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Abstract: Fatigued drivers can often cause long-distance accidents worldwide. Fatigue states are the primary cause of highway 
accidents. This study is conducted to provide a comprehensive and reliable fatigue state detection system to avoid accidents 
and make a good decision. Three machine learning algorithms were applied to seventy-six subjects' electroencephalogram (EEG) 
readings to test their performance. A preprocessing stage extracts relevant information before applying machine learning 
algorithms to the signal. Three analytical methods were employed in this study, specifically the Decision Tree, the K-Nearest 
Neighbors and the Random Forest. The study revealed that employing all the classifiers resulted in a satisfactory accuracy rate 
compared to existing state-of-the-art methods for detecting fatigue states. The classification accuracy using Decision Tree for 
four classes and two classes were achieved at 88.61% and 88.21% respectively, which can make this EEG-based technology 
a practical and dependable solution for real-time applications.
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1. INTRODUCTION

Approximately 15% to 20% of persons within the general population experience a condition known as excessive daytime 
sleepiness (EDS) [1-4], resulting in reduced work and driving efficacy. The primary etiological factors contributing to the 
development of EDS encompass socially induced sleep deprivation in persons without underlying medical conditions, medical 
diseases such as sleep apnea or narcolepsy, and the use of sedative medications [5-7]. The accurate evaluation of sleepiness 
holds significant importance in the areas of diagnosis, therapy, and the determination of driving capability. Despite the 
advancements in technology, the accurate evaluation of tiredness continues to pose a significant difficulty in the field of sleep-
wake medicine [8]. Driver fatigue has been recognized as a prominent factor contributing to road accidents in numerous nations 
[9]. Globally, road accidents cause 1.17 million deaths annually, 70% of which take place in poor nations. Pedestrians account 
for 65% of these deaths, with children making up 35% of the victims [10]. Road crashes cause injuries to between 23 and 34 
million people annually, according to estimates [10]. The reason behind the fatigue states and associated risks of fatigue state 
is illustrated in Figure 1.

Figure 1. Fatigue states: causes and risks
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Numerous research has been undertaken in the course of time with the aim of detecting drowsiness and alerting the driver, 
hence mitigating the frequency of accidents [11]. Another study on drowsiness and fatigue, the equipment that detects 
drowsiness and fatigue in drivers is variously known as a driver vigilance monitor, a drowsiness detection system, or a fatigue 
monitoring system [12]. A variety of valuable indicators can be employed to monitor and evaluate the state of driver 
drowsiness. Objective indicators Electro-oculogram (EOG), facial expressions and shifts, yawning, eye movement, pulse rate, 
breathing rate, skin conductance, and steering wheel grip are among the various manifestations of brain signals. Subjective 
approaches, such as the Karolinska Sleepiness Scale (KSS), are employed throughout the various stages of driving activity, 
including pre-driving, driving, and post-driving. Lane lateral deviation and steering wheel movement rates are additional 
measurements that assess the driving efficiency of a vehicle. The levels of drowsiness and alertness were assessed and 
categorized in several driving scenarios, including real-world driving, simulated driving tasks conducted in basic 
environments, and simulated driving in intricate environments within specialized laboratory settings [11]. Currently, the widely 
accepted method for objectively evaluating sleep and wakefulness is reliant on polysomnographic (PSG) data, with a specific 
focus on the electroencephalogram (EEG). An early report illustrated that the criteria for visually rating sleep were originally 
established by Rechtschaffen and Kales [13]. These criteria have since been adapted and revised by the American Academy 
of Sleep Medicine (AASM) and are currently utilized in their updated version [14-15]. The criteria utilized in this study are 
derived from 30-second epochs, which have been categorized into distinct stages of alertness, rapid eye movement sleep, and 
nonrapid eye movement sleep stages 1–3 (N1–N3). Clinically, the multiple sleep latency test (MSLT) [16] and the maintenance 
of wakefulness test (MWT) [17] are used to evaluate EDS [18-19]. The MWT is utilized to examine an individual's capacity 
to remain awake in the face of excessive daytime sleepiness (EDS). It is widely regarded as the primary measure of vigilance 
for evaluating a patient's suitability for driving [17, 20, 21]. It is debatable whether classifications of wakefulness and sleep 
based on 30-second intervals are still accurate [22], particularly within the realm of driving, brief instances of inattention can 
lead to severe and sometimes lethal outcomes. Therefore, the term microsleep is frequently used in contemporary scientific 
literature and mostly pertains to brief periods of "sleep" lasting less than 15 seconds, as determined using PSG data.  

Microsleep can also be identified through behavioral observations captured by videography, such as eye lid closing, or 
through psychomotor performance assessments. Episodes of microsleep (MSEs) derived from EEG data are visually assessed 
as periods lasting from 3 to 15 seconds. These episodes are characterized by the prevalence of theta activity, which refers to 
the power of EEG signals within the frequency range of 4 to 8 Hz. During MSEs, the alpha activity, which represents the 
power within the frequency range of 8 to 12 Hz, is replaced by theta activity. Additionally, it is common for MSEs to be 
followed by the closure of the eyelids. Furthermore, less exact characterizations were employed for MSEs, such as referring 
to them as "brief episodes of typical stage 1 sleep" [23-26]. In addition to the absence of standardization and the various 
approaches used for MSE identification, visual scoring is time-consuming, requires training and experience, and is subjective. 

The utilization of multichannel EEG analysis enhances the precision of sleep stage recognition, a critical component in 
the precise identification of driver fatigue states. Furthermore, we have employed two distinct methodologies in our dataset to 
enhance the quality of our study. The initial classification consisted of four categories: wake, microsleep episode, microsleep 
episode candidate, and episode of drowsiness. An alternative method involved the adaptation of the four categories into two 
distinct groups. Normal state was assigned to the category of Wakefulness. MSE, microsleep episode candidate (MSEc) and 
episode of drowsiness (ED) have been designated to the fatigue state category, which provides greater classification precision 
and detects the fatigue state with ease. Thirdly, our method employs multiple machine learning classifiers to provide a 
comprehensive and accurate method for detecting driver fatigue. 

This study introduces an approach that aims to accurately classify different levels of driver fatigue states by employing 
various machine learning classifiers, such as K-Nearest Neighbors (KNN) and Decision Tree (DT). Following the process of 
classification, we proceeded to examine the significance of Cohen's Kappa, Sensitivity, Specificity, and Precision. Cohen's 
Kappa coefficient considers both the observed level of agreement among raters and the level of agreement that would be 
anticipated due to chance. Sensitivity is a quantitative assessment of the accuracy with which a test or diagnostic method can 
correctly detect persons who truly possess a specific ailment or trait. The concept of specificity refers to the capacity of a 
diagnostic test to accurately classify persons who do not possess a certain condition as "negative" or "non-affected". Precision 
is a quantitative metric used to assess the degree of correctness in positive predictions generated by a model or a test. 

2. RELATED WORKS 
Numerous methodologies have been proposed to ascertain the fundamental processes of weariness in EEG signals. One 
approach involves the computation of various forms of entropies as feature sets using a single channel [27]. Quintero-Rincon 
has proposed an approach that is both direct and effective in detecting driver fatigue in real-time systems [28]. This method 
utilizes a single-channel EEG signal. The technique employs a selection process to identify the most prominent channel and 
subsequently extracts four feature parameters. These parameters are utilized in the detection of fatigue through the 
implementation of a combination notched decision trees classifier. The proposed methodology attains a precision rate of 92.7% 
and incurs a time delay of 1.8 seconds, utilizing data acquired from the database of Jiangxi University of Technology. 
Nevertheless, it is crucial to acknowledge that the investigation assessed the approach within the confines of a particular 
dataset, therefore necessitating additional research to ascertain its efficacy across diverse datasets and varying circumstances. 
Furthermore, it is worth noting that the time delay of 1.8 seconds may pose practical limitations in certain scenarios when real-
time monitoring is required. It is crucial to take into account the potential consequences for driver safety that could arise from 
any delay in recognizing weariness.  

In a separate investigation, Jing et al. conducted a study with the objective of identifying driving fatigue in circumstances 
characterized by low-voltage and hypoxic plateau conditions. This was achieved by the utilization of both subjective and 
objective monitoring techniques [29]. The EEG data acquired from live driving experiments were examined using both linear 
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and nonlinear methodologies to assess the patterns manifested by the signals throughout periods of wakefulness, criticality, 
and weariness. However, the scope of the investigation was restricted to conducting tiredness assessments during field driving 
in a particular setting. Consequently, additional research is imperative to corroborate the outcomes in diverse locations and 
various driving circumstances. 

Furthermore, Zhang et al. introduced a novel methodology called clustering on brain networks (CBNs) in order to enhance 
the efficacy of driver tiredness detection [30]. The methodology employed by the CBNs is the use of a clustering algorithm to 
identify spatial nodes with unique connection properties from EEG data. The wavelet entropy data obtained from these nodes 
is further transformed into spatiotemporal images and subjected to analysis using an image edge detection technique, with the 
aim of discerning varying degrees of fatigue. The utilization of this technique effectively mitigates signal interference and 
enables the detection of fatigue prior to the emergence of subjective sensations. Consequently, it holds significant promise as 
a valuable instrument for the purpose of early warning and accident avoidance. The study presented findings that highlight the 
constraints associated with utilizing EEG indicators in both the temporal and frequency domains for the purpose of accurately 
identifying driver weariness. These limitations mostly arise from the complexities of signal mixing and the restricted sample 
size employed in the research. Moreover, the study lacks a comprehensive comparison with established methodologies and 
fails to validate its findings in real-world driving situations. Subsequently, the preceding researcher put out a sophisticated 
method designed to identify driver fatigue through the use of EEG signals [31]. The proposed system consists of a feature 
generating network that incorporates texture descriptors and a hybrid feature selection method in order to improve the accuracy 
of detection. The framework that was proposed demonstrated a notable classification accuracy of 97.29% in the identification 
of exhaustion through the analysis of EEG data. This outcome underscores the framework's potential in effectively detecting 
driver fatigue. Nevertheless, the framework that was suggested employed conventional machine learning techniques, 
potentially constraining its capacity to accommodate intricate and ever-changing driving conditions. 

A new methodology for effectively identifying driver weariness through the analysis of EEG data [32]. The methodology 
employs an innovative channel selection technique that is based on correlation coefficients. Additionally, the proposed 
approach integrates an ensemble classifier that utilizes the random subspace KNN algorithm. Additionally, power spectral 
density (PSD) is employed for feature extraction. The methodology successfully attained a notable level of precision, reaching 
99.99% accuracy in the detection of driver fatigue through the analysis of EEG data within a time frame of 0.5 seconds. The 
approach described in this study exhibits robust performance and efficiently identifies driver weariness using EEG-based 
measurements. Nevertheless, the utilization of a KNN-based ensemble classifier in real-time applications may be impractical 
due to its substantial processing complexity. In a separate study, Hwang et al. presented a model for classifying driver fatigue 
states using EEG data that is not reliant on the individual being studied [33]. This model also takes into consideration the 
variations in performance levels among individuals. The adversarial training methodology was utilized by the researchers to 
intentionally induce misperception of object categories within their classification model. In addition, the researchers employed 
the Inter-subject Feature Distance Minimization (IFDM) method to address performance discrepancies among individuals. The 
approach utilized in their study facilitated the training of EEG datasets that had a restricted number of subject labels. The 
evaluation of this approach was conducted on the SEED-VIG dataset, which led to improved accuracy and reduced variability 
in individual performance when classifying drowsiness. Nevertheless, a significant limitation lies in the substantial inter-
individual variability present in EEG data, posing a formidable obstacle in the development of a comprehensive model capable 
of achieving optimal performance across all individuals.  

The literature examined presents a range of methodologies for identifying driver weariness through the analysis of EEG 
data, encompassing both simple single-channel feature extraction techniques and more intricate machine learning models. One 
prevalent methodology is employing power spectral density and diverse entropy measurements as feature sets, whilst 
alternative approaches include clustering algorithms and picture edge detection to differentiate between distinct states of 
weariness. Numerous studies have also investigated the issue of individual performance gaps and subject variability through 
the utilization of adversarial training methodologies and component-specific batch normalization techniques. These researches 
illustrate the promise of utilizing EEG-based driver fatigue identification as a means of early warning and accident prevention. 
They have achieved high levels of accuracy and have opened up new avenues for extracting more information from intricate 
EEG data. Nevertheless, there are differences in the computing complexity, the number of channels needed, and the degree of 
subject independence attained among the various ways. This indicates the necessity for additional research to determine the 
most optimal and successful approach for real-world implementations.  

Wilapiprasitporn et al. put forth a deep learning methodology that integrates Convolutional Neural Networks (CNN) and 
Recurrent Neural Networks (RNN) for the purpose of recognizing persons based on affective EEG data [34]. The research 
employed the Database for Analysis of Emotions using Physiological Events (DEAP) dataset and revealed that the proposed 
approach exhibits greater performance in comparison to a Support Vector Machine (SVM) baseline system. The Correct 
Recognition Rate (CRR) achieved by the proposed methodology ranged from 99.90% to 100%. Recent research showed that 
CNN-GRU models outperform CNN- Long Short-Term Memory (LSTM) models in the domain of person recognition utilizing 
EEG data collected particularly from the frontal region of the brain. Additionally, these models have demonstrated 
effectiveness in mitigating the influence of affective states. Nevertheless, the proposed methodology is dependent on EEG 
signals, which necessitate the use of specialized equipment and experience in data collecting and interpretation.  
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Table 1. The summary of traditional machine learning algorithms applicated in EEG-based fatigue detection 

Reference Feature Extraction Method Classification Algorithm Accuracy (%) 
Zhao et al. [38] MVAR1 KPCA-SVM2 81.64 
Chai et al. [39] ERBM-ICA3, AR BNN4 84.3/83.0 

1MVAR: Multivariate Autoregressive; 2KPCA-SVM: Kernel Principal Component Analysis - SVM; 3ERBM-ICA: Entropy 
Rate Bound Minimization Analysis – Independent Component Analysis; 4BNN: Bayesian Neural Network. 

 
 

Table 2. The summary of deep learning algorithms used in EEG-based fatigue detection 

Reference Classification Algorithm Accuracy (%) 
Reddy et al. [41] CNN 85.42 
Paulo et al. [42] CNN 75.87 
Liu et al. [43] MIDA1, TCA2 73.01 

1MIDA: Maximum Independence Domain Adaptation; 2TCA: Transfer Component Analysis. 
 
 

In their study, Qin et al. introduced a novel deep learning model that integrates CNN and LSTM networks. The purpose 
of this model is to effectively extract vein features from raw photos, specifically for the application of finger-vein biometrics 
[35]. The model under consideration employs supervised encoding techniques to reduce binary vein texture, leading to a 
notable enhancement in verification accuracy when assessed on a finger-vein database that is publicly accessible. Nevertheless, 
it is worth noting that deep learning models exhibit a susceptibility to overfitting, a phenomenon in which they become too 
proficient at learning from the training data, hence impeding their ability to effectively generalize to novel data. Methods like 
regularization and dropout can be employed to mitigate the issue of overfitting. One of the earlier attempts to apply deep 
learning approaches to solve the drowsiness detection problem was a deep neural technique that was proposed in [36]. The 
driver's RGB video is used to extract facial features using this method. Feature fused architecture (FFA) was created by 
combining three CNN models: Residual Network (ResNet50), InceptionV3, and Visual Geometry Group 16 (VGG16). This 
technique's low accuracy of 78% is its key drawback. 

2.1 Classification using Conventional Machine Learning Algorithms 

Feature extraction methods are commonly utilized in the application of traditional machine learning classification algorithms. 
During the initial stages, researchers employed conventional feature extraction algorithms in conjunction with machine 
learning algorithms to enhance the precision of classification [37]. Furthermore, researchers have put forth several network 
architectures that incorporate different feature extraction techniques in order to autonomously extract profound and impactful 
information. Table 1 presents an overview of the machine learning articles, including information on the author, feature 
extraction method, classification algorithm, and accuracy. The table presents a comparison of feature extraction techniques, 
where the initial four items employ conventional methods for feature extraction, while the last two items utilize a feature 
extraction network to extract features. 

2.2 Classification using Conventional Deep Learning Algorithms 

When contrasting machine learning and deep learning, it becomes evident that deep learning possesses the capability to 
effectively use substantial volumes of data, hence resulting in enhanced categorization performance [40]. In recent years, there 
has been a notable utilization of various deep networks for the purpose of detecting weariness based on EEG data. In order to 
take into consideration for the substantial inter-individual variability in EEG measurements, it is imperative to develop a robust 
model that is trained on data acquired from the same individual. Moreover, this particular model has limited suitability for 
novice users, while the initial model demonstrates a comparatively lower level of robustness. Hence, it is imperative to develop 
a robust model for real-world applications that can effectively detect weariness across different individuals. In recent academic 
investigations, a limited cohort of scholars employed deep learning techniques to detect exhaustion based on EEG data across 
different individuals. Specifically, they sought to enhance the CNN model in order to enhance the accuracy of fatigue 
identification among subjects [37]. Numerous researchers have endeavored to employ transfer learning as a means to mitigate 
the variability observed between subjects. This approach involves using the knowledge and information acquired from a source 
domain and applying it to a target domain. Several techniques for domain adaptation have been utilized in this sector, including 
Maximum Independence Domain Adaptation (MIDA), Domain-Adversarial Neural Network (DANN), and Easy Transfer 
Learning (EasyTL). Table 2 provides a comprehensive overview of the deep learning studies, encompassing details such as 
the authors, classification algorithms employed, and corresponding accuracy measures. 

The literature reviewed in this study explores various deep learning techniques that have been utilized in a wide range of 
applications. These applications include emotional EEG-based human recognition, finger-vein biometrics, operative workflow 
investigation, improvement of speech, and structural shape design. The models that were proposed exhibited notable 
enhancements in terms of accuracy, efficiency, and application when compared to previous methodologies. In summary, the 
utilization of EEG-based methods for detecting fatigue states has demonstrated significant promise in terms of providing timely 
alerts and preventing accidents. This has been accomplished through the application of diverse machine learning techniques, 
which have yielded impressive levels of accuracy and facilitated the extraction of more comprehensive insights from intricate 
EEG data. Furthermore, the field of machine learning has made substantial advancements in terms of enhancing precision, 
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effectiveness, and practicality across a wide range of applications. The applications encompass a range of areas, such as 
emotional EEG-based human recognition, finger-vein biometrics technology, surgical process analysis, voice advancement, 
and structural layout design. Further research is necessary to determine the most effective and efficient approach for the 
practical use of machine learning.

3. METHODOLOGY

Block diagram and flowchart of the suggested system are shown in Figures 2 and 3. Figure 2 illustrates the sequential 
processing steps performed on the EEG data. Initially, the input stage involves loading the EEG data. Subsequently, the data 
undergoes filtering using the Fast Fourier Transform (FFT) technique. Following this, the data is further subjected to band 
filtering, resulting in segmentation into distinct frequency bands. Finally, a normalization process is used to the filtered data. 
During the processing stage, the training data undergoes training using three algorithms, namely DT, KNN and Random Forest 
(RF). Subsequently, the outcome is analyzed and the classifiers are further refined based on this analysis. The specified 
classification algorithms were trained using the Python-based scikit-learn module within the Jupyter notebook environment. 
The training utilized preprocessed data obtained from the records of 60 participants. The models that were obtained as a result 
of the training process were carefully maintained for future use. The stored models were utilized in a sequential manner to 
analyze the test data, which consisted of information gathered from a total of 16 people. The careful examination enabled the
calculation and determination of the achieved level of accuracy inside the assessment procedure.

Figure 2. Comprehensive design of the current investigation

Figure 3. System flowchart for EEG-based fatigue detection
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The flowchart in Figure 3 provides a comprehensive overview of the experimental procedure. The EEG data was initially 
loaded. Subsequently, the data underwent filtration using a band limit ranging from 0.5 Hz to 45 Hz. Then PSD was calculated 
using Equation (1), 
 
       = | ( )| =  | ( ) / |                                                     (1) 
 
where the variable k is defined as an integer ranging from 0 to 1. It is worth noting that for a specific value of k, there are 
N complex multiplications involved. The multiplication of  and ( ) was performed N times, where n ranges from 0 to 

1. 
 Subsequently, the data was partitioned into four distinct frequency bands, namely delta, theta, alpha, and beta, and 

subsequently subjected to normalization in preparation for the training procedure. The collected data was partitioned into two 
subsets, namely the training data and the testing data. The training dataset was subjected to the three classification algorithms, 
(KNN, DT, RF). The accuracy results were derived by computing the output provided by the algorithms. If the results did not 
meet state-of-the-art criteria, the classifiers were re-executed with some adjustments. Upon obtaining satisfactory outcomes, 
we deemed the algorithms to be optimal and concluded our experimental endeavors. 

3.1 Data Acquisition 

We employed an online EEG dataset consisting of 76 participants for our experiments [44] and data 
(https://zenodo.org/record/3251716) are available. These records encompass 2 EEG channels. The first EEG channel O1-M2 
where M2 is the mastoid electrode on the opposite side and the second EEG channel O2-M1 where M1 is the mastoid electrode 
on the opposite side. This EEG channels were recorded over a sampling rate of 200 Hz. These EEG channels are labeled for 
each sample which are further classified into four states which are Wake, MSE, MSEc, and ED states. Our approach involved 
using data from 60 participants for model training, while the remaining 16 participants' data was reserved for testing and 
evaluation. This division allowed us to construct and fine-tune our predictive models effectively. By training on a substantial 
portion of the dataset and testing on unseen samples, we aimed to assess the generalization and performance of our models 
accurately.  

This dataset's diverse patient profiles and distinct EEG states provided a robust foundation for our investigation, enabling 
us to develop models that can potentially contribute to improved understanding and analysis of neural signals in various clinical 
contexts. 

3.2 Data Pre-processing 

The unprocessed EEG signal underwent signal processing techniques to eliminate undesired interferences and non-signal 
artifacts [45-46]. The presence of high frequency components, such as power-line interferences, significantly contributes to 
the introduction of noise in the EEG signal [47]. The presence of noise into the system has the potential to interfere with and 
distort the signal, hence diminishing the precision of feature extraction and classification [45]. The signals were subjected to 
bandpass filtration within the frequency range of 0.5–45 Hz using a Fourier filter. Equation (2) represents the FFT: 
 

     X( ) = ( ) ;  = 0. . . . . . 1         (2) 

 
where ( ) is the FFT coefficient at frequency , ( ) is the discrete-time signal,  is the twiddle factor, and  is the length 
of the signal. 

The procedure involved conducting a FFT on the EEG signals, selectively eliminating frequencies below 0.5 Hz and above 
45 Hz, and afterwards reversing the FFT process. Signal conditioning is widely acknowledged as a crucial phase in the process 
of responding to future data collected from various devices. Notwithstanding this processing, the data retains its raw identifier 
as no discernible attributes were retrieved for the purpose of classification. Subsequently, the Fourier filter bandpass is 
employed to process the data, resulting in the filtration of the raw data into four distinct signal bands, namely Theta, Delta, 
Alpha, and Beta. EEG signals are typically examined throughout diverse frequency bands, including Delta waves. Delta waves 
are the EEG patterns that exhibit the slowest patterns and are distinguished by the highest amplitude EEG waveforms. These 
waveforms are normally measured at around 250-325 microvolts and encompass frequencies that are below 4 Hz [48-51]. 
Theta waves are characterized by larger amplitudes and frequencies, ranging from 4 Hz to 8 Hz. On the other hand, alpha 
waves are regular rhythms occurring during states of relaxation and alertness, with frequencies ranging from 8 Hz to 12 Hz. 
Beta waves, which exhibit smaller voltage and higher frequency rhythms, normally range from 14 Hz to 32 Hz, occasionally 
reaching up to 50 Hz [48-51]. The figure for the raw EEG signal, filtered signal and different bands after filtration for the first 
participant (0ncr) is illustrated in Figure 4. The figure also represents the graphical representation of the unprocessed EEG 
signal, the filtered EEG signal, PSD, and the signal partitioned into four distinct frequency bands, namely delta, theta, alpha, 
and beta. The EEG signal segment was extracted from the EEG dataset of the first subject (0ncr). 

This method ensures the signal data’s compatibility with diverse recording equipment in the future, preserving the data’s 
utility and facilitating robust analysis in varying experimental settings. Then, we normalized the features by removing the 
mean and scaling to unit variance using the normalization procedure. The standard score of a sample x is computed in 
accordance with Equation (3) where  is the i-th original value of the feature,  is the mean of all feature values and  is the 
standard deviation of all feature values. 
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Figure 4. Raw EEG signal, filtered signal, PSD, delta, theta, alpha and beta bands

                          =
 – 

 ;  = 0,1 … . . .              (3)

3.4 Performance Evaluation

In order to assess the quality of classification, the evaluation of classification results and classifier performance is conducted 
using various metrics. These metrics include classification accuracy, specificity, sensitivity, recall, F1 score, precision, 
Matthews correlation coefficient (MCC), and area under the curve. These metrics are stated in Equations (4) – (9). Precision 
shows how well it can separate true positives and true negatives from the rest of the data. Besides, the recall value can be seen 
as the ratio of accurately identified positive samples in relation to the total number of positive samples. The F1 score is a metric 
that may be regarded as a weighted mean of precision and recall, where a value of one represents the optimal performance and
a value of zero represents the worst performance.  

The terms TP, TN, FP and FN represent the abbreviations for true positive, true negative, false positive and false negative, 
respectively. MCC is a metric commonly employed in the field of machine learning to evaluate the performance of binary 
classification models [32]. The MCC can be understood as a numerical measure representing the correlation coefficient, which 
ranges from -1 to +1.

Sensivity =  
TP

TP + FN
 +  100% (4)

Specificity =  
TN

TN + FP
 +  100% (5)

Precision =  
TP

TP + FP
 +  100% (6)

Recall =  
TP

TP + FN (7)

F1 =  
2 Precision Recall

Precision + Recall (8)

MCC =  
TP TN –  FP FN

(TP +  FP )(TP +  FN )(TN +  FP )(TN +  FN ) (9)
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Table 3. Performance of the classifiers in percentages for two algorithms while considering two types of conditions

Algorithm Sensitivity (%) Precision (%) Specificity (%) Cohen’s Kappa MCC Accuracy (%)
Decision Tree-4 86.05 51.25 73.13 0.56 0.92 88.61

KNN-4 30.48 77.92 72.72 0.29 0.21 88.04
Random Forest-4 25.01 25.01 75.01 0.06 0.19 86.63
Decision Tree-2 99.96 34.64 88.95 0.59 0.16 88.21

KNN-2 98.71 52.86 90.75 0.31 0.34 87.02
Random Forest-2 86.55 96.77 89.08 0.16 0.26 86.55

Figure 5. Performance evaluation of DT, KNN and RF using sensitivity, 
specificity and precision

Figure 6. Performance evaluation of DT and
KNN using MCC

4. RESULT 

4.1 Performance Evaluation

Initially, this study conducted an analysis of the dataset, taking into account the four categories classified as waking, MSE, 
MSEc, and ED. The investigation focused on the alpha (8-13 Hz), delta (0.5-4 Hz), and theta (4-8 Hz) categories of frequencies, 
that have been linked to diverse cognitive and emotional activities. The objective of this work was to assess the efficacy of 
two widely used machine learning models, namely DT and KNN, in the context of categorization tasks. The DT exhibited 
superior performance in terms of accuracy, specificity, and precision compared to the alternative classifier, achieving values 
of 88.61%, 75.79%, and 94.04%, respectively (Table 3).

Nevertheless, the sensitivity value of 86.05% shown a satisfactory value compared to the KNN and DT algorithms for 
four classes classification. Figure 5 illustrates the sensitivity, specificity, and precision metrices for the algorithms employed 
in the study, namely DT-4, KNN-4, RF-4, DT-2, KNN-2 and RF-2. Meanwhile, RF-2 gave the best result in case of precision, 
which was 96.77% with a satisfactory accuracy of 86.55%. The figure illustrates that the inclusion of all four states results in 
a very low sensitivity. However, when only two states, namely normal and fatigue, are considered, the sensitivity significantly 
increases. In the context of specificity and precision, an inverse relationship can be observed, whereby both metrics exhibit
high values when four states are taken into account, and low values when just two states are included. 

The DT algorithm for four classes classification yielded MCC value of 0.92, which was higher compared to the MCC 
value of 0.21 obtained by the KNN algorithm and 0.19 obtained by the RF algorithm (Figure 6). This figure provides an 
illustration of the MCC values associated with various algorithms. The algorithm DT achieved the highest MCC value of 0.92 
for both types of classification. However, while considering two states, the DT algorithm has the lowest MCC value among 
all other algorithms.

The dataset was further examined, with waking being classified as the Normal condition, and MSE, MSEc, and ED being 
classified as indicators of the fatigue state. This study also assessed the performance of DT and KNN algorithms in order to 
determine the most efficient classifier. In this instance, the DT algorithm exhibited superior performance in terms of accuracy 
and sensitivity, achieving values of 88.21% and 99.96% respectively. The accuracy comparison can be observed in Figure 7. 
The DT method achieved the highest accuracy measurement of 88.61% when all four states were taken into account. However, 
it is worth noting that the accuracy measures for alternative algorithms are also rather satisfactory, with all of them surpassing 
a value of 86%. The accuracy measurement of the DT algorithm demonstrates superior performance in both scenarios, 
encompassing both four-state and two-state classifications. The accuracy of the KNN algorithm was found to be 87.02%, 
which was the lowest among the two states under consideration. The value of Cohens Kappa for RF classifier for both 
approaches did not show a better result. On the other hand, Cohen’s Kappa for DT for both approaches gave best moderate 
results (Table 4).  
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Figure 7. Comparison of accuracy for different algorithms Figure 8. Confusion matrix for the proposed DT-4 model

However, the specificity, precision, and MCC of the aforementioned method were shown to be inferior to those of the 
KNN algorithm (Figures 5 and 6). Based on the findings, it was determined that the DT model exhibited more efficiency in 
discerning fatigue states from EEG signals compared to the KNN and RF models. The results indicate that the DT classifier 
exhibits considerable promise in reliably identifying human fatigue stages based on EEG signals. The findings of this study 
provide significant significance in terms of mitigating the hazards linked to drowsy driving and enhancing overall safety.

4.2 Performance Assessment

Confusion matrices are valuable tools for assessing a classification model's performance, which makes them important in the 
field of machine learning. Classifying predictions into four distinct categories—true positives, true negatives, false positives, 
and false negatives—allows for the evaluation of the model's accuracy. The information mentioned above is essential for 
evaluating the model's benefits and shortcomings, identifying possible improvement areas, and fine-tuning algorithms to 
maximize overall performance.

Figure 8 illustrates the 3D confusion matrix of DT model for four class classifications. It is also visible that DT-4 model 
predicted all four classes in a very satisfactory amount, while it gave a small portion of wrong prediction. DT-4 gave significant 
performance. True positive values and True negative values were much higher compared to False positive and False negative 
values. The findings indicate that the DT-4 model exhibits the highest level of performance, notably in accurately recognizing 
positive situations while also keeping a relatively low percentage of false positives. This makes it the most notable pick among 
other models.

5. DISCUSSION

In summary, the proposed framework for detecting fatigue states via different machine learning architectures has demonstrated
significant impact in reliably discerning fatigue states from EEG signals. The findings of our investigation indicate that the 
framework exhibited a notable level of accuracy across all classifiers. Specifically, the Decision Tree classifier had the best 
accuracy of 88.61% when all four states were taken into account. In an alternative methodology, it was noted that the DT
algorithm exhibited a level of accuracy up to 88.21%. This level of accuracy was achieved through the adjustment of the 
waking state to signify the standard condition, while the state of weariness was denoted by the metrics MSE, MSEc, and ED. 
The KNN algorithm demonstrated notable accuracy, with a rate of 88.04% when all four states were taken into account. In 
contrast, the KNN algorithm demonstrated an accuracy rate of 87.02% when considering the two states. Meantime, the RF
classifier showed the accuracy of 86.63% when all four states were taken into account and the accuracy of 86.55% when two 
states were taken into account. The contribution of our study is centered on the presentation of a comprehensive and efficacious 
framework for the precise detection of fatigue states from EEG signals. This framework surpasses the performance of prior 
approaches. Moreover, the suggested framework has the potential to be used in real tiredness detection systems, hence 
enhancing driving safety and mitigating the occurrence of road accidents resulting from driver exhaustion. Subsequent 
investigations may extend the present framework by examining its efficacy within practical contexts and delving into strategies 
for enhancing its capacity to detect nuanced variations in EEG data. 

6. CONCLUSION

The rapid pace of contemporary culture can readily result in weariness, which can have direct or indirect detrimental effects
on the human body. Undoubtedly, the development of high-precision, real-time, and universally applicable tiredness detection 
holds immense importance. This investigation proposed a strategy within an EEG-based framework for the objective detection 
of fatigue states. Three machine learning classifiers (KNN, DT and RF) were employed to train and test the data. The study 
documented notable performance results, with an accuracy rate of approximately 85-90% achieved by all the classifiers. The 
findings indicated that the utilization of this particular technology holds potential in the identification of tiredness conditions. 
Fatigue detection, being a rapidly evolving area of research, necessitates the integration of multidisciplinary knowledge in 
order to enhance its efficacy. In addition to enhancing the detection algorithm, it is important to develop novel and efficient 
paradigms and portable equipment, as well as gather reliable standard data. It is imperative to do a replication of the study 
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using a substantial sample size and real-world driving scenarios to ascertain the accuracy of EEG measurements. Future 
research should focus on investigating the dependability and comfort of various frequency bands while utilizing additional 
features for the purpose of real-time monitoring of tiredness levels. 
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