Even while monthly power density estimates
imply that the power density is below the marginal threshold during the winter, this is
countered by high numbers throughout the summer, notably in May and September.

(4) Zone 4—Jamshoro

This zone consists of three regions: Jamshoro; Nooriabad; and Thano Bula Khan.
As a result of their wind speed, Jamshoro has been classified as a class 6 wind area,
Nooriabad as a class 4, and Thano Bula Khan as a class 2. As shown in Figure 15, Jamshoro,
Nooriabad, and Thano Bula Khan recorded the highest wind speeds at 13.9, 10.6, and
9.8 m/s, respectively, while the lowest winds were observed at 5, 4.2, and 2.7 m/s. In this
zone, we chose the GW 136/4.2 MW wind turbine because its lower cut-in speed makes it
a viable option for Thano Bula Khan due to its higher yield. This turbine has a cut-in speed
of 2.5 m/s and can produce 4.2 MW at a rated speed of 11.5 m/s, which is a good option
for Jamshoro. It has a rotor diameter of 136 m and employs PMSG technology. The output
power from this zone using a single GW 136/4.2 MW is shown in Figure 16. It is estimated
that Jamshoro, Nooriabad, and Thano Bula Khan can produce 19.7 GWh, 14.9 GWh, and
8.9 GWh, respectively, with a GW136/4.2 MW WTG. The highest power production is
estimated at 3.04 GWh for Jamshoro between June and August, while Nooriabad and Thano
Bula Khan can produce 2.9 and 2.5 GWh, respectively, during June and July. According to
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this pattern, Zone 4 and the surrounding region are potential sites for constructing large,
economically feasible wind farms.
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Figure 17 displays a proposed wind turbine’s yearly power production capacity for all
four zones. The annual production of all four zones from a single wind turbine generator is
estimated to be 173.5 GWh. Zone 2 Thatta is predicted to have a peak output of 85.26 GWh,
while Zone 1 Karachi is expected to have the lowest generation of 18.09 GWh. Similarly, a
single wind turbine at Jamshoro and Badin can generate 43.58 GWh and 26.59 GWh yearly.
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5. Wind Energy Integration into the Power System

Environmental preservation is critical in saving the globe from environmental calami-
ties by achieving the goal of a low-carbon society. The solution is optimizing the energy
mix by integrating wind energy into the power grid and reducing reliance on traditional
energy sources. Significant adjustments must be made to adapt wind energy power into
the current grid system, primarily designed for conventional energy sources. Since wind
energy fluctuates and is unpredictable, grid stations must contend with the challenges of
high transmission and battery storage systems. Figure 18 displays a detailed power system
layout for incorporating wind energy. The WTs employ the various generators outlined
in Section 2 to transform the wind’s kinetic energy into electrical energy. The AC power
is then converted to DC, allowing the battery to store power that may be utilized during
peak hours, mitigating the intermittent nature of wind energy. Dc supply may also power
High Voltage DC (HVDC) transmission systems. Next, a DC-to-AC converter is installed at
the utility grid facility to convert HVDC to AC voltage at a steady frequency. Filters may
reduce the harmonic distortion in the voltage waveform during the power conversion, and
Voltage Source Converters (VSC) are installed at the grid station.
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Pakistan’s electricity grid is relatively outdated and has not been appropriately mod-
ified to use wind energy efficiently. Due to poor conductive materials and ineffective
distribution and transmission systems, up to 25–30% of the total power is lost. Furthermore,
the country’s inadequate power infrastructure has resulted in significant energy losses
due to harmonics generated by grid station switchgear, as well as voltage and frequency
fluctuations. Putting significant volumes of wind power into the electrical grid would
disrupt the whole system. Since wind energy is intermittent, a method for storing excess
energy that may be released when there is a high electricity demand must be devised. Such
battery storage systems will put an additional burden on the already fragile electricity
grid and grid station switchgear. Consequently, the GOP must renovate or develop new
transmission facilities to connect areas with significant wind energy to those with high
power demand to efficiently capture wind energy.

6. Conclusions

Pakistan’s energy supply relies heavily on thermal power production, which accounts
for 60% of total energy. Any increase in the price of imported oil and natural gas significantly
impacts power production in Pakistan, potentially making circular debt concerns even
more critical. The country has experienced a severe energy crisis over the past decade,
resulting in widespread load shedding and the near suspension of daily activities. Wind
energy is an alternative option that could meet future energy needs while addressing the
country’s energy imbalance. Consequently, this paper presents the assessment of wind
energy potential along the coastlines of Sindh province. Four zones were selected for the
case study: Karachi, Thatta, Badin, and Jamshoro, and the specifications and required
energy forecast for each zone were reviewed. The results were analyzed for one-year
wind speed data for 30 m and 50 m heights. The findings demonstrate that average wind
speeds exceed 5.6 m/s in all zones, with Zone 4 having the most practicable locations
with average wind speeds reaching 7 m/s. Furthermore, with an average wind speed
of 5.6 m/s, Zone 1 is considered the least feasible region for wind farms. To produce
power, Zones 1, 2, and 3 each utilize a Goldwind wind turbine (GW140/3 MW), whereas
Zone 4 uses a GW136/4.2 MW. Using a single GW140/3 MW WTG, Zone 1, 2, and 3 may
generate 18.09 GWh, 85.26 GWh, and 26.59 GWh, respectively. Similarly, employing a single
GW136/4.2 MW WTG, Zone 4 may generate 43.58 GWh. Hence, the analysis indicates
that all four sites are suitable for large-scale wind power generation due to their energy
potential. Such development is expected to reduce GHG emissions while significantly
improving Pakistan’s economic prospects by reducing dependency on fossil fuels and
creating employment opportunities. Achieving these goals requires effective measures,
subsidies, technical skills, and significant political and financial commitments.

Future research might investigate the power capture from wind energy at 90 m height
over one year. Furthermore, Pakistan may be compared to the European Union, which
has significantly more modern wind-energy infrastructure. Different generators will be
employed in these zones to study wind energy output compared to Goldwind generators.
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