

DEVELOPMENT BVAG REPLICATION

PROTOTYPE IN DISTRIBUTED DATABASE

ENVIRONMENT

MUHAMMAD FATHUL AMIN BIN

SULAIMAN

Bachelor of Computer Science

(Software Engineering) with Honours

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE: * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MUHAMMAD FATHUL AMIN BIN SULAIMAN

Date of Birth

Title : DEVELOPMENT BVAG REPLICATION PROTOTYPE IN

 DISTRIBUTED DATABASE ENVIRONMENT

Academic Session : 2019/2020

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date: 27/1/2023

 (Supervisor’s Signature)

Assoc. Prof. Ts. Dr. Noraziah

Binti Ahmad

Name of Supervisor

Date: 21/2/2023

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Bachelor of Computer Science

in Software Engineering.

 (Supervisor’s Signature)

Full Name : Assoc. Prof. Ts. Dr. Noraziah Binti Ahmad

Position : Associate Professor

Date : 21/-2/2023

 (Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : MUHAMMAD FATHUL AMIN BIN SULAIMAN

ID Number : CB19070

Date : 27 JANUARY 2023

DEVELOPMENT BVAG REPLICATION PROTOTYPE

IN DISTRIBUTED DATABASE ENVIRONMENT

MUHAMMAD FATHUL AMIN BIN SULAIMAN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering) with Honours

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JANUARY 2023

ii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my supervisor Assoc. Prof. Ts.

Dr. Noraziah Ahmad for the continuous support of my degree study, for her patience,

motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time

of research and writing of this thesis. I could not have imagined having a better advisor

and mentor for degree study.

Special gratitude also to my family, especially to my father, Sulaiman bin Mohd Yuneh;

my mother, Zetty Azikin binti Ismail; for their patience and moral support throughout my

life.

Finally, I thank my fellow mates in Faculty of Computing; Dhiyaurahman Danial, Afiq

Danial, Ain Mutaqorrobin and Badri Hilmi for the stimulating discussions, for the

sleepless nights we were working together and for all the fun we have had in these few

years.

iii

ABSTRAK

Replikasi ialah teknik yang berguna untuk sistem pangkalan data teragih. Melalui teknik

ini, sesuatu data boleh diakses dari pelbagai lokasi. Oleh itu, ia meningkatkan

ketersediaan data dan kebolehcapaian kepada pengguna. Apabila satu tapak gagal,

pengguna masih boleh mengakses data yang sama di tapak lain. Teknik seperti Baca-

Satu-Tulis-Semua (ROWA), Skim Replikasi Hierarki (HRS) dan Skim Replikasi

Cawangan (BRS) adalah teknik popular yang digunakan untuk replikasi dan pengurusan

data. Walau bagaimanapun, teknik ini mempunyai kelemahan dari segi kos komunikasi.

Akibatnya, ROWA, HRS dan BRS mengambil masa pelaksanaan yang lama untuk

transaksi kerana teknik ini perlu mereplikasi datanya ke semua pelayan. Dalam

penyelidikan ini, skim beberapa-data-ke-beberapa-tapak yang dipanggil Peruntukan Undi

Perduaan pada Grid (BVAG) dicadangkan. Ia berfungsi dengan mempertimbangkan

penetapan undi perduaan jiran kepada struktur grid logiknya pada salinan data berpecah-

belah untuk mengurus urus niaga dalam sistem. Untuk memudahkan, jiran ditugaskan

dengan undi satu atau sifar. Tugasan menyediakan kos komunikasi minimum kerana

bilangan minimum saiz kuorum yang diperlukan. Selain itu, ia meminimumkan kapasiti

storan yang diperlukan kerana kami menyimpan pangkalan data yang telah berpecah-

belah. Pembangunan prototaip untuk teknik replikasi BVAG telah dijalankan

menggunakan HTML, CSS, JavaScript dan PHP. Prototaip ini dibangunkan untuk

menghasilkan aplikasi berasaskan web yang menggunakan teknik replikasi BVAG.

Daripada pembangunan itu, BVAG berasaskan web telah dibangunkan dan diuji dengan

input data asas untuk mereplikasi data. Daripada keputusan, ia menunjukkan prototaip

BVAG berasaskan web berfungsi dan mampu mereplikasi data ke tapak jiran.

iv

ABSTRACT

Replication is a useful technique for distributed database systems. Through this

technique, a data can be accessed from multiple locations. Thus, it increases data

availability and accessibility to users. When one site fails, user still can access the same

data at another site. Techniques such as Read-One-Write-All (ROWA), Hierarchical

Replication Scheme (HRS) and Branch Replication Scheme (BRS) are the popular

techniques being used for replication and data management. However, these techniques

have its weaknesses in terms of communication costs. Consequently, ROWA, HRS and

BRS take long executing time for a transaction since these techniques have to replicate

its data to all servers. In this research, the some-data-to-some-sites scheme called Binary

Vote Assignment on Grid (BVAG) is proposed. It works by considering neighbors binary

vote assignment to its logical grid structure on fragmented data copies in order to manage

transactions in the systems. For simplicity, the neighbours are assigned with vote one or

zero. The assignment provides minimum communication cost due to the minimum

number of quorum size required. In addition, it minimizes the storage capacity needed

since we store database that has been fragmented. The development of prototype for the

BVAG replication techniques were carried out using HTML, CSS, JavaScript and PHP.

The prototype was developed in order to produce a web-based application that utilize

BVAG replication techniques. From the development, the web based BVAG were

developed and tested with basic data input to replicate the data. From the results, it shows

the web based BVAG prototype is working and able to replicate data to the neighbour’s

site.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 3

1.3 Objective 3

1.4 Scope 4

1.5 Significance of Project 4

1.6 Report Organization 4

CHAPTER 2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Data Grid 6

2.3 Binary Vote Assignment Grid (BVAG) Replication Techniques 7

vi

2.4 Read-One-Write-All Monitoring Synchronization Transaction System (ROWA-

MSTS) Replication Techniques 8

2.5 Hierarchical Replication Scheme (HRS) Replication Techniques 9

2.6 Database Replication 10

2.7 Review of Existing Systems 10

2.7.1 Apache Ignite 10

2.7.2 MongoDB 12

2.7.3 Apache Cassandra 13

2.8 Comparative Analysis 15

2.9 Summary 16

2.10 Proposed Application & System 16

CHAPTER 3 METHODOLOGY 17

3.1 Introduction 17

3.2 Project Management Framework 17

3.2.1 Agile Methodology 17

3.3 Project Requirement 21

3.3.1 Functional Requirement 21

3.3.2 Non-Functional Requirement 21

3.4 Proposed Design 22

3.4.1 Flowchart 22

3.4.2 Context Diagram 23

3.4.3 Framework Architecture 24

3.5 Design Prototype (Framework Architecture) 25

3.6 Testing Plan 26

3.7 Potential Use of Proposed Solution 27

vii

3.8 Gantt Chart 27

CHAPTER 4 RESULTS AND DISCUSSION 28

4.1 Introduction 28

4.2 Hardware and Software Components 28

4.3 BVAG PROTOTYPE IMPLEMENTATION 29

4.3.1 Prerequisites 29

4.3.2 Creating Hosted Ubuntu Server Virtual Machine 30

4.3.3 Initial Server Setup with Ubuntu 20.04 34

4.3.4 Install MySQL on Ubuntu 20.04 38

4.3.5 Configure MySQL BVAG Replication on Ubuntu 20.04 42

4.4 BVAG TESTING 52

4.5 RESULT AND CONCLUSION 52

CHAPTER 5 CONCLUSION 53

5.1 Introduction 53

5.2 Limitation and Constraint 53

5.3 Future Work 54

REFERENCES 55

APPENDIX A SAMPLE APPENDIX 1 57

APPENDIX B SAMPLE APPENDIX 2 58

viii

LIST OF TABLES

Table 2.1: Comparison of existing DBMS 15

Table 3.1: Functional Requirements 21

Table 3.2: Non-Functional Requirements 22

ix

LIST OF FIGURES

Figure 2.3.1: 9 sites organized in 3 x 3 grid structure 7

Figure 2.4.1: The framework of ROWA-MSTS 9

Figure 2.5.1: All replicas in HRS update data 9

Figure 2.7.1: Apache Ignite Cache Replication Techniques 11

Figure 2.7.2 : MongoDB Master/Slave Replication 12

Figure 2.7.3 : MongoDB Replica Set 13

Figure 2.7.4 : Apache Cassandra Features 13

Figure 2.7.5 : Apache Cassandra Replication Techniques 14

Figure 3.2.1: Agile Methodology Phases 18

Figure 3.4.1: Flowchart of BVAG without concurrent transaction 22

Figure 3.4.2: Context Diagram of BVAG 23

Figure 3.4.3: Use Case Diagram BVAG 24

Figure 3.5.1: Design Prototype of BVAG 25

Figure 3.8.1: Gantt Chart 27

Figure 4.3.1: Create Droplets - Choose Region 30

Figure 4.3.2: Create Droplets - Choose OS 31

Figure 4.3.3: Create Droplets - Choose Hardware Specifications 32

Figure 4.3.4: Create Droplets - Set Server Password 32

Figure 4.3.5: Create Droplets 32

Figure 4.3.6: 4 Ubuntu Server Created 33

Figure 4.3.7: Logged in as root 34

Figure 4.3.8: Add New User 35

Figure 4.3.9: Granting Administrative Privileges 36

Figure 4.3.10: UFW List 36

Figure 4.3.11: UFW Allow OpenSSH 37

Figure 4.3.12: sudo apt update 38

Figure 4.3.13: sudo apt install mysql-server 38

Figure 4.3.14: sudo systemctl start mysql.service 38

Figure 4.3.15: sudo mysql_secure_installation 39

Figure 4.3.16: Set Password MySQL 40

Figure 4.3.17: Accepting Security Questions 40

Figure 4.3.18: MySQL Service Status Check 41

Figure 4.3.19: Generate UUID member3 nodes 42

x

Figure 4.3.20: Nano Text Editor 43

Figure 4.3.21: BVAG Replication Script Configuration 44

Figure 4.3.22: Shared Replication Group Config 45

Figure 4.3.23: sudo mysql 46

Figure 4.3.24: CREATE USER Syntax 47

Figure 4.3.25: Grant Replication Slave 47

Figure 4.3.26: Output 48

Figure 4.3.27: Group Replication Member 1 Status 49

Figure 4.3.28: Query from Table 50

Figure 4.3.29: Check Membership Replication 51

Figure 4.3.30: Successful Replicate Data using BVAG 51

Figure 4.4.1: Data replicated on member2 52

xi

LIST OF SYMBOLS

xii

LIST OF ABBREVIATIONS

BVAG Binary Vote Assignment Grid

ROWA Read-One-Write-All

HRS Hierarchical Replication Scheme

BRS Branch Replication Scheme

DDS Distributed Database System

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

In a distributed environment, organisations must supply current data to

geographically distant users and manage a high volume of requests for data distributed

across numerous sites (Azila et al., 2021). Therefore, the storage, availability, and

consistency of data are critical challenges that must be addressed in order for distributed

users to access data quickly and safely from many websites. (Azila et al., 2021).

Replication is one method of making such data more widely available. A distributed

database system's replication procedure involves duplicating and maintaining database

items across several databases (Tarun et al., 2019)

One of the main problems in distributed systems is synchronous data replication

in the database environment. It is safe to do so for a system such as school library

management systems. However, for a system such as an online banking system, which

requires tight semantic data, it is not a wise solution to use this approach. For instance,

even in the modern day, internet inter-banking transactions still make use of

asynchronous updates in banking systems. When consumers conduct an online inter-

banking transaction, they have to wait for the recipient account to be updated, which may

take anywhere from one day to several days. Another example might be that a cheque

must first be validated and approved before it can be released to the recipient.

Database technology has emerged as an essential component in the majority of

modern businesses. Because of developments in telecommunication services, Distributed

Database Systems (DDS) have become more possible and accessible to be implemented.

Often, a DDS is made up of a number of distinct but interconnected databases that are

housed in various locations throughout the world and are able to interact with one another

2

over a network (Avram, n.d.). Usually, the system is managed by a Distributed Database

Management System (DDBMS). Every site of DDS has its own hardware; hence, it is

capable of independent operation.

Replication is referred to as the act of transferring information across redundant

resources, such as software or hardware components, in order to guarantee their

consistency. The data's reliability, fault-tolerance, and accessibility are all improved as a

result of this procedure (Ahmad et al., 2007). Because other data access methods exist,

replication offers users with rapid, local access to shared data while protecting application

availability.

Data can be replicated in either a synchronous or an asynchronous method. These

two modes are known as synchronous and asynchronous replication, respectively. In most

cases, asynchronous replication will transmit data in a not consistent way rather than in a

continuous flow. Asynchronous replication also produced issues with the receiver

receiving data from the sender. It is appropriate for single object updates. It fails,

however, when numerous objects are involved in a single update since it will only update

when there is a request (Sathya & Seshu, 2008).

The use of synchronous replication is an option for resolving issues that arise from

asynchronous replication. The fact that synchronous replication relies on quorum to carry

out its actions means that data consistency can always be relied upon.(Budiarto et al.,

2002). In addition, synchronous replication ensures that data stores maintain a "strict

consistency" throughout the process. Within a single transaction, any copy that has been

updated will immediately have those updates applied to all other copies that are part of

that transaction. This guarantees that all of the copies across all of the sites are identical

and consistent with one another. In a distributed system setting, having a copy that is

consistent across all websites is beneficial to the business because it ensures that data is

always up to date and can be accessed at any time and from any location. Synchronous

replication, on the other hand, calls for an enormous amount of storage capacity. This is

because it requires multiple copies of replicated data to be stored across a number of sites,

in addition to an expensive synchronisation mechanism, in order to keep the data

consistent after changes are made. As a consequence of this, a suitable approach is

required to manage the replicated data in a distributed system environment (Deris et al.,

2009).

3

1.2 Problem Statement

A wide variety of industries, including banking and insurance, as well as many

businesses, have made use of data replication in order to safeguard their information in

the event of unanticipated system failures. The process of data replication, also known as

data duplication, generates a backup duplicate of the data that is stored on each of the

multiple servers. The approaches that are currently utilised in the design and

implementation of database systems do not have high availability and reliability. This is

since if the database site goes down, the entire system is rendered inoperable. The

currently available replication strategies that have been suggested make use of several

replicas sites, for instance, Read-One-Write-All (ROWA) techniques (Ahmad, 2010). If

one site is updated, the modifications that users have made on other sites will be updated

when that site is updated. Binary Vote Assignment Grid (BVAG) (Ubaidillah et al., 2021)

can be used to handle database replication in a cluster server for synchronous updating,

with the constraint that it will only consider scenario in which there is no failure. Because

the data was already fragmented before being allocated to locations, this technique can

reduce the amount of money spent on communication while simultaneously reducing the

amount of storage space that is required.

1.3 Objective

Based on problem statements, the objectives of the project are:

i. To develop the BVAG replication techniques prototype in a distributed

database environment.

ii. To test the prototype to make sure it can replicate committed data.

iii. To ensure the prototype is highly available and fault tolerant.

4

1.4 Scope

User Scope:

i) General Small/Large Institution

System Scope:

i) To develop a distributed database replication technique

ii) To develop it in a distributed database environment

Development Scope:

i) This prototype is using 4 Ubuntu Server Virtual Machine hosted on

DigitalOcean Cloud Hosting

ii) The BVAG replication technique is using MySQL Replication.

iii) Each server is assigned unique IP address.

1.5 Significance of Project

The focus of this project which is data replication have been elaborated. When

there are advantages, there are also disadvantages. The significance of this project is to

develop and test a replication technique which is the BVAG in a distributed database

environment since the working prototype is not available yet and hence it needs to be

developed and to make sure the prototype is web based since it is more suitable and easier

to use.

1.6 Report Organization

This report consists of three chapters. Chapter 1 explains about the overview of

the project including the Introduction, Problem Statements, Objectives of the project,

5

Scope and Report Organization. Chapter 2 which is Literature Review will focus on

explaining about data grid, data replication in the grid, database replication as well as

existing data replication techniques. Chapter 3 will focus on the methodologies of the

project including the Project Management Framework used, project requirements which

includes functional and non-functional requirements of the BVAG replication prototype.

Chapter 4 addresses the implementation of BVAG web application prototype. The

conclusions of the present research are summarized and presented in Chapter 5.

Suggestion and recommendations for the future work are also present in this chapter.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter reviews about data grid, data replication in the grid, existing system,

and summary about the reviews.

2.2 Data Grid

Grid computing, it refers to the evolving computational and networking

infrastructure that is meant to enable widespread and reliable access to data and

computational resources over a wide area network across the organisational domain

(Foster et al., 2001; Francine Berman et al., 2003). Connecting computers and storage

resources around the globe, the data grid lets users to exchange data and resources. As

of now, the Data Grid's storage capacity is at about Terabytes. Network and Grid

designers face a major issue in ensuring effective access to such large and geographically

scattered data. It is possible that a big amount of bandwidth will be utilised during the

process of transferring a file from the server to the client whenever a user makes a request

for a certain file. In addition, the amount of latency that is involved may be considerable

depending on the size of the files that are involved. (Sathya et al., 2006).

The use of a data grid is an excellent method for handling the massive amounts

of information generated by scientific investigations and computer simulations. Using

Grid, we can scale, reduce, and adapt our infrastructure in response to our changing

demands while still maintaining a secure and flexible architecture (Linesch & Marketing,

2007). It's getting more and more critical to address a problem with grid data

management. Managing a data grid isn't a simple task, and there are a number of

connected issues that must be taken into account. In terms of data management, the grid

7

makes it possible to store a large number of replicas of data objects, each of which may

have a unique version or degree of freshness. This facilitates a high level of availability,

reliability, and performance, which in turn allows it to cater to the requirements of users

and applications in the most effective manner (Voicu et al., 2009). In addition, the amount

of data that is being managed by the data grid is always expanding (Pérez et al., 2010).

2.3 Binary Vote Assignment Grid (BVAG) Replication Techniques

In BVAG, all sites are logically organized in the form of two-dimensional grid

structure. That means, if a BVAG involves of twenty-five sites, it will logically organize

in the form of 5 × 5 grids as shown in Figure 2.3.1 . Every site has a primary data file. A

site is either operational or failed and that state of either it is operational or failed of each

site is statistically independent to the others. When a site is operational. the copy at the

site is available; otherwise it is unavailable.

Figure 2.3.1: 9 sites organized in 3 x 3 grid structure

A site X is a neighbour to site Y, if X is logically adjacent to Y. A data from its primary

site will replicate to the neighbouring sites. The number of sites that data will be

8

replicated, d, are smaller or equal to 5. From Figure 2.3.1, data from site 1 will be

replicated to site 2 and site 4 which are its neighbour. Site 6 will replicate its data to 3

servers because it has 3 neighbours. Its neighbours are site 3, 5 and 9. Site 5 has 4

neighbours which are site 2, 4, 6 and 8. Hence, the total maximum number of data

replication are 5.

2.4 Read-One-Write-All Monitoring Synchronization Transaction System

(ROWA-MSTS) Replication Techniques

Read-One-Write-All Monitoring Synchronization Transaction Systems (ROWA-

MSTS) have been developed based on ROWA technique. The ROWA-MSTS techniques

handle each site either it is operational or down and to communicate each other. The

researcher used VSFTPD (GPL licensed FTP server for UNIX systems) as an agent

communication between replicated servers. In ROWA-MSTS techniques, replicas

consistencies are guaranteed by the consistency of execution on one replica, but the client

replicas are only updated and cannot provide accurate responses to queries. Synchronous

replicated methods guarantee that all replicas are maintained consistent at all times by

executing each transaction locally only after all replicas have agreed on the execution

order. Through this, a very strict level of consistency is maintained. Figure 2.4.1 shows

the framework of ROWA-MSTS in distributed environment.

9

Figure 2.4.1: The framework of ROWA-MSTS

2.5 Hierarchical Replication Scheme (HRS) Replication Techniques

Hierarchical Replication Scheme (HRS) consists of a root database server and one

or more database servers organized into a hierarchical topology. Figure 2.5.1 shows all

replicas in HRS update data.

Figure 2.5.1: All replicas in HRS update data

The architecture of HRS is shown in Figure 2.5.1. Based on Figure 2.5.1, replication

process starts when a transaction initiates at any block at site 1. In HRS, all update

operations are conducted on a master replica, and then the modifications are propagated

to all replicas. Once the changes have been made, all the data will be replicated into all

sites. At last, all sites will have all the same data.

The drawback in HRS it is requires many replica servers. Consequently, it will

take more executing time to compare to BVAG because BVAG only requires minimum

3 servers. HRS also will replicate whole file to its replica servers while in BVAG, the file

will be fragmented before it is replicated to replica servers.

10

2.6 Database Replication

Replication frequently referred as parallel and distributed computing technique

widely used in order to achieve high performance, scalability, fault-tolerance and high

availability of computer systems. Most of commercial and research databases are based

on the asynchronous replication model where changes will be updated after a transaction

has committed. As a result, inconsistencies of data among the copies may arise. In order

to eliminate the inconsistencies, synchronous replication models can be used. In practice,

many database designers do not regard synchronous replication as a practical option due

to limitations of traditional data replication techniques such as deadlock. Most of the

work done synchronous replication protocols are based on one-copy-serializability which

mean the effect of transaction performed by clients on replicated objects should be the

same as if they had been performed one at a time on a single set of objects.

2.7 Review of Existing Systems

This section explains about the review of three existing Database Management

System (DBMS) and its properties.

2.7.1 Apache Ignite

Apache Ignite is an open-source distributed database server software that enables

developers to deal with big size data sets in real time and with other features of in-memory

computing. Its default storage and processing tier is RAM. It is written in Java. It is built

on Spring and supports Java 7, Java 8, .Net, C++, and PHP. Apache Ignite is a Key-Value

data model implementation.

Ignite is totally peer-to-peer in nature. Each node in the Ignite cluster may accept

read and write requests regardless of the location of the data being written. The Ignite

design indicates that the whole system is naturally scalable and highly available.

Internode communication in Ignite enables all nodes to get updates fast and without the

need for a master coordinator. Nodes may be added or withdrawn without causing any

disruptions in order to improve the available RAM. Ignite data fabrics are completely

11

robust, enabling automatic detection and recovery of a single or several servers without

causing any downtime.

According to Figure 2.7.1, cache data is replicated to all cluster members. Because

the data is duplicated to each cluster node, it is immediately accessible for usage. This

gives the fastest possible read access since each member uses its own memory to access

the data. The disadvantage is that regular writing is quite costly. To update a replicated

cache, the new version must be sent to all other cluster members. This will hinder

scalability if the update frequency is high.

Figure 2.7.1: Apache Ignite Cache Replication Techniques

The data is replicated across all cluster nodes in the figure above. The size of a

replicated cache is restricted by the amount of memory available on each node with the

least amount of RAM. This mode is optimal for instances in which cache reads outnumber

cache writes and data collections are modest. Replication's scalability is inversely related

to the number of members, the frequency of member updates, and the size of the updates.

12

2.7.2 MongoDB

MongoDB is a general purpose, document-based, distributed database. It was

built in C/C++ programming language. MongoDB's replication technique is

Master/Slave and Replica Set. While the servers in a Master/Slave replication have

distinct functions, there is only one Master. As seen in Figure 2.7.2, one is a Master

server, while the rest are slaves. Write operation implement on Master, Slaves will send

the synchronize data command asynchronously to Master to update its data. Read

operations are only implemented on the Master to ensure strong consistency, whereas

read operations are implemented on the Slave to ensure eventual consistency. Because

Master/Slave replication does not support automatic failover, if the Master fails, the Slave

must shut down and restart in order to change to the Master role.

Figure 2.7.2 : MongoDB Master/Slave Replication

A replica set is a collection of MongoDB servers that keep a copy of the same

data with automatic failover and recovery of member nodes. Figure 2.7.3 illustrates the

replica set model. In a replica set, there are three server states: primary, secondary, and

recovering. At any moment in time, only one server is main in a replica set. The primary

server supports write and read with strong consistency, whereas the secondary server

supports read with eventual consistency. A recovering server is one that has regained

sync prior to entering secondary mode. A write is genuinely committed when it has been

duplicated to a majority of the set's members. Prior to the genuine cluster wide commit,

13

writes committed at the primary of the set may be visible. Thus, we have "READ

UNCOMMITTED" semantics for reading.

Figure 2.7.3 : MongoDB Replica Set

2.7.3 Apache Cassandra

An open source distributed database server software, Apache Cassandra is

designed to store massive volumes of data on low-cost servers while ensuring high

availability. It was built in C/C++ programming language. Cassandra can run clusters

across many data centres with no issues. Key-value and wide column data models are

used to form a hybrid model for this structure's data storage. In a Cassandra system, two

things are critical: the data partition and the data model.

Figure 2.7.4 : Apache Cassandra Features

14

Since data is kept on numerous workstations for data security reasons, syncing

data between the machines is critical. Cassandra clusters may be constructed using many

physical computers or multiple networked virtual machines. Due to the presence of other

computers on the network, cluster members will be able to determine which node is a

part of the cluster based on the information included in the configuration files. The cluster

members interact through the Gossip protocol. Additionally, it employs a new protocol

to configure the cluster: this is the Snitch, which enables specifying which node belongs

to the data centre and therefore creates the cluster.

Once the cluster has been configured using the Gossip and Snitch protocols, it is

required to describe the placement of the data for the system to be fault-tolerant and have

high-availability. This requires determining which node or nodes to store data in. To

provide high availability, data must be stored on several nodes. To provide fault tolerance

and high availability, we duplicate the data, often three times. This implies that we have

computed a token for each partition key, which indicates which node will retain that

partition, but in the cluster ring, the following (clockwise) two nodes (assuming the

replication factor is 3) will also store this partition. The client sends data to the data centre

in Figure 2.7.5, and since the B node is responsible for the data, the two nodes next to it

will also store it. Note that the client programme talks with the F node, which is now the

coordinator, but it may also communicate with any other node; in this case, the node

becomes the coordinator since all nodes are equal.

Figure 2.7.5 : Apache Cassandra Replication Techniques

15

2.8 Comparative Analysis

Based on the review done earlier, Table 2.1 shows the comparison between the

three existing DBMS.

Table 2.8.1: Comparison of existing DBMS

Specifications Apache Ignite MongoDB Apache Cassandra

Programming

Language

C#, C++, Java, PHP,

Python

C#, C++, Java, C,

Go, PHP, Python

C#, C++, Java,

Javascript, PHP,

Python

Operating Systems

Linux, OS X, Solaris,

Windows

Linux, OS X, Solaris,

Windows

Linux, OS X,

Windows

Database Model

Relational Key-value store Key-value store

Partitioning Methods

Advantages

Disadvantages

Sharding

Faster in read-

intensive applications

Keeping data only in

memory has some

serious drawbacks if

there is a catastrophic

cluster failure.

Sharding

MongoDB’s schema

is not predefined. It

means that it has a

dynamic schematic

architecture that

works with non-

structured data and

storage.

Requires a high

amount of storage

due to the lack of

joins functionalities

which lead to the

duplication of data.

There is an increase

in data redundancy

which takes up

unnecessary space in

the memory.

Sharding

Offers superior write

performance,massive

and linear scalability.

It is disk-based,

which ultimately

limits the speed of

some operations

because data needs to

be written to and read

from disks.

16

2.9 Summary

This chapter reviews a study on data grid as well as reviews existing DBMS such

as Apache Ignite, MongoDB and Apache Cassandra. This chapter also shows comparison

between the three (3) existing DBMS as well as the advantages and disadvantages.

2.10 Proposed Application & System

The prototype that this project shall propose is a custom-built prototype using

Microsoft Visual Studio and integrate with Apache Ignite DBMS. It will include the

features such as Update Data, View Log and Replicate Data correspond to BVAG data

replication techniques.

17

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will focus on the software development approach that will be used

on this project. The waterfall model will be utilised as the technique for this. The waterfall

model was one of the first concepts used in software development. The waterfall model,

sometimes known as the liner-sequential life cycle model, is another name for the liner-

sequential life cycle model. In this chapter, we will also go over each step of the waterfall

model in depth, as well as how we approach each phase. The chapter will also examine

the system's functional and non-functional aspects, as well as the proposed system's limits

and constraints. Finally, there will be an early idea of the suggested system's design.

Finally, the Gantt Chart will be displayed to represent the time period of the project's

development till conclusion.

3.2 Project Management Framework

3.2.1 Agile Methodology

Based on the numerous types of software development cycles, after extensive

research, the best selected development cycle to be used in development for this proposed

project will be the AGILE life cycle model. The main reason for selecting this model as

our proposed system will be to be developed on a database thus this model can perfectly

fit this project. The reason for picking the AGILE life cycle model is that we are able to

determine whether the system requirements are all meet. It helps the process of

development to be more effective to ensure that the standard of the system is meet with

what the customer demands. With AGILE development we are able to deploy a version

18

at an early stage to get a first impression to understand better on the customer feedback

and make improvements to the system.

Figure 3.2.1 below shows all the phases in Agile methodology which includes

planning, design, development, testing and deployment and feedback review.

Figure 3.2.1: Agile Methodology Phases

3.2.1.1 Planning Phase

 The state of the needs phase will be the initial phase of the AGILE life cycle.

Obtaining the needs that are required for their businesses during the planning process.

This phase is critical since it aids in narrowing the scope of the distributed database

system's purpose and giving developers an idea of where the opportunity for

improvement may be found. This phase involves getting to know the parties involved as

well as getting feedback on previous reports. This will be extremely helpful in

determining the system's scope and bounds. The initial step in creating a distributed

database prototype utilising the BVAG approach was to figure out what the system's goal

was. From there, the requirements are needed to ensure to fulfil the scope and constraints

that will be faced in the system. Other than that, what will also be done is to view the

existing system to have a better understanding of the system by going through reports

and papers to get more information. For our proposed system we will be first collecting

19

information from the reports to determine what is the best approach to develop the

system. We see how data is easily breach or tampered and how a singular database causes

problem for the companies or government agency as they are more easily attack and can

cause a collapse to the organization. Once all the requirements and relevant information

have been collected then the development life cycle of this system can move to the next

phase which is the design phase.

3.2.1.2 Design Phase

 The design phase will be the second phase of this AGILE development cycle.

In this phase, once we have understood the system requirements, we are able to narrow

down, we can create a use case diagram and the flow of the system on how the

implementation of using the system. In this phase for this project, once we have

understood the requirements of the system, we are able to determine on the properties of

the system required for the system such as what the system requirement and the

implementation of BVAG replication technique into the system. We will design how the

flow of the system be from the user and how data inserted, and the data is replicated once

committed. Once this phase completed, we will move to the construction phase.

3.2.1.3 Development Phase

 This phase is the third phase of AGILE development life cycle which is the

development phase. In this phase, will be the process of the developing the system. It will

begin with ensuring the tools required to develop the system and the process of

developing the module for the system. For this project, we will take into consideration of

the tools require to develop the system. We will need to consider the tools such as

software to implement the distributed database system, how to implement BVAG

techniques when user commit data and many other more. Other factors that also need to

be considered are also on how to communicate with the database any many other more.

Once the factors of using the tools to implement the system have been taken into

consideration, we will begin with the development process where we will break into parts

to ensure that the project development can be completed within the time frame. The

breakdown of the project development will be from implementing the distributed

database and then to developing the insert of data of the user which the database will

20

commit and do replication. Once the development phase is complete, we will begin the

next phase which will be deployment.

3.2.1.4 Testing and Deployment Phase

 In this phase, we will release the final product of the system to know better of

how well the system is and to ensure the requirements of the system is meet and the

stakeholders can use it in their own work environment to ensure that is satisfy their work

condition environment. For this project, once the development of the project is

completed, we will try to recreate in a work scenario of the system to ensure that it meet

with the requirements of the system and ensure the system functionality works as is

intended. We will also allow the stakeholders to try out the system to ensure that the

system satisfy with the stakeholders work environment. We will also be conducting

testing to the system so that it meets with the requirements of the system and also that it

meets the standards of what the stakeholders want. Multiple technique will be used on

the testing phase to ensure that they are able to detect bugs as well. For this project, we

will use several testing techniques such as black box testing and white box testing to

ensure we are able to detect the bugs that are in the system and the traffic limit of the

system to ensure the availability of the system. We will also ask the stakeholders to test

the system to ensure that they can understand the system and use the system to determine

whether it met their standards. Once the testing phase is complete, we will move to the

final phase which is the feedback phase.

3.2.1.5 Feedback Phase

 In this phase which is the feedback phase, we will use this phase as a way to

understand the system better to determine whether the system require modification from

the testing conducted on the system and to gain feedback from the stakeholders to ensure

whether the stakeholders and the system achieve the intention of what the stakeholders

want. Discussion will be done from all the feedback of the testing and stakeholders. Then

the next step we will deciding on the next part of the system. For this project, based on

the testing result and the stakeholders opinion on the system, we will analysis the result

to determine the system best route to take on whether to improve the system more to

ensure it meets the requirements of the system or the system has reach the satisfaction

level of the desired opinion of the stakeholders. If the stakeholder’s opinion and test result

21

prove that improvement needs to be done on the system, we will return back to phase and

continue the proses again until the system has reach the satisfaction level. If the

stakeholders and test result shows a satisfaction level of the system, they system is then

ready to be used in the stakeholders work environment.

3.3 Project Requirement

3.3.1 Functional Requirement

Below shows Table 3.3.1 which consists of functional requirements for the

proposed prototype.

No Requirement ID Requirement

1 BVAG-FR01 The system should allow the databases to connect with

another database within the same network.

2 BVAG-FR02 The system should replicate data stored in the database using

BVAG approach.

3 BVAG-FR03 The system should provide log history for every activity

executed.

Table 3.3.1: Functional Requirements

3.3.2 Non-Functional Requirement

Below shows Table 3.3.2 which consists of non-functional requirements for the

proposed prototype.

No Requirement ID Requirement

1 BVAG-NFR01 The system databases can always be added to the network to

increase with the demand from the organization

22

2 BVAG-NFR02 The system shall divert the network to other databases that

are still online if one of the other databases went offline or

went into an error state.

3 BVAG-FR03 The system should be able to run 24 hours per day at any

geographical location to ensure the operation of that

organization is running smoothly.

Table 3.3.2: Non-Functional Requirements

3.4 Proposed Design

3.4.1 Flowchart

Figure 3.4.1 below shows the flowchart diagram of the Binary Vote Assignment

Grid (BVAG) without concurrent transaction replication techniques prototype. The figure

shows the input processes and expected output of the prototype.

Figure 3.4.1: Flowchart of BVAG without concurrent transactionss

23

There are six main phases involve in BVATM; Initiate Lock (IL), Propagate Lock

(PL), Obtain Quorum (OQ), Update(U), Commit (C), Unlock (UL). IL phase involves

locking the primary site if the primary site is in available (0) status. After the primary site

has been locked, the PL phase determines the status of each neighbour’s site. Then, OQ

phase declares that the quorum obtained is enough for the transaction to be continued.

Next, the primary data will be updated in the U phase. Afterward, the updated primary

data which is also called as new primary data is replicated to the neighbours’ sites in C

phase. Last but not least, the transaction will unlock (UL) all the sites that are involved

in the transaction.

3.4.2 Context Diagram

Figure 3.4.2 below shows the context diagram of the Binary Vote Assignment

Grid (BVAG) replication techniques prototype.

Figure 3.4.2: Context Diagram of BVAG

This BVAG Replication Manager has two entities which are Database Admin and

the Distributed Database System. The DDS is responsible for displaying data and

displaying activities log requested by BVAG. Meanwhile the Database Admin will

execute the Data Replication and will receive error notification.

24

3.4.3 Framework Architecture

Figure 3.4.3 below shows the use case diagram of the Binary Vote Assignment

Grid (BVAG) replication techniques prototype.

Figure 3.4.3: Use Case Diagram BVAG

Based on the use case diagram, there are a total of 3 use cases or modules in this

system. Among them are Get Data module, Update Data module and Display Log

module. The actors for this system are Database Admin and Distributed Database System.

The database admin will be able to access the Get Data module and Update Data module

while the DDS can access all module.

25

3.5 Design Prototype (Framework Architecture)

Figure 3.5.1 below shows the design prototype of the Binary Vote Assignment

Grid (BVAG) replication techniques prototype.

Figure 3.5.1: Design Prototype of BVAG

The prototype above shows the 9 x 9 grid for Ubuntu 20.04 LTS Linux server that will

be configured to talk to their respective neighbours in order to do data replication. For

this project, the server will be deployed on DigitalOcean Cloud Hosting with MySQL

replication. As we can see in the Figure 3.5.1, each server is named member1 to member9

to represent the BVAG distributed database server grid.

26

3.6 Testing Plan

A test case is prepared in order to test the functionality of the BVAG replication

techniques prototype. The reason behind having to conduct these test cases is to ensure

that the system can run smoothly, and the end-user doesn’t experience problem when

using the system. Table 3.6.1 are the test cases that will be conducted on the system.

No. Module Activities Status Comments

1. Get Data System generate

MySQL syntax

Yes No

 Display Data Yes No

2. Update Data System initiate lock Yes No

 System initiates

propagate lock

Yes No

3. Display Log System display lock

phases activities

Yes No

 System show time

taken for each

activity

Yes No

Table 3.6.1: User Acceptance Table BVAG Prototype

This test has been performed by:

Name : _____________________________________

Signature : _____________________________________

Date : _______________________________

27

3.7 Potential Use of Proposed Solution

The potential use of the proposed solution is any organization or company can

use the BVAG replication techniques prototype to implement it in a distributed database

environment. This is to provide convenient approach to achieve data consistency for a

distributed database. Furthermore, handling database update operations with less

computational time is crucial for synchronous replication.

This prototype however does not consider failure cases so in the future and with

more time spent, a fault tolerance approach can be developed and integrated for this

replication techniques. This prototype also shows only a few fields to update data into

different replication server. To make this more user friendly, various forms of input can

be created. Therefore, many input type fields can be added in future. This proposed

solution also can make a significant improvement on communication cost and faster

transaction in a distributed database environment. The proposed solution ensures if one

site goes down, other sites is still available.

3.8 Gantt Chart

The Figure 3.8.1 below is the Gantt Chart for the BVAG prototype, which is based

on the project methodology, Agile Methodology.

Figure 3.8.1: Gantt Chart

28

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter discuss about the development, implementation, and testing of this

project. It includes the steps used to complete the system, method utilized, user interfaces,

as well as result and discussions.

4.2 Hardware and Software Components

From the user’s specification, the functionality offered by BVAG application is

for database replication. BVAG prototype is deployed and tested on Digital Ocean Cloud

Service Provider for this implementation. The implementation of BVAG requires some

minimum hardware and software specifications. The hardware specifications are shown

in Table 4.2.1 was used in each replication server for implementation. The software

specifications are shown in Table 4.2.2 was used in each replication server.

Table 4.2.1: Server Hardware Specifications

Hardware Apache Ignite

Processor Intel vCPU

Memory

1 Gigabytes RAM

Solid State Disk

25 Gigabytes

Operating Systems Ubuntu 20.04 (LTS) Linux

Server x64

Table 4.2.2: Server Software Specifications

Software Apache Ignite

Database Management System (DBMS) MySQL

Visual Studio Code

Version 2022

29

4.3 BVAG PROTOTYPE IMPLEMENTATION

The implementation process is to record all the steps in developing Binary Vote

Assignment Grid (BVAG) replication techniques prototype.

4.3.1 Prerequisites

To setup the BVAG replication techniques using MySQL, four Ubuntu 20.04

(LTS) Linux Server x64 will be used. Note that three is the minimum number of MySQL

instances you need to deploy BVAG replication in MySQL, while nine is the maximum.

All the virtual machine server will be deployed and hosted on Digital Ocean Cloud

Service Provider, the distributed database can also be setup and deployed on localhost

using at least 3 PC’s using a network switch. Picture below shows the PCs in the faculty

server cluster lab deployed using 3 PCs.

The Ubuntu virtual machine server will also each should have a non-root

administrative user with sudo privileges, and a firewall configured with UFW. MySQL

is also required to be installed to each server and using the latest version.

30

Each virtual machine server will also have their own unique IPv4 and IPv6

address with both public and private address which will be setup later.

4.3.2 Creating Hosted Ubuntu Server Virtual Machine

After registering with DigitalOcean Cloud Service, we need to setup the virtual

machine server which is called Droplet in DigitalOcean. shows all the region that can be

chosen for the server. Generally, we need to pick the closest region to our location, so we

have a low latency server and fast speed. Hence, Singapore data center is chosen. Figure

4.3.1: Create Droplets - Choose Region shows the chose region page.

Figure 4.3.1: Create Droplets - Choose Region

After that, we need to choose the operating system in which we will run the

MySQL server. Ubuntu 20.04 LTS x64 is chosen. Figure 4.3.2 shows the choose OS

page.

31

Figure 4.3.2: Create Droplets - Choose OS

Next, the hardware specifications for the Ubuntu Server is chosen. Figure 4.3.3

shows the choose hardware specifications page. Since, this BVAG won’t require too

much resources for basic task, we will chose only Basic Intel vCPU, 1 GB RAM and

25GB SSD.

32

Figure 4.3.3: Create Droplets - Choose Hardware Specifications

After that, the password for the Ubuntu server is set. Figure 4.3.4 shows the set

server password page.

Figure 4.3.4: Create Droplets - Set Server Password

Finally, we can create the server. Figure 4.3.5 shows the Create Droplet button

and the option to name the droplet.

Figure 4.3.5: Create Droplets

 This process is repeated until at least 4 Ubuntu Virtual Machine Server created.

After all the process repeated, we can see overall server that has been created with all the

33

public and private IP address assigned to each server. Figure 4.3.6 shows all the server

that has been created.

Figure 4.3.6: 4 Ubuntu Server Created

34

4.3.3 Initial Server Setup with Ubuntu 20.04

4.3.3.1 Logging in as root

To log into newly created server, we need to know the server’s public IP

address and the password. The server console is opened and logged in as root using

the command, Figure 4.3.7 shows the command in the console typed.

ssh root@server_ip_address

Figure 4.3.7: Logged in as root

35

4.3.3.2 Creating a New User

Once logged in as root, we’ll be able to add a new user account. In the next

part, we will log in with this new account instead of root. For now, we will create a

new user called “fathul”, “muhammad”, “amin” for each server. We need to use the

below command to create the user. Figure 4.3.8 shows the command in the console

typed. We also need to set the password for the user account as well as some user

informations.

adduser frodo

Figure 4.3.8: Add New User

4.3.3.3 Granting Administrative Privileges

Now we have a new user account with regular account privileges. However, we

may sometimes need to do administrative tasks.To avoid having to log out of our normal

user and log back in as the root account, we can set up what is known as superuser or root

privileges for our normal account. This will allow our normal user to run commands with

administrative privileges by putting the word sudo before the command.

36

To add these privileges to our new user, we need to add the user to the sudo group.

By default, on Ubuntu 20.04, users who are members of the sudo group are allowed to

use the sudo command. Figure 4.3.9 shows the command ran in the console.

As root, we need to run this command to add the new user to the sudo group:

usermod -aG sudo frodo

Figure 4.3.9: Granting Administrative Privileges

4.3.3.4 Setting Up a Basic Firewall

Ubuntu 20.04 servers can use the UFW firewall to make sure only connections to

certain services are allowed. We can set up a basic firewall using this application.

Applications can register their profiles with UFW upon installation. These profiles allow

UFW to manage these applications by name. OpenSSH, the service allowing us to

connect to our server now, has a profile registered with UFW.

We can see this by typing the below command, Figure 4.3.10 shows the output:

ufw app list

Figure 4.3.10: UFW List

37

We need to make sure that the firewall allows SSH connections so that we can

log back in next time. We can allow these connections by typing below commands.

Figure 4.3.11 shows the output.

ufw allow OpenSSH

ufw enable

ufw status

Figure 4.3.11: UFW Allow OpenSSH

38

4.3.4 Install MySQL on Ubuntu 20.04

4.3.4.1 Installing MySQL

On Ubuntu 20.04, we can install MySQL using the APT package repository. To

install it, we need to update the package index on our server, after that we need to install

the mysql-server package and lastly ensuring the MySQL server is running. We can do

all this by running the below command and Figure 4.3.12, Figure 4.3.13 and Figure 4.3.14

shows the output.

sudo apt update

sudo apt install mysql-server

sudo systemctl start mysql.service

Figure 4.3.12: sudo apt update

Figure 4.3.13: sudo apt install mysql-server

Figure 4.3.14: sudo systemctl start mysql.service

39

4.3.4.2 Configuring MySQL

For fresh installations of MySQL, we will run the DBMS’s included security

script. This script changes some of the less secure default options for things like remote

root logins and sample users.

To run the security scipt, the below command will be used, Figure 4.3.15 shows

the output.

sudo mysql_secure_installation

Figure 4.3.15: sudo mysql_secure_installation

This will take us through a series of prompts where we can make some changes

to our MySQL installation’s security options. The first prompt will ask whether we like

to set up the Validate Password Plugin, which can be used to test the password strength

of new MySQL users before deeming them valid.

If we elect to set up the Validate Password Plugin, any MySQL user we create

that authenticates with a password will be required to have a password that satisfies the

policy we select. The strongest policy level — which we can select by entering 2 — will

require passwords to be at least eight characters long and include a mix of uppercase,

lowercase, numeric, and special characters, for this project, we will just use No. Then

proceed with set the password. Figure 4.3.16 shows the password has been set which is

“1234”.

40

Figure 4.3.16: Set Password MySQL

From there, we can press Y and then ENTER to accept the defaults for all the

subsequent questions. This will remove some anonymous users and the test database,

disable remote root logins, and load these new rules so that MySQL immediately respects

the changes we have made. Once the script completes, our MySQL installation will be

secured. We can now move on to creating a dedicated database user with the MySQL

client.

Figure 4.3.17: Accepting Security Questions

41

4.3.4.3 Testing MySQL

After all the steps done so far, MySQL should have started running automatically.

To test this, we will check its status using the below command. Figure 4.3.18 shows the

output.

systemctl status mysql.service

Figure 4.3.18: MySQL Service Status Check

This means MySQL is up and running. We now have a basic MySQL setup

installed on our server.

42

4.3.5 Configure MySQL BVAG Replication on Ubuntu 20.04

4.3.5.1 Generating a UUID to Identify the MySQL BVAG Nodes

Before opening the MySQL configuration file to configure the server nodes

replication settings, we need to generate a UUID that we can use to identify the MySQL

nodes we will be creating. We will use the below command to generate a valid UUID for

the nodes. Figure 4.3.19 shows the output if we ran it on member3 nodes.

uuidgen

Figure 4.3.19: Generate UUID member3 nodes

We need to generate it on member1 as we are assuming member1 are the primary

server nodes. After running the command on member 1,we get the UUID

f69494fe-5505-4d54-b209-312c9c1e9e18

4.3.5.2 Setting Up BVAG Replication in the MySQL Configuration File

Now we are ready to modify MySQL’s configuration file. The main MySQL

configuration file on each MySQL server using the preferred text editor. Here, we will

be using nano text editor provided by Ubuntu. We will run the below command. Figure

4.3.20 shows the output.

sudo nano /etc/mysql/my.cnf

43

Figure 4.3.20: Nano Text Editor

On Ubuntu, MySQL comes installed with a number of different files we can use

to define various configuration changes. By default, the my.cnf file is only used to source

additional files from subdirectories. We will have to add our own configuration beneath

the !includedir lines. This will allow we to override any settings from the included files.

To begin, we start a new section by including a [mysqld] header and then add the

settings we need to enable group replication, as highlighted in the following example.

Note that these settings are modified from the minimum settings required for replication

outlined in the official MySQL documentation. The loose- prefix allows MySQL to

handle options it does not recognize gracefully and without failure. We will need to fill

in and customize some of these settings.

44

The below script is inserted into the MySQL configuration file to setup the BVAG

replication. Figure 4.3.21 shows the BVAG script.

Figure 4.3.21: BVAG Replication Script Configuration

4.3.5.3 BVAG Script Explanation: Shared Replication Group Config

We need to set the loose-group_replication_group_name to the UUID value we

generated previously with the uuidgen command on member1. Make sure we place the

UUID between the empty pair of double quotes.

Next, we need to set loose-group_replication_ip_whitelist to a list of all of our

MySQL server IP addresses, separated by commas. The loose-

group_replication_group_seeds setting should be almost the same as the whitelist, but

should append a designated group replication port to the end of each member. For the

45

purposes of this guide, we use the recommended group replication port, 33061. Figure

4.3.22 shows the changed setting on the script.

Figure 4.3.22: Shared Replication Group Config

4.3.5.4 Updating Each Server’s UFW Rules

On each of our member servers, we need to open up access to both of these ports

for the other members in this grid so they can all communicate with one another.

Command for member1:

sudo ufw allow from member2_server_ip to any port 3306

sudo ufw allow from member2_server_ip to any port 33061

sudo ufw allow from member3_server_ip to any port 3306

sudo ufw allow from member3_server_ip to any port 33061

Command for member2:

sudo ufw allow from member1_server_ip to any port 3306

sudo ufw allow from member1_server_ip to any port 33061

sudo ufw allow from member3_server_ip to any port 3306

sudo ufw allow from member3_server_ip to any port 33061

Command for member3:

sudo ufw allow from member1_server_ip to any port 3306

sudo ufw allow from member1_server_ip to any port 33061

sudo ufw allow from member2_server_ip to any port 3306

sudo ufw allow from member2_server_ip to any port 33061

46

4.3.5.5 Configuring Replication Users and Enabling Group Replication Plugin

In order to establish connections with the other servers in the replication grid,

each MySQL instance must have a dedicated replication user.

On each of the MySQL servers, we need to log into MySQL instance with the

administrative user to start an interactive session, the following command is run on each

server nodes. Figure 4.3.23 shows the output.

sudo mysql

Figure 4.3.23: sudo mysql

Because each server will have its own replication user, binary logging need to

turned off during the creation process. Otherwise, once replication begins, the server

nodes would attempt to propagate the replication user from the primary to the other

servers, creating a conflict with the replication user already in place. The following

command from the MySQL was ran prompt on each of your servers.

SET SQL_LOG_BIN=0;

47

Now we can run a CREATE USER statement to create our replication user. We

will run the following command, which creates a user named repl. This command

specifies that the replication user must connect using SSL. Also, we need to make sure to

use a secure password in place of password when creating this replication user. Figure

4.3.24 shows the output.

CREATE USER 'repl'@'%' IDENTIFIED BY 'password' REQUIRE SSL;

Figure 4.3.24: CREATE USER Syntax

Next, we need to grant the new user replication privileges on the server with the

below command. Figure 4.3.25 shows the output.

GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%';

Figure 4.3.25: Grant Replication Slave

Then, we need to flush the privileges to implement the changes and then re-enable

binary logging to resume normal operations. Next, we need to set the

group_replication_recovery channel to use our new replication user and their associated

password. Each server will then use these credentials to authenticate to the nodes.

48

FLUSH PRIVILEGES;

SET SQL_LOG_BIN=1;

CHANGE REPLICATION SOURCE TO SOURCE_USER='repl',

SOURCE_PASSWORD='password' FOR CHANNEL 'group_replication_recovery';

With the replication user in place, you can enable the group_replication plugin to

prepare to initialize the server nodes. Verify that the plugin is active by running the

following command. We can use the below command. Figure 4.3.26 shows the output.

INSTALL PLUGIN group_replication SONAME 'group_replication.so'

SHOW PLUGINS;

Figure 4.3.26: Output

49

4.3.5.6 Starting BVAG Replication on First Node

Now that each MySQL server has a replication user configured and the replication

plugin enabled, we can begin to bring up our server nodes in the grid using the command

below.

START GROUP_REPLICATION;

The nodes grid will be started with this server as the only member. We can verify

this by checking the entries within the replication_group_members table in the

performance_schema database. Figure 4.3.27 shows the output.

SELECT * FROM performance_schema.replication_group_members;

Figure 4.3.27: Group Replication Member 1 Status

The ONLINE value for MEMBER_STATE indicates that this node is fully

operational within the server grids Next we need to create a test database and table with

some sample data. Once more members are added to this group, this data will be

replicated out to them automatically. We will create a sample database called

“playground”.

CREATE DATABASE playground;

CREATE TABLE playground.equipment (

id INT NOT NULL AUTO_INCREMENT,

type VARCHAR(50),

quant INT,

color VARCHAR(25),

PRIMARY KEY(id)

);

50

This table contains the following four columns:

i) id: This column will contain integer values that increment automatically,

meaning we won’t have to specify values for this column when we load the

table with sample data

ii) type: This column will contain string values describing what type of

playground equipment the row represents

iii) quant: This column will contain integer values to represent the quantity of the

given type of playground equipment

iv) color: This column will hold string values specifying the color of the given

equipment

Lastly, we run the following command to insert one row of data into the table.

Then we will query the table to make sure the data is inserted correctly. Figure 4.3.28

shows the output.

INSERT INTO playground.equipment (type, quant, color) VALUES ("slide", 2, "blue");

SELECT * FROM playground.equipment;

Figure 4.3.28: Query from Table

After verifying that this server is a member of the server grid and that it has write

capabilities, the other servers can join the server grid.

51

4.3.5.7 Starting BVAG Replication on remaining Node

Next, we will start group replication on member2. Since we already have an active

member, we don’t need to bootstrap the server grid and this member can join

straightaway.

START GROUP_REPLICATION;

On member3, we start group replication the same way.

Then, we will check the membership list again on any of the three servers. This

time, there will be three servers listed in the output.We will check it on member2 nodes.

Figure 4.3.29 shows the output.

SELECT * FROM performance_schema.replication_group_members;

Figure 4.3.29: Check Membership Replication

Now, we will check if the replication is working by checking the database

information that we created on the secondary server (member2) using the below

command. Figure 4.3.30 shows the results.

Figure 4.3.30: Successful Replicate Data using BVAG

52

4.4 BVAG TESTING

Next, we can try testing to write to the database from our new replication grid.

We can try to insert some data into the existing table by using the below syntax. Figure

4.4.1 shows the output and results.

INSERT INTO playground.equipment (type, quant, color) VALUES ("swing", 10,

"yellow");

Figure 4.4.1: Data replicated on member2

 From here we can see the data is successfully replicated to member2 from

member1.

4.5 RESULT AND CONCLUSION

The test conducted on the system have been very successful, even though there

are more rooms for improvement and amendments that can be made into the system.

From the result and testing, it is concluded that the BVAG works as proposed and able to

replicate data to other server as proposed.

In conclusion, even though this system is able to work, there are many

improvements that can be made with this system overtime to ensure that it keeps up with

the current software and hardware to ensure the process between this system can run

smoothly

53

CHAPTER 5

CONCLUSION

5.1 Introduction

This chapter, will discuss on the closure of the development of this system. We

will discuss the limitations and constraints in this system and the future work that can be

done for this. This work has been addressed using Binary Vote Assignment Grid

replication techniques to produce a highly-available and fault tolerant in managing

replication. It also includes some suggestions for future work in each of the areas covered

during this research.

5.2 Limitation and Constraint

There are some difficulties that have been through during the development of this

system. Below are some of the key points of the issues that have limited or given

constraints to the development of the system.

i) Lack of development time

The lack of development time has caused some hindrances in the

development of the system as there are some other responsibilities that

needed to be taken care of and also the lack of understanding has cause

more time needed to understand the topic which took up more time then

the development of the system.

ii) Lack of resources

54

The lack of resources has cause some constraint in the development of the

system. There are not many publish papers related to the project

.Especially when going to the developers github or website they have lack

of information on installation, or implementing them or some projects of

BVAG replication techniques.

iii) Lack of Obtain Quorum, Initiate and Propagate Lock phase

The lack of said phases is due to the lack of knowledge and the lack of

development time as well as the lack of access to the hardware at the

cluster lab due to the problem in faculty management. If the development

had more time, it is possible to implement the quorum, initiate and

propagate lock phase.

5.3 Future Work

BVAG can be improved in many different ways. As we know, server failure can

happen anytime. In future, it can make a significant improvement for commercial usage.

A web based BVAG can also introduce for customizing replication service.

It is hope also that the BVAG prototype can be expanded much larger so it can

works more efficient and replicate data at a much faster speed while also making sure it

is fault-proof and highly-available.

Other than that, BVAG can be improved in the future by implementing the BVAG

replicaiton techniques in a web based application in order to monitor in real time the

process of data replication as well as able to extract the time taken for each executed task.

55

REFERENCES

Ahmad. (2010). Data Replication Using Read-One-Write-All Monitoring Synchronization

Transaction System in Distributed Environment. Journal of Computer Science, 6(10), 1095–

1098. https://doi.org/10.3844/jcssp.2010.1095.1098

Ahmad, N., Noraziah, A., Deris, M. M., Ahmed, N. A., Saman, M. Y. M., Norhayati, R., &

Alfawaer, Z. M. (2007). Preserving Data Consistency through Neighbor Replication on Grid

Daemon. American Journal of Applied Sciences, 4(10), 751–758.

Avram, A. (n.d.). Geographically Distributed Database Management at the Cloud’s Edge.

Azila, A., Fauzi, C., Fariza, W., Rahman, W. A., Fauzi, A., & Weigelt, F. (2021). Managing

Fragmented Database in Distributed Database Environment. In Journal of Mathematics and

Computing Science (Vol. 7, Issue 1).

Budiarto, Nishio, S., & Tsukamoto, M. (2002). Data management issues in mobile and peer-to-peer

environments. Data & Knowledge Engineering, 41(2–3), 183–204.

https://doi.org/10.1016/S0169-023X(02)00040-X

Deris, M. M., Abawajy, J. H., Taniar, D., & Mamat, A. (2009). Managing data using neighbour

replication on a triangular-grid structure. International Journal of High Performance

Computing and Networking, 6(1), 56. https://doi.org/10.1504/IJHPCN.2009.026292

Foster, I., Kesselman, C., & Tuecke, S. (2001). The Anatomy of the Grid: Enabling Scalable Virtual

Organizations. The International Journal of High Performance Computing Applications, 15(3),

200–222. https://doi.org/10.1177/109434200101500302

Francine Berman, Geoffrey Charles Fox, & Tony Hey. (2003). Grid Computing: Making The Global

Infrastructure a Reality (F. Berman, G. Fox, & T. Hey, Eds.). John Wiley & Sons, Ltd.

https://doi.org/10.1002/0470867167

Linesch, M., & Marketing, H. P. (2007). GWD-I.

Pérez, J. M., García-Carballeira, F., Carretero, J., Calderón, A., & Fernández, J. (2010). Branch

replication scheme: A new model for data replication in large scale data grids. Future

Generation Computer Systems, 26(1), 12–20. https://doi.org/10.1016/j.future.2009.05.015

56

Sathya, S. S., Kuppuswami, S., & Ragupathi, R. (2006). Replication strategies for data grids.

Proceedings - 2006 14th International Conference on Advanced Computing and

Communications, ADCOM 2006, 123–128. https://doi.org/10.1109/ADCOM.2006.4289868

Sathya, S. S., & Seshu, K. N. (2008). Synchronous Replica Consistency Protocol with Notification

and Response. 2008 International Conference on Information Technology, 71–74.

https://doi.org/10.1109/ICIT.2008.50

Tarun, S., Batth, R. S., & Kaur, S. (2019). A Review on Fragmentation, Allocation and Replication

in Distributed Database Systems. 2019 International Conference on Computational Intelligence

and Knowledge Economy (ICCIKE), 538–544.

https://doi.org/10.1109/ICCIKE47802.2019.9004233

Ubaidillah, S. H. S. A., Alkazemi, B., & Noraziah, A. (2021). An Efficient Data Replication

Technique with Fault Tolerance Approach using BVAG with Checkpoint and Rollback-

Recovery. International Journal of Advanced Computer Science and Applications, 12(1).

https://doi.org/10.14569/IJACSA.2021.0120155

Voicu, L. C., Schuldt, H., Breitbart, Y., & Schek, H.-J. (2009). Replicated data management in the

grid. Proceedings of the 1st ACM Workshop on Data Grids for EScience - DaGreS ’09, 7.

https://doi.org/10.1145/1531786.1531789

57

APPENDIX A

SAMPLE APPENDIX 1

For Appendices Heading, use TITLE AT ROMAN PAGES style.

58

APPENDIX B

SAMPLE APPENDIX 2

For Appendices Heading, use TITLE AT ROMAN PAGES style.

