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Abstract—Identifying Unstriped Bunches (USB) is a pivotal 

challenge in palm oil production, contributing to reduced mill 

efficiency. Existing manual detection methods are proven time-

consuming and prone to inaccuracies. Therefore, we propose an 

innovative solution harnessing computer vision technology. 

Specifically, we leverage the Faster R-CNN (Region-based 

Convolution Neural Network), a robust object detection 

algorithm, and complement it with Progressive Growing 

Generative Adversarial Networks (PGGAN) for synthetic image 

generation. Nevertheless, a scarcity of authentic USB images 

may hinder the application of Faster R-CNN. Herein, PGGAN 

is assumed to be pivotal in generating synthetic images of Empty 

Fruit Bunches (EFB) and USB. Our approach pairs synthetic 

images with authentic ones to train the Faster R-CNN. The 

VGG16 feature generator serves as the architectural backbone, 

fostering enhanced learning. According to our experimental 

results, USB detectors that were trained solely with authentic 

images resulted in an accuracy of 77.1%, which highlights the 

potential of this methodology. However, employing solely 

synthetic images leads to a slightly reduced accuracy of 75.3%. 

Strikingly, the fusion of authentic and synthetic images in a 

balanced ratio of 1:1 fuels a remarkable accuracy surge to 

87.9%, signifying a 10.1% improvement. This innovative 

amalgamation underscores the potential of synthetic data 

augmentation in refining detection systems. By amalgamating 

authentic and synthetic data, we unlock a novel dimension of 

accuracy in USB detection, which was previously unattainable. 

This contribution holds significant implications for the industry, 

ensuring further exploration into advanced data synthesis 

techniques and refining detection models. 

Keywords—PGGAN; USB; Detector; Faster R-CNN; 

Synthetic Image. 

I. INTRODUCTION 

USB (Unstripped Bunch) is a cause of losses in palm oil 

production [1]. The average loss through USB in Malaysia is 

indicated to be 0.05% [2]. In Indonesia, another significant 

palm oil producer, the loss due to USB is 2.2% [3]. If the USB 

is not appropriately managed, losses from the USB may reach 

up to 40% in certain circumstances [4]. Sadly, manual USB 

monitoring is still practiced today, which has to change [2]. 

Faster R-CNN, a reasonably accurate object detector, may be 

used to address this issue. The availability of USB images 

limits the use of Faster R-CNN in addressing this issue. 

II. USB (UNSTRIPPED BUNCH) AND EFB (EMPTY 

FRUIT BUNCH) 

Unstripped Bunch (USB) and Empty Fruit Bunch (EFB) 

are two terms used to describe the processed oil palm fruit 

bunches that exit a thresher in a palm oil mill while still 

containing oil palm fruitlet. Fig. 1 shows a USB image, while 

Fig. 2 depicts an EFB. 

 

Fig. 1. USB with fruitlet (marked with red squares) attached 

 
Fig. 2. EFB (Empty Fruit Bunch) sample  

The threshing process produces USB and EFB in a palm 

oil mill. Adzmi et al. (2012) classified USBs as empty 

bunches with more than 20 fruitlets attached [5]. According 

to different research, USB is a bunch of oil palm fruit that 

contains at least 30% fruitlet [6]. 

III. SYNTHETIC  DATASET AND PGGAN 

A. Dataset  for Specific Applications 

Deep learning (DL) or advanced machine learning models 

have been demonstrated to require supplies of large-scale 

datasets [7]. As a general rule of thumb, thousands of photos 

per category are required to train DL models in order to attain 

human-level performance [8]. Given the benefits of data size, 

the computer vision community has developed several 

extensive image datasets with millions of labeled images, 

including ImageNet [9], Microsoft Common Objects in 
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Context [10], Large Vocabulary Instance Segmentation [11], 

and Open Images [12], to name a few. 

There are currently relatively few publicly accessible 

image datasets in specialized applications, such as the 

agricultural product processing industry, such as palm oil 

mills, that contain hundreds or even thousands of photos per 

category, comparable to the computer vision datasets 

discussed above. Leveraging modern AI capabilities, 

particularly DL techniques, in agriculture is severely 

inhibited by the lack of large-scale image datasets related to 

agricultural or processing activities. Data/image 

augmentation, which increases the size and variety of data 

sets, is a popular strategy to overcome the limitations of 

physically acquired data [13]. 

B. GAN (Generative Adversarial Network)  to Produce 

Synthetic Datasets  

Goodfellow et al. (2014) proposed GAN as a new 

generative modeling framework [14] to synthesize new data 

with the same characteristics from training examples, 

visually approximating the training data set. Various GAN-

based methods have been proposed for image synthesis in 

recent years [15], [16], [17], [18], [19], [20], [21], [22], [23], 

and [24] with applications spreading rapidly from computer 

vision and machine learning communities to domain-specific 

areas such as medical  [25] [26], [27], [28], [29], and remote 

sensing [30], [31],[32] [33], [34], [35], [36], [37], [38], [39], 

[40], and [41]; industrial process [42], [43], [44], [45], [46], 

[47], and [48]; and agriculture [49], [50], [51], [52]. 

 Occasionally, models may be unsuitable for executing a 

particular job due to the characteristics they have been 

trained. Hence, the process of training a new model is a 

challenging endeavor. An adequate dataset is necessary for 

this task. If the required dataset is not accessible, it becomes 

imperative to generate a dataset that aligns with the particular 

issue or domain of interest. The ability of GAN to produce 

synthetic data is an opportunity to overcome this problem, so 

many researchers use GAN to build synthetic datasets that are 

used to train object detectors [53], [54] [55], [56], [57], [58], 

[59], [60], and [61]. 

The implementation of GAN to build synthetic datasets 

for agricultural product detection has been carried out by 

several researchers. It has been used to generate realistic 

images to train deep learning models, improving fruit 

recognition performance [62], [63], [64], [65], [66], and [67]. 

The GAN architecture used includes the CGAN (cycleGAN)  

[68], [69], and [70]; Boundary Equilibrium GAN [71]  and 

Deep Convolutional GAN [72]. The GAN model used is not 

limited to the models that have been mentioned but continues 

to develop; this shows the potential of GAN in improving 

object detection performance. 

Several researchers have also reported improvements in 

the ability of object detectors trained with synthetic datasets. 

Fei et al. (2021) reported that a fruit detection model 

developed with YOLOv3 and enhanced with GAN-

synthesized images for the day domain yielded 37.2 mAP 

(mean Average Precision) instead of 37.0 mAP [64]. The 

GAN-generated synthetic data implementation for Faster R-

CNN is reported to provide performance improvements; with 

GAN-augmented data, VGG16-based Faster R-CNN trained 

with augmented data yields the best average accuracy of 90%, 

which is 28% higher than the accuracy of VGG16 without 

data augmentation [73]. 

In their study, Yuwana et al. (2020) investigated the use 

of GANs using multilayer perceptron architecture as both the 

model generator and discriminator. Their research aimed to 

facilitate illness detection by synthesizing tea leaf images 

belonging to four distinct classes: healthy and three different 

types of sick leaves. The classification accuracy of GAN and 

DCGAN (Deep Convolutional GAN) was 88.84% and 

88.86%, respectively, while using 1000 synthetic pictures per 

class. This indicates an enhancement of around 2.5% 

compared to the basic model that did not include image 

augmentation [38]. Gomaa and El-Latif (2021) achieved a 

recognition accuracy of 97.9% in their study by using 

DCGAN to generate synthetic images in facilitating the first 

identification of tomato plants infected with the tomato 

mosaic virus. This accuracy was acquired using augmented 

data, resulting in an improvement of around 1% compared to 

the accuracy achieved without augmentation [39]. 

GAN has a high probability of experiencing a mode 

collapse. Mode collapse is a phenomenon that occurs when 

the model generator is unable to effectively capture and 

represent the entire spectrum of potential outputs, resulting in 

a limited and distinct set of outputs that deviate from the 

patterns seen in the training data. The discriminator exhibits 

excessive proficiency, making it unable to discriminate 

synthetic data generated by the generator, impeding 

knowledge acquisition. As a result, generators face 

challenges in producing multiple outputs, leading to a 

tendency for generators to get stuck in repeating patterns, 

limiting the available variance in the resulting samples. The 

duplicate image problem can be solved by modifying the 

GAN training method. 

C. PGGAN 

As a modified GAN, Progressively Growing GAN 

(PGGAN) [74] can solve the problem of duplicate samples 

[75] using a multi-stage training method. PGGAN utilizes the 

concept of a progressive neural network that was first 

proposed by Rusu et al. in 2016 [76]. PGGAN requires 

synchronously developing generator and discriminator 

networks and gradual model training from low-resolution 

(4×4 pixels) to high-resolution images by adding network 

layers. This strategy substantially increases training speed 

(two to six times faster) and image stability for large image 

resolutions. As a result of the incremental expansion of the 

convolutional layers, the generator and discriminator model 

can effectively learn coarse-scale details initially and then 

fine-scale details through the training process. 

The PGGAN is a GAN trained on multi-stage resolution; 

at each stage, the generator and discriminator are added with 

a new convolution layer with higher resolution. A 

fundamental GAN comprises two neural network models: a 

generative model 𝐺 (Generator) that learns the distribution of 

unseen training data and a discriminative model 𝐷 

(Discriminator) that learns to classify whether samples are 

from the training data distribution. The generator takes a 

random noise vector 𝑧 as input and synthetic data 𝐺(𝑧) as 
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output; a discriminator 𝐷 takes 𝑥 or 𝐺(𝑧) as input and a 

probability 𝐷(𝑥) or 𝐷(𝐺(𝑧)) as output to indicate whether it 

is synthetic or from the authentic data distribution, as shown 

in Fig. 3.  

 

Fig. 3. PGGAN architecture  

The generator and the discriminator are both 

simultaneously trained using the stochastic gradient descent 

(SGD) algorithm, and their training can be viewed as a two-

player minimax game as an objective function equation (1). 

𝑉(𝐷, 𝐺)𝐷           𝐺
max 𝑚𝑖𝑛 =  𝔼𝑥−𝑝𝑑𝑎𝑡𝑎(𝑥) [𝑙𝑜𝑔𝐷(𝑥)]

+ 𝔼𝑧−𝑝𝑑𝑎𝑡𝑎
(𝑧) [log (1

− 𝐷(𝐺(𝑧)))]    (1) 

(1) 

The discriminator attempts to maximize 𝑉 (𝐷, 𝐺) (probability 

𝐷(𝑥)), whereas the generator attempts to minimize it. In other 

words, the discriminator distinguishes between the 

probabilities of images 𝑥 in 𝑝𝑑𝑎𝑡𝑎  (𝑥) (the distribution of 

authentic data) and the noise distribution 𝑝𝑑𝑎𝑡𝑎  (𝑧). On the 

contrary, the generator generates samples to deceive the 

discriminator. 

In the PGGAN’s discriminator and PGGAN’s generator, 

the network is predominantly composed of up sample and 

down sample blocks. The backbone structure of the up-

sample block in the generator network is upsampling2d- 

convolution2d-LRelU activation-convoltion2d-LReLU, as 

shown in Fig. 4. 

 

Fig. 4. Up sample block 

The backbone structure of the down sample block in the 

discriminator is conv2d- LReLU-Conv2d-LReLU-

averagepooling2d, as depicted in Fig. 5 

 

 

Fig. 5. Down sample block 

D. Faster R-CNN 

Faster R-CNN, introduced in 2015 by Ross Girshick et 

al., is one of the most well-known object recognition designs 

that employ convolutional neural networks alongside YOLO 

(You Look Only Once) [77] and SSD (Single Shot Detector) 

[78]. Apart from YOLO, the Faster R-CNN is one of the best-

performing object detectors in terms of accuracy [79] [80]. Its 

good performance has led to the emerging application of the 

faster R-CNN for the detection of special objects, such as 

agricultural products [81], [82], [83], [84], and [85]. 

Faster R-CNN is a two-stage object detector. The first 

stage is an RPN (Region Proposed Layer), and the second is 

the classifier. Fig. 6 depicts the architecture of Faster R-CNN 

in general. Various bounding boxes are assigned to be region 

proposals through the region proposal networks and the deep, 

fully-connected convolutional neural networks; then, the 

results are normalized through the ROI (Region of Interest) 

Pooling Layer. The Fully Connected layers extract image 

features for object-class classification and perform bounding 

box regression. 

 

Fig. 6. Faster R-CNN architecture 

IV. METHODS  

A comprehensive experimental approach was designed to 

evaluate the potential of synthetic image generation using 

PGGAN, especially in improving the performance of 

Unstripped Bunch (USB) detection. The initial experiment 

was carried out by conducting PGGAN training using 

authentic images. Authentic images were taken from a 

surveillance camera installed on a USB conveyor inside the 

palm oil mill. The total number of authentic images for the 

PGGAN training dataset was 800 images, consisting of 400 

USB and 400 EFB images, respectively. Images used for the 

training were selected randomly. 

The trained PGGAN was then used to produce 1,000 

synthetic images, each consisting of 500 EFB images and 500 

USB images. These synthetic images were used to train USB 

detectors using VGG16 as a feature extractor. The VGG-16 

was selected as the feature extractor due to its smaller 

convolution filter, which reduces the tendency of the network 

to overtrain. Moreover, VGG-16 is the least size-wise model 

that allows spatial characteristic understanding of an image 

[86]. The synthetic images produced by PGGAN were split 

into 800 images for training and 200 for validation. 

The USB detector was also trained with the dataset of 

authentic images, with the same number of images and 

training parameters as the USB detector was trained with 

synthetic images. A performance comparison of USB/EFB 

detectors that were trained with synthetic image dataset and 
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those trained using authentic image dataset was carried out to 

assess whether the use of synthetic images generated by 

PGGAN could improve the performance of the USB 

detectors. 

A. PGGAN Training 

Progressive Growing GAN is an extension of the GAN 

training procedure that involves training the GAN to produce 

very small images, such as 4×4 pixels, and then progressively 

increasing the resolution scale of the resulting images to 8×8, 

16×16, or larger, as desired. This allows progressive GAN to 

generate synthetic images with a 1024-by-1024-pixel 

resolution. 

However, in this research, the resolution of the images 

used for USB detector training was limited to 512×512 

pixels. The particular 512×512 resolution limit was 

determined since the largest side of input images in Faster R-

CNN was set at 600 pixels. 

As seen in Fig. 7, PGGAN was trained in stages. In the 

first stage, it was trained with a 4×4 image, and the weights 

generated at this size were used to train a larger resolution in 

the subsequent stage. Since our study limited the resolution 

size to 512×512, the process would be stopped when 

512×512 image resolution was achieved. 

 

Fig. 7. PGGAN training process 

The training parameters are shown in Table I. The Adam 

optimizer was chosen for optimization because it is relatively 

insensitive to the training hyperparameters, such as learning 

rate and momentum; thus, the resulting PGGAN model 

became more stable. The He normal initializer was selected 

as the kernel initializer to prevent the gradient from vanishing 

or exploding and improve the network stability and 

convergence during training [87]. A linear activation function 

was used for the output layer to produce a continuous output. 

A learning rate of 0.001 was chosen to speed up the training 

process. 

TABLE I.  PGGAN FINE TUNING TRAINING PARAMETERS 

Training parameter Value 

Kernel initializer He Normal 

Optimizer Adam 

Output activation function Linear 

Learning rate 0.001 

 

The total number of images used to train PGGAN was 

1000, comprising two datasets: the USB and EFB datasets. 

Each data set contained 500 related authentic images. Table 

II shows samples of EFB and USB images that were used to 

train PGGAN. 

TABLE II.  USB AND EFB IMAGES SAMPLES FOR PGGAN TRAINING 

USB image EFB Image 

  

  
 

In this research, PGGAN network training was performed 

using the NVIDIA GeForce RTX 3080 GPU and took two 

weeks. PGGAN minibatch sizes varied depending on the 

available memory budget (4×4:32, 8×8:32, 16×16, 64×64, 

128×128, 256×256:8, and 512×512:2). 

B. USB Detector Training 

The USB detector was trained using images generated by 

PGGAN (synthetic images), authentic images, and a merged 

dataset of both images. The training for each dataset was 

carried out separately. A performance comparison of USB 

detectors that were trained using different datasets (synthetic 

images, authentic images, and images of both types) was 

conducted. The USB detector training parameters were set 

using the same values. Table III lists the specification of the 

training parameters. 

TABLE III.  FINE TUNING TRAINING PARAMETERS OF THE USB DETECTOR 

Training parameter Value 

Anchor ratios [1:1], [1.56:1.2], [1.2:1.56] 

ROI threshold 0.8 

Backbone VGG16 

Learning rate 0.00001 

Classifier regression 8.0, 8.0, 4.0, 4.0 

 

In this research, a similarity test was also carried out 

between the synthetic images and the authentic images. The 

parameters used for the image similarity test were PSNR, 

SSIM, and VIF. The PSNR and VIF evaluate whether the two 

images are the same, while the SSIM tests whether the two 

images are structurally similar. In the test, the PSNR value 

was expected to be below 20 dB [44], and the VIF score 

approached zero, meaning the two images were different 

[45]. In contrast, the SSIM value was expected to be above 

50% (confidence in recognition for SSIM is 0.580) [46], 

meaning that both images had the same structure, that the 

USB and EFB images produced by PGGAN still represented 

an oil palm bunch but still maintained the unique 

characteristics that differentiate USB from EFB. 
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V. RESULT AND DISCUSSION 

A. Training Performances of The USB Detectors 

The PGGAN model that had been trained was used to 

generate 1000 images. Table IV depicts USB and EFB 

PGGAN-generated sample images. Apparently, PGGAN was 

assumed to be capable of producing synthetic images 

differently from the authentic image. Therefore, an image 

similarity test was carried out to prove the assumption. 

TABLE IV.  SAMPLES OF USB AND EFB SYNTHETIC IMAGES PRODUCED 

BY PGGAN AND THE REPRESENTATIVE AUTHENTIC IMAGES 

Image’s 

number 
Authentic image Synthetic image 

 

1 

  

 
2 

  

 
3 

  

 

4 

  
 

The synthetic images were contrasted with authentic 

images that were used to train PGGAN. Several test 

parameters, including SSIM (Structural Similarity Index 

Measure), PSNR (Peak Signal to Noise Ratio), and VIF 

(Visual Information Fidelity), were conducted to evaluate the 

similarity of these images. 

Table V presents similarity test results for the sample 

images. According to the PSNR scores, the average value was 

13.5377 dB (under 20 dB). Whereas, the average VIF was 

0.0325 (close to zero). The results of the similarly test 

suggested noticeable differences between the produced USB 

and EFB images and the authentic images.  

TABLE V.  SIMILARITY TEST RESULT OF THE SAMPLE IMAGES 

Parameter Image 1 Image 2 Image 3 Image 4 Average 

PSNR 15.2241 12.5531 12.1678 14.2057 13.5377 

VIF 0.0497 0.0235 0.0188 0.0244 0.0325 

SSIM 0.8295 0.6638 0.6305 0.7310 0.7137 

 

According to the SSIM parameters, whose average value 

was 0.7137 (or 71.37%, which was above 50%), it was 

evident that the images exhibited similarity despite their 

inherent disparities. Despite their distinctiveness, the images 

presented the defining features of a USB, which included oil 

palm fruitlets, as well as the defining features of an EFB, 

which was a lack of fruitlets. Consequently, the synthetic 

images portrayed an oil palm bunch effectively. 

Fig. 8 to Fig. 13 show the training performance of the 

USB detector on different training datasets. The blue lines 

represent the training performance of a USB detector that was 

trained using a synthetic dataset (which contains only 

PGGAN-generated images); the red lines represent the 

training performance of the USB detector trained using a 

merged dataset (which contains authentic and synthetic 

images with a 1:1 ratio). The yellow lines represent the 

training performance of the USB detector trained on an 

authentic dataset (which contains only authentic images). 

 

Fig. 8. RPN regression loss 

 

Fig. 9. RPN classification loss 

 

Fig. 10. Classifier classification loss 

0

0.05

0.1

1

2
1

4
1

6
1

8
1

1
0

1

1
2

1

1
4

1

1
6

1

1
8

1

2
0

1

2
2

1

2
4

1

2
6

1

2
8

1

3
0

1

3
2

1

3
4

1

3
6

1

3
8

1

4
0

1

R
P

N
 r

eg
re

ss
io

n
 l

o
ss

Epochs

RPN regression loss

Trained with synthetic dataset
Trained with merged dataset
Trained with authentic dataset

0

1

2

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0

R
P

N
 c

la
ss

if
ic

at
io

n
 l
o
ss

Epochs

RPN classification loss

Trained with synthetic dataset

Trained with merged dataset

Trained with authentic dataset

0

1

2

1

2
0

3
9

5
8

7
7

9
6

1
1

5

1
3

4

1
5

3

1
7

2

1
9

1

2
1

0

2
2

9

2
4

8

2
6

7

2
8

6

3
0

5

3
2

4

3
4

3

3
6

2

3
8

1

4
0

0C
la

ss
if

ie
r 

cl
as

si
fi

ca
ti

o
n

 l
o
ss

Epochs

Classifier classification loss

Trained with sintetic images

Trained with mixed images

Trained with real images



Journal of Robotics and Control (JRC) ISSN: 2715-5072 682 

 

Wahyu Sapto Aji, Oil Palm USB (Unstripped Bunch) Detector Trained on Synthetic Images Generated by PGGAN 

 

Fig. 11. Classifier regression loss 

 

Fig. 12. Total loss 

 

Fig. 13. RPN classifier accuracy 

As seen in Fig. 8 to Fig. 13, all the datasets used to train 

the USB detector could create a convergent model. From Fig. 

8 to Fig. 13, the USB detector trained using a synthetic 

dataset displayed better training performance, where the total 

loss was 0.337 instead of 0.492, which was the total loss 

resulting from model training using an authentic dataset. The 

same trend was also demonstrated by the USB detector 

trained with a merged dataset, whose results were also 

reasonably better than using an authentic dataset. A summary 

of the training performance parameters of USB detectors 

trained on different datasets is presented in Table VI. 

Table VI also reveals that the utilization of synthetic 

images could increase RPN layer accuracy (92.6% for 

training with the synthetic dataset, 92.1% for training with 

the merged dataset) compared to using only authentic images 

(89.9%). 

Regarding RPN classification loss, model training using 

synthetic and merged datasets provided smaller values (0.092 

and 0.078, respectively) compared to using an authentic 

dataset (0.115). The trend was similar for RPN regression 

loss. The regression loss of synthetic and merged datasets was 

smaller (0.019 and 0.023, respectively) compared to the 

authentic dataset (0.249). 

As with the loss in the RPN network, the loss during 

classifier network training also showed similar trend results. 

The classification loss and regression loss were smaller when 

the USB detector was trained using synthetic images 

compared to when trained with only authentic images. This 

causes the total loss for the proposed method to be smaller 

(0.336 and 0.348 for synthetic and merged datasets, 

respectively) than conventional training with only authentic 

images (0.492). Regarding the RPN layer accuracy as a 

training parameter, using synthetic images for training 

resulted in increased accuracies (92.6% for training with a 

synthetic dataset, 92.1% for training with the merged dataset) 

compared to using authentic images (89.9%). 

TABLE VI.   TRAINING PERFORMANCE OF USB DETECTORS TRAINED 

WITH DATASETS OF AUTHENTIC, SYNTHETIC, AND COMBINATION OF BOTH 

IMAGES 

Parameter 
Synthetic 

dataset 
Merged 

dataset 
Authentic 

dataset 
RPN classifier accuracy 0.926 0.921 0.899 

RPN classification loss 0.092 0.078 0.115 

RPN regression loss 0.019 0.023 0.032 

Classifier classification loss 0.180 0.193 0.249 

Classifier regression loss 0.046 0.055 0.095 

Total loss 0.337 0.348 0.492 

B. Validation Test 

Validation tests were performed to verify the 

functionality of the USB detector. Fig. 14 illustrates the 

detection results of each USB detector trained using a 

synthetic dataset Fig. 14(a), a merged dataset Fig. 14(b), and 

an authentic dataset Fig. 14(c). Moreover, Fig. 14 actually 

depicted an ESB. 

 

Fig. 14. Object detection accuracy per image during the validation test 

Although the USB detector trained using the synthetic 

dataset failed to recognize an ESB Fig. 14(a), combining 

synthetic images with authentic images in a 1:1 ratio to form 

a merged dataset was able to improve the performance of the 

USB detector so that it could detect an ESB Fig. 14(b). In 

fact, it also corrected erroneous detection by the USB detector 

trained with authentic images as shown in Fig. 14(c). 

Fig. 15 shows the results of the USB detector validation 

test. The validation test results revealed that the performance 

of USB detectors trained on authentic and synthetic datasets 

was nearly identical. However, the USB detector trained with 

a merged dataset had better performance. 
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Fig. 15. Object detection accuracy per image during the validation test 

Table VII lists the validation test results of USB detectors 

trained using different datasets. According to the results, a 

merged dataset used to train the USB detector resulted in the 

best results. A USB detector trained with a dataset of 

synthetic images gave a slightly lower mAP (75.3%) than 

authentic (real) images (77.1%). The accuracy was slightly 

smaller because only some of the detailed distinctive features 

of USB and EFB could be captured by PGGAN. The results 

of the training validation test using a merged dataset in a ratio 

of 1:1 gave a better mAP of 87.9%, or an increment of 

approximately 46% than the mAP obtained when using 

authentic images as training data. 

TABLE VII.  VALIDATION TEST RESULTS OF USB DETECTORS TRAINED 

WITH SYNTHETIC, MERGED AND AUTHENTIC DATASETS 

Dataset mAP Difference (%) 

Authentic 77.1% Benchmark 

Merged (1:1 ratio) 87.9% 10.1% 

Synthetic 75.3% -2.4% 

VI. CONCLUSION  

This paper proposes synthetic data images to train a 

VGG16-based Faster R-CNN to detect USB and EFB. The 

new data samples were obtained using PGGAN with the 

highest resolution of 512×512. The synthetic image-

generating system using PGGAN could produce new images 

while maintaining the semantics of authentic images. 

Increasing the number and variety of sample images impacts 

the accuracy of USB and EFB detection. Combining 

authentic and synthetic datasets yielded the best detection 

results, increasing the ability to detect (mAP) by 10.1% 

compared to using only an authentic dataset. 

Even though this research succeeded in showing an 

increase in object detection performance trained using 

additional data in the form of synthetic images, training only 

using synthetic images produced by PGGAN was not able to 

improve object detection performance; one of the reasons was 

because PGGAN was trained using a relatively small dataset. 

Using a larger dataset would enable PGGAN to extract USB 

and ESB features more comprehensively. 

This research shows promising results for further study in 

real applications of USB monitoring in palm oil mills where 

the data obtained was videos rather than still images. Further 

research for generating synthetic data to train detection 

objects might utilize other GAN architectures, such as a 

super-resolution GAN, since it could generate better-

resolution images. 
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