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Microalgae possess high oil content, exhibit rapid growth rates and biomass productivity, and leave a minimal environmental
footprint, making them highly attractive for biofuel applications. Consequently, this present study is aimed at evaluating the
impact of nitrogen starvation on the marine microalgae Nannochloropsis sp. to enhance lipid accumulation. The microalga
culture was grown under an irradiance of 120μmol photon m-2 s-1, temperature 25 ± 1°C, continuous air-CO2, and with
different concentrations of sodium nitrites over a 14-day cultivation period. From the results, it was found that the growth of
the strain decreased under limited nitrogen conditions. After harvesting, the cells in the supernatant were regenerated by
cultivating in double concentration of media. The results showed that on the 12th day, the highest lipid content was achieved,
reaching 68 0 ± 2 3wt.% of the dry weight under nitrogen limitation. The composition of the obtained lipid consisted of
18.0 wt.% saturated fatty acids, 72.38wt.% monounsaturated fatty acids, and 8.95wt.% polyunsaturated fatty acids. The lipid
composition was dominated by monounsaturated oleic acid (70 97 ± 4 6wt.%), saturated palmitic acid (13 68 ± 1 0wt.%), and
polyunsaturated linoleic acid (8 41 ± 0 4wt.%). The findings of this study demonstrated that limiting nitrogen availability
enhanced lipid accumulation in Nannochloropsis sp. Despite experiencing inhibited growth, this microalga species shows great
potential for the large-scale cultivation of lipids and essential fatty acids. These results contribute to understanding the
relationship between nitrogen availability and lipid metabolism in microalgae, providing valuable insights for optimizing lipid
production in the context of biofuel and biotechnology applications.

1. Introduction

Microalgae offer a significant advantage over edible crops by
mitigating the adverse effects of human food consumption
and providing a sustainable and carbon-neutral alternative
to petroleum fuels. While biodiesel derived from edible

crops falls short in meeting the current demand for trans-
portation fuels due to direct competition with food
resources, microalgae present a promising solution as they
can be grown on nonarable land [1, 2]. Microalgal biochem-
ical compositions and growth are greatly influenced by the
availability of nutrients such as nitrogen and phosphorus,
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by which the limitation and depletion of nitrogen in the cul-
tivation media can limit its growth with concurrent increases
in lipid accumulation [3]. Nannochloropsis sp. is capable of
accumulating triacylglycerols when exposed to nutrient
limitation and responses to carbon dioxide fluctuation [4]
particularly nitrate (N) and is therefore considered a prom-
ising organism for essential oil [5]. Moreover,Nannochlorop-
sis sp. exhibits high biomass and lipid production potential
under various stress conditions [6] and has been shown to
be capable of growth in palm oil mill effluent [7–9].

Various species of Nannochloropsis have been exten-
sively studied for lipid production due to their high lipid
content of 37-64% [8, 10–14]. The interconnectedness
between the environment and the activity of microalgae
and cyanobacteria is crucial for environmental sustainabil-
ity. Over the years, algae and their immediate descendants
have played a significant role in sequestering vast amounts
of atmospheric carbon in fossil deposits [1, 15]. Microalgae
removed huge tonnages of carbon from the atmosphere to
sequester it in mineral deposits and fossilized carbon [16].
These renewable biomass resources serve as valuable inputs
to produce various goods and services such as biofuel
production, aquafeed, and high-value products [17, 18]. A
continuous flow process is developed for the recovery of
the biomass of the marine microalga Nannochloropsis salina
using flocculation methods and recovering more than 85%
of the biomass [19]. Nannochloropsis species have drawn
attention in lipid and biofuel research, due to their rapid
growth in open ponds or photobioreactors and their ability
to grow in seawater with high lipid yields (up to 60% of
dry weight) [20]. Raceway ponds can also produce large-
scale production of algal biomass [21]. Several microalga
strains, including Chlorella vulgaris, Spirulina sp., Chlamy-
domonas reinhardtii, Dunaliella sp., Scenedesmus obliquus,
and Coelastrella sp., could accumulate significant amounts
of protein, lipids, and carbohydrates, making them ideal
feedstocks for the production of biofuel [22].

In a continuous culture system operating at a steady state
with a consistent biomass concentration, it is crucial for the
dilution rate to match the specific growth rate [2]. Nanno-
chloropsis species can accumulate more than 48% of their
biomass as lipids in nitrogen-limiting conditions [13, 23].
This enhancement and lipid accumulation is consistent with
predictions of the metabolic model of the microalgae
[23–26]. Therefore, the focus of this study is to investigate
the ability of Nannochloropsis sp. which can accumulate
lipid components and their survivability culture under dif-
ferent concentrations of nitrogen environment. Addition-
ally, an unconventional approach was carried out where
the supernatants were subjected to repleted nitrogen media
and then provided 24 hours of continuous light and aeration
to initiate new growth. Besides that, the composition of
lipids was analyzed and quantified for biodiesel production
through gas chromatography-mass spectroscopy.

2. Materials and Methods

2.1. Strain and Culture Medium. Nannochloropsis sp. was
obtained from the Algae Culture Collection Center and

Laboratory, Faculty of Industrial Sciences and Technology,
Universiti Malaysia Pahang Al-Sultan Abdullah, Pahang,
Malaysia. The stock culture was maintained under sterile
condition in 1 L Erlenmeyer flask with 500mL standard f/2
medium with composition of NaNO3 (8 82 × 10−4M),
NaH2PO4H2O (3 62 × 10−5M), Na2CO3 (1 06 × 10−4M),
FeCI3·6(H2O) (1 17 × 10−5M), Na2(EDTA) 2(H2O)
(1 17 × 10−5M), CuSO4·5(H2O) (3 93 × 10−8M), Na2MoO4

(2 60 × 10−8M), ZnSO4·7(H2O) (7 65 × 10−8M),
CoCl2·6(H2O) (4 20 × 10−8M), MnCl2·4(H2O) (9 10 × 10−7
M), thiamine HCI (2 96 × 10−7M), biotin (2 05 × 10−9M),
and cyanocobalamin (3 69 × 10−10M). The culture was
grown under a light intensity of 120μmolm-2 s-1 and with a
photoperiod of 16 : 8 h light-to-dark cycle, optimum tempera-
ture (25 ± 1°C), and provided agitation with filtered air
through an air pump to prevent sediment. For nitrate starva-
tion experiments, various concentrations of NaNO3 were
used, in addition to other standard compounds (0M, 4 41 ×
10−4, 8 82 × 10−4, and 1 76 × 10−3M for zero nitrate, depleted
nitrate, standard nitrate, and repleted nitrate, respectively).

2.2. Experimental Conditions. To determine the effect of
nitrogen concentration on the growth, biomass, and lipid
productivity of Nannochloropsis sp., cultures were grown
for 14 days in batch mode. The f/2 medium was prepared
with different concentrations of nitrate, for repleted experi-
ments 1 76 × 10−3M (double the amount as standard), for
standard experiments 8 82 × 10−4M, for limited experiments
4 41 × 10−4M (half the amount as standard), and for N-free
experiments zero nitrate, while other nutrients have
remained in the concentration as stated above. The stock
Nannochloropsis sp. culture was diluted with distilled water
before being inoculated with each specific formulated f/2
medium at a 1 : 3 ratio (v v−1) for the experiment. The initial
cell concentration of each treatment was approximately 2 5
× 105 microalgal cells per milliliter. The environmental
conditions such as light, agitation, and temperature were
provided for the culture same as mentioned above.

2.3. Growth Measurement. Cell counts were determined
using a hemocytometer, while optical density values at a
wavelength of 680nm were measured every two days using
a Genesis UV-VIS spectrophotometer. After a 14-day
period, the biomass was harvested by centrifugation at
2500 × g for 10 minutes. The wet biomass was then rinsed
with distilled water and subjected to another round of cen-
trifugation. Before and after drying the biomass at 70°C for
24 hours, its weight was measured to ensure a constant
weight. After the harvesting process, an unconventional
approach was carried out, in which the supernatants were
subjected to repleted nitrogen media and then provided 24
hours of continuous light and aeration to initiate the growth
cycle of Nannochloropsis sp. The next growth of the cycle
was monitored and studied to regenerate cells’ growth rate
for continuous biomass production. In this approach,
continuous cycles of cultivation can be carried out, with less
biomass wastage.
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2.4. Lipid Extraction. Lipids were extracted using methods
described in Bligh and Dyer [27] and Smedes and Thomasen
assisted with an ultrasound technique [28–30]. Dry biomass
was weighed and dissolved in 50mL of hexane (1 : 8, wv−1)
solution in a Falcon tube. The mixture was vortexed for
30 sec. The tube was placed in a water bath at 70 ± 2°C for
60min to disrupt the cells. The mixture was then centrifuged
at 3293 × g, 10°C for 5min, and the supernatant was col-
lected. This step was repeated by adding 50mL of hexane
solvent to the biomass until the solution became colorless
[29]. The supernatant containing the extracted lipid was col-
lected after filtering through 0.45μm PTFE disk filters. The
hexane solvent was separated from the mixture, and the
extract was evaporated at 50°C, 269 × g for 15min by using
a rotary evaporator. The separated lipid was weighed and
collected in 2mL of the centrifuged tube. The extracted lipid
was transesterified by using hexane/methanolic-KOH (2 : 1,
1%) [31]. The mixture was heated at 70°C for 10min and
vortex for 30 sec. Two phases were formed in the mixture
and the top phase by pipetting in a vial [32].

2.5. Fatty Acid Methyl Ester Analysis. Gas chromatography-
mass spectrometry was used to detect fatty acid methyl esters
content. Fatty acid methyl esters (FAMEs) were measured and
analyzed in an Agilent 7890A gas chromatography (GC)
system equipped with a capillary mega wax MS column
(30 m length × 0 32 mm diameter × 0 50 μm film thickness).
The mass spectrometer detector used helium as the carrier gas
at 1.0mLmin-1. The oven is programmed with the following
time–temperature program: 190°C (2min), 190–230°C
(5°Cmin-1), and 230°C (2min). The mass spectra were
recorded at 70 eV. Mass range was 40-250mz-1. About 40mg
of fatty acid methyl ester sample was weighed in the vial;
1000μL of internal standard dilute on octane and 15mgmL-
1 concentration were added. In homogenous mixture form,
sample (1μL) was injected into GC. The inlet temperature
was maintained at 230°C with a split ratio of 50 : 1 selected.
The individual peaks of FAMEs were identified through the
chromatographic peaks by comparing retention times with
those of standards [33].

2.6. Statistical Analysis. All the experiments were carried out
in triplicate (n = 3), and the observed standard deviations
were reported accordingly.

3. Results and Discussions

3.1. Effect of Nitrate Concentration. The effect of varying
nitrate concentration on the growth of Nannochloropsis sp.
(Figure 1) monitored through cell counts and OD at
680nm is illustrated in Figure 2. The growth of cells over
the day period was higher in the standard concentration of
f/2 media when compared to the other nitrate treatments.
The growth curve exhibited a lag phase on the first day,
followed by an exponential phase starting from the second
day, during which cell multiplication was rapid until day
12. Subsequently, the growth entered a stationary phase
and showed a rapid decline on the 13th and 14th days in both
the standard and repleted medium cultures. Both cell counts

and optical density (OD) measurements confirmed that the
standard nitrate concentration resulted in the highest
growth, followed by repleted nitrate, limited nitrate, and
finally nitrate-free media.

On the other hand, for a continuous cycle of cultivation,
the supernatant was aerated and kept at the same tempera-
ture and light environment. The result found that the growth
of the cell was still present, and it was boosted by adding
double the concentration of media. The minimum amount
of nutrients present in the supernatant initiates the growth
cell. However, the addition of media increases biomass pro-
ductivity at optimum conditions. This helps to minimize the
usage of water reduce the loss of nutrients and reduce the
cost of cultivation for biomass production.

Based on Figure 3, the highest dry biomass yield was
obtained from standard media (1234 ± 35 6mg L-1) followed
by repleted-N (1011 ± 32 1mg L-1), limited-N (850 ± 25 4
mg L-1), and free-N (765 ± 35 6mg L-1) media after 14-day
cultivation period. On the other hand, the lipid productivity
trend differed in the order of limited-N (68 0 ± 2 3wt.%),
then free-N (62 3 ± 2 9wt.%), standard-N (51 2 + 2 5wt.%),
and finally repleted-N (48 1 ± 2 8wt.%). The optimum pro-
ductivity of biomass and lipids is shown in Table 1.The
results obtained in this study can be compared with previous
studies mentioned in Table 2. Nannochloropsis sp. showed
the least growth and biomass production in limited-N
media, likely due to a reduction in their light harvesting
efficiency and energy transduction, leading to decreased
photosynthetic efficacy. Nitrogen deficiency in microalgae
causes the loss of their photosynthetic efficacy of antenna,
chlorophyll a, and photosystem II completely [34]. In
response to nitrogen deficiency, microalgae can boost light
intake and divert carbon metabolism toward lipid synthesis
and carbohydrate storage. Intracellular nitrogen is reas-
signed through reducing biosynthetic pathways under
sustained low nitrogen stress. Under nitrogen deficiency,
protein synthesis and cell development both slowed [35,
36]. A similar result mentioned that the cellular density
reduced when the NaNO3 was reduced, where the photosyn-
thetic efficiency was inhibited due to the response of microal-
gae to nitrogen limitation. The reason behind this condition
is the relationship between pigment synthesis and nitrogen
metabolism. However, increasing the NaNO3 enhances the
biomass dry weight cell of Chlorella sp. [37]. Nitrogen in
the forms of nitrate, nitrite, urea, and ammonium can be
assimilated by microalgae. Green microalgae favor ammo-
nium because they can easily use it from a metabolic stand-
point. Indeed, a series of enzymatic pathways is required to
transform other forms [38]. A study [39] investigated the
nitrogen limitation on Nannochloropsis oceanica, Isochrysis
aff. galbana clone T-Iso, Rhodomonas baltica, and Phaeodac-
tylum tricornutum. As a result of response to severe nitrogen
limitation, all four species accumulated lipids, primarily in
the form of TAG. In moderate nitrogen limitation, N. ocea-
nica accumulated 51% of the dry weight as a lipid, up to
87% of the fatty acids in TAG. The only species where the
fraction of polyunsaturated fatty acids, particularly the frac-
tion of docosahexaenoic acid, was found was Isochrysis aff.
galbana clone T-Iso. Another study by [40] found that under
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(a) (b)

Figure 1: Nannochloropsis sp. photomicrographs under a fluorescence microscope (×1000) (a) and image under a field emission scanning
electron microscope (×5500) (b).
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Figure 2: Growth curve (a) by cell counts and optical density (at 680 nm) (b) of Nannochloropsis sp. cultivated under various concentrations
of nitrate.
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lower light and limited nitrogen conditions, the starch con-
tent of Pseudochlorococcum increased in the first 4 days and
then began to decrease slightly on day 10. However, neutral
lipid content begins to accumulate at day 10. Under high
light with limited nitrogen, Pseudochlorococcum showed
rapid growth and high nitrate reductase activity. Therefore,
starch acts as the main carbon storage which can indicate
that Pseudochlorococcum applies starch as the primary car-
bon storage product when it has grown under sufficient
nitrogen conditions [40]. Therefore, the rate at which nitro-
gen (supplied as NaNO3) is consumed during the synthesis
of starch and lipids was monitored by measuring the
concentration of nitrogen in the growth medium and the
activity of nitrate reductase because the ability to take up
and assimilate nitrogen frequently determines algal growth
and basal metabolism.

3.2. Transesterification and Methyl Ester Analysis. Figure 4
depicts the GC chromatogram of transesterified lipid that
is extracted from Nannochloropsis sp. The extraction and
transesterification processes showed high efficiency and
yielded the successful recovery of fatty acids. Microalgae
have emerged as a possible source of highly unsaturated fatty
acids, and Nannochloropsis sp. is observed as one of the most
promising microalgae due to its fatty acid profile. Under
nitrate limitation, the highest fatty acid content (oleic acid)
from the lower biomass specific was obtained. The current
work demonstrates that the fatty acyl compositions of the
various major lipid classes are also distinctive. Fatty acid

methyl esters are the main component of biodiesel, a sus-
tainable kind of transportation fuel. The size distribution
and degree of unsaturation in FAME profiles, in particular,
may have a major impact on the physical and chemical char-
acteristics of biodiesel [45].

Table 3 compares the result of detected fatty acids of
C16:0, C18:0, C20:0, C16:1, C18:1, C20:1, C18:2, and C18:3
under various concentrations of nitrite media. Oleic acid
(C18:1, 70 97 ± 4 6%), palmitic fatty acid (C16:0, 13 68 ±
1 0%), and followed by linoleic acid (C18:2, 8 41 ± 0 4%)
are the most dominant fatty acids in each subgroup of fatty
acids. Wang et al. [39] found that high percentage of oleic
acid (C18:1) and other dominating fatty acids such as 14:0,
16:0, 16:1, and 20:5 in the fatty acid profile of Nannochlorop-
sis oceanica. Hindarso et al. [49] reported that methyl palmi-
tic 35.21% and methyl γ 15.98% weight as the highest
composition of methyl ester from the Nannochloropsis. Since
oleic acid (39.51%) and palmitoleic acid (31.24%) are the
dominant components in the extracted oil, these unsaturated
fatty acids will improve the cold performance of biodiesel. In
turn, the produced biodiesel will be comparatively more
suitable for export to cold climate regions. According to ear-
lier research, the best biodiesel would have relatively low
quantities of saturated fatty acids and polyunsaturated fatty
acids to reduce oxidative stability and cold flow issues [45].

Biodiesel quantification was done according to EN14103
in which methyl heptadecanoate (C17) was used as an inter-
nal standard. Peaks of methyl esters were identified by
comparing them to their respective standards.

Methyl ester content wt % = ΣAi − AIS
AIS

× CIS −V IS
m

× 100,

1

where ΣAi represents the sum of methyl ester peak area, AIS
is the area of internal standard, CIS is the concentration of
the internal standard in heptane (mg/mL), V IS is the volume
of internal standard (mL), andM is the weight of the sample.
Accordingly, GC results confirmed that the transesterifica-
tion reaction has yielded methyl ester conversion of 98 7 ±
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Figure 3: The final dry biomass (mg L-1) and lipid productivity (%) of Nannochloropsis sp.

Table 1: Biomass and lipid outputs of Nannochloropsis sp. under
N-starvation (4 41 × 10−4 M) condition. Conditions: light intensity
120μmol photon m-2 s-1, temperature 25 ± 2°C, and standard f/2
media with shaking 80 rpm.

Parameter Value

Biomass concentration (mg L−1) 850 3 ± 25 4
Biomass productivity (mg L−1 d−1) 60 73 ± 0 9
Lipid in biomass (%, ww−1) 68 0 ± 2 3
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Figure 4: GC chromatogram depicting fatty acid composition of Nannochloropsis sp.

Table 2: The biomass and lipid productivities of various strains of Nannochloropsis sp. from previous work.

Species Maximum biomass (mg L-1) Lipid productivity (mg L-1 d-1) References

Nannochloropsis sp. 360 48 This study
Nannochloropsis gaditana 185 185 [41]
Nannochloropsis oculata 497 151 [42]
Nannochloropsis salina 610 228 [43]
Nannochloropsis sp. 440 108 [44]

Nannochloropsis oceanica IMET1 301 ± 0 02 158 ± 0 013 [43]

Nannochloropsis granulate CCMP525 216 ± 0 01 130 ± 0 037 [45]

Nannochloropsis oceanica NIOF15/001 75 28 [46]
Nannochloropsis limnetica 640

490 ± 0 01 173 [47]

Nannochloropsis gaditana 1049 540 ± 0 013 289 ± 0 02 [48]

N. oculata NCTU-3 480 ± 0 029 142 ± 0 049 [42]

Table 3: Fatty acid quantification (%, ww−1) of lipid extracted from Nannochloropsis sp.

Fatty acids Amount (%, ww−1)
Nitrogen limited Nitrogen repleted Standard nitrogen Nitrogen free

Saturated fatty acid

Palmitic acid (C16:0) 13 68 ± 0 14 15 73 ± 0 32 15 44 ± 0 12 14 85 ± 0 22
Stearic acid (C18:0) 4 90 ± 0 30 3 72 ± 0 1 3 34 ± 0 01 3 76 ± 0 32
Eicosanoic acid (C20:0) 0 45 ± 0 21 0 47 ± 0 12 0 76 ± 0 13 0 69 ± 0 01

Monounsaturated fatty acid

Palmitoleic acid (C16:1) 31 24 ± 0 3 32 75 ± 0 21 33 38 ± 0 35 33 54 ± 0 54
Oleic acid (C18:1) 39 51 ± 0 6 37 81 ± 0 3 35 95 ± 0 25 36 71 ± 0 64
Eicosenoic acid (C20:1) 0 27 ± 0 2 0 22 ± 0 20 0 18 ± 0 12 0 21 ± 0 30

Polyunsaturated fatty acid

Linoleic acid (C18:2) 9 41 ± 0 4 8 83 ± 0 51 10 53 ± 0 32 9 73 ± 0 43
Linolenic acid (C18:3) 0 54 ± 0 01 0 47 ± 0 21 0 42 ± 0 52 0 51 ± 0 34
Data reported as mean ± SD. n = 3 repetitions.
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0 4wt.%, surplus well the minimum requirements of
96.5wt.% methyl ester content as per EN14103 standard.

4. Conclusion

This work evaluated the locally isolated oleaginous Nanno-
chloropsis sp. by imposing nitrate starvation. Results show
that N-starvation gives a positive response in accumulating
lipids, especially the content of oleic acid (~71wt.%). After
optimization (light intensity 120μmol photon m-2 s-1, tem-
perature 25 ± 2°C, and standard f/2 media with continuous
air-CO2 while shaking at 80 rpm), in 14-day cycle cultiva-
tions, the highest lipid in biomass was 68 0 ± 2 3wt.%, while
maximum biomass concentration was 850 3 ± 25 4mgL-1

and biomass productivity stands at 60 73 ± 0 9mgL−1 d−1.
The work proves that although lower biomass is produced
under N-limitation, lipid content was considerably higher.
It was found that nitrogen starvation has enhanced lipid pro-
duction; however, it reduces the growth rate (total biomass)
obtained. In order to further the next cultivation cycle, a
higher (three times higher) concentration of standard media
needs to be added to the culture for continuous growth.
Therefore, Nannochloropsis sp. has great potential for bio-
mass for biodiesel production, which facilitates exporting
the produced biodiesel to cold climate regions for better cold
performance due to higher unsaturated fatty acids.
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