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a b s t r a c t

The paper investigates the effect of tool eccentricity on the strain rate and microtextures

produced in rapid-quenched AA6061 friction stir welds. Thermocouples are embedded in

the tool and the thermal cycle are recorded via a data acquisition system. Stir zone grain

refinement is observed in all samples, with the eccentric sample having the finest grains

(3.18 mm). The strain rate is measured to be between 0.17 and 51.94 s�1, with the eccentric

sample experiencing the highest strain rate. The pole figures indicate crystallographic

textures shifted approximately 90� when tool eccentricity is employed. The aligned sam-

ples have a strong {11-2}<1-10> B simple shear texture component, while the eccentric

sample shows morphological changes towards a strong {11-1}<1-10> A simple shear

texture component.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Friction stir welding (FSW) is a welding process that takes

advantage of the rotating motion of a specially designed tool.

Heat is generated by friction at the tooleworkpiece interface
.my (L.H. Ahmad Shah).

y Elsevier B.V. This is
).
and by severe plastic deformation of the workpiece material,

in order to produce an efficient and sound weld. This solid-

state joining process avoids many issues arising from the

solideliquid phase transition occurring in conventional fusion

welding.
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Despite the technology being widely used in numerous ap-

plications including in additive manufacturing [1e6], some

fundamental aspects involving the process response to asso-

ciated variables including force, torque and strain rate remain a

major topic of interest [7e9]. Another topic of concern is the

eccentric motion phenomena, i.e., the minute ‘wobbling’ of the

tool or the tool pin during rapid rotation due to the slight offset

between the tool's/tool pin's rotational axis and the spindle

rotational axis, which can be generated artificially. Numerous

works have reported observable metallurgical change when

artificial tool eccentricity is imposed into the process [10e14].

Due to the complex material flow during the FSW process,

the strain and strain rate remain an intriguing discussion

among researchers. This is because characterization of these

material parameters is critical, as they directly affect the

recrystallization and recovery during the cooling period,

which in turn affects the final microstructure [15e17].

Different approaches have been conducted to estimate the

strain rate and Table 1 lists some of the notable aluminium

alloy-based strain rate measurements in FSW or friction stir

related processes (friction stir processing (FSP) and friction stir

spot welding (FSSW)), which are reported in the literature.

Efforts have been made to correlate the grain size and

temperature measurements within the stir zone during

welding to estimate the strain rate during processing based on

the relationship between Zener Hollomon parameter (Z) and

recrystallized grain size (d) [21,34,35]. Reliable strain rate

values can be approximated using the ZenereHollomon rela-

tionship, if the local peak temperature and average grain size

can be measured accurately [21]. In this study, the

ZenereHollomon parameter (Z) for aluminium alloys obtained

from [36] is used to deduce the strain rate, _ε (s�1), of the stir

zone through its relationship with the grain size, d (in mm), i.e.:

d¼ ½ � 0:6þ 0:08,logðZÞ��1 (1)

where:
Table 1 e Strain rate measurements in aluminium alloy FSW o

No. Authors Process Al alloy T

1 Morisada et al. [18] FSW AA1050 5 mm

2 Liu et al. [19] FSW AA2024 3 mm

3 Gerlich et al. [20] FSSP AA2024 6.3 mm

4 Gerlich et al. [21] FSSP AA5754, AA6061 5 mm, 6

5 Gerlich et al. [22] FSSP AA7075 1.5 mm

6 Chen and Cui [23] FSP A356 8 mm

7 Long et al. [24] FSP AA5083, AA7050, AA2219 9.5 mm,

8 Jata & Semiatin [25] FSW AleLieCu alloy 7.6 mm

9 Frigaard et al. [26] FSW AA6082, AA7108 6 mm

10 Mukherjee & Ghosh [27] FSW AA5083 8 mm

11 Masaki et al. [28] FSP AA1050 10 mm

12 Arora et al. [29] FSW AA2524 6.4 mm

13 Khan et al. [30] FSW AA2219, AA7475 2.5 mm

14 Buffa et al. [31] FSW AA7075 3 mm

15 Nandan et al. [32] FSW AA6061 12.7 mm

16 Zhang & Wu [33] FSW AA6061 Not avai

a TMAZ: thermo-mechanically affected zone.
Z¼ _ε,exp

�
18772
Tp

�
(2)

and Tp is the peak temperature (in �K) attained during FSW

[26].

Since static recrystallization occurs along with dynamic

recrystallization once the tool traverses a particular plane, a

degree of grain growth can be expected during the cooling

cycle and should also be considered [7,15]. Therefore, to obtain

more accurate estimates of the strain rate, some experimental

works listed in Table 1 employed two methods to retain the

as-deformed microstructure without the effects of grain

growth, recovery and recrystallization during the cooling

period [7,15]. The first one is the ‘stop-action’ technique [37],

i.e. rapidly stopping the tool rotational and translational mo-

tion during FSW [15,19,38e40]. In some of these approaches,

the tool pin was slightly modified to intentionally break when

the translationalmotionwas suddenly accelerated, effectively

embedding the pin in the workpiece and preserving the ma-

terial flow at the periphery of the tool pin [41]. Another equally

important method is the subsequent quenching, i.e. rapidly

quenching the processed region, usually by cryogenic solu-

tions, in order to suppress further microstructural trans-

formation [39,42].

While the later method is critical in retaining the original

as-deformed microstructure, the former is less important if

the region of interest is immediately at the wake of the

workpiece-tool shoulder interface, where little to no addi-

tional deformation imposed by the tool is taking place. This

study therefore aims to observe the microstructural evolution

and strain rate of AA6061 alloy through cryogenic rapid

quenching. The influence of tool eccentricity on strain rate is

also evaluated for the first time here using the cryogenic

quenching method to preserve microstructures with better

fidelity.
r friction stir related processes.

hickness Max strain rate, _ε
(s�1)

Measurement
approach

13.4 X-ray radiography

650 Stop action

1600 Rapid quenching

.3 mm 497, 395 Rapid quenching

650 Rapid quenching

85 Pin break

9.5 mm, 8.3 mm 350 Simulation

10 (at TMAZa) Experimental

20 Simulation

87 Simulation

2.7 Experimental Simulation

9 Simulation

6.95 Experimental

8 Simulation

100 Simulation

lable 22 Simulation
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Table 3 e Designation of specimens for strain rate
analysis.

Tool setup Rotational speed (rpm)

710 1120

Aligned A-710 A-1120

0.4 mm eccentricity e E-1120
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2. Materials and method

2.1. Base material and tool design

In this study, bead-on-plate welding was performed on

9.5 mm thick plates of heat-treatable AA6061-T6511

aluminium alloy, with nominal chemical compositions. All

specimens were cut to 15 � 7 � 9.5 mm dimensions and were

welded with a tool made from H13 tool-steel, with a 9.3 mm

pin length as well as 15 mm of shoulder diameter and 6 mm

pin diameter measured at the pin base. The tool profile con-

sists of an 8� tapered, M6 threaded with three flats. The tool

rotation is counter-clockwise direction as viewed from the

top. The weld travel direction was parallel to the rolling di-

rection (RD) usingwelding parameters summarized in Table 2.

As shown in Table 2, a typical FSW tool setup was used to

maintain the tool in the concentrically aligned state. However,

another tool spindle holder was designed to provide a 0.4 mm

eccentric motion during the tool rapid rotation, as explained

elsewhere [43]. The designations for the three specimens

observed are tabulated in Table 3.

2.2. Peak temperature and strain rate measurements

Due to limitations in the tool setup, the peak temperature was

measured in a second set of repeated experiments with

identical welding parameters. To measure the peak temper-

ature at the top region of the stir zone, through-holes were

drilled at the tool shoulder and K-type thermocouples were

fixed using Omegabond “600” High Temperature Chemical Set

Cement such that the end of the thermocouple junction is

flush with the shoulder surface. The schematic of the ther-

mocouple setup can be found in [8]. The thermocouple probe

therefore remained in contact with the workpiece during the

whole welding period. The temperature measurements dur-

ing FSW process were recorded using a Data Logger MSR145,

which was fixed securely on the rotating spindle through a

fabricated fixture. The sampling rate was 1 Hz and all condi-

tions were repeated three times to ensure repeatability. The

thermocouples embedded in the tool were calibrated against a

reference thermocouple and the recorded values re-adjusted

after finishing all the weld settings to ensure accurate reading.

To inhibit grain growth and morphological changes asso-

ciated with the cooling period, a cryogenic rapid quenching

process was devised using a mixture of ethylene glycol and

purified water to provide a sub-zero freezing temperature.

This solution can reach a minimum freezing point approxi-

mately �50 �C with 55% water mixture [44]. Liquid nitrogen
Table 2 e FSW parameters to produce bead-on-plate
specimens.

Welding parameter Value

Tool tilt angle 2.5�

Plunge rate 16 mm/min

Dwell time 10 s

Weld speed 63 mm/min

Rotational speed 710 rpm, 1120 rpm

Tool eccentric setup Aligned, 0.4 mm eccentricity
was incrementally poured into the ethylene glycol þ H2O

liquidmixture until a cryogenic temperature of approximately

�40 �C was achieved, where the mixture begins to solidify.

Then, as it begins to melt, themixture was used to quench the

welds. The mixture was then poured on the workpiece

immediately after the tool traverse motion was stopped and

pulled out from the workpiece. This method can provide a

more rapid quench compared to using liquid nitrogen as ni-

trogen forms a thin vapor layer once in contact with the

workpiece, which insulates it and lowers the cooling rate.

To observe in detail the microstructural and texture evo-

lution, samples for high-resolution electron backscatter

diffraction (EBSD) analysis were extracted from the top plane

of the stir zone (SZ), immediately behind the final shoulder

boundary, as shown in the area of interest in Fig. 1(a). This

area was selected based on several reasons. Firstly, Suhuddin

et al. [45] have reported that the extruded material behind the

pin undergoes additional deformation induced by the shoul-

der. Hence, analysing the area just outside this region may

provide more insight in to the severity of deformation, since

not additional deformation at the SZ is expected. The ther-

mally activated grain morphology during cooling period can

be inhibited through more rapid quenching at the surface

using the cryogenic mixture. It is also possible to monitor the

top surface temperature using a contact-based thermometer

to ensure cryogenic conditions aremaintained throughout the

cooling period.

15 mm � 7 mm � 9.5 mm specimens were prepared by

standard sample preparations. SiC abrasive pads up to 2400

grit were utilized to remove surface asperities (weld bands),

followed by the standard aluminium alloy polishing proced-

ures. The surface removal was carefully performed to ensure

that the examined area is kept as close to the top surface

where maximum quenching occurred. Since the sample sur-

face was mainly prepared manually, slight variations in the

amount of top surface removal are expected. Measurements

using a micrometer indicate the variance to be in the range of

50e150 mm, as approximated by the thickness of the red line in

Fig. 1(b). However, it can be safely assumed that such minor

discrepancies do not affect the cooling rate andmorphology of

the specimens.

The EBSD analysis was performed using a JEOL JSM-7000F

equipped with a Schottky field emission gun and a Nordlys II

EBSD Camera with HKL Channel analysis software to process

inverse pole figure maps. The EBSD characterization was

performed with a 1 mm step size on a 150 � 150 mm grid. The

observed area was slightly to the retreating side of the weld

centre, where the microstructure is expected to be more me-

chanically stable (Fig. 1(b)). Based on the proposed Nunes ki-

nematic model [46,47], an unstable conglomeration of two

distinct material flows originating from retreating side

https://doi.org/10.1016/j.jmrt.2022.09.097
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Fig. 1 e Extracted area of interest for EBSD analysis as viewed from (a) top plane and (b) cross-sectional plane at the area of

interest in (a).

j o u r n a l o f m a t e r i a l s r e s e a r c h and t e c hno l o g y 2 0 2 2 ; 2 1 : 1 4 3 4e1 4 4 1 1437
(straight through current) and advancing side (whirlpool cur-

rent) may exist in the weld centre, which can potentially yield

inconsistencies in the results.
3. Results and discussion

3.1. Peak temperature

The thermal cycles of the A-710 and A-1120 sample are shown

in Fig. 2. The vertical dashed lines delineate the various pe-

riods associated with FSW, namely the tool plunge period, the

tool dwelling period, followed by the tool translational tra-

verse period, and finally tool pull-out, which initiates the

cooling period. Relatively similar heating rates were observed

for both samples. However, the average peak temperature of

the traverse periodmeasured in the A-1120 specimen is higher

(566 �C) compared to the A-710 specimen (525 �C), stabilizing
just below the solidus temperature of the alloy, Tm ¼ 582 �C
[48].

Fig. 3 depicts the average peak temperature during the

traverse period of the aligned samples as a function of rota-

tional speed. To better understand the peak temperature-

rotational speed correlation, two other rotational speeds, i.e.,

900 rpm and 1400 rpm, were also measured. The peak tem-

perature increases with rotational speed, with the highest

measured temperature at approximately the solidus temper-

ature of AA6061.
Fig. 2 e Thermal cycle of specimens produced with the

aligned tooling.
While reasonable measurements were obtained for the

aligned samples, inconsistencies of the measured peak tem-

perature were recorded for the 0.4 mm eccentric setup, likely

due to the rigorous vibration on the system induced by the tool

eccentric motion, resulting in unstable thermocouple mea-

surements. The peak temperature values for the eccentric

setup, which were well above the solidus temperature

(ranging between 600 �C and 626 �C), were thus deemed un-

reliable. It is speculated that the addition of eccentricity may

cause an increase in heating rate and possibly higher peak

temperature. However, the peak temperature for A-1120 has

shown to stabilize just below the solidus temperature, which

is already close to the maximum value. Based on the self-

regulated ‘slip-stick’ mechanism proposed by Schneider

et al. [49], once the solidus temperature is reached, local

melting occurs at the tooleworkpiece interface, changing the

contact mechanism from stick to slip, which would regulate

the temperature to not exceed the solidus temperature of the

workpiece. Therefore, it can be estimated that the 0.4 mm

eccentric setup with 1120 rpm rotational speed will produce a

similar peak temperature to the aligned tool setup.

3.2. Strain rate and microstructural texture

Fig. 4 shows the top surface EBSD inverse pole figure (IPF)

maps for all three samples. The high angle boundaries

(HAGBs, >�15) are shown as black lines, while the white

dashed lines represent the boundary between bands of grains
Fig. 3 e Average peak temperature during traverse period

of aligned samples as a function of rotational speed.

https://doi.org/10.1016/j.jmrt.2022.09.097
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Fig. 4 e IPF maps of (a) A-710, (b) A-1120 and (c) E-1120. The

HAGBs are represented by the black lines. Welding

direction is upwards.
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that formed in layers, which were spaced at a distance equal

to the advance per revolution (welding speed/rotational

speed), i.e., 0.089mm/rev for A-710 and 0.056 mm/rev for both

A-1120 and E-1120, respectively. The welding direction is up-

wards. The white lines are inclined at an angle since the

observed area is slightly deviated from the SZ centre and to-

wards the retreating side of the SZ (Fig. 1(b)).

In general, the IPF maps show the formation of equiaxed

grains on the top surface of the SZ. Furthermore, with similar

tool setup, the A-710 specimen shows finer grains compared

to the A-1120 sample. However, the weld made with the

eccentric tool, i.e., E-1120, has a much finer grains as

compared to A-1120 and A-710. This seems to indicate that

eccentricity significantly enhances shearing activity in the SZ,

refining the grains.

The grain size, peak temperature and calculated strain rate

of the samples are shown in Table 4. The grain sizes (d) of the

HAGBs were measured using the ASTM E112-13 linear inter-

cept method [50]. The strain rates were then calculated using

Equations (1) and (2). The calculated strain rates show values

with differences in one or two orders of magnitude between

each other. The strain rate range is between 0.17 and 51.94 s�1,

where the A-1120 sample show the lowest strain rate. In

contrast, the value increased significantly by two orders of

magnitude for the E-1120 sample. This further supports the
Table 4 e Grain size, peak temperature and calculated strain r

Tool setup Rotational speed (rpm) EBSD grain size, w (mm)

Aligned 710 4.24 ± 0.68

1120 8.63 ± 0.88

Eccentric 1120 3.18 ± 1.54
hypothesis that shear stress dominates using the eccentric

tool.

Previousworks have reported that higher rotational speeds

strongly correlate to higher strain and strain rates [21,24,51].

The maximum strain rates reported in the literature to date

has been summarized by Kumar et al. [51]. In general, the

maximum strain rate exhibits an increasing trend with

increasing tool rotational speed. However, the calculated

strain rates in this study seem to show a decreasing trendwith

higher rotational speed. The reduced strain rate calculated for

the A-1120 specimen compared to that of the A-710 specimen

made with a reduced rotation speed is counter-intuitive.

Given the welding temperature was close to the solidus tem-

perature of the basematerial for the A-1120 sample, this likely

indicates that either the actual strains are lower due to local

surface melting and tool slippage, or that there was still

lingering grain growth on cooling [21].

In comparison, Gerlich et al. [21] conducted FSSW strain

rate measurements on similar AA6061 alloy and obtained a

maximum peak temperature of 541 �C and strain rate values

in the range of 55e395 s�1. The difference in the strain rate

range is possibly due to the difference in the method (spot

welds versus linear welds), the rotational speed (3000 rpm

versus 1120 rpm) as well as the finer grain sizes observed in

the base material since it had a reduced thickness (6.3 mm

versus 9.5 mm). The highest peak temperature in our work

(566 �C) is slightly higher, but remains below the solidus

temperature of the alloy (582 �C).
In addition, grain size correlates to the slip-stick condition

mentioned earlier. It is possible that the lower rotation rate

corresponds to a stick condition that eases as the rotation rate

(and temperature) increase, leading to more retained defor-

mation at the lower rotation rate and more recovery/recrys-

tallization at the higher rotation rate. Another possible reason

for the discrepancy of the current study to other previous

works may be due to the correlative effect of strain rate and

temperature. Based on friction stir processing of dual phase

TWIP steel Razmpoosh et al. [35] has suggested that

decreasing grain size is formed in the SZ at relatively lower

rotational speed (800e1600 rpm), which minimizes at

1600 rpm as the strain rate balances with the temperature.

After this minimum grain size parameter, the temperature

effect overcomes the strain rate and grain size constantly in-

creases with increasing rotational speed. It is therefore plau-

sible that, for AA6061 alloys, the strain rate-temperature

balance and minimum grain size threshold has been reached

in close proximity to the A-710 sample rotational speed, fol-

lowed by an increasing grain size trend with further increase

in rotational speed (A-1120), where the temperature effect

overcomes the strain rate.

Fig. 5 shows the IPFs of all samples based on the area

observed in Fig. 4. The IPFs are shown in the normal direction
ate of samples.

Peak temperature, Tp (Kelvin) Calculated strain rate, _ε (s�1)

798.15 1.71

839.15 0.17

839.15 51.94

https://doi.org/10.1016/j.jmrt.2022.09.097
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Fig. 5 e IPFs of all samples based on the observed area in Fig. 4.
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(ND), rolling direction (RD), which coincides with the welding

direction, and transverse direction (TD). Likewise, the plane of

reference is indicated by RD-TD plane (top plane), ND-TD

plane (front plane, perpendicular to the rolling direction)

and RD-ND plane (side plane, parallel to the rolling direction).

Differences between the aligned and eccentric samples can

be observed in the IPFs. For aligned tool samples, the {111}

plane and <011> direction are roughly parallel to the top

plane, which corresponds to the directions with the

maximum shear stresses induced by the tool shoulder [52]. As

a result of this dominant orientation of the shear deformation,

the IPFs of the A-710 and A-1120 samples show a maximum

intensity of the {111} plane towards the ND (RD-TD plane), in

conjunction with high intensity of the {011} plane being plane

normal to the TD (RD-ND plane). Previous works have also

reported similar observations with regards to the

workpieceepin interface, where the {111} plane and <011>
direction are preferentially oriented parallel to the tool pin/

shoulder interface, i.e. location of maximum shear stresses

[47,52e54].

However, the IPFs of the E-1120 sample show an approxi-

mately 90� shift of the {111} and {011} plane towards the TD

(RD-ND plane) and the RD (ND-TD plane), respectively. It is

postulated that the observed change in the texture orientation

corresponds to a change in the ideal shear texture, indicating

a variation in shear deformation strength as a result of the tool

eccentric motion.

In addition, based on works by Fonda and Bingert [55],

further analysis of the texture data indicated that both A-710

sample and A-1120 samples have a strong {11-2}<1-10> B

simple shear texture component. In contrast, with the

eccentric setup, the E-1120 sample shows morphological

changes towards a strong {11-1}<1-10> A simple shear texture

component.

Since the observed area is limited and FSW textures vary as

a function of position relative to the tool [54,56], future work

encompassing larger areas and larger sampling sizes through

iterations and parameter optimization is suggested to further

elucidate the discrepancy observed [57e61].
4. Conclusion

A rapid-quenched technique was successfully utilized on

AA6061 friction stir welds to examine the change in strain rate

and microtexture. The important findings of the research

presented in this paper are as follows:
(1) Peak temperature increases with increasing rotational

speed, but remains below the solidus temperature

during the translational motion of the tool in the case of

bead-on-plate welding of AA6061 with and without tool

eccentricity.

(2) Grain refinement of the stir zone is observed for all

welding conditions, with the 0.4 mm eccentricity setup

having the finest average grain size of 3.18 mm.

(3) The calculated strain rate is between 0.17 and 51.94 s�1,

where the E-1120 sample shows a significant increase of

two orders of magnitude compared to its A-1120

counterpart.

(4) The IPFs of the E-1120 sample show an approximately

90� shift of the {111} and {110} plane from the generally

preferred RD-TD plane and ND-RD plane orientation

towards the ND-RD plane and ND-TD plane orientation,

respectively.

(5) The aligned samples have a strong {11-2}<1-10> B sim-

ple shear texture component, while the eccentric sam-

ple shows morphological changes towards a strong {11-

1}<1-10> A simple shear texture component.
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