

SAGE: A COMMUNITY EMPOWERED

UNIVERSITY E-LEARNING APPLICATION

RONALD LIM SHENG WEI

Bachelor of Computer Science

(Software Engineering) with Honours

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : RONALD LIM SHENG WEI

Date of Birth :

Title : SAGE: A COMMUNITY EMPOWERED UNIVERISITY

E-LEARNING APPLICATION

Academic Session : 2019/2023

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1997)*

☐ RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

☒ OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the

thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student’s Signature)

Date: 5th February 2023

(Supervisor’s Signature)

Dr. Nabilah Filzah binti Mohd

Radzuan

Date: 10/02/2023

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is

adequate in terms of scope and quality for the award of the degree of Bachelor of

Computer Science (Software Engineering) with Honours.

 (Supervisor’s Signature)

Full Name : Dr. Nabilah Filzah binti Mohd Radzuan

Position : Lecturer

Date :

10/02/2023

Senior

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : Ronald Lim Sheng Wei

ID Number : CB19052

Date : 5 February 2023

SAGE: A COMMUNITY EMPOWERED UNIVERISITY E-LEARNING

APPLICATION

RONALD LIM SHENG WEI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering) with Honours

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2023

ii

ACKNOWLEDGEMENTS

Throughout the journey of writing this thesis, I am grateful to have received a tremendous

amount of support and assistance from families, friends, and educators alike.

First and foremost, I would express my sincere gratitude to my supervisor, Dr. Nabilah

Filzah binti Mohd Radzuan, whose invaluable and knowledgeable insight and

professional opinion has propelled my work to even greater heights. Her dedication,

heartening and selflessness in times of need has deeply motivated me to persevere on and

complete the project.

In addition, I would like to thank my parents for their constant rapport throughout my

academic studies. They have shown great support in times of need both financially and

in spirit.

Finally, I would like to show my appreciation to my three dear friends, Tan Chee Kin,

Tan Yi Wee, and Wong Sung Sum who provided their critical criticism of my written

work as well and their subtle encouragement in times of adversity.

iii

ABSTRAK

Paradigma telah berubah untuk sektor pendidikan tinggi kerana ia memasuki era baharu,

di mana universiti beradaptasi dengan norma baharu iaitu pembelajaran dalam talian atau

pembelajaran hibrid. Dalam proses ini, elemen interaksi antara manusia dalam

pembelajaran telah terjejas kerana pelajar dianggap sebagai individu dan bukan sebagai

sebuah komuniti. Oleh hal sedemikian, pelajar memerlukan platform yang memberikan

mereka peluang untuk berfungsi sebagai komuniti untuk menggalakkan pembelajaran,

perbincangan dan perkongsian akademik bersama-sama sebagai satu komuniti akademik.

iv

ABSTRACT

The paradigm has shifted for the tertiary education sector as it is diving into a new era,

where universities are embracing a new norm which is online learning or hybrid learning.

In this process, the human interaction element of learning is lost as students are treated

as an individual as opposed to a community. Now more than ever, students require a

platform where they can function as a community to encourage mutual learning,

discussions and sharing as an academic community together.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 4

1.4 Scope 4

1.5 Significance of The Project 5

1.6 Thesis Organization 5

CHAPTER 2 LITERATURE REVIEW 7

2.1 Introduction 7

2.2 KALAM 7

2.2.1 Discussion 7

2.2.2 Graphical User Interface and Functionality 10

vi

2.3 Google Classroom 13

2.3.1 Discussion 13

2.3.2 Graphical User Interface and Functionalities 16

2.4 Edmodo 22

2.4.1 Discussion 22

2.4.2 Graphical User Interface and Functionality 24

2.5 Comparison between 3 Existing Systems 31

2.6 Conclusion 36

CHAPTER 3 METHODOLOGY 37

3.1 Introduction 37

3.2 Methodology 37

3.3 Project Requirements 39

3.3.1 Functional Requirements and Non-Functional Requirements 39

3.3.2 Constraints and Limitations 41

3.3.3 Proposed Design 43

3.4 3.4 Data Design 54

3.4.1 Firebase Authentication 54

3.4.2 Firebase Realtime Database 54

3.4.3 Entity Relational Diagram 55

3.4.4 Data Dictionary 56

3.5 Testing Plan 61

3.6 Potential Use 62

CHAPTER 4 IMPLEMENTATION, RESULTS AND DISCUSSIONS 63

4.1 Introduction 63

4.2 Implementation 63

vii

4.2.1 Initial Project Setup 63

4.2.2 Interfaces 66

4.3 Testing 76

CHAPTER 5 CONCLUSION 78

5.1 Introduction 78

5.2 Research Constraint 79

5.3 Future Works 79

REFERENCES 81

APPENDIX A User Manual FOR SAGE 83

APPENDIX B Usability Test Form 102

APPENDIX C User Acceptance Test Form 109

APPENDIX D Software Requirement Specification 114

APPENDIX E Software Design Document 147

viii

LIST OF TABLES

Table 2.1 Overall System Comparison and Proposed App 31

Table 2.2 Function Comparison Including The Proposed App 33

Table 3.1 Functional Requirements of The Proposed Application 39

Table 3.2 Non-Functional Requirements of The Proposed Application 40

Table 3.3 Constraints of the Proposed Application 41

Table 3.4 Limitations of the Proposed Application 41

Table 3.5 User Table 56

Table 3.6 Class Table 57

Table 3.7 Assignment Table 57

Table 3.8 ClassAssignment Table 57

Table 3.9 Submission Table 58

Table 3.10 ClassAnnouncement Table 58

Table 3.11 Announcements 59

Table 3.12 Chat Table 59

Table 3.13 Messages Table 59

Table 3.14 Event Table 59

Table 3.15 Community Table 60

Table 3.16 Thread Table 60

Table 3.17 Reply Table 61

ix

LIST OF FIGURES

Figure 2.1 KALAM Dashboard 10

Figure 2.2 Course Page 11

Figure 2.3 Course Participants 12

Figure 2.4 Profile Settings Interface 13

Figure 2.5 Dashboard Interface 16

Figure 2.6 Class Interface 17

Figure 2.7 People Interface 18

Figure 2.8 Classwork Interface 19

Figure 2.9 Create A New Assignment Interface 20

Figure 2.10 Grade Interface 21

Figure 2.11 Class Interface 24

Figure 2.12 Create New Post 25

Figure 2.13 Create New Assignment Interface 26

Figure 2.14 Assigment Submission Interface 29

Figure 2.15 Assignment Grading Interface 30

Figure 2.16 Messages Interface 31

Figure 3.1 Rapid Application Development Phases 38

Figure 3.2 Profile and Events Module Interfaces 44

Figure 3.3 Class Module Interfaces – Lecturer View 45

Figure 3.4 Class Module Interfaces – Student View 46

Figure 3.5 Community Module Interfaces 47

Figure 3.6 Use Case Diagram 49

Figure 3.7 Context Diagram 50

Figure 3.8 Data Flow Diagram 51

Figure 3.9 Activity Diagram 53

Figure 3.10 Entity Relational Diagram 55

Figure 4.1 Android Studio Download Page 63

Figure 4.2 Flutter SDK Website 64

Figure 4.3 Android Studio New Flutter Project Option 64

Figure 4.4 Firebase Console 65

Figure 4.5 Firebase Configuration File 66

Figure 4.6 FlutterFire Installation Command 66

Figure 4.7 Login, Google Authentication, and Sign Up Interface 66

x

Figure 4.8 Home and Profile Interface 67

Figure 4.9 Class List and Class Creation Interface 68

Figure 4.10 Class Home Interface 69

Figure 4.11 Assignments List, Create Assignment Interface 70

Figure 4.12 Assignment Submissions, Student Submission, Grade Assignment

Interface 71

Figure 4.13 Class Chat Interface 72

Figure 4.14 Resource List Interface 72

Figure 4.15 Community Index and New Community Creation Interface 73

Figure 4.16 Thread List, Thread Creation Interface 74

Figure 4.17 Thread Details, Thread Reply Interface 75

Figure 4.18 Event Home, Event Search, Event Details Interface 76

xi

LIST OF SYMBOLS

xii

LIST OF ABBREVIATIONS

MOODLE Modular Object-Oriented Dynamic Learning Environment

UAT User Acceptance Testing

SRS Software Requirement Specification

SDD Software Design Document

xiii

LIST OF APPENDICES

APPENDIX A User Manual For SAGE 82

APPENDIX B Usability Test Form 101

APPENDIX C User Acceptance Test Form 108

APPENDIX D Software Requirement Specification 113

APPENDIX E Software Design Description 147

 1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Most educational systems have been forced to embrace alternatives to face-to-

face teaching and learning in response to the COVID-19 situation. Numerous educational

systems have transitioned to activities online to maintain instruction in the event of

classroom cancellations. When compared to the option of not attending university, online

education has proven a critical tool for sustaining skill development during critical times

of the pandemic.

Before COVID-19, according to Research and Markets, the online education

industry is expected to reach $350 billion by 2025; however, these figures may be

adjusted after studying the influence of COVID-19 on the online education business. The

versatility of online education is one embraced by many. (Koksal, 2020). Hence, it is

clear that there is a demand in the field of online education.

Online education brings about flexibility to not only students but educators alike.

The ability to be able to follow online courses at one’s own pace is something that has

benefited education seekers around the globe. Considering the recent events, even world-

renowned universities globally such as Stanford University and Harvard University have

started to offer their courses online, in subjects ranging from Computer Science,

Mathematics, and also engineering, embracing digital learning as the next step in the

history of education.

However, Agarwal and Dewan (2022) asserted that there was insufficient time to

educate academicians and students on how to conduct online teaching-learning processes

or to create best practices and standard operating procedures. Online education, which

was first marketed as a cure for all ills, now requires more thought to be put into it. Due

 2

to the sloppy implementation and execution, it brought about chaos and distraught when

it was first introduced.

Furthermore, there are still concerns that access to online learning facilities is

different for students of different socioeconomic backgrounds. According to the

Department of Statistics Malaysia's general report published in 2021, the Tawau region's

mean household income is less than half that of the national average, at RM7,901. As a

result, residents are likely to face a greater digital gap than residents in other locations.

(Sarimah, 2021)

In conclusion, as promising as it seems, online learning still has its flaws and

hurdles to overcome. As a solution to the problem, educational institutions have adopted

blended learning and hybrid learning widely to reap benefits from both online learning

and traditional learning.

1.2 Problem Statement

Since the pandemic shook the world, the educational sector has taken a large hit

as it has always depended on traditional pedagogical methods to deliver educational

content to its seekers from all around the world. Transitioning from a traditional based

teaching method to a fully digital learning mode of learning was done out of necessity

due to the threat of COVID-19. Digital learning certainly has come across as attractive to

forward-thinking educators as they embrace the process that takes place in digital

learning.

Transitioning into a post-pandemic future, the remnants of online learning still

has a profound impact on educators globally. Admittedly, online learning is less superior

to a face-to-face method of education. However, there are some lessons we can learn from

online learning. A solution of digital learning paired with the time-proven methods of the

trade, can give birth to a technology-enhanced form of teaching and learning, with the

consideration flexibility, empowerment, professionalisation and strategic decision

making. (Rapanta et al., 2021).

 3

Despite the flexibility, convenience, and practicality of online learning, there are

hidden challenges that come with online learning. The lack of interaction is a significant

drawback of the adoption of online learning. Teachers and students are segregated

throughout the online learning process. (Watson et al., 2012 as cited in Agarwal &

Dewan,2022). In many circumstances, input from students and professors is derailed in

the online mode. Even acquiring fundamental information might become difficult at

times owing to a lack of human connection. (Bodzin & Park,2000 as cited in Agarwal &

Dewan,2022).

In addition to that, an important aspect of learning which is a peer-to-peer learning

is not practised as commonly since the adoption of online learning. This can be attributed

to the lack of interactions between teachers and students during the online learning

process. The sharing of personal opinions and understandings of a subject matter can

verify and validate one’s depth of knowledge for the parties involved. To further highlight

the importance of peer learning, Choi et al. (2021) asserted that peer learning strategies

that supplement students' individual learning experiences with peer evaluation are

successful at enhancing students' accountability and capacity to acquire professional

skills.

In addition, the restrictions on gatherings and the need for social distancing have

made it difficult for students to socialize in person. As a result, many students have

reported feeling isolated and disconnected from their peers (Li et al., 2021).

The lack of face-to-face interaction can have negative consequences for student

well-being and academic success. According to a review published in the Journal of

Positive Psychology, social connectedness is an important predictor of mental health and

well-being (Shamionov et al., 2021). In addition, research has shown that social support

from peers can enhance academic performance (Dupont et al., 2015).

Even though current solutions in the market provide innovative solutions to the

issue of the transfer of knowledge, and improving educator to student interactions,

however, there is a lack of emphasis towards improving the interactions between students

and encouraging peer learning through academic discussions on e-learning applications.

 4

Students undergoing their education are often not highlighted as a community but

evaluated as individuals.

Furthermore, students do not have a platform where they can come together to

discuss a solution to a question aside from asking lecturers. Every student is on their own

as they do not have a past repository to search for the answers. Hence there is a dire need

to provide students with a voice to be able to take part in academic discussions together

to develop a knowledge-seeking culture among Malaysian tertiary students.

In conclusion, the significant element of allowing students to function as a

community of knowledge seekers must be embedded into e-learning applications as a

way forward for the online learning field.

1.3 Objectives

i. To determine the existing mobile applications and design a new community

empowered e-learning application for Malaysian universities.

ii. To develop a mobile application for e-learning and academic discussions among

tertiary students and lecturers digitally.

iii. To validate the functionality of the developed e-learning application.

1.4 Scope

• User Scope

i. Tertiary students undergoing their studies at public Malaysian

universities.

ii. Lecturers

• System Scope

i. Covers mobile phone based e-learning tools for community empowered

problem-solving, retrieval of educational resources, and lesson planning.

 5

• Development Scope

i. Contains multimedia elements such as sound, text, and graphics.

ii. Using flutter as the framework, Firebase as the cloud storage, and GitHub

for version control.

1.5 Significance of The Project

i. University Students

Students can gain access to educational resources and discuss problems

together as a community which improves student to student interaction and

encourages peer learning.

ii. Lecturers

Lecturers can plan their lectures for the entire semester for their courses with

activities such as providing lecture links and educational resources. They can

enable chat groups as well within their course sections.

1.6 Thesis Organization

This thesis contains five chapters. The first chapter will explain the project's

introduction. The introduction describes the context of the project and how it might be

utilized to tackle real-world challenges. It also contains the project's purpose and

objectives, scope and significance, which dictates the development of the project's

outcome.

In chapter two, a literature review of the similar systems is presented. Each

existing system has its own unique characteristics, and functions. The advantages and

disadvantages of each existing system are analysed in depth as well.

In chapter three, the development process of the project is discussed. The project

requirements are described in depth in Appendix A, which is the Software Requirement

Specification (SRS), whereas Appendix B, which is the Software Architecture

Description, describes the system design in detail (SDD).

Chapter four talks about the implementation of the project from beginning to end.

It also talks about how the project’s testing is conducted and how it impacts the future of

 6

the project. The Usability Test form is attached in Appendix B while the User Acceptance

Test (UAT) form is attached in Appendix C.

Finally, chapter five describes the constraints faced when developing the project.

Mentions of future works are also briefly touched on to further improve the project in the

near future to increase the practicality and functionality of the system.

 7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter explains about the current university e-learning systems that are

available on the market. A detailed analysis is done on the systems to pinpoint the

strengths and weaknesses of the current systems on the market.

To fulfil the demand for online learning management systems on the market, there

are many on the shelf solutions developed to cater for the increase in demand for digital

learning experiences. The three main systems that will be analysed in depth will be

KALAM, Google Classroom as well as Edmodo.

2.2 KALAM

2.2.1 Discussion

KALAM is an online learning management system that is developed and managed

by Universiti Malaysia Pahang (UMP) on top of the MOODLE platform. It is designed

as a platform to help students access course materials and lecturers to conduct their

courses. It utilises the open-source learning management system (LMS) framework

provided by Moodle to develop the system. Many well-known universities are utilising

this platform such as Monash Malaysia, The University of Nottingham Malaysia, and

Curtin University Malaysia.

Since KALAM is a system based on the Moodle framework, it supports modern

and widely used browsers such as Google Chrome, Mozilla Firefox, Safari, and Microsoft

Edge on the desktop platform. Additionally, for mobile platforms, it can also

accommodate the Mobile Safari and Google Chrome mobile browsers. Furthermore,

Moodle also has a dedicated mobile application on the world’s two most popular mobile

 8

operating systems namely, Android and IOS. (Moodle, 2021). This makes KALAM

widely accessible to users who do not have many internet-enabled devices.

KALAM is mainly written in the programme development language of PHP,

JavaScript as well as SQL databases. It supports the use of various well-known databases

such as depicted in Table 2.1. (Moodle, 2021)

Table 2.1 Supported Databases

Database Minimum Version Recommended

PostgreSQL 9.6 Latest

MySQL 5.7 Latest

MariaDB 10.2.29 Latest

Microsoft SQL Server 2017 (increased since

Moodle 3.10)

Latest

Oracle Database 11.2 Latest

Source: Moodle (2021).

The mobile platform of KALAM (Moodle) uses technologies such as the angular

and ionic framework to develop the application. The whole communication between the

app and a site occurs through a layer of web services. Each time a user logs into the app,

a new session starts, and that session is what the idea of a “site” embodies in the

application. As a result of this, you might log several times into the same site and from

the point of view of the mobile app, those would be separate sites. (Moodle, n.d.)

There are many advantages to the adoption of the Moodle framework for

KALAM. Academic professionals and students are able to communicate in real-time, and

students receive prompt responses. Moodle also makes document management and

editing simple. Chung and Ackerman (2015) substantiated this argument by stating that

students believe MOODLE to be user-friendly. After that, the process of creating backup

copies and restoring data is straightforward. Grades can be exported to spreadsheets.

 9

Finally, access to archived material from other academic personnel is made simple.

(Ayanda, 2020, as cited in Chicioreanu & Cosma, 2017). On the technical side, it is based

on Moodle, an open-source platform managed by an open-source community. Hence

there are no charges incurred for the use of its platform. Moodle employs a modular

system that supports many plugins that can enhance its functionalities. Hence, Moodle

supports smooth communication, text formatting and management, data exporting and

the ability to add many plugins.

In spite of the amazing strengths that KALAM possesses, there are some

downsides to KALAM. There is no genuine guarantee that learners studied the material

assigned to them. Academic personnel sometimes struggle to assess students' talents and

capabilities in areas such as creativity and critical thinking. Copying and pasting can be

used to complete tasks. Finally, there is no certainty regarding the results of the final

testing. (Ayanda, 2020, as cited in Petrovici & Ciobanu, 2016). Thus, KALAM struggles

to evaluate a learner’s cognitive abilities through conventional means.

 10

2.2.2 Graphical User Interface and Functionality

Figure 2.1 KALAM Dashboard

Figure 2.1 depicts the dashboard of KALAM. In the figure, there is the “recently

accessed” courses which show the user’s last accessed course contents for the

convenience of the user. Next, there is also the course overview in which the user can

view all courses undertaken by the student for the current semester. Furthermore, there is

a timeline in which the user can view upcoming quizzes and assignment due dates.

 11

Figure 2.2 Course Page

Figure 2.2 depicts the course contents page. This section allows students to access

educational content provided by the course lecturer. For instance, students can take

quizzes, write on a discussion board, answer questionnaires, download educational

resources and upload assignments. Students can also view video content based on what

is provided by the lecturer. The educational resources are divided the allocated weeks.

For example, week 1 ranges from 1st March 2021 to 5th March 2021, excluding the

weekends. During this period, the lecturer uploads specific educational reading material,

quizzes, or assignment upload links.

 12

Figure 2.3 Course Participants

Figure 2.3 depicts the course participants in the selected course. From here, we

can see when the students have last accessed the course.

 13

Figure 2.4 Profile Settings Interface

Figure 2.4 shows the profile page of KALAM. From this page, there are user and

contact details. There is also an option to change the profile picture.

2.3 Google Classroom

2.3.1 Discussion

Google Classroom is a product developed by the Google company in 2014 as

Google’s one-stop solution to digital learning classes for educators. It makes use of the

existing productivity suite of Google, including Google Docs, Google Slides, and Google

Sheets and incorporates them into a digital learning application – Google Classroom.

What distinguishes Google Classroom from the standard Google Drive experience is the

 14

instructor interface, which Google has engineered for how instructors and students think

and interact. (Okmawati, 2020).

Google states that its product, Google Workspace for Education, which includes

Google Classroom, will work on the latest version of modern browsers such as Google

Chrome, Firefox, as well as Safari and Microsoft Edge. Google classroom is also

supported on android devices with Android 5.0 Lollipop or later and iPhones and iPads

with IOS 11 or later.

First and foremost, Google Classroom is a free application that may be utilised by

any university that lacks the means to develop its own learning management system

(Learning Management System). It alleviates instructors' administrative burdens and aids

in classroom management. Additionally, it contributes to the improvement of student-

teacher contact and communication. (Azhar & Iqbal, 2018). Google Classroom has the

potential to save a significant amount of time for both students and teachers due to the

ease with which it can be set up and used. (Ketut Sudarsana et. al., 2019).

 It requires no paid subscriptions to have full access to the basic functionalities in

the application. Next, it supports cross-platform access because it has a dedicated mobile

application as well as a web-based application. On top of that, it is integrated within

Google’s own ecosystem of applications. This means that important word processing,

presentation slide making as well as managing excel sheets can be done seamlessly on

the cloud using Google’s suite of applications for assignments and homework with just

an Internet connection.

The main medium of communication for Google Classroom users is over the

“stream”. A stream can be compared to a news feed as found in Facebook. Each class has

a stream which allows educators to put out announcements, educational content, and

graphical content. Students can provide responses by leaving comments on the posts on

the stream. As compared to instant messaging, communication over a stream encourages

users to avoid unnecessary conversations and texts.

Not to mention, it offers a feedback function for assignments. This allows

educators to seamlessly provide their students with immediate feedback or comments to

 15

improve their work. Google Classroom also provides many access controls such as

making posts read-only. Overall, Google’s integration of existing productivity

applications dramatically improves Google Classroom’s capability as an educational tool

for users with minimal technical background.

Based on the research findings of Okmawati (2020), from the perspective of

effective communications based on the theory presented by Hardjana (2003), Okmawati

(2020) demonstrated the effective of Google Classroom during the pandemic. From the

perspective of the effectiveness of the message recipient, the message recipient was

determined to be in accordance with the intended receivers. This implies that when the

instructor desired to distribute information or assign a task, he or she did so directly on

the accounts of students who are bound by the learning process, ensuring that the postings

were instantly visible to the students.

On the other hand, the downsides of using a Google developed application

involves the requirement of a Google account to access the services provided by Google

Classroom as well as its suite of productivity tools. Next, the interface of Google

Classroom is not user-friendly. According to Azhar and Iqbal (2018), their survey

indicated that a lot of teachers initially struggled to adjust to the operation of Google

Classroom. On the other hand, it also lacks the functionality for real-time communication

between educators and students. Users are required to refresh the page of wait for a few

seconds for new comments or posts to appear. Hence, Google Classroom requires some

improvements to the system’s responsiveness and user interface.

 16

2.3.2 Graphical User Interface and Functionalities

Figure 2.5 Dashboard Interface

Figure 2.5 shows the dashboard of Google Classroom. In this interface, users can

view the classes that they are teaching or the classes that they are enrolled in.

Additionally, they can access tools such as a to-do list, to-review list as well as Google

Calendar to plan their schedules.

 17

Figure 2.6 Class Interface

Figure 2.6 shows the class interface of a new class. In this interface, the creator

of the classroom can obtain the class code for other users to join via a 7 alphanumerical

code, post announcements which are not limited to text, but supports links, and images

as well. Finally, there is a functionality to reply to comments as well. On the bottom

navigation bar, there are a few tabs that can be accessed such as the class’s coursework,

class attendees and also assignments.

 18

Figure 2.7 People Interface

Figure 2.7 shows the people tab of a class. The people tab contains information

about participants in a class as well as educators involved in the class. Here, the creator

of the class can manage teachers as well as students in the class.

 19

Figure 2.8 Classwork Interface

Figure 2.8 shows the classwork tab of a class. The classwork tab allows the user

to manage assignments that are assigned to students from a teacher’s perspective. From

a student’s perspective, they can manage their upcoming or ongoing assignments.

 20

Figure 2.9 Create A New Assignment Interface

Figure 2.9 depicts the interface for the creation of a new assignment. There are a

few input fields to fill before an assignment can be assigned. For instance, the targeted

groups, points allocated, due date, the topic, the rubric, the title and instructions to follow.

 21

Figure 2.10 Grade Interface

Figure 2.10 shows the grades tab of a class. Teachers can grade a student’s

assignment and key in their marks. Then, the assignment can be returned to the student

along with an optional feedback message. The class average is also calculated by the

system.

 22

2.4 Edmodo

2.4.1 Discussion

Edmodo was founded by Nic Borg and Jeff O'Hara in 2018 to improve classroom

learning potential by utilising social media tools. In response to the restrictions set in

place by schools, they created a platform where the class can connect and collaborate.

(Wiebe, n.d.). Edmodo currently supports the latest version of Google Chrome, Firefox

and Safari on computer browsers as well as mobile web browsers. Additionally, the

Edmodo phone application is android devices with 5.0 Lollipop and iOS 11.0 and above.

First and foremost, Edmodo is a learning platform that is frequently compared to

Facebook in the education space. (Gay & Sofyan, 2017). It has a business model of

“Freemium” which means that basic functionalities are entirely free to use while other

features require a subscription. The pro plan provides additional administrative tools and

built-in Zoom meetings for subscribers. Next, Edmodo has cross-platform support which

means that classes and the content can be accessed from either a mobile browser, a

computer browser, or Edmodo’s dedicated mobile application from an Android or iOS

device. This means that Edmodo still retains the accessibility as found in the other two

applications.

Overall, the system has all the basic features similar to KALAM and Google

Classroom. It can create a classroom in which students can join via a specially generated

code that is distributed by the class creator. This makes it easy and seamless for students

to join created classes. An announcement page is the main medium for communication

between the student and the educator. Furthermore, dedicated groups can be created from

within the classroom. This provides the flexibility to give specific instructions. Next, it

also boasts a folder management system. The creator can create folders that can store

educational resources, quizzes, and links. A robust file management is essential for

classroom management.

Edmodo allows students and educators to communicate through a stream. Similar

to Google Classroom, Edmodo’s very own stream allows educators to post

 23

announcements, assignments, quizzes and graphical content. Students with enquiries can

choose to

One of the advantages of Edmodo is that it has OneDrive and Google Drive

integration. Users can choose to share files directly from their cloud-based storage. It also

integrates Microsoft’s online productivity suite such as the famous Microsoft Word,

Microsoft PowerPoint, and Microsoft Excel. Next, Edmodo is more inclusive as it comes

with a set of parental features. It allows the student to be connected with their parents for

progress tracking. On top of that, the creator of the class can change the student’s

password and remove their profile pictures. Hence, Edmodo has good integrations with

famous productivity application providers as well as inclusivity of students who require

parental guidance.

However, Edmodo lacks an instant messaging function. The messaging function

is not instantaneous as users will have to reload the page to receive the latest messages.

Furthermore, it does not currently support video conferencing tools such as Moodle,

Zoom, Skype, or Microsoft Team. Edmodo's features include the ability to submit

content, share videos (but not conferencing), links, grades, alerts, and assignments (Etfita,

2019). One of Edmodo's shortcomings is the absence of video conferencing for direct

interaction in online learning, but the benefits exceed the drawbacks (Ekayati, 2018).

In conclusion, Edmodo, despite its shortcomings, can be concluded as a good

learning medium that could potentially increase student learning outcomes based on the

comprehensive research done by Nurhayati (2019).

 24

2.4.2 Graphical User Interface and Functionality

Figure 2.11 Class Interface

 25

Figure 2.12 Create New Post

Figure 2.11 and Figure 2.12 shows the interface of a class. In the interface, the

user can post new announcements, create new polls, or share educational resources in the

form of images or text. Other functionalities such as folders, classes, members can be

accessed from this interface as well.

 26

Figure 2.13 Create New Assignment Interface

Figure 2.13 depicts the interface that is used to create new assignments. The

interface is simple as it provides input fields such as the title and instructions. There are

many options to format the text such as the option to bold text, and toggle bullet points.

 27

Figure 2.14 Assignment Settings Interface

Furthermore, additional settings for creating new assignments can be found in

Figure 2.14. This interface requires the user to set a due date. Users can also choose to

lock submissions after the designated date.

 28

Figure 2.15 Create New Quiz Interface

Figure 2.15 shows the quiz function of Edmodo. Users can create quizzes with

different types of questions such as matching, multiple-choice questions, as well as short

answers. Images or links can also be attached to the questions.

 29

Figure 2.16 Assigment Submission Interface

Figure 2.16 shows the interface that will be seen by students in a class.

Assignments can be uploaded and submitted here.

 30

Figure 2.17 Assignment Grading Interface

In figure 2.17, teachers-in-charge of the class can grade assignments in this

interface. They can see who has not turned in their assignments and the average grade

score as well.

 31

Figure 2.18 Messages Interface

In figure 2.1.8, Edmodo users can send messages to each other through the

messages tab. However, the messages sent here are not instantaneous as there is a delay

when receiving new messages which requires a reload.

2.5 Comparison between 3 Existing Systems

Table 2.1 Overall System Comparison and Proposed App

Criteria KALAM Google

Classroom

Edmodo Proposed

App

Active Users 311m 150m 100m 1000

 32

Type of

Software

Open-Source Proprietary Proprietary Proprietary

Pricing Free Freemium,

requires

payment for

more

administrative

controls.

Free, requires

payment for

school and

district use.

Free

Usability Small learning

curve.

Higher

learning curve

Small learning

curve.

Small learning

Curve

Customisability High Low Low Low

Third-Party

Plugin Support

Supported Unsupported Unsupported Unsupported

Desktop

Browsers

Supported Supported Supported Unsupported

Mobile

Browsers

Supported Supported Supported Unsupported

Set-up Requires IT

professionals

and web

hosting.

Cloud-based,

can be used

instantly.

Cloud-based,

can be used

instantly.

Cloud-based,

can be used

instantly.

Cloud Storage Unimplemented Google Drive OneDrive,

Google Drive

Firebase

Mobile

Application

Available on

play store and

Apple App

Store

Available on

play store and

Apple App

Store

Available on

play store and

Apple App

Store

Available on

play store

The open-source platform used by KALAM, Moodle, has over 311 million active

users as compared to Google Classroom (150 million) and Edmodo (100 million). This

 33

speaks volume about the appeal of the application to modern users. Based on statistics

alone, it is safe to say that Moodle is the preferred system by the education field.

The appeal of KALAM (Moodle) is not only due to the fact that it is an entirely

free system, but the fact that it is designed to accommodate various in-house plugins or

third-party plugins that the other two systems fail to provide. It’s customisability and

open-source concept is what constitutes the high adoption of the system across

universities.

On the other hand, all three systems support modern mobile and desktop

browsers. Edmodo and Google Classroom can be used instantly while Edmodo requires

web hosting and professional configuration to set up. Cloud integrations is also a modern

feature that is adopted by Google Classroom and Edmodo while KALAM has not

implemented the feature even though Moodle supports it.

Table 2.2 Function Comparison Including The Proposed App

Functions KALAM Google

Classroom

Edmodo Proposed App

Dashboard Blocks can be

rearranged,

hidden, and

deleted. It

contains

recently

accessed

courses, course

overview and

timeline.

Classes can be

moved, copied,

edited, or

archived.

Classes can be

accessed from

the dashboard.

It contains a

dedicated news

feed as well.

Contains

recently

accessed

classes and

managing

classrooms.

Calendar Able to add

new events to

calendar and

Able to view

upcoming

tasks and

Able to add

new events to

calendar and

Able to view

calendar and

weather.

 34

view

upcoming

tasks and

assignments.

There is an

option to

export the

calendar as

well.

assignments

only.

view

upcoming

tasks and

assignments.

Content Content is

organized

based on a

weekly basis.

Content is

organized

using a stream.

Content is

organized

using a stream.

Resources can

be stored in

folders as well.

Content is

organized

based on a

weekly basis.

Messaging Non real time

messaging.

Email or

through

assignment

feedback.

Non real time

messaging.

Supports file

transfer.

Real time

messaging

within classes.

Thread Only the

educator can

start a thread

for

discussions.

Unavailable Unavailable Student or

educators can

contribute or

create threads.

Grading Educator can

grade

assignments.

Educator can

grade

assignments.

Educator can

grade

assignments.

Educator can

grade

assignments.

Assignment Educator can

submit or

create

assignments.

Educator can

submit or

create

assignments.

Educator can

submit or

create

assignments.

Educator can

submit or

create

assignments.

 35

Quizzes Users can take

quizzes or

create quizzes.

Users can take

quizzes or

create quizzes.

Users can take

quizzes or

create quizzes.

N/A

With reference to Table 2.3, for the dashboard function, Google Classroom and

KALAM boasts a more straightforward access to classes while Edmodo has the addition

of a general stream on its dashboard which not only include content from all classes, but

advertisements from Edmodo as well. Hence, KALAM has the better implementation of

dashboard as it is a balance between simplicity and functionality.

Next, KALAM’s calendar is more feature packed as compared to the other two

applications. It provides the extra functionality to export the calendar which is absent on

the other two applications. KALAM and Edmodo are able to create new events on the

calendar as well.

The organization is better on KALAM as well. By implementing a system in

which content is organized according to the week of the semester, it is convenient for

students as well as educators to navigate around the system to obtain educational

resources. In comparison to the stream system, which is adopted by Google Classroom

and Edmodo, it is more disorganized and difficult to find uploaded resources. This issue

can be rectified by implementing a search function.

Messaging is an essential component for most modern applications now.

KALAM does not have the chat function; however, Moodle supports it. Google

Classroom facilitates communication via e-mail while Edmodo has a dedicated

messaging page. In terms of messaging, Edmodo has the best implementation among the

three applications. The short delays between communications are negligible as it can

function as intended.

Threads are where important discussions between students and educators take

place. Currently, only KALAM can open new threads while the functionality is non-

existent in the other two applications. However, the thread opening functionality is only

available to accounts with educator access levels. In addition to that, the interface looks

 36

unpolished which might discourage users from using it. Hence, it is important that the

forum functionality is accessible to all users to facilitate academic discussions.

The grading, assignment and quizzes are available on all three platforms. While

written assignments must be graded manually by the educator, the marking of quizzes is

automated for multiple choice questions.

2.6 Conclusion

As a result of the comparisons in Table 2.2 and Table 2.3, these three systems

mostly possess the same functionalities ranging from the dashboard, classes, calendar,

and assignment grading. All three systems provide basic functionalities that can facilitate

online learning.

 However, most of these systems often neglect student-to-student interactions and

focuses on the delivery of instructions and the grading of assignments only. There is no

dedicated function such as an implementation of a forum for learners to gather and discuss

theoretical questions and solutions to various problems. For instance, only KALAM has

the functionality to start forum threads for questions. However, the thread can only be

initiated by the lecturer or person-in-charge of the class. Hence, it is very clear that there

needs to innovation in the field to introduce elements of student-to-student interactions

to e-learning systems.

 37

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter describes the methodology used to develop the SAGE system. Every

successful system requires a good and comprehensive plan in order to maintain the

quality of the developed system, the requirements of the system are met, and high user

satisfaction is achieved.

Software Development Life Cycles (SDLC) have advanced over the decades and

new methodologies have been introduced to cater to rising demands of proprietary

software. In this project, the Rapid Application Development (RAD) with respect to the

given time to complete the project. As substantiated by Beynon-Davies et. al. (1999),

most RAD projects appear to be focused on highly interactive apps with a well-defined

user group and little computational complexity.

3.2 Methodology

 38

Figure 3.1 Rapid Application Development Phases

Source: LucidChart (2018)

Rapid application development (RAD) appears to have gained popularity

following the publication of a book by James Martin of the same title. Martin

characterises the primary goals of rapid application development as high-quality systems,

rapid development and delivery, and cheap costs. These goals may be summarised in a

single sentence: the commercial compulsion to produce functional business applications

in shorter timeframes and with lower expenditure. (Beynon-Davies et al., 1999). Thus,

RAD is chosen as the main SDLC to be implemented in this project.

In the RAD SDLC, there are four major phases that constitutes the RAD process,

namely, requirements planning, user design, construction and implementation.

Furthermore, RAD applies two types of methodologies, which are phased development

and prototyping. (Fatima et al., 2014)

Firstly, the requirement planning phase involves procuring a broad range of

requirements from stakeholders. For requirements elicitation, the technique of interface

analysis. As mentioned in Chapter 2, three systems are chosen and compared to retrieve

the best implementation of features among the three and propose improvements.

Next, the second step of the Rapid Application Development methodology is the

user design. It entails obtaining user feedback and then developing many prototypes of

the project under development utilising developer tools. Instead of working with a fixed

set of criteria, RAD developers generate a variety of prototypes with diverse features and

functionality. All of these prototypes are then assessed by the client to select what to keep

and what to reject. The user description step comprises the re-examination and validation

of the data acquired during the first phase. This step also covers the identification and

clarification of the dataset characteristics.

The construction phase is where the prototypes generated in the preceding phase

are refined. During this third step of the RAD Model, all gathered additions and

alterations are implemented. This phase provides feedback on what is good, what is poor,

what to maintain and what to eliminate. During the building process, input is not limited

 39

to functionality, but also to aesthetics, interface, and so on. The prototype process is then

resumed, with all obtained comments taken into account. Both prototype and feedback

are carried out until a final product that is most closely aligned with the client's needs is

established.

The final phase involves finalising the aesthetics, features, functionalities, and

interface of the software project, as well as everything else associated with it. Interfaces

between distinct modules must be well tested. This is accomplished during the cutover

phase. It is followed by client acceptability testing. Prior to providing the final product to

the client, it is critical to ensure that the generated software is maintainable, stable, and

usable.

3.3 Project Requirements

3.3.1 Functional Requirements and Non-Functional Requirements

Table 3.1 Functional Requirements of The Proposed Application

No. Functional Requirements

1. The system shall be able to add, edit or delete classes.

2. The system shall display weekly class content.

3. The system shall support real-time messaging within classes.

4. The system shall be able to add, edit or delete threads.

5. The system shall be able to grade and return assignments.

6. The system shall be able to add, edit or delete assignments.

7. The system shall be able to add, edit, delete or join events.

8 The system shall be able to add, edit or delete communities.

Table 3.1 shows the functional requirements of the proposed application. Within

the application contains requirements that are elicitated from the comparison of the three

existing systems from Chapter 2, Table 2.2. The system mainly contains the features that

most e-learning system possess such as management of classroom, educational content

management, real-time messaging, community and thread management, assignment

management, and event management.

 40

Table 3.2 Non-Functional Requirements of The Proposed Application

Quality

Attribute

Non-Functional Requirements

Usability The time taken to get familiar with the system should not be more

than 30 minutes.

The registration shall not take more than 5 minutes.

Scalability The system shall use firebase as its cloud database

Reliability The system shall not have downtime for more than 2 hours.

Table 3.2 depicts the non-functional requirements of the proposed application.

Non-functional requirements are indirectly related to the services provided by the system

to its users. Since it is more important than functional requirements, failing to meet either

one of the non-functional requirements may lead to an unusable system.

 41

3.3.2 Constraints and Limitations

Table 3.3 Constraints of the Proposed Application

No. Constraints

1 The system must be connected to the internet as long as the user is using the

system as the system’s database uses a cloud database for sending, receiving

and storing data across all functionalities.

2 The system is developed based on author’s view on Universiti Malaysia

Pahang’s current education structure, which is presumed to be the same across

all local government universities in Malaysia. The system structure may not be

practical to other universities domestically or internationally.

3 The system must be completed before the author has completed the course

“BCC3024 Undergraduate Project II”.

4 There are no financial resources allocated to the project by the educational

institution. Thus, the system relies on the author’s financial ability to support

the used services. Hence, the author will be using free tier subscriptions

whenever possible to reduce cost.

5 The system will only be developed by one person. Hence, the time constraints

to develop the system is short, resulting in limited functionality of the system.

Table 3.3 depicts the constraints of the system as a result of external factors. The

constraint of the system comprises of internet connectivity, limited exposure, time

constraints as well as financial constraints.

Table 3.4 Limitations of the Proposed Application

No. Limitations

1 The system will not support IOS platform, web platform, and windows

platform.

2 The system will not have a module for system admin to manage users.

3 The system will only have one tester for each user type to gain feedback.

Table 3.4 depicts the technical limitations of the system. The system is limited to

the android platform and also pc web browsers. In addition to that, there is no module for

 42

system admins to manage users. Finally, due to time constraints, the system will have

limited testers, mainly only one tester for each user type.

 43

3.3.3 Proposed Design

3.3.3.1 Prototype

 44

Figure 3.2 Profile and Events Module Interfaces

Figure 3.2 depicts the flow of the Manage Profile and Manage Event modules.

Starting with the Manage Profile, users can access this module from the home page of

the system. From there, users can choose to edit their details at the edit interface.

For the Manage Event module, users can explore the latest events on the index

page. Next, users can also choose to host their own events. By filling the event creation

form, a new event will be created. Once created, the user hosted event can be managed

as well. Users can view information regarding the participants, edit the details of the event

as well as delete it.

 45

Figure 3.3 Class Module Interfaces – Lecturer View

Figure 3.3 depicts a lecturer’s view of the Manage Class. Lecturer will have full

access to the administrative functions across the Manage Class module. Lecturers are

able to create, edit, delete announcement, assignments, resources, participate in the

chatroom, as well as manage the classroom. In addition, lecturers can also view, and

grade submitted assignments by students.

 46

Figure 3.4 Class Module Interfaces – Student View

Figure 3.4 depicts a student’s view of the Manage Class module. In this view,

many of the administrative functions are stripped off as they are only limited to the

lecturer or creator of the class. Meanwhile, users can still view announcements, chat with

their classmates and educator in the group chat. There is also an interface to input the

class code to join a class. The resources tab can be accessed to read the instructions and

download the required files. Finally, students can submit their assignments in the

assignments tab. Once the files are uploaded, they can press submit for the lecturer’s

evaluation.

 47

Figure 3.5 Community Module Interfaces

Figure 3.5 depicts the interface of Manage Community module. Starting with the

login screen, the flow of the interfaces starts when the user presses on the community

 48

icon to access the module. Users can create their own communities by using the provided

community creation form. The community can be edited or deleted.

Upon accessing an existing community, the user can view many threads that have

been submitted by other users. The thread list contains a picture of the problem and the

preview of the title and description of the problem. After accessing a thread, users can

view the full content of the thread which includes the replies. Users can then submit a

reply to an existing thread by using the reply bar on the bottom of the interface. Next,

users can also create a new thread within a community by using the provided thread form.

Users will need to include the title, description and image of the problem.

 49

3.3.3.2 Use Case Diagram

Figure 3.6 Use Case Diagram

Figure 3.5 depicts the use case diagram of the system. There are two stakeholders

in the system, namely, the student and the lecturer. Both students have access to the four

functions or modules which are Manage Class, Manage Profile, Manage Events, Manage

Community. However, functions within the modules will be limited based on the role of

the user. Students will only be able to join classes, participate in class chats, and also

retrieve educational resources while the lecturers will have the full access to the

functions. Lecturers can manage classes, assignments, and even announcements.

Secondly, both users will be able to change their profile information. Managing events

are fully accessible to both users. In the Manage Events module, users can create, delete,

join and discover new events around the campus. Last but not least, Manage Community

 50

connects students across the campus to discuss academic hurdles and achievements by

creating personal communities and threads and by replying to threads.

3.3.3.3 Context Diagram

Figure 3.7 Context Diagram

The context diagram contains two entities which are the student and the lecturer

who will interact with the system. From the two entities to the system, there will be data

flowing from multiple modules from within the system. For the login function of the

system, user credentials or login information will be sent to the system while a login

token will be returned to the user. Next, for the Manage Class Module, there will be class

information and class code and also class messages going into the system and out from

the system to the students. Class code will be used to join new classes while class

information for students include the submission of class assignments. For the lecturers,

class information indicates the upload of educational resources, creating announcements,

as well as creating and marking of assignmnets. Besides that, for the Manage Event

 51

module, both entities will be required to provide event information to the system for the

creation, editing, and deleting of events. The system will also provide users with the

ability to browse events as seen as the event information flowing from the system to the

entities. After that, for the Manage Community module, both entities will be expected to

send and receive community information, thread info and also thread replies from the

system. This allows the managing of communities, threads and also thread replies.

3.3.3.4 Data Flow Diagram

Figure 3.8 Data Flow Diagram

Figure 3.8 depicts the data flow diagram of the system. There are a total of 4 data

stores, 4 processes, and one external entity. For the Manage Class process, class details

data will flow into the process. Next, for the Manage Event process, it will receive event

details from the user. Eventually, the output from the process will have data flowing into

the Event datastore. For the Manage Profile, it will receive profile details from the

external entity, user and subsequently output profile details to be stored in the user data

store. Finally, the Manage Community process receives community details and

subsequently outputs data to be stored in the Community data store.

 52

3.3.3.5 Activity Diagram

 53

Figure 3.9 Activity Diagram

 54

Figure 3.9 depicts an activity diagram of the system. From the diagram, the flow

of the four modules, namely, Manage Class, Manage Profile, Manage Event and Manage

Community can be easily understood and visualized.

3.4 Data Design

3.4.1 Firebase Authentication

Firebase Authentication is a modern way of authenticating users through the

Google Ecosystem. By using OAuth2 technology, users with google accounts can easily

login to the platform effortlessly. Credentials such as email and password or OAuth

tokens are easily verified by backend services provided Firebase through its Firebase

Authentication SDK.

3.4.2 Firebase Realtime Database

The Firebase Realtime Database is a database stored in the cloud. The data is

saved as JSON and is synced in real-time with all connected clients. When creating cross-

platform applications using our Apple iOS, Android, and JavaScript SDKs, all of the

clients share a single instance of Realtime Database and immediately receive the most

recent data changes. Firebase Realtime Database uses Not Only SQL (NoSQL) database

instead of the traditional SQL database.

NoSQL uses a non-relational database. NoSQL databases enable developers to

store vast quantities of unstructured data, providing them with a great deal of freedom. In

addition, the Agile Manifesto was gaining momentum, and software developers were

reconsidering their approach to software development. They realised the necessity for

swift adaptation to shifting requirements. They required the capacity to rapidly iterate

and modify their whole software stack, including the database. NoSQL databases

provided them with this versatility.

In this project, out of the two databases offered by Firebase Realtime Database,

which are Realtime Database and Cloud Database, Cloud Database will be chosen to

serve as the database of this application. Cloud Firestore is the newest mobile app

development database from Firebase. It expands upon the achievements of the Realtime

 55

Database by introducing a new, more understandable data model. Cloud Firestore

supports more complex, quicker searches and grows more effectively than Realtime

Database.

3.4.3 Entity Relational Diagram

Figure 3.10 Entity Relational Diagram

Figure 3.10 depicts the entity relational diagram of the system. There are a total

of 13 entities that stores data in the database. The User entity stores user personal

information, as well as joined classes. It includes the credentials of the user as well. Next,

the Class entity stores the information of the classes created. It is linked to various other

entities such as the ClassAssignment and Submissions entity for the storage of

assignments, ClassAnnouncement and Announcements entity for the storage of class

announcements and Chats and Messages entity for classroom chat logs. inally, there is

Community entity which is linked to the Thread and ThreadReply entities which store

community threads and its replies for easy access. The rest of the data such as thread

pictures and profile pictures are stored in Firebase Storage.

 56

3.4.4 Data Dictionary

Table 3.5 User Table

Field Name Data Type Constraint Description

userID String PK User Identification

Number

classID Array FK Class Identification

Number

userUniID String User University

Identification

userNickName String User Community

Nickname

userEmail String User Email

userFirstName String User First Name

userLastName String User Last Name

userType String User Type

userPassword String User Password

userTimeStamp timestamp User Timestamp

 57

Table 3.6 Class Table

Field Name Data Type Constraint Description

classID String PK Class Identification

Number

ancID String FK Announcement

Identification

Number

assID String FK Assignment

Identification

Number

className String Class Name

classTimeStamp Timestamp Class Created

Timestamp

classCode String Class Code

classJoinCode String Class Joining Code

Table 3.7 Assignment Table

Field Name Data Type Constraint Description

assID String PK Assignment

Identification

Number

classID String FK Class Identification

Number

Table 3.8 ClassAssignment Table

Field Name Data Type Constraint Description

assignmentID String PK Assignment

Identification

Number

assTitle String Assignment Title

 58

assDesc String Assignment

Description

assStartTimeStamp String Assignment Start

Timestamp

assEndTimeStamp String Assignment End

Timestamp

assTotalMarks Number Assignment Total

Marks

Table 3.9 Submission Table

Field Name Data Type Constraint Description

subID String PK Submission

Identification

Number

userEmail String FK User Email

subMarks Number Submission

Returned Marks

Table 3.10 ClassAnnouncement Table

Field Name Data Type Constraint Description

ancID String PKFK1 Announcement

Identification

Number

classID String PKFK2 Class Identification

Number

 59

Table 3.11 Announcements

Field Name Data Type Constraint Description

ancTimeStamp Timestamp Announcement

Created Time

Stamp

ancTitle String Announcement

Title

ancMessage String Announcement

Message

Table 3.12 Chat Table

Field Name Data Type Constraint Description

chatID String PKFK1 Chat Identification

Number

classID String PKFK2 Class Identification

Number

Table 3.13 Messages Table

Field Name Data Type Constraint Description

userID String FK User Identification

Number

chatMessage String Chat Message

chatTimeStamp Timestamp Chat Timestamp

Table 3.14 Event Table

Field Name Data Type Constraint Description

eventID String PK Event

Identification

Number

eventName String Event Name

 60

eventDesc String Event Description

eventHost String Event Host Name

eventLink String Event Meeting

Link

eventTimeStamp Timestamp Event Created

Timestamp

eventStartTimeStamp Timestamp Event Start

Timestamp

eventEndTimeStamp Timestamp Event End

Timestamp

Table 3.15 Community Table

Field Name Data Type Constraint Description

communityID String PK Community

Identification

Number

communityTitle String Community Title

communityDesc String Community

Description

communityTimeStamp Timestamp Community

Created

Timestamp

communityAuthor String Community

Author Name

Table 3.16 Thread Table

Field Name Data Type Constraint Description

threadID String PK Thread

Identification

Number

 61

threadAuthor String Thread Author

Name

threadName String Thread Name

threadDesc String Thread

Description

threadImgPath String Thread Image

Path

Table 3.17 Reply Table

Field Name Data Type Constraint Description

replyID String Reply

Identification

Number

replyAuthor String Reply Author

Name

replyMessage String Reply Message

replyTimeStamp Timestamp Reply Created

Time Stamp

replyImgPath String Reply Image Path

3.5 Testing Plan

The system will be tested by the developer on every iteration during its early

phases of the prototype as the project is using the Rapid Application Development

(R.A.D.) methodology. When the system is in its final phases, after it has undergone

vigorous testing to ensure that the system works smoothly upon usage, bug-free, and has

full functionality, the system will undergo User Acceptance Testing (UAT) and usability

testing to ensure that the developed system can handle the intended tasks according to its

specifications. The testing will be conducted by people with a technical background as

well as a non-technical background ranging from students, and lecturers. Upon agreeing

to conduct the test, the participants of the UAT will be given a set of instructions, access

 62

to the system, as well as an online questionnaire for the usability test. The results will be

collected and analysed for future improvements.

3.6 Potential Use

The system is aimed to be deployed at educational institutions such as Malaysian

public universities to aid in the e-learning process. Despite its shortcomings, the system

caters to the modern needs of lecturers and students, facilitating real-time communication

and academic discussions across the entirety of the students at a particular university

through the built-in chat system and community module. By encouraging open academic

discussions and peer-to-peer learning, students can engage is meaningful discussions in

a safe environment. Not only that, but the system also facilitates online classroom

management, providing management of educational resources, the grading of

assignments and the relay of important announcements. The events module also exposes

students to different kinds of talks, encouraging participation across the universities to

worthwhile knowledge and thinking maturity.

 63

CHAPTER 4

IMPLEMENTATION, RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter elaborates on the development and implementation of the system

throughout the project. Detailed explanations on the development and implementations

are elaborated clearly based on the documented methodology, functionalities, and

requirements in the previous chapters. The chapter begins with a discussion on the initial

project setup.

4.2 Implementation

4.2.1 Initial Project Setup

4.2.1.1 Integrated Development Environment (IDE)

Figure 4.1 Android Studio Download Page

 First and foremost, the Integrated Development Environment (IDE) has to

be downloaded from the official website and installed in order to write code for the

system. For this system, Android Studio, an IntelliJ based IDE will be used for the entire

 64

development process. The IDE also provides support for the user such as auto-complete,

flutter integration as well as android emulator for an efficient development process.

Figure 4.2 Flutter SDK Website

On top of the IDE, the Flutter SDK has to be downloaded and installed in order

to create a new flutter project in the Android Studio IDE. After setting the path to the

Flutter SDK in Android Studio settings, a new Flutter project can be created.

Figure 4.3 Android Studio New Flutter Project Option

 65

4.2.1.2 Backend Services

Figure 4.4 Firebase Console

Next, the backend module of the system, which is Firebase by Google is set up.

It is done by first creating a new project in the Firebase console. In the process of creating

a new project, the platform to be implemented upon, Android, is selected. After accessing

the Firebase console, a new project is created by pressing the “Add Project” button.

Firebase will initialize the new project and provide the necessary guidelines to follow

according to the selected development platform.

 66

Figure 4.5 Firebase Configuration File

After that, Firebase will provide instructions on how to set up Firebase by

providing a file containing the appropriate information such as API Key, application ID,

project ID and authentication information. This file is to be inserted into the project

directory and initialized at the start of the system.

Figure 4.6 FlutterFire Installation Command

Installing the FlutterFire command line interface in the project directory’s

terminal takes precedence in order to access its services.

4.2.2 Interfaces

Figure 4.7 Login, Google Authentication, and Sign Up Interface

The SAGE system implements Firebase Authentication services by Google to

ensure there are no spam bots. First, an account has to be chosen from a list of registered

emails on the device. If the selected user email is a first-time user, the user will be directed

to a sign-up screen where the user has to fill in personal details and select a profile picture.

 67

Figure 4.8 Home and Profile Interface

After the authentication phase, users will arrive at the dashboard of the system

where the system can navigate to different modules of the system. On the second

screenshot of Figure 4.8, users can see the profile interface with various personal

information displayed along with the active classes.

 68

Figure 4.9 Class List and Class Creation Interface

Accessing the class module, users will arrive at the class list interface. This

interface shows the classes that the student is enrolled in. To enrol in a new class, users

can press the button located on the bottom right and enter a class code. This In this

interface, the lecturer has additional functionalities such as an option to create a new class

as shown in the third interface from Figure 4.9.

 69

Figure 4.10 Class Home Interface

The class home contains various sub modules such as resources, assignments,

chat, code and settings. The announcements can be viewed or deleted on the class home

interface. On the other hand. New announcements can be created by pressing the bottom

right icon. The announcement creation interface can be seen on the second interface of

Figure 4.10.

 70

Figure 4.11 Assignments List, Create Assignment Interface

The assignments list shows assignments that can be created by the lecturer of the

class. There is an interface on the right which shows text form fields that are required to

create an assignment.

 71

Figure 4.12 Assignment Submissions, Student Submission, Grade Assignment

Interface

From the lecturer’s view, student’s submissions can be accessed easily. The

uploaded content can be downloaded and viewed. On the other hand, lecturer can grade

submissions.

 72

Figure 4.13 Class Chat Interface

Within a class, there is an instance of a class chat. This class chat allows students

and lecturers within the enrolled class to communicate effectively with each other.

Figure 4.14 Resource List Interface

The resource list enables lecturers to uploaded important files for viewing by

pressing the floating action button on the bottom right. Lecturers will be redirected to the

file explorer of the android operating system.

 73

Figure 4.15 Community Index and New Community Creation Interface

The community index page allows user to explore new communities and access

the threads that are written by users. There is also a monthly highlight section which

introduces newly created communities in the month. On the right, there is an interface to

create new communities by inputting the title description and uploading the community

image.

 74

Figure 4.16 Thread List, Thread Creation Interface

The first screenshot of Figure 4.15 shows the threads created by users

participating in the community. The following screenshot shows the thread creation form

to create new threads in the selected community.

 75

Figure 4.17 Thread Details, Thread Reply Interface

The thread details page shows pictures uploaded during the thread creation

process along with the description of the problem. After that, there is the comments

sections where the original poster or other users can comment to help solve the raised

issue. The thread reply interface allows users to type in their replies to the selected thread.

 76

Figure 4.18 Event Home, Event Search, Event Details Interface

Figure 4.17 shows the event module’s index page in the first screenshot. This

interface allows users to view latest events, create their own events and view monthly

highlights and search for events. The second interface shows search results for the

selected keyword. Finally, the event details interface. This interface displays the start and

end datetime of the event, followed by the host, URL link and description.

4.3 Testing

Two tests were selected and conducted on the SAGE system, namely, the User

Acceptance Test (UAT) and Usability Test. The purpose of UAT is to ensure that system

can handle real-world scenarios with its current functions. On the other hand, the UAT

was done with minimal supervision, with only written instructions available to the

targeted tester. On the other hand, the usability test was also done without bias or

intervention, ensuring that the interfaces are friendly and suitable for human interaction.

The results obtained from the two tests are attached as APPENDIX B and APPENDIX

C for the UAT and Usability Test respectively. Below are the profiles of the testers

involved in the two tests mentioned.

 77

Table 4.1 Tester Profile

Portrait Image Name User Type

Hugh John Leong Lecturer

 Wong Sung Sum

Student

 78

CHAPTER 5

CONCLUSION

5.1 Introduction

Chapter 5 discusses the summary of the development of the SAGE system in order

to fulfill the stated objectives and problem statements as stated in Chapter 1 of this thesis.

To reiterate Chapter 1’s contents, students of the modern era face the difficulty of

maintaining peer-to-peer learning environment outside of their physical time around

campus.

In addition, students lack a platform to come together for academic discussions in

the university environment. Therefore, this application serves as a solution to the

underlying problem that fellow students are facing.

In order to ensure the success of the system, the development of this system has

employed the use of software such as Android Studio as the integrated development

environment, Flutter as the application’s main framework as well as Firebase tools and

infrastructure as it’s cloud-based database system, data storage system and authentication

system.

The methodology used during development is the Rapid Application

Development (RAD) methodology to allow for flexible changes to requirements, a

shorter development timeframe, and the ability to retrack to previous development phases

with less difficulties.

This application has undergone evaluation by two types of users, namely, a

lecturer and a student. The user acceptance test (UAT) and Usability Tets has shown the

effectiveness, operability, and functionality of the system as well as the items to improve

on in the near future.

 79

5.2 Research Constraint

i. Time

The limited time has inhibited more advanced functionalities to be implemented such as

moderators in the community module, co-host in the events module, as well as a

function to export grades in the class module.

ii. Manpower

Due to the limitation of only a single person planning, developing and testing the

project, and preparation of technical documents such as the SRS and the SDD, it

requires tremendous time, effort, and focus to balance the workload and quality of the

documents.

5.3 Future Works

Even though the developed SAGE application meets the stated requirements, the

continued expansion and improvement of the application promises a more featureful,

useful and practical revision of the application. A few possibilities of future works are as

written below.

i. Improved Interoperability

Since the application uses Flutter, integration to the web platform, IOS platform as well

as the Microsoft Windows platform requires little effort and refactoring of code. This

means that users can access the application from various devices, improving

interoperability as well as accessibility to the masses.

ii. Improved Moderation

The application involves peer-to-peer communication and interaction. Hence, features

such as whitelisting of vulgar words and AI based detection of malicious words can be

implemented. In addition, a new user type, the moderator, can be added to moderate

content and report any activities that violate community guidelines. This ensures a safe

learning environment for lecturers as well as students.

iii. Network Usage Optimization

The application involves a lot of data retrieval and data upload to and from the

application and the cloud-based services. This usage of data is unsuitable when there

 80

are plans to scale the application. Hence, implementing the use of cache to store loaded

content throughout the application can help reduce network usage. This in turn reduces

the cost of running the application as the read and write usage is drastically reduced.

iv. Additional Testing

The application still requires rigorous testing under real conditions by real users. This is

to ensure that the system is up to standards and user’s expectations. Additional testing

will involve many more actual users for both user types in order to gain useful feedback

and insight on the functionality of the system.

 81

REFERENCES

4 Phases of Rapid Application Development Methodology. (2018, May 23). @Lucidchart.

https://www.lucidchart.com/blog/rapid-application-development-methodology

Agarwal, S., & Dewan, J. (n.d.). An Analysis of the Effectiveness of Online Learning in

Colleges of Uttar Pradesh during the COVID 19 Lockdown. Journal of Xi'an University

of Architecture & Technology, 12(3), 2957-2963. https://www.xajzkjdx.cn/gallery/311-

may2020.pdf

Azhar, K.A., Iqbal N. (2018). EFFECTIVENESS OF GOOGLE CLASSROOM: TEACHERS’

PERCEPTIONS. Prizren Social Science Journal, 2(2), 52–66.

https://www.ceeol.com/search/article-detail?id=940663

Beynon-Davies, P., Carne, C., Mackay, H., & Tudhope, D. (1999). Rapid application

development (RAD): an empirical review. European Journal of Information Systems,

8(3), 211–223. https://doi.org/10.1057/palgrave.ejis.3000325

Chicioreanu, T. D., & Cosma, I. (2017). I AM A TEACHER IN THE DIGITAL ERA. WHAT

TO CHOOSE: GOOGLE CLASSROOM OR MOODLE?. eLearning & Software for

Education, 2.

Choi, J. A., Kim, O., Park, S., Lim, H., & Kim, J.-H. (2021). The Effectiveness of Peer

Learning in Undergraduate Nursing Students: A Meta-Analysis. Clinical Simulation in

Nursing, 50, 92–101. https://doi.org/10.1016/j.ecns.2020.09.002

Ekayati, R. (2018). Implementasi Metode Blended Learning Berbasis Aplikasi Edmodo.

EduTech: Jurnal Ilmu Pendidikan dan Ilmu Sosial, 4(2), 50–56.

https://doi.org/10.30596/EDUTECH.V4I2.2277

Etfita, F. (2019). Students’ perspective on the use of edmodo as an assessment tool. J-SHMIC :

Journal of English for Academic, 6(1), 18–25.

https://doi.org/10.25299/jshmic.2019.vol6(1).2516

Gay, E., & Sofyan, N. (2017). The effectiveness of using edmodo in enhancing students

outcomes in advance writing course of the fifth semester at FIP - UMMU. Journal of

English Education, 2(1), 1–11. https://doi.org/10.31327/jee.v2i1.217

Hardjana, Agus M. (2003). Komunikasi Intrapersonal dan Interpersonal, Yogyakarta : Kanisius

Koksal, I. (2021, December 10). The Rise Of Online Learning. Forbes.

https://www.forbes.com/sites/ilkerkoksal/2020/05/02/the-rise-of-online-

learning/?sh=69dc65da72f3

Shamionov, R. M., Grigorieva, M. V., Grinina, E. S., & Sozonnik, A. V. (2021). The Role of

Personality Characteristics and Social Activity in the Academic Adaptation of

University Students with Chronic Diseases. Клиническая и специальная психология,

10(3), 181–207. https://doi.org/10.17759/cpse.2021100310

 Moodle 3.11 release notes - MoodleDocs. (2021). Moodle.org.

https://docs.moodle.org/dev/Moodle_3.11_release_notes#Browser_support

 82

Moodle 3.11 release notes - MoodleDocs. (2021). Moodle.org.

https://docs.moodle.org/dev/Moodle_3.11_release_notes#Browser_support

Moodle App Overview - MoodleDocs. (2021). Moodle.org.

https://docs.moodle.org/dev/Moodle_App_Overview

Moodle App Overview - MoodleDocs. (2021). Moodle.org.

https://docs.moodle.org/dev/Moodle_App_Overview

Nurhayati, D. A. W. (2019). Students‘ Perspective on Innovative Teaching Model Using

Edmodo in Teaching English Phonology: A Virtual Class Development. Dinamika

Ilmu, 19(1), 13–35. https://doi.org/10.21093/di.v19i1.1379

Okmawati, M. (2020). The Use of Google Classroom during Pandemic. Journal of English

Language Teaching, 9(2), 438–443.

http://ejournal.unp.ac.id/index.php/jelt/article/view/109293/103809

Petrovici, A., & Ciobanu, E. P. (2016). THE LESSON, MOODLE TEACHING-LEARNING

RESOURCE WITH INTERRACTIVE CONTENT. eLearning & Software for

Education, 3.

Rapanta, C., Botturi, L., Goodyear, P., Guàrdia, L., & Koole, M. (2021). Balancing

Technology, Pedagogy and the New Normal: Post-pandemic Challenges for Higher

Education. Postdigital Science and Education, 3(3), 715–742.

https://doi.org/10.1007/s42438-021-00249-1

Sarimah, S. (2021). Digital Divide in Education during COVID-19 Pandemic. Jurnal Ekonomi

Malaysia, 55(3), 103–112. https://doi.org/10.17576/jem-2021-5503-07

Sudarsana K., et. al. (2019). The use of Google classroom in the learning process. Journal of

Physics: Conference Series. doi:10.1088/1742-6596/1175/1/012165

Teachinghistory.org. (2018). Teachinghistory.org. https://teachinghistory.org/digital-

classroom/tech-for-teachers/25425

Dupont, S., Galand, B., & Nils, F. (2015). The impact of different sources of social support on

academic performance: Intervening factors and mediated pathways in the case of

master’s thesis. Revue Européenne de Psychologie Appliquée/European Review of

Applied Psychology, 65(5), 227–237. https://doi.org/10.1016/j.erap.2015.08.003

Web Browser Requirements & Troubleshooting. (2022, January 4). Edmodo Help Center.

https://support.edmodo.com/hc/en-us/articles/216676477-Web-Browser-Requirements-

Troubleshooting#:~:text=In%20general%2C%20Edmodo%20supports%20the,some%2

0features%20may%20not%20work.

Li, Y., Wang, A., Wu, Y., Han, N., & Huang, H. (2021). Impact of the COVID-19 Pandemic on

the Mental Health of College Students: A Systematic Review and Meta-Analysis.

Frontiers in Psychology, 12. https://doi.org/10.3389/fpsyg.2021.669119

 83

APPENDIX A

USER MANUAL FOR SAGE

1.0 Introduction 84

2.0 System Requirements 84

3.0 Getting Started 84

 3.1 System Controls 84

4.0 User Manual 84

4.1 System Login and Registration 84

4.2 Home Dashboard and Profile 85

4.3 Class List, Class Code and Class Creation 87

4.4 Class Index 88

4.5 Assignments List, Assignment Creation 91

4.6 Assignments Information, Assignment Status, Assignment Submission 92

4.7 Class Chat 94

4.8 Resource List 94

4.9 Community Index, Community Creation 95

4.10Community Thread, Thread Creation 96

4.11Thread Details, Thread Reply 98

4.12 Event Index, Event Search 100

4.13 Event Details 101

 84

1.0 Introduction

This section contains information about the usage of the SAGE system. Users can

refer to this section as a guideline on the ways to operate the system in a proper

manner.

2.0 System Requirements

The SAGE mobile application requires Android 4.1 (API level 16) operating system

or higher to support the Flutter framework that it is built upon. Users are also required

to have an existing google account to access SAGE’s services as well as a fast internet

connection of at least 8mbps to ensure a smooth experience.

3.0 Getting Started

3.1 System Controls

The SAGE application should be operated with touch screen input and an on-screen

keyboard.

4.0 User Manual

4.1 System Login and Registration

A1 A2

A3

A4

A5

 85

Figure 4.1 System Login and Registration

FUNCTION DESCRIPTION

A1 Navigate to Google Selection interface

A2 Select Google account to login

A3 Fill in required personal details

A4 Navigate to Profile Details

A5 Cancel registration of new account

4.2 Home Dashboard and Profile

Figure 4.2 Home Dashboard and Profile

B3

B4

B5 B6

B7

B2

B1

B9

B10

B11

B12

B8

 86

FUNCTION DESCRIPTION

B1 Display weather information

B2 Navigate to recent classes

B3 Navigate to profile page

B4 Navigate to class page

B5 Navigate to event page

B6 Navigate to community page

B7 Logout of current session

B8 Back button to main menu

B9 Display profile picture

B10 Display full name and community name

B11 Display user type, user identification number, and email.

B12 Display number of active classes.

 87

4.3 Class List, Class Code and Class Creation

Figure 4.3 Class List, Class Code and Class Creation

FUNCTION DESCRIPTION

C1 Navigate back to main menu

C2 Navigate to course page

C3 Create new class

C4 Activate pop

C5 Input class code

C6 Submit class code to be added

C7 Navigate back to class list

C2

C1

C3

C4

C5

C6

C8

C9

C7

 88

C8 Input information required to create new class

C9 Submit new class information

4.4 Class Index

Figure 4.4 Class Index

FUNCTION DESCRIPTION

D1 Navigate back to main menu

D2 Navigate to resource page

D3 Navigate to assignment page

D4 Navigate to chat page

D1

D2 D3 D4

D5

D7

D9

D11

D10

D8

D6

 89

D5 Navigate to class code page

D6 Navigate to class settings page

D7 Delete announcement

D8 Display announcement title

D9 Display announcement content

D10 Display announcement posting date

D11 Navigate to announcement creation page

4.5 Assignments List, Assignment Creation

Figure 4.5 Assignments List, Assignment Creation

E1

E2

E3

E4
E5

E6

E7

E8

 90

FUNCTION DESCRIPTION

E1 Navigate back to class index.

E2 Navigate to assignment details page of selected assignment.

E3 Navigate to assignment creation page.

E4 Navigate to assignment list page.

E5 Input assignment title field.

E6 Input assignment message field.

E7 Input assignment start time and end time field.

E8 Submit creation of new assignment.

 91

4.6 Assignments Information, Assignment Status, Assignment Submission

Figure 4.6 Assignments Information, Assignment Status, Assignment Submission

FUNCTION DESCRIPTION

F1 Navigate back to class index page.

F2 Display assignment information.

F3 Navigate to assignment status page of selected student

F4 Upload assignment files

F5 Input assignment marks.

F6 Submit assignment marks.

F7 Prompt grade assignment input pop up.

F1

F3

F2

F4

F5

F6

F7

 92

4.7 Class Chat

Figure 4.7 Class Chat

FUNCTION DESCRIPTION

G1 Navigate to class index page.

G2 Display sender’s message.

G3 Display recipient’s message

G4 Scroll to the latest chat message.

G5 Input chat message.

G6 Send chat message

G1

G3

G2

G4

G6 G5

 93

 94

4.8 Resource List

Figure 4.8 Resource List

FUNCTION DESCRIPTION

H1 Navigate back to class index page.

H2 Download resource

H3 Upload resource

H2

H1

H3

 95

4.9 Community Index, Community Creation

Figure 4.9 Community Index, Community Creation

FUNCTION DESCRIPTION

I1 Navigate back to home page.

I2 Search for communities

I3 Navigate to community thread list

I4 Navigate back to community index page.

I5 Input new community title.

I6 Input new community description.

I1

I3

I2

I5

I6

I7

I8

I9

I4

 96

I7 Uploaded community image

I8 Select image from file browser.

I9 Submit new community creation.

4.10 Community Thread, Thread Creation

Figure 4.10 Community Thread, Thread Creation

FUNCTION DESCRIPTION

J1 Navigate back to community index page.

J2 Search for threads within the community.

J1

J2

J3

J4

J6

J7

J8

J9

J10

J5

 97

J3 Navigate to selected thread details.

J4 Navigate to thread creation page.

J5 Navigate to community settings menu.

J6 Input new thread name.

J7 Input new thread description

J8 Display uploaded images.

J9 Uploaded images from system file browser.

J10 Submit new community creation.

 98

4.11 Thread Details, Thread Reply

Figure 4.11 Thread Details, Thread Reply

FUNCTION DESCRIPTION

K1 Navigate back to thread list.

K2 Display original poster’s name.

K3 Display thread name

K4 Display thread photos.

K5 Display thread description.

K6 Display thread replies.

K1

K2

K3

K4

K5

K6

K9

K10

K8

K7

K10

 99

K7 Delete current thread.

K8 Display current thread that the user is replying to.

K9 Input reply message to thread.

K10 Prompt thread reply pop up modal box.

 100

4.12 Event Index, Event Search

4.12 Event Index, Event Search

FUNCTION DESCRIPTION

L1 Navigate back to home page.

L2 Search for specific events.

L3 Navigate to event details page.

L4 Navigate to add new event page.

L5 Display search results based on entered keywords.

L3

L2

L1
L4

L5

 101

4.13 Event Details

4.13 Event Details

FUNCTION DESCRIPTION

M1 Navigate back to event page.

M2 Display start and end date of event.

M3 Display original’s poster and website link.

M4 Display event description.

M1

1

M2

M4

M3

M5

 102

APPENDIX B

USABILITY TEST FORM

 103

Figure 1: Usability Test Form

 104

 105

 106

 107

 108

Figure 2: Usability Test Results

 109

APPENDIX C

USER ACCEPTANCE TEST FORM

 110

Figure 1: User Acceptance Test Form

 111

 112

 113

Figure 2: User Acceptance Test Form

 114

APPENDIX D

SOFTWARE REQUIREMENT SPECIFICATION (SRS)

SDD-SAGE-23-V01 114

SOFTWARE

REQUIREMENT

SPECIFICATION

(SRS)
[SAGE: A COMMUNITY EMPOWERED

UNIVERISITY E-LEARNING

APPLICATION]

2022

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 ii

DOCUMENT APPROVAL

 Name Date

Authenticated by:

Ronald Lim Sheng Wei

Ronald Lim Sheng Wei

27/5/2022

Approved by:

Client

Software :

Archiving Place :

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 iii

TABLE OF CONTENT

CONTENT PAGE

DOCUMENT APPROVAL II

TABLE OF CONTENT III

LIST OF FIGURES V

LIST OF TABLES VI

LIST OF APPENDICES VII

CHAPTER 1 1

1.1 PROJECT DESCRIPTION 1

1.2 SYSTEM IDENTIFICATION 1

1.3 CONTEXT DIAGRAM 2

1.4 DATA FLOW DIAGRAM 3

CHAPTER 2 4

2.1 USE CASE DIAGRAM AND DESCRIPTION 4

2.1.1 Manage Class 6

2.1.2 Manage Event 14

2.1.3 Manage Profile 16

2.1.4 Manage Community 18

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 iv

CHAPTER 3 22

3.1 INTERFACE DESIGN 22

3.1.1 Manage Class 22

3.1.2 Manage Profile and Manage Event 25

3.1.3 Manage Community 27

3.2 HARDWARE AND SOFTWARE SPECIFICATION 29

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 v

LIST OF FIGURES

Figure 1.1 Context Diagram 3

Figure 1.2 Data Flow Diagram 4

Figure 2.1 Use Case Diagram 4

Figure 2.2 Manage Class Use Case Diagram 6

Figure 2.3 Manage Event Use Case Diagram 14

Figure 2.4 Manage Profile Use Case Diagram 16

Figure 2.5 Manage Community Use Case Diagram 18

Figure 3.1 Lecturer’s View of Manage Class Module 23

Figure 3.2 Manage Class – Student View 24

Figure 3.3 Manage Profile and Event Interfaces 25

Figure 3.4 Manage Community Interfaces 28

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 vi

 LIST OF TABLES

Table 2.1 Manage Class Use Case Description 6

Table 2.2 Manage Event Use Case Description 14

Table 2.3 Manage Profile Use Case Description 16

Table 2.4 Manage Community Use Case Description 18

Table 3.1 Specification of Hardware and Software 29

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 vii

LIST OF APPENDICES

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 1

1 CHAPTER 1

1.1 PROJECT DESCRIPTION

SAGE aims to provide tertiary level students and lecturers alike, an application for peer-

to peer communication and academic discussion as well as a tool to manage their classes.

The SAGE application includes four main modules. The systems are as follows:

a. Manage Class

The Manage Class allows students to join class via a generated class code.

From within a class, they can retrieve uploaded educational resources, chat

with peers from the same class, view announcements by lecturers and submit

their assignments. For lecturers, they can create classes, assignments as well

as announcement. Assignments can be graded by the lecturers and returned to

the students. They can participate in the chat room of the class as well.

b. Manage Events

The Manage Events module allows the user to create, delete, edit their hosted

events. Users wanting to explore the campus for more events to attend can do

so on the module as well.

c. Manage Profile

Manage Profile module allows user to edit their profile picture as well as

personal information.

d. Manage Community

Manage Community allows users to create, edit, delete as well as update their

communities. From within the communities, users can create, edit or delete

their threads. Users can reply to their threads with words and images.

1.1 SYSTEM IDENTIFICATION

System Title: Community Empowered University E-Learning

Application

System Abbreviation: SAGE

System Identification Number: SRS-SAGE-V01-23

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 2

1.2 CONTEXT DIAGRAM

Figure 1.1 Context Diagram

The context diagram contains two entities which are the student and the lecturer who

will interact with the system. From the two entities to the system, there will be data

flowing from multiple modules from within the system. For the login function of the

system, user credentials or login information will be sent to the system while a login

token will be returned to the user. Next, for the Manage Class Module, there will be class

information and class code and also class messages going into the system and out from

the system to the students. Class code will be used to join new classes while class

information for students includes the submission of class assignments. For the lecturers,

class information indicates the upload of educational resources, creating announcements,

as well as creating and marking of announcements. Besides that, for the Manage Event

module, both entities will be required to provide event information to the system for the

creation, editing, and deleting of events. The system will also provide users with the

ability to browse events as seen as the event information flowing from the system to the

entities. After that, for the Manage Community module, both entities will be expected to

send and receive community information, thread info and also thread replies from the

system. This allows the managing of communities, threads and also thread replies.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 3

1.3 DATA FLOW DIAGRAM

Figure 1.2 Data Flow Diagram

Figure 1.2 depicts the data flow diagram of the system. There are a total of 4 data

stores, 4 processes, and one external entity. For the Manage Class process, class details

data will flow into the process. The resulting class details data will flow into Class data

store. Next, for the Manage Event process, it will receive event details from the user.

Eventually, the output from the process will have data flowing into the Event data store.

For the Manage Profile, it will receive profile details from the external entity, user and

subsequently output profile details to be stored in the user data store. Finally, the Manage

Community process receives community details and subsequently outputs data to be

stored in the Community data store.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 4

2 CHAPTER 2

1.1 USE CASE DIAGRAM AND DESCRIPTION

Figure 2.1 Use Case Diagram

Module Function Actor

Manage Class • Lecturer can view,

create, and delete class

details.

• Lecturer can view,

create, and delete

resource details.

• Lecturer

• Student

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 5

• Lecturer can view,

create, and delete

announcement details.

• Lecturer can view,

create, and delete

assignment details.

• Lecturer can view, and

grade submitted

assignments.

• Students can join classes

via class joining code.

• Students can view and

exit classes.

• Students can view and

download resources.

• Students can view and

upload assignments.

• Students can view

announcements.

• Users can send and

receive messages in the

class chat room.

Manage Profile • Users can edit user

profile details.

• Lecturer

• Student

Manage Events • Users can view, create,

delete events.

• Users can join events.

• Users can remove event

participants.

• Lecturer

• Student

Manage Community • Users can view, create,

and delete communities.

• Lecturer

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 6

• Users can view, create,

and delete threads.

• Users can view, create,

delete thread replies.

• Student

2.1.1 Manage Class

Figure 2.2 Manage Class Use Case Diagram

Table 2.1 Manage Class Use Case Description

Use Case ID SAGE-SRS-UC001

Brief

Description

This use case describes how the lecturer and students manage their

classes.

Actor Lecturer, Student

Pre-

Conditions

1. User must be logged into the system.

2. User must have the correct authorizations.

3. User must be in the Manage Class module.

Basic Flow Lecturer:

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 7

[B1: Create Class].

1. Lecturer presses the <<+>> button.

2. System display form for class creation.

3. Lecturer fills in the class details. [A1: Create Missing

Required Information]

4. Lecturer presses <<Save>>.

5. System validates the data. [A1: Create Class Missing

Required Information]

6. System inserts class information into the database.

[B2: Delete Class]

1. Lecturer selects a class.

2. System retrieves class details from database.

3. Lecturer presses <<Settings>>.

4. System displays settings menu.

5. Lecturer presses <<Delete Class>>.

[B3: Create Announcement]

1. Lecturer selects a class.

2. System retrieves class details from database.

3. Lecturer presses the announcement tab.

4. System retrieves announcement details from database.

5. Lecturer presses the <<+>> button.

6. System updates view.

7. Lecturer fills in the required details.

8. Lecturer presses <<Post>>.

9. System validates data.

10. System inserts data in database.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 8

[B4: Delete Announcement]

1. Lecturer selects a class.

2. System retrieves class details from database.

3. Lecturer goes to the announcement tab.

4. System retrieves announcement details from database and

displays it.

5. Lecturer presses the <<Delete>> button.

6. Lecturer fills in the required details.

7. Lecturer presses <<Post>>.

8. System validates data.

9. System deletes data from database.

[B5: Create Resources]

1. Lecturer selects a class.

2. System retrieves class details from database.

3. Lecturer navigates to the resources tab.

4. Lecturer presses the <<+>> button.

5. System displays add resource view.

6. Lecturer fills in the required details.

7. Lecturer uploads files. [A2: Resource Exceeded File Size

Limit]

8. Lecturer presses <<Post>>.

9. System validates data.

10. System inserts data into database.

[B6: Delete Resource]

1. Lecturer selects a class.

2. System retrieves class details from database.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 9

3. Lecturer goes to the resources tab.

4. Lecturer selects a resource.

5. Lecturer presses <<Delete>>.

[B7: Create Assignments]

1. Lecturer selects a class.

2. System retrieves class details from database.

3. Lecturer goes to the Assignments tab.

4. System retrieves assignment details from database.

5. Lecturer presses <<+>> button.

6. System displays add assignment view.

7. Lecturer fills in the details.

8. Lecturer uploads assignment files.

9. Lecturer presses <<Save>>.

10. System validates data. [A3: Lecturer Assignment Exceeded

File Size Limit]

11. System inserts data into database.

[B8: Delete Assignments]

1. Lecturer selects a class.

2. System retrieves class details from database.

3. Lecturer goes to the Assignments tab.

4. Lecturer selects an assignment.

5. Lecturer presses <<Delete>>.

[B9: Grade Assignments]

1. Lecturer selects a class.

2. System retrieves class details from database.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 10

3. Lecturer goes to the Assignments tab.

4. Lecturer selects an assignment.

5. Lecturer presses Grade.

6. System retrieves and display student list.

7. Lecturer select student.

8. Lecturer downloads uploaded files.

9. Lecturer fill in marks.

10. Lecturer presses <<Save>>.

11. System updates assignment info in database.

Students:

[B10: Join Class]

1. Student press <<+>> button.

2. System displays window to enter code.

3. Student fills in class code. [E1: Invalid Class Code]

4. System validates data.

5. System adds student to the class.

[B11: Upload Assignments]

1. Student selects a class.

2. System retrieves class information from database.

3. Student selects Assignments tab.

4. System retrieves assignments information from database.

5. Students select an assignment to view.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 11

6. System displays assignment information.

7. Student presses <<Upload Files>>

8. Student selects a file from their phone file manager.

9. Student presses <<Submit>>.

10. System validates data. [A4: Student Assignment Exceeded

File Size Limit]

11. System inserts data into database.

Students and Lecturers:

[B12: View Announcements]

1. User selects a class.

2. System retrieves class information from database.

3. User selects announcement tab.

4. User selects an announcement to view.

5. System displays announcement information.

[B13: View Resources]

1. User selects a class.

2. System retrieves class information from database.

3. User selects Resources tab.

4. System retrieves resource information from database.

5. User selects resource to view.

6. System displays resource information.

7. User presses uploaded file to download.

8. System retrieves file from database.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 12

[B14: View Assignments]

1. User selects a class.

2. System retrieves class information from database.

3. User selects Assignments tab.

4. System retrieves assignment information from database.

5. User selects assignment to view.

6. System displays assignment information.

[B15: Chat]

1. User selects a class.

2. System retrieves class information from database.

3. User selects Chat tab.

4. System retrieves chat log from database.

5. User types a message.

6. User presses <<Send>> button.

7. System inserts chat log into the database.

8. System displays new chat log in interface.

Alternative

Flow

[A1: Create Class Missing Required Information]

1. System displays error message.

2. Lecturer fills in required information.

3. Lecturer is returned to step 6 of B1.

[A2: Resource Exceeded File Size Limit]

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 13

1. System displays error message.

2. Lecturer reuploads file.

3. Lecturer is returned to step 9 of B5.

[A3: Lecturer Assignment Exceeded File Size Limit]

1. System displays error message.

2. Student reuploads file.

3. Student presses <<Save>>

4. System validates data.

5. Student is returned to step 9 of B7.

[A4: Student Assignment Exceeded File Size Limit]

6. System displays error message.

7. Student reuploads file.

8. Student is returned to step 11 of B11.

Exception

Flow

[E1: Invalid Class Code]

1. System displays error message.

2. Student reenters correct class code.

3. Student is returned to step 5 of B10.

Post-

Conditions

None

Rules None

Constraints None

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 14

2.1.2 Manage Event

Figure 2.3 Manage Event Use Case Diagram

Table 2.2 Manage Event Use Case Description

Use Case ID SAGE-SRS-UC002

Brief

Description

This use case describes how the lecturers and students manage their

events.

Actor Lecturer, Student

Pre-

Conditions

1. User must be logged into the system.

2. User must be in the Manage Event module.

Basic Flow [B1: Create Event]

1. User presses <<+>> button.

2. System displays event creation form.

3. User fills in information.

4. User presses <<Create>>.

5. System validates data. [A1: Create Missing Information]

6. System inserts data into database.

[B2: Delete Event]:

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 15

1. User presses <<My Events>> button.

2. System retrieves user hosted events.

3. User presses <<Delete>> button.

4. System prompts for deletion confirmation.

5. User confirms deletion.

6. System deletes event from database.

[B3: View Participants]

1. User presses <<My Events>> button.

2. System retrieves user hosted events.

3. User presses <<Participants>> button.

4. System retrieves participants info from database.

5. System displays event participants.

[B4: Search for Events]

1. User types in keywords for events.

2. System queries database for keywords related to events.

3. System displays data.

Alternative

Flow

[A1: Create Event Missing Information]

1. System displays error message.

2. User reenters correct information.

3. System validates data.

4. User is returned to step 6 of B1.

Exception

Flow

None

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 16

Post-

Conditions

None

Rules None

Constraints None

2.1.3 Manage Profile

Figure 2.4 Manage Profile Use Case Diagram

Table 2.3 Manage Profile Use Case Description

Use Case

ID

SAGE-SRS-UC003

Brief

Description

This use case describes how the lecturers and students manage

their profiles.

Actor Lecturer, Student

Pre-

Conditions

1. User must be logged into the system.

2. User must be in the Manage Profile module.

Basic Flow [B1: View Profile]

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 17

1. User presses <<Profile Image>> button.

2. System retrieves user information.

3. System displays user information.

[B2: Edit Profile]

1. User presses <<Profile Image>> button.

2. System retrieves user information.

3. System displays user information.

4. User presses <<Edit Profile>> button.

5. System displays editing form.

6. User fills in information.

7. User presses <<Update>>.

8. System validates data. [A1: Required Information

Missing]

9. System updates data in database.

Alternative

Flow

[A1: Required Information Missing]

1. System displays error message.

2. User reenters correct information.

3. User presses <<Update>>.

4. System validates data.

5. User is returned to step 9 of B2.

Exception

Flow

None

Post-

Conditions

None

Rules None

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 18

Constraints None

2.1.4 Manage Community

Figure 2.5 Manage Community Use Case Diagram

Table 2.4 Manage Community Use Case Description

Use Case ID SAGE-SRS-UC004

Brief

Description

This use case describes how the lecturers and students manage their

communities.

Actor Lecturer, Student

Pre-

Conditions

1. User must be logged into the system.

2. User must be in the Manage Community module.

Basic Flow [B1: Create Community]

1. User presses <<+>> button.

2. System displays creation form.

3. User fills in information.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 19

4. User presses <<Create>> button.

5. System validates data. [A1: Create Community Missing

Information]

6. System inserts data into database.

[B2: Search Community]

1. User clicks the search bar.

2. User types in keywords in search bar.

3. System queries database for written keywords.

4. System displays list of communities according to keywords.

[E1: No Communities Found]

[B3: Create Thread]

1. User selects a desired community.

2. System displays community page.

3. User presses <<+>> button.

4. System displays thread creation form.

5. User fills in required information.

6. User presses <<Create>> button.

7. System validates data. [A2: Create Thread Missing

Information]

8. System inserts data into database.

[B4: Reply to Thread]

1. User selects a desired community.

2. System displays community page.

3. User selects a desired thread.

4. System retrieves and display thread replies.

5. User selects <<Add Comment>> button.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 20

6. System displays comment form.

7. User fills in required information.

8. User presses <<Done>> button.

9. System validates data. [A3: Create Reply Missing

Information]

10. System inserts data into database.

[B5: Search for Thread]

1. User selects a desired community.

2. System displays community page.

3. User type keywords into search bar of community page.

4. System queries the database for thread data related to the

keywords.

5. System displays results. [E2: No Threads Found]

Alternative

Flow

[A1: Create Community Missing Information]

1. System displays error message.

2. User reenters correct information.

3. System validates data.

4. User is returned to step 6 of B1.

[A2: Create Thread Missing Information]

1. System displays error message.

2. User reenters correct information.

3. System validates data.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 21

4. User is returned to step 8 of B2.

[A3: Create Reply Missing Information]

1. System displays error message.

2. User reenters correct information.

3. System validates data.

4. User is returned to step 9 of B3.

Exception

Flow

[E1: No Communities Found]

1. System displays error message.

2. User is returned to step 1 of B2.

[E2: No Threads Found]

1. System displays error message.

2. User is returned to step 1 of B4.

Post-

Conditions

None

Rules None

Constraints None

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 22

3 CHAPTER 3

3.1 INTERFACE DESIGN

3.1.1 Manage Class

3.1.1.1 Lecturer View

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 23

Figure 3.1 Lecturer’s View of Manage Class Module

Figure 3.1 depicts a lecturer’s view of the Manage Class. Lecturer will have full

access to the administrative functions across the Manage Class module. Lecturers are

able to create, edit, delete announcement, assignments, resources, participate in the

chatroom, as well as manage the classroom.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 24

3.1.1.2 Student View

Figure 3.2 Manage Class – Student View

Figure 3.2 depicts a student’s view of the Manage Class module. In this view,

many of the administrative functions are stripped off as they are only limited to the

lecturer or creator of the class. Meanwhile, users can still view announcements, chat with

their classmates and educator in the group chat. There is also an interface to input the

class code to join a class. The resources tab can be accessed to read the instructions and

download the required files. Finally, students can submit their assignments in the

assignments tab. Once the files are uploaded, they can press submit for the lecturer’s

evaluation.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 25

3.1.2 Manage Profile and Manage Event

Figure 3.3 Manage Profile and Event Interfaces

Figure 3.3 depicts the flow of the Manage Profile and Manage Event modules.

Starting with the Manage Profile, users can access this module from the home page of

the system. From there, users can choose to edit their details at the edit interface.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 26

For the Manage Event module, users can explore the latest events on the index

page. Next, users can also choose to host their own events. By filling the event creation

form, a new event will be created. Once created, the user hosted event can be managed

as well. Users can view information regarding the participants, edit the details of the event

as well as delete it.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 27

3.1.3 Manage Community

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 28

Figure 3.4 Manage Community Interfaces

Figure 3.4 depicts the interface of Manage Community module. Starting with the

login screen, the flow of the interfaces starts when the user presses on the community

icon to access the module. Users will be first introduced to a few communities that the

user has joined or new communities. Users can create their own communities by using

the provided community creation form. As an admin of the community, users can manage

the community by pressing the My Communities button. There, the community can be

edited or deleted. The members of the community can be viewed as well.

Upon accessing an existing community, the user can view many threads that have

been submitted by other users. The thread list contains a picture of the problem and the

preview of the title and description of the problem. After accessing a thread, users can

view the full content of the thread which includes the replies. Users can then submit a

reply to an existing thread by using the reply bar on the bottom of the interface. Replies

can be attached with images as desired. Next, users can also create a new thread within a

community by using the provided thread form. Users will need to include the title,

description and image of the problem.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SDD-SAGE-23-V01 29

3.2 HARDWARE AND SOFTWARE SPECIFICATION

Table 3.1 Specification of Hardware and Software

Name Type Description Purpose

Lenovo IdeaPad

Gaming Gen 6

Laptop A consumer laptop

running Windows

11.

For word

processing,

documentation, and

development of

project.

Google Firebase Cloud Server A cloud-based

NoSQL database

tool.

To create, update,

retrieve, delete

system data of the

project.

Android Studio Software An integrated

development

environment for the

Android operating

system.

To write the source

code and run the

simulation of the

project.

SDD-SAGE-23-V01 147

APPENDIX E

SOFTWARE DESIGN DESCRIPTION (SDD)

SDD-SAGE-23-V01 147

SOFTWARE

DESIGN

DESCRIPTION

(SDD)
[SAGE: A Community Empowered

University E-Learning Application]

2022

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 ii

DOCUMENT APPROVAL

 Name Date

Authenticated by:

Ronald Lim Sheng Wei

Ronald Lim Sheng Wei

1/6/2022

Approved by:

Client

Software :

Archiving Place :

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 iii

TABLE OF CONTENT

CONTENT PAGE

DOCUMENT APPROVAL II

TABLE OF CONTENT III

LIST OF FIGURES V

LIST OF TABLES VI

LIST OF APPENDICES VIII

CHAPTER 1 VI

1.1 PROJECT DESCRIPTION 9

1.2 SYSTEM IDENTIFICATION 9

1.3 ARCHITECTURE / BLUE PRINT 10

1.4 ARCHITECTURE / BLUEPRINT DESCRIPTION 11

1.4.1 Application Layer 11

1.4.2 Business Layer 17

1.4.3 Middleware Layer 19

CHAPTER 2 20

2.1 DETAILED DESCRIPTION 20

2.1.1 Manage Class 21

2.1.2 Manage Profile 36

2.1.3 Manage Event 39

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 iv

2.1.4 Manage Community 45

2.1.5 Model 55

2.2 DATA DICTIONARY 75

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 v

LIST OF FIGURES

Figure 1.1 General Architecture of SAGE 10

Figure 1.2 Manage Class View 11

Figure 1.3 Manage Profile View 13

Figure 1.4 Manage Event View 14

Figure 1.5 Manage Community View 15

Figure 1.6 ViewModel 17

Figure 1.7 Model of SAGE 18

Figure 1.8 Middleware of SAGE 19

Figure 2.1 General Detailed Class Diagram of SAGE 20

Figure 2.2 Manage Class Class Diagram 22

Figure 2.3 Manage Profile Class Diagram 36

Figure 2.4 Manage Event Class Diagram 39

Figure 2.5 Manage Community Class Diagram 46

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 vi

LIST OF TABLES

Table 1.1 Manage Class View Description 11

Table 1.2 Manage Profile View Description 13

Table 1.3 Manage Event View Description 14

Table 1.4 Manage Community View Description 15

Table 1.5 ViewModel Description 17

Table 1.6 Model Description 18

Table 1.7 Middleware Description 19

Table 2.1 Class_index Class Description 22

Table 2.2 Class_create Class Description 22

Table 2.3 Class_settings Class Description 23

Table 2.4 Class_list Class Description 23

Table 2.5 Chat_index 24

Table 2.6 Announcement_create Class Description 25

Table 2.7 Assignment_index Class Description 25

Table 2.8 Assignment_info Class Description 26

Table 2.9 Assignment_create Class Description 26

Table 2.10 Student_assignment_submission Class Description 27

Table 2.11 Assignment_status Class Description 27

Table 2.12 Assignment_submit Class Description 28

Table 2.13 Resource_index Class Description 29

Table 2.14 Resource_create Class Description 29

Table 2.15 Resource_edit Class Description 30

Table 2.16 Class_view_model Class Description 30

Table 2.17 Profile_index Class Description 36

Table 2.18 Profile_edit Class Description 37

Table 2.19 Profile_view_model Class Description 38

Table 2.20 Event_index Class Description 39

Table 2.21 Event_ create Class Description 40

Table 2.22 Event_ details Class Description 40

Table 2.23 Event_ search Class Description 41

Table 2.24 Event_view_model Class Description 42

Table 2.25 Community_create Class Description 46

Table 2.26 Community_index Class Description 46

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 vii

Table 2.27 Community_ search Class Description 47

Table 2.28 Community_edit Class Description 47

Table 2.29 Thread_list Class Description 48

Table 2.30 Thread_ create Class Description 48

Table 2.31 Thread_reply Class Description 49

Table 2.32 Thread_ details Class Description 50

Table 2.33 Community_view_model Class Description 50

Table 2.34 User Table 55

Table 2.35 Class Table 58

Table 2.36 Assignment Table 60

Table 2.37 Announcement Table 62

Table 2.38 Resource Table 64

Table 2.39 Submission Class Description 65

Table 2.40 Event Class Description 67

Table 2.41 Community Class Description 69

Table 2.42 Thread Class Description 71

Table 2.43 Reply Class Description 73

Table 2.44 User Table 75

Table 2.45 Class Table 75

Table 2.46 ClassAssignment Table 76

Table 2.47 Assignments Table 76

Table 2.48 Submission Table 76

Table 2.49 ClassAnnouncement Table 77

Table 2.50 Announcements 77

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 viii

LIST OF APPENDICES

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 9

CHAPTER 1

1.1 PROJECT DESCRIPTION

SAGE aims to provide tertiary level students and lecturers alike, an application for

peer-to peer communication and academic discussion as well as a tool to manage their

classes. The SAGE application includes four main modules. The systems are as follows:

e. Manage Class

The Manage Class allows students to join class via a generated class code.

From within a class, they can retrieve uploaded educational resources, chat

with peers from the same class, view announcements by lecturers and submit

their assignments. For lecturers, they can create classes, assignments as well

as announcement. Assignments can be graded by the lecturers and returned

to the students. They can participate in the chat room of the class as well.

f. Manage Events

The Manage Events module allows the user to create, delete, edit their

hosted events. Users wanting to explore the campus for more events to

attend can do so on the module as well.

g. Manage Profile

Manage Profile module allows user to edit their profile picture as well as

personal information.

h. Manage Community

Manage Community allows users to create, edit, delete as well as update

their communities. From within the communities, users can create, edit or

delete their threads. Users can reply to their threads with words and images.

1.2 SYSTEM IDENTIFICATION

System Title: SAGE: Community Empowered University E-

Learning Application

System Abbreviation: SAGE

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 10

System Identification Number: SAGE-SDD-V01-23

1.3 ARCHITECTURE / BLUEPRINT

Figure 1.1 General Architecture of SAGE

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 11

1.4.1 Application Layer

1.4.1.1 Manage Class

Figure 1.2 Manage Class View

Table 1.1 Manage Class View Description

Class Name Description

Class_list Interface that shows the classes

joined or hosted by the user.

Class_index Interface that shows the class details

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 12

Class_settings Interface that shows the class

settings

Class_create Interface that shows the class

creation form.

Chat_index Interface that shows the class chat

Announcement_create Interface that shows the class

announcement creation form.

Assignment_info Interface that shows the class

assignment details

Assignment_create Interface that shows the class

assignment creation form.

Student_assignment_submission Interface that shows the class

assignment submission list.

Assignment_status Interface that shows the class

assignment grade.

Assignment_submit Interface that shows the class

assignment details and submission.

Resource_index Interface that shows the class

resource details.

Resource_create Interface that shows the class

resource creation form.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 13

1.4.1.2 Manage Profile

Figure 1.3 Manage Profile View

Table 1.2 Manage Profile View Description

Class Name Description

Profile_index Interface that shows the user profile

details.

Profile_edit Interface that shows the user profile

details editing form.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 14

1.4.1.3 Manage Event

Figure 1.4 Manage Event View

Table 1.3 Manage Event View Description

Class Name Description

Event_hosted Interface that shows the events

hosted by the user.

Event_index Interface that shows the available

events.

Event_joined Interface that shows the events joined

by the user.

Event_create Interface that shows the event

creation form.

Event_show Interface that shows the event details.

Event-edit Interface that shows the events

hosted by the user.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 15

Event_manage Interface that shows the events

hosted by the user.

Event_participant Interface that shows the event

participants.

1.4.1.4 Manage Community

Figure 1.5 Manage Community View

Table 1.4 Manage Community View Description

Class Name Description

Community_create Interface that shows the communites

creation form.

Community_index Interface that shows the available

communities.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 16

Community_search Interface that shows the communites

creation form.

Community_settings Interface that shows the community

settings page.

Thread_list Interface that shows the thread list.

Thread_details Interface that shows the thread

details.

Thread_create Interface that shows the thread

creation form.

Thread_search Interface that shows the thread

search page.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 17

1.4.2 Business Layer

Figure 1.6 ViewModel

Table 1.5 ViewModel Description

Class Name Description

Class_view_model ViewModel for the Manage Class

module.

Community_view_model ViewModel for the Manage

Community module.

Profile_view_model ViewModel for the Manage Profile

module.

Event_view_model ViewModel for the Manage Event

module.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 18

Figure 1.7 Model of SAGE

Table 1.6 Model Description

Class Name Description

Class Model for class data.

Users Model for User data.

Event Model for Event data.

Community Model for Community data.

Thread Model for Thread data.

Reply Model for Reply data.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 19

Assignment Model for Assignment data.

Announcement Model for Announcement data.

Resource Model for Resource data.

Submission Model for Submission data.

1.4.3 Middleware Layer

Figure 1.8 Middleware of SAGE

Table 1.7 Middleware Description

Class Name Description

Firebase A cloud-based NoSQL service for the

system database.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 20

2 CHAPTER 2

2.1 DETAILED DESCRIPTION

Figure 2.1 General Detailed Class Diagram of SAGE

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 21

2.1.1 Manage Class

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 22

Figure 2.2 Manage Class Class Diagram

2.1.1.1 View

2.1.1.1.1 Class_index

Table 2.1 Class_index Class Description

Class Type Boundary Class

Responsibility This class allows the user to view the class module index.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.2 Class_create

Table 2.2 Class_create Class Description

Class Type Boundary Class

Responsibility This class allows the user add new classes.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 23

N/A N/A

Algorithm N/A

2.1.1.1.3 Class_settings

Table 2.3 Class_settings Class Description

Class Type Boundary Class

Responsibility This class allows the user to access class settings.

Attributes Attribute Name Attribute Type

classID

Number

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.4 Class_list

Table 2.4 Class_list Class Description

Class Type Boundary Class

Responsibility This class allows the user to access their personal registered

class list.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 24

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.5 Chat_index

Table 2.5 Chat_index

Class Type Boundary Class

Responsibility This class allows the user to access the chat room of the

class.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 25

2.1.1.1.6 Announcement_create

Table 2.6 Announcement_create Class Description

Class Type Boundary Class

Responsibility This class allows the user to create new assignments.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.7 Assignment_index

Table 2.7 Assignment_index Class Description

Class Type Boundary Class

Responsibility This class allows the user to access the assignments of the

class.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 26

N/A N/A

Algorithm N/A

2.1.1.1.8 Assignment_info

Table 2.8 Assignment_info Class Description

Class Type Boundary Class

Responsibility This class allows the user to view assignment info.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.9 Assignment_create

Table 2.9 Assignment_create Class Description

Class Type Boundary Class

Responsibility This class allows the user to create new assignments.

Attributes Attribute Name Attribute Type

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 27

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.10 Student_assignment_submission

Table 2.10 Student_assignment_submission Class Description

Class Type Boundary Class

Responsibility This class allows the user to view submitted assignment

files.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.11 Assignment_status

Table 2.11 Assignment_status Class Description

Class Type Boundary Class

Responsibility This class allows the user to grade assignments.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 28

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.12 Assignment_submit

Table 2.12 Assignment_submit Class Description

Class Type Boundary Class

Responsibility This class allows the user to submit assignments.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 29

2.1.1.1.13 Resource_index

Table 2.13 Resource_index Class Description

Class Type Boundary Class

Responsibility This class allows the user to view resource list.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.1.14 Resource_create

Table 2.14 Resource_create Class Description

Class Type Boundary Class

Responsibility This class allows the user to create new resources.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 30

Algorithm N/A

2.1.1.1.15 Resource_edit

Table 2.15 Resource_edit Class Description

Class Type Boundary Class

Responsibility This class allows the user to edit resources.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.1.2 ViewModel

2.1.1.2.1 Class_view_model

Table 2.16 Class_view_model Class Description

Class Type ViewModel Class

Responsibility This class allows the system to interact with the

ManageClass module views and models.

Attributes Attribute Name Attribute Type

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 31

classModel

ancModel

userModel

resourceModel

assignmentModel

submissionModel

Class

Announcement

Users

Resource

Assignment

Submission

Methods Method Name Description

checkClassExist() A function that checks if a class

exists

getClassListData() A function that retrieves a list of

all classes

getAncListData() A function that retrieves a list of

announcements for a specific

class

getResourceListData() A function that retrieves a list of

resources for a specific class

updateUserClass|D() A function that updates the class

ID for a specific user

generateClassDataList() A function that generates a list of

class data from a list of class

documents

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 32

generateRandomString () A function that generates a

random alphanumeric string of a

specified length

listResources() A function that lists all resources

in a specified filepath

deleteAnc() A function that deletes a

specified announcement

checkAncInit() A function that checks if an

announcement collection has

been initialized for a specific

class and initializes it if necessary

createClass() A function that creates a new

class and updates the user's class

ID

deleteUserClassID() A function that deletes a user's

class ID

getAssList() A function that retrieves a list of

assignments for a specific class

addAss() A function that adds an

assignment to a specific class

addSub() A function that adds a submission

to an assignment for a specific

user

updateSubMarks() A function that updates the marks

for a specific submission of an

assignment

Algorithm checkClassExist(classJoinCode)

START

RETURN CALL checkClassExist(classJoinCode) from class

model

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 33

getClassListData()

START

RETURN CALL getClassListData() from class model

END

getAncListData(classID)

START

RETURN CALL getAncListData(classID) from announcement

model

END

getResourceListData(classID)

START

RETURN CALL getResourceListData(classID) from resource

model.

END

updateUserClassID(classID)

START

RETURN CALL updateUserClassID(classID) from user model.

END

generateClassDataList(classData, classDataList)

START

FOR EACH doc in classData

ADD a Class object to classDataList with the following

parameters : doc.id, doc['classID'], doc['className'],

doc['classCode'], doc['classJoinCode'], doc['ancID'],

doc['chatID'],doc['assID']

RETURN classDataList

END

generateRandomString(length)

START

DECLARE _chars as a string containing all the possible

characters

DECLARE _rnd as a new instance of random

RETURN a string composed of random characters of length as

passed in the parameter, selected from _chars

END

listResources(filepath)

START

RETURN Firebase storage list based on filepath.

END

deleteAnc(ancID, docID)

START

RETURN ancModel.deleteAnc(ancID, docID)

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 34

END

checkAncInit(classID)

START

DECLARE uniqueid as a random string of 20 characters

RETURN the uniqueid after querying the "ClassAnnouncement"

collection for documents with a "classID" field that is equal to

the passed in classID, limiting the query to one document. If a

document is found, return the uniqueid, otherwise create a new

document in the "ClassAnnouncement" collection with

"classID" and "ancID" fields, set the "classID" field to the

passed in classID and the "ancID" field to the uniqueid. Also

update the class document with the same classID in the "Class"

collection to include the uniqueid in the "ancID" field.

END

createClass(classData)

START

DECLARE classID as the result of

classModel.createClass(classData)

UPDATE userModel.updateUserClassID(classID)

END

deleteUserClassID(classID)

START

UPDATE CALL deleteClass(classID) from class model.

UPDATE CALL deleteUserClassID(classID) from user model.

END

getAssList(assID)

START

RETURN CALL getAssList(assID) from assignment model

END

addAss(assID, assData)

START

RETURN CALL addAss(assID, assData) from assignment

model

END

addSub(assID, assignmentID, userEmail)

START

RETURN CALL addSub(assID, assignmentID, userEmail) from

assignment model

END

updateSubMarks(assID, assignmentID, subData, marks)

START

RETURN CALL updateSubMarks(assID, assignmentID,

subData, marks) from submission model

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 35

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 36

2.1.2 Manage Profile

Figure 2.3 Manage Profile Class Diagram

2.1.2.1 View

2.1.2.1.1 Profile_index

Table 2.17 Profile_index Class Description

Class Type Boundary Class

Responsibility This class allows the user to view their own user profile.

Attributes Attribute Name Attribute Type

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 37

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.2.1.1 Profile_edit

Table 2.18 Profile_edit Class Description

Class Type Boundary Class

Responsibility This class allows the user to edit their user profile.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 38

2.1.2.2 ViewModel

2.1.2.2.1 Profile_view_model

Table 2.19 Profile_view_model Class Description

Class Type Boundary Class

Responsibility This class allows the system to interact with the

ManageProfile module views and models.

Attributes Attribute Name Attribute Type

userModel Users

Methods Method Name Description

updateUserInfo() A function to update user

information.

uploadImage() A function to upload image to

the server.

Algorithm updateUserInfo(userFirstName, userLastName)

START

RETURN CALL updateUserInfo(userFirstName,

userLastName) from user model

END

uploadImage(file, uniID)

START

DECLARE storageRef as a reference to the root of

FirebaseStorage

DECLARE imagesRef as a reference to the child "profileImage"

with uniID as the child of imagesRef

TRY

UPLOAD file to imagesRef

CATCH FirebaseException

PRINT "image error"

PRINT e

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 39

2.1.3 Manage Event

Figure 2.4 Manage Event Class Diagram

2.1.3.1 View

2.1.3.1.1 Event_index

Table 2.20 Event_index Class Description

Class Type Boundary Class

Responsibility This class allows the user to view events.

Attributes Attribute Name Attribute Type

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 40

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.3.1.2 Event_create

Table 2.21 Event_ create Class Description

Class Type Boundary Class

Responsibility This class allows the user to create an event.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.3.1.3 Event_details

Table 2.22 Event_ details Class Description

Class Type Boundary Class

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 41

Responsibility This class allows the user to edit an event’s details.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.3.1.4 Event_search

Table 2.23 Event_ search Class Description

Class Type Boundary Class

Responsibility This class allows the user to search for events.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 42

2.1.3.2 ViewModel

2.1.3.2.1 Event_view_model

Table 2.24 Event_view_model Class Description

Class Type Boundary Class

Responsibility This class allows the system to interact with the

ManageEvent module views and models.

Attributes Attribute Name Attribute Type

eventModel

classModel

ComEvent

Class

Methods Method Name Description

generateRandomString() A function that generates a

random alphanumeric string of a

specified length

getLatestEvents() A function that retrieves the

latest events

addEvent() A function that adds a new event

getCurrentMonthEvents () A function that retrieves a list of

events happening in the current

month

getEventByName() A function that retrieves events

with a specified name

getClassListData() A function that retrieves a list of

all classes

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 43

Algorithm generateRandomString(length)

START

DECLARE and INITIALIZE variable _chars as a string of

alphanumeric characters

DECLARE variable _rnd as a new random object

RETURN a new string created by ITERATING through a

GENERATED list of code units, where each code unit is

DETERMINED by the code unit of a RANDOMLY

SELECTED character from the _chars variable, for the specified

length

END

getLatestEvents()

START

RETURN the result of calling the getLatestEvents() function

from the eventModel object

END

addEvent(eventData)

START

CALL the addEvent(eventData) function from the eventModel

object

RETURN the result of the function call

END

getCurrentMonthEvents()

START

RETURN the result of calling the getCurrentMonthEvents()

function

from the eventModel object

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 44

getEventByName(searchQuery)

START

CALL the getEventByName(searchQuery) function from the

eventModel object

RETURN the result of the function call

END

getClassListData()

START

CALL the getClassListData() function from the classModel

object

RETURN the result of the function call

END

deleteEvent(eventID)

START

CALL the deleteEvent(eventID) function from the eventModel

object

RETURN the result of the function call

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 45

2.1.4 Manage Community

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 46

Figure 2.5 Manage Community Class Diagram

2.1.4.1 View

2.1.4.1.1 Community_create

Table 2.25 Community_create Class Description

Class Type Boundary Class

Responsibility This class allows the user to create new communities

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.4.1.2 Community_index

Table 2.26 Community_index Class Description

Class Type Boundary Class

Responsibility This class allows the user to view communities.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 47

N/A N/A

Algorithm N/A

2.1.4.1.3 Community_search

Table 2.27 Community_ search Class Description

Class Type Boundary Class

Responsibility This class allows the user to search for communities.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.4.1.4 Community_edit

Table 2.28 Community_edit Class Description

Class Type Boundary Class

Responsibility This class allows the user to edit communities.

Attributes Attribute Name Attribute Type

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 48

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.4.1.5 Thread_list

Table 2.29 Thread_list Class Description

Class Type Boundary Class

Responsibility This class allows the user to view thread list.

Attributes Attribute Name Attribute Type

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.4.1.6 Thread_create

Table 2.30 Thread_ create Class Description

Class Type Boundary Class

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 49

Responsibility This class allows the user to create threads.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.4.1.7 Thread_search

Table 2.31 Thread_reply Class Description

Class Type Boundary Class

Responsibility This class allows the user to create replies to threads.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 50

2.1.4.1.8 Thread_details

Table 2.32 Thread_ details Class Description

Class Type Boundary Class

Responsibility This class allows the user to create replies to threads.

Attributes Attribute Name Attribute Type

N/A N/A

Methods Method Name Description

N/A N/A

Algorithm N/A

2.1.4.2 ViewModel

2.1.4.2.1 Community_view_model

Table 2.33 Community_view_model Class Description

Class Type Boundary Class

Responsibility This class allows the system to interact with the

ManageCommunity module views and models.

Attributes Attribute Name Attribute Type

communityID

communityTitle

Number

String

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 51

communityDesc

communityTimeStamp

participantID

organizer

userID

userNickName

threadID

threadName

threadDesc

threadImgPath

replyID

replyMessage

replyImgPath

String

Timestamp

Number

Number

Number

String

Number

String

String

String

Number

String

String

Methods Method Name Description

generateRandomString() A function that generates a

random alphanumeric string of

a specified length

getThreadList() A function that retrieves a list

of all threads

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 52

getThreadListByName() A function that retrieves a list

of threads with a specified

name

addThread() A function that adds a new

thread

deleteThread() A function that deletes a

specified thread from a

specified location

addReply() A function that adds a new

reply to a specified thread

addCommunity() A function that adds a new

community

getCommunityListByName() A function that retrieves a list

of communities with a

specified name

getCommunityList() A function that retrieves a list

of all communities

getCurrentMonthCommunities () A function that retrieves a list

of communities created in the

current month

deleteCommunity() A function that deletes a

specified community

Algorithm checkClassExist(classJoinCode)

START

RETURN CALL checkClassExist(classJoinCode) from class

model

END

getClassListData()

START

RETURN CALL getClassListData()from class model

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 53

getAncListData(classID)

START

RETURN CALL getAncListData(classID) from announcement

model

END

getResourceListData(classID)

START

RETURN CALL getResourceListData(classID) from resource

model

END

updateUserClassID(classID)

START

RETURN CALL updateUserClassID(classID) from user model

END

generateClassDataList(classData, classDataList)

START

FOR EACH doc in classData

ADD a Class object to classDataList with the following

parameters : doc.id, doc['classID'], doc['className'],

doc['classCode'], doc['classJoinCode'], doc['ancID'],

doc['chatID'],doc['assID']

RETURN classDataList

END

generateRandomString(length)

START

DECLARE _chars as a string containing all the possible

characters

DECLARE _rnd as a new instance of random

RETURN a string composed of random characters of length as

passed in the parameter, selected from _chars

END

listResources(filepath)

START

RETURN resource from Firebase Storage according to filepath

END

deleteAnc(ancID, docID)

START

RETURN CALL deleteAnc(ancID, docID) from announcement

model

END

checkAncInit(classID)

START

DECLARE uniqueid as a random string of 20 characters

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 54

RETURN the uniqueid if the querySnapshot of

Firebase collection “ClassAnnouncement” where classID equal

to classID

ELSE

DECLARE data as a map containing the keys "classID" and

"ancID" with values classID and uniqueid respectively

SET data in

Firebase collection “ClassAnnouncement” with uniqueid as

document ID

UPDATE

Firebase collection “Class” with classID, SET ancID as

uniqueID

RETURN uniqueid

END

createClass(classData)

START

DECLARE classID as the returned value of

classModel.createClass(classData)

UPDATE userModel.updateUserClassID(classID)

END

deleteUserClassID(classID)

START

CALL deleteClass(classID) from class model

CALL deleteUserClassID(classID) from user model

END

getAssList(assID)

START

RETURN CALL getAssList(assID) from assignment model

END

addAss(String assID, Assignment assData)

START

RETURN CALL addAss(assID,assData) function from

assignment model

END

addSub(assID, assignmentID,userEmail)

START

RETURN addSub function from Submission model

END

updateSubMarks(assID,assignmentID,Submission

subData,marks)

START

RETURN updateSubMarks from Submission model

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 55

2.1.5 Model

2.1.5.1 User

Table 2.34 User Table

Class Type Model Class

Responsibility This class allows the user to access the user model.

Attributes Attribute Name Attribute Type

userID

classID

userUniID

userNickName

userEmail

userFirstName

userLastName

userType

userTimeStamp

userImagePath

String

String

String

String

String

String

String

String

Timestamp

String

Methods Method Name Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 56

generateRandomString() Generate a random

alphanumeric string of a

specified length

 addUser() Add a new user

 checkUserDataInCollection() Check if user data already

exists

 getUserData() Retrieve user data

 getUserDataByEmail() Retrieve user data by email

 getUserData2() Retrieve additional user data

 updateUserClassID() Update the class ID for a

specific user

 updateUserInfo() Update user's personal

information

 deleteUserClassID() Delete a user's class ID

Algorithm generateRandomString()

START

Declare and initialize variable _chars as a string of

alphanumeric characters

Declare variable _rnd as a new random object

Return a new string created by iterating through a generated list

of code units, where each code unit is determined by the code

unit of a randomly selected character from the _chars variable,

for the specified length

END

addUser(uniID, email, password, nickname, firstName,

lastName, userType)

START

Use Firebase Firestore to add a document to the 'userCollection'

collection, using the specified email as the document ID Set the

following fields for the document: "userID", "userEmail",

"userPassword", "userUniID", "userNickName",

"userFirstName", "userLastName", "userType"

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 57

Print "User Added" if successful, or "Failed to add user: [error]"

if not

END

checkUserDataInCollection()

START

Use Firebase Firestore to query the 'User' collection for

documents where the 'userEmail' field matches the current user's

email

If no documents are found, return nothing

If documents are found, return "Exist"

END

getUserData()

START

Use Firebase Firestore to query the 'userCollection' collection

for documents where the 'userEmail' field matches the current

user's email Return the query snapshot

END

getUserDataByEmail(email)

START

Use Firebase Firestore to query the 'userCollection' collection

for documents where the 'userEmail' field matches the specified

email

Return the query snapshot

END

getUserData2()

START

Declare variable userData

Use Firebase Firestore to query the 'userCollection' collection

for documents where the 'userEmail' field matches the current

user's email

For each document in the query snapshot, create a new Users

object with the following fields: "userID", "userUniID",

"userNickName", "userFirstName", "userLastName",

"userType", "", "userEmail"

Return the Users object

END

updateUserClassID(classID)

START

Declare variable classList as an empty list

Add classID to classList

Use Firebase Firestore to query the 'userCollection' collection

for documents where the 'userEmail' field matches the current

user's email

Use the ID of the first document in the query snapshot to update

the 'classID' field in the 'userCollection' collection, using the

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 58

classList variable with FieldValue.arrayUnion()

Print "ClassID Updated" if successful, or "Failed to update user

classID: [error]" if not

END

updateUserInfo(userFirstName, userLastName)

START

Declare variable userEmail

Use Firebase Firestore to query the 'userCollection' collection

for documents where the 'userEmail' field matches the current

user's email

Set userEmail equal to the value of the 'userEmail' field for the

first document in the query snapshot

Use Firebase Firestore to update the 'userCollection' collection,

setting the 'userFirstName' and 'userLastName' fields for the

document with the userEmail ID Print "User Info Updated" if

successful, or "Failed to update user info: [error]" if not

END

2.1.5.2 Class

Table 2.35 Class Table

Class Type Model Class

Responsibility This class allows the user to access the class model.

Attributes Attribute Name Attribute Type

docID

classID

classCode

classJoinCode

String

String

String

String

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 59

className

classTimeStamp

ancID

chatID

assID

String

String

String

String

String

Methods Method Name Description

getClassListData() Retrieve a list of all classes

createClass() Create a new class

checkClassExist() Check if a class with a specified

join code already exists

deleteClass() Delete a class

Algorithm generateRandomString(length)

START

Declare variable _chars as a string containing a set of characters

Declare variable _rnd as a new instance of the Random class

Return a new string created from the code units at the randomly

generated index of _chars, for the given length

END

getClassListData()

START

Declare variable classIDList as an empty list

Get user data and for each document retrieved, add the classID

value to classIDList

Declare variable classRef as a reference to the "Class" collection

in Firebase Firestore

Declare variable classes as a query of classRef where the

classID is in classIDList

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 60

Return the query snapshot of classes

END

createClass(classData)

START

Declare variable uniqueID as a call to generateRandomString()

with a length of 20

Declare variable classJoinCode as a call to

generateRandomString() with a length of 5

Declare variable dataMap as a map containing the class

information, including uniqueID and classJoinCode

Add the dataMap to a document in the "Class" collection in

Firebase Firestore using the uniqueID as the document ID

Return uniqueID

END

checkClassExist(classJoinCode)

START

Declare variable querySnapshot as the query snapshot of the

"Class" collection in Firebase Firestore where the classJoinCode

matches the input classJoinCode

Iterate through the documents in the query snapshot, and return

the classID value of the first document found

END

deleteClass(classID)

START

Delete the document with the matching classID in the "Class"

collection in Firebase Firestore

Print a message confirming the deletion, or an error message if

the deletion fails

END

2.1.5.3 Assignment

Table 2.36 Assignment Table

Class Type Model Class

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 61

Responsibility This class allows the user to access the assignment model.

Attributes Attribute Name Attribute Type

assignmentID: String

assTitle: String

assDesc: String

assStartTimeStamp

assEndTimeStamp

assTotalMarks

String

String

String

Timestamp

Timestamp

Number

Methods Method Name Description

getAssList() Retrieve assignment list

addAss() Add new assignment

Algorithm getAssList(assID)

START

Declare variable assList as an empty list

Declare variable querySnapshot as the query snapshot of the

collection "Assignments" within a document of the

"assCollection" where the document ID is the input assID

Iterate through the documents in the query snapshot, creating a

new Assignment object for each document with the

corresponding data and adding it to assList

Return assList

END

addAss(assID, assData)

START

Add the assData to a document in the "Assignments" collection

within a document of the "assCollection" using the

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 62

assData.assignmentID as the document ID and the assID as the

parent document ID

Print a confirmation message if the data was added successfully,

or an error message if the addition failed

END

2.1.5.4 Announcement

Table 2.37 Announcement Table

Class Type Model Class

Responsibility This class allows the user to access the announcement

model.

Attributes Attribute Name Attribute Type

docID

ancID

ancTitle

ancMessage

ancTimeStamp

String

String

String

String

Timestamp

Methods Method Name Description

getAncData() Retreive announcement data

from annoncement collection

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 63

getAncListData() Retreive announcement data

list from annoncement

collection

addAnc() Add announcement data to

annoncement collection

deleteAnc() Delete announcement data

from annoncement collection

Algorithm generateRandomString(length)

START

Declare variable _chars as a string containing a set of characters

Declare variable _rnd as a new instance of the Random class

Return a new string created from the code units at the randomly

generated index of _chars, for the given length

END

getAncListData(classID)

START

Declare variable ancs as a query of the "ancCollection" where

the classID is equal to the input classID and ordered by

descending ancTimeStamp

Return the query snapshot of ancs

END

getAncData(ancID)

START

Declare variable ancs as a query of the "ancCollection" where

the ancID is equal to the input ancID

Return the query snapshot of ancs

END

addAnc(ancData, classID)

START

Add the ancData to a document in the "ancCollection" using

ancData.ancID as the document ID, including the classID and a

timestamp

Print a confirmation message if the data was added successfully,

or an error message if the addition failed

END

deleteAnc(ancID,docID)

START

Delete the document with the matching ancID in the

"Announcements" collection within a document of the

"ancCollection"

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 64

Return after delete

END

2.1.5.5 Resource

Table 2.38 Resource Table

Class Type Model Class

Responsibility This class allows the user to access the resource model.

Attributes Attribute Name Attribute Type

docID

resourceID : Number

resourceTitle: String

resourceFilePath: String

resourceTimeStamp

String

Number

String

String

Timestamp

Methods Method Name Description

getResourceListData() Retrieve resource data list

from Firebase Storage

downloadResource() Download resource data list

from Firebase Storage

Algorithm getResourceListData(classID)

START

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 65

Declare variable resc as a query of the "resourceCollection"

where the classID is equal to the input classID and ordered by

descending resourceTimeStamp

Return the query snapshot of resc

END

downloadResource(filepath)

START

Check if the permission to manage external storage is granted, if

not, request for permission

Declare variable resourceRef as a reference to the file specified

by the input filepath in storage

Declare variable appDocDir as the application document

directory

Declare variable file as a new file named "Verification

Letter.pdf" in the appDocDir path

Declare variable url as the download url of resourceRef

Download the file from url to the file location

END

2.1.5.6 Submission

Table 2.39 Submission Class Description

Class Type Model Class

Responsibility This class allows the user to access the submission model.

Attributes Attribute Name Attribute Type

subID

userID

subPath

subTimeStamp

subMarks

String

String

String

Timestamp

Number

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 66

Methods Method Name Description

getSubList() Retrieve submission list from

submission collection.

addSub() Add submission to submission

collection.

updateSubMarks() Update submission marks at

submission collection.

Algorithm getSubList(assID, assignmentID)

START

Declare variable subList as an empty list

Declare variable querySnapshot as the query snapshot of the

collection "Submissions" within a document of the

"Assignments" collection within a document of the

"assCollection" where the document ID is the input assID and

assignmentID

Iterate through the documents in the query snapshot, creating a

new Submission object for each document with the

corresponding data and adding it to subList

Return subList

END

addSub(assID, assignmentID, subData)

START

Add the subData to a document in the "Submissions" collection

within a document of the "Assignments" collection within a

document of the "assCollection" using the subData.subID as the

document ID and the assID and assignmentID as the parent

document ID

Print a confirmation message if the data was added successfully,

or an error message if the addition failed

END

updateSubMarks(assID, assignmentID, subData, marks)

START

Update the subMarks field in the document of the

"Submissions" collection within a document of the

"Assignments" collection within a document of the

"assCollection" where the document ID is the input

subData.subID and the assID and assignmentID as the parent

document ID

Print a confirmation message if the update was successful, or an

error message if the update failed

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 67

END

2.1.5.7 Event

Table 2.40 Event Class Description

Class Type Model Class

Responsibility This class allows the user to access the event model.

Attributes Attribute Name Attribute Type

eventID

eventName

eventDesc

eventLink

eventHost

eventTimeStamp

eventStartTimeStamp

eventEndTimeStamp

String

String

String

String

String

Timestamp

Timestamp

Timestamp

Methods Method Name Description

deleteEvent() Delete event from event

collection

addEvent() Add event to event collection

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 68

searchEvent() Search event from event

collection

getEventByName() Retrieve event from event

collection by name.

getCurrentMonthEvents() Retrieve event from event

collection by month.

getLatestEvents() Retrieve event from event

collection by current month.

Algorithm getLatestEvents()

START

Return a stream of snapshots of the "eventCollection" ordered

by eventStartTimeStamp

END

getCurrentMonthEvents()

START

Declare variable date as the current date

Return a stream of snapshots of the "eventCollection" where the

eventTimeStamp is greater than or equal to the first day of the

current month

END

getEventByName(searchQuery)

START

Capitalize the input searchQuery

Return a query snapshot of the "eventCollection" where the

eventName is greater than or equal to the searchQuery and less

than the next character after the last character of the

searchQuery

END

searchEvent(eventName)

START

Return a query snapshot of the "eventCollection" ordered by

eventName, starting at the eventName and ending at the

eventName followed by the maximum Unicode character

END

addEvent(eventData)

START

Capitalize the eventName field in eventData

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 69

Declare variable data as a map containing the eventData fields

and the current timestamp

Add data to a document in the "eventCollection" using the

eventData.eventID as the document ID

Return after adding

END

deleteEvent(eventID)

START

Delete the document in the "eventCollection" where the

document ID is the input eventID

Print a confirmation message if the deletion was successful, or

an error message if the deletion failed

END

2.1.5.8 Community

Table 2.41 Community Class Description

Class Type Model Class

Responsibility This class allows the user to access the community

model.

Attributes Attribute Name Attribute Type

communityID

communityTitle

communityDesc

communityTimeStamp

String

String

String

Timestamp

Methods Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 70

getCommunityList() Retrieve community list

from community

collection.

 getCurrentMonthCommunities() Retrieve community list

from community

collection by current

month.

 getCommunityListByName() Retrieve community list

from community

collection by name.

 addCommunity() Add community to

community collection.

 deleteCommunity() Delete community from

community collection.

Algorithm getCommunityList()

START

Return a stream of snapshots of the "communityCollection"

END

getCurrentMonthCommunities()

START

Declare variable date as the current date

Return a stream of snapshots of the "communityCollection"

where the communityTimeStamp is greater than or equal to the

first day of the current month

END

getCommunityListByName(searchQuery)

START

Capitalize the input searchQuery

Return a query snapshot of the "communityCollection" where

the communityTitle is greater than or equal to the searchQuery

and less than the next character after the last character of the

searchQuery

END

addCommunity(data)

START

Declare variable newdata as a map containing the data fields

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 71

Add newdata to a document in the "communityCollection" using

the data.communityID as the document ID

Return after adding

END

deleteCommunity(comID)

START

Delete the document in the "communityCollection" where the

document ID is the input comID

Print a confirmation message if the deletion was successful, or

an error message if the deletion failed

END

2.1.5.9 Thread

Table 2.42 Thread Class Description

Class Type Model Class

Responsibility This class allows the user to access the thread model.

Attributes Attribute Name Attribute Type

threadID

threadName

threadDesc

threadImgPath

threadAuthor

threadTimeStamp

String

String

String

String

String

Timestamp

Methods Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 72

getThreadList() Retrieve thread list from

thread collection.

getThreadListByName()

Retrieve thread list from

thread collection by name.

addThread()

Add thread to thread

collection.

deleteThread()

Delete thread from thread

collection.

Algorithm getThreadList(communityID)

START

RETURN

“Thread” collection snapshot where “Community” collection

document ID is equal to communityID.

END

getThreadListByName(communityID, searchQuery)

START

DECLARE Future variable

SET variable equal to

 “Thread” collection where threadName is equal to searchQuery

where “Community” collection document ID is equal to

communityID.

RETURN variable

END

addThread(communityID, data)

START

DECLARE newdata variable

SET newdata equal to data

DECLARE Future variable

SET variable equal to

Add newdata to “Thread” collection where document ID is

equal to data.threadID where “Community” collection document

ID is equal to communityID.

RETURN variable

END

deleteThread(communityID, threadID)

START

DECLARE Future variable

SET variable equal to

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 73

Delete thread from “Thread” collection where document ID is

equal to threadID where “Community” collection document ID

is equal to communityID.

RETURN variable

END

2.1.5.10 Reply

Table 2.43 Reply Class Description

Class Type Model Class

Responsibility This class allows the user to access the reply model.

Attributes Attribute Name Attribute Type

replyID

replyMessage

replyImgPath

replyAuthor

replyTimeStamp

String

String

String

String

Timestamp

Methods Description

getReplies() System retrieves

community list details from

database.

deleteReply() System retrieves

community details from

database.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 74

insertReply() System updates community

details from database.

Algorithm getReplyList()

START

RETURN “Reply” collection in “Thread” collection in

“Community” collection.

END

addReply(communityID, threadID, data)

START

DECLARE newdata as a map containing the keys : "replyID",

"replyMessage", "replyImgPath", "replyAuthor",

"replyTimeStamp" with values from the data passed

RETURN

Add new data to “Thread” collection where document ID is

equal to threadID where “Community” collection document ID

is equal to communityID an set document id as data.replyID.

END

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 75

2.2 DATA DICTIONARY

Table 2.44 User Table

Field Name Data Type Constraint Description

userID String PK User Identification

Number

classID Array FK Class Identification

Number

userUniID String User University

Identification

userNickName String User Community

Nickname

userEmail String User Email

userFirstName String User First Name

userLastName String User Last Name

userType String User Type

userPassword String User Password

userTimeStamp timestamp User Timestamp

Table 2.45 Class Table

Field Name Data Type Constraint Description

classID String PK Class Identification

Number

ancID String FK Announcement

Identification

Number

assID String FK Assignment

Identification

Number

className String Class Name

classTimeStamp Timestamp Class Created

Timestamp

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 76

classCode String Class Code

classJoinCode String Class Joining Code

Table 2.46 ClassAssignment Table

Field Name Data Type Constraint Description

assID String PK Assignment

Identification

Number

classID String FK Class Identification

Number

Table 2.47 Assignments Table

Field Name Data Type Constraint Description

assignmentID String PK Assignment

Identification

Number

assTitle String Assignment Title

assDesc String Assignment

Description

assStartTimeStamp String Assignment Start

Timestamp

assEndTimeStamp String Assignment End

Timestamp

assTotalMarks Number Assignment Total

Marks

Table 2.48 Submission Table

Field Name Data Type Constraint Description

subID String PK Submission

Identification

Number

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 77

userEmail String FK User Email

subMarks Number Submission

Returned Marks

Table 2.49 ClassAnnouncement Table

Field Name Data Type Constraint Description

ancID String PKFK1 Announcement

Identification

Number

classID String PKFK2 Class Identification

Number

Table 2.50 Announcements

Field Name Data Type Constraint Description

ancTimeStamp Timestamp Announcement

Created Time

Stamp

ancTitle String Announcement

Title

ancMessage String Announcement

Message

Table 2.51 Community

Field Name Data Type Constraint Description

communityID String PK Community

Identification

Number

communityTitle String Community Title

communityDesc String Community

Description

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 78

communityTimeStamp Timestamp Community

Created

Timestamp

communityAuthor String Community

Author Name

Table 2.52 Thread

Field Name Data Type Constraint Description

threadID String PK Thread

Identification

Number

threadAuthor String Thread Author

Name

threadName String Thread Name

threadDesc String Thread Description

threadImgPath String Thread Image Path

threadID String PK Thread

Identification

Number

Table 2.53 Reply

Field Name Data Type Constraint Description

replyID String Reply

Identification

Number

replyAuthor String Reply Author

Name

replyMessage String Reply Message

replyTimeStamp Timestamp Reply Created

Time Stamp

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD-SAGE-23-V01 79

Table 2.54 Event

Field Name Data Type Constraint Description

eventID String PK Event

Identification

Number

eventName String Event Name

eventDesc String Event Description

eventHost String Event Host Name

eventLink String Event Meeting

Link

eventTimeStamp Timestamp Event Created

Timestamp

eventStartTimeStamp Timestamp Event Start

Timestamp

eventEndTimeStamp Timestamp Event End

Timestamp

