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ABSTRACT

A vehicle engine cooling system is of utmost importance to ensure that the engine operates in a safe
temperature range. In most radiators that are used to cool an engine, water serves as a cooling fluid.
Performance of a radiator in terms of heat transmission is significantly influenced by the incorporation
of nanoparticles into the cooling water. Concentration and uniformity of nanoparticle distribution are
the two major factors for practical use of nanofluids. The shape and the size of nanoparticles also have
a great impact on the performance of heat transfer. Many researchers are investigating the impact of
nanoparticles on heat transfer. This study aims to develop an artificial neural network (ANN) model for
predicting the thermal conductivity of an ethylene glycol (EG)/water-based crystalline nanocellulose
(CNC) nanofluid for cooling internal combustion engine. The implementation of an artificial neural
network considering different activation functions in the hidden layer is made to find the best model
for the cooling of an engine using the nanofluid. Accuracies of the model with different activation
functions in artificial neural network are analyzed for different nanofluid’s concentrations and
temperatures. In artificial neural network, Levenberg-Marquardt is an optimization approach used
with activation functions including Tansig and Logsig functions in the training phase. The findings of
each training, testing, and validation phase are presented to demonstrate the network that provides the
highest level of accuracy. The best result was obtained with Tansig, which has a correlation of 0.99903
and an error of 3.7959 x10-8. It has also been noticed that Logsig function can also be a good model due
to its correlation of 0.99890 and an error of 4.9218 x10-8. Thus our ANN with Tansig and Logsig
functions demonstrates a high correlation between the actual output and the predicted output.
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The engine-cooling system is an essential part\wa@tacle, providing the engine’s coolness
and maintaining a safe temperature range for efficoperation. Engine cooling is performed
through a heat transfer between the coolant runamgind the engine and the surrounding
atmosphere through a radiator. In this processcdlbéicient of thermal conductivity is critical to
ensuring that the coolant can reduce the engiegipdrature to a suitable level for its operating
condition [1]. Traditionally, coolants have ethyeglycol (EG) mixed with distilled water to
increase heat conductivity [2,3]. However, the tier performance of the EG-water mixture is
relatively low compared to water due to the lowrthal conductivity of EG. Some nanoparticles
can be added to the composition of EG/water toamrae this difficulty [4-6]. The nanoparticles,
which are additives to nanofluids, play a crucééiin altering the thermal properties of nanoftuid
These nanoparticles could be metals, oxides oflsjyedeaphene, or carbon nanotubes; the base
fluids could be water, EG, polyalphaolefin, or otliliids [7]. As a result, using nanofluids
containing nanoparticles has become increasinglyoitant in enhancing heat transfer within
vehicle engines [8]. In the past, numerous resegrapers have explored the impact of
nanoparticles on conductivity.

Samylinggam et al. [9] developed an innovative cositipn featuring cellulose nanocrystals
(CNC) in conjunction with a blend of EG and watBiG+W). This formulation was evaluated
under a range of volume concentrations and tempesat demonstrating a comprehensive
approach to enhance the thermal properties of CS€YE-based nanofluids. Their work signifies
a notable advancement in thermal performance acdossrse operational scenarios. In a
comprehensive research endeavour documented in [Ref. a detailed investigation was
conducted into the thermal properties of single opdatelets (GNP) and hybrid nanofluids
combining CNC and GNPs, using a base fluid, espediar heat transfer enhancement. The
findings of this research are noteworthy, indiogtinsignificant increase in thermal conductivity
by 27% at a temperature of 40 and a concentration of 0.2 vol%. This advancemederscores
the potential of hybrid nanofluids in thermal masagnt applications, showing their ability to
elevate heat transfer rates efficiently under d$pedonditions. Similarly, a comprehensive
experimental analysis was conducted into the thphysical characteristics and long-term stability
of cellulose nanocrystals, MXene, and hybrid CNCe in the article [11]. This research was
tailored to enhance the performance and efficiaiaehicle engines, showcasing the potential of
these materials in automotive applications. At mperature of 9°C and with a volume
concentration of 0.05 %, the CNC-MXene mixture éxled a notable enhancement in thermal
conductivity ratio. Simultaneously, there was apriavement in viscosity increased from 16.77 %
to 20.33 %. An experimental investigation in [12pred heat transfer enhancement in vehicle
cooling systems using hybrid nanoparticles, speadiff CNC and graphene nanoplatelets. This
study revealed that the hybrid nanofluid developeghificantly boosted the convective heat
transfer coefficient by 51.91% and the overall hemtsfer coefficient by 46.72 %. Furthermore, it
notably decreased the pressure drop by 34.06 %a@upo the baseline fluid. Applying CNC has
demonstrated enhanced thermal conductivity withérigconcentrations and temperatures. As an
environmentally friendly and renewable resource Q0Bl considered less detrimental than other
metals [13,14].
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Conversely, distinct research by Raddy et al. blducted experimental research to evaluate
how temperature and nanoparticle concentration @tnffee thermal conductivity of EG/water
mixed with titanium oxide (Tig). Their findings indicated that the volume concativn of
nanoparticles and the temperature significantly trdome to the enhancement of thermal
conductivity in TiQ nanofluids. Christensen et al. [16] revealed iaseel thermal conductivity
within a solvent when it contained metal oxide naarticles capable of forming hydrogen bonds.
Furthermore, their study highlighted that the the&roonductivity of nanofluids is augmented by
the hydrogen bonding between EG and water, whiollsaneously helps reduce viscosity. It was
established that the formation of hydrogen bondaéen EG and water contributes to increased
thermal conductivity in nanofluids while decreasiuisgosity. At temperature 2T, they observed
that zinc oxide (ZnO)-EG nanofluids with a nanojadgtconcentration of 0.4% exhibited a 33.4 %
improvement in thermal conductivity with a 39.2 %ctease in viscosity. Sunder et al. [17]
explored the thermal conductivity of a mixture comipg EG/water in combination with
aluminium oxide (AdOs) and copper oxide (CuO) across various temperatamnel nanoparticle
concentrations. The authors presented findings sigptivat the thermal conductivity enhancement
of Al>Oz nanofluid at a volume concentration of 0.8 % \afetween 9.8% and 17.89 %. This
increase ranges from 15.6% to 24.56 % nanofluid amaedentical temperature range of 15 to 50
°C. Witharana et al. [18] conducted experimentsstess the thermal conductivity of EG/water
when mixed with hybrid nanofluids made of.8t and TiQ. Additional studies further explored
the thermal conductivity of EG/water [19,20]. Thestedies focused on experimenting with
different volume concentrations of nanoparticled samperature.

Over the past two decades, artificial neural netwfdNN) deployment has become prevalent,
covering various applications from regression &ssification tasks [21,22]. This surge in usage is
notable in domains where conventional modellindntégues have proven inadequate. An ANN
operates as an advanced data processing systeammrimgjithe functional intricacies of the human
brain. An ANN can be refined with adequate trainiagerve as a specialized model tailored for
specific applications. ANNs effectively exhibit thepredictive capabilities upon training by
learning from data sets. After training, the syst@as validated using independent data sets for
testing. This approach is distinct from conventlamadelling systems, as follows for acquiring
system knowledge and modelling without understagdire underlying process linkages [23].
Numerous researchers have adopted ANN as a deperaggiroach for precisely mimicking the
thermal conductivity of various nanofluids. KurtdaKayfeci [24] explored the use of EG/water in
predicting thermal conductivity through neural netks. Their study employed the binary Sigmoid
transfer function and the back-propagation learilggrithm. Pare and Ghosh [25] developed an
advanced ANN model to predict the thermal conditgtief EG and metal oxide nanofluids
precisely. Their innovative approach incorporatea Hlyperbolic Tangent activation function in a
hidden layer strategically designed with 12 neur@i$Ns have been employed to estimate the
thermal conductivity of diverse nanofluids, encosgiag Cu/TiG-EG/water [26], ZnO-EG [27],
ZnO-MWCNTSs/EG-water [28], Ti@water [29]. These models were developed to actogtienal
performance, adjusting the activation functionghie hidden layers and the number of neurons in
each layer. The neural networks demonstrated reabbrlaccuracy in these research endeavours,
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achieving a correlation coefficient nearing thealdealue of 1.0. In the research presented in
reference [30], the researchers designed an ANNemdtis model was developed to predict the
thermal conductivity of a hybrid nanofluid composetdwater, TiQ, and calcium Carbonate
(CaCQ) under varying temperature and volume concentratiorheir model demonstrated
remarkable accuracy, evidenced by a correctionficait of 0.99913 and an exceedingly mean
error rate of only 0.02 %. While a considerable am®f research has been conducted on ANN,
there remains a gap in experimental applicatiorsstiqularly in employing ANN for the
composition of EG/water mixtures with cellulose oerystals. Hence, this research aims to
develop an ANN model to predict nanofluids' there@hductivity based on EG/water with CNC.
The ANN model utilizes nanofluid concentrationsngerature, and composition details. The
Levenberg-Marquardt algorithm is employed as thming mechanism. In the design of the ANN
model, the various activation functions are integpldo augment its computational efficacy. This
deliberate incorporation of diverse activation fiimes is instrumental in generating a wide range
of outcomes, significantly boosting the networkregision and efficiency. Subsequently, the
performance of the neural network is evaluatedaaradyzed. This process is pivotal in identifying
superior activation functions and establishing aretation between the network's actual and
anticipated output.

2 Artificial Neural Network Modelling

As depicted in Figure 1, the architecture of a aknetwork is presented by an input, output,
and a series of intermediate hidden neurons. Téleseents are systematically interconnected to
create a network. This structure is designed t@thderocess specific inputs, demonstrating the
intricate operational framework of neural netwof&&]. The input data is systematically relayed
to the neurons residing in the hidden layer. Thputuayer receives the activated values from the
hidden layer. At this stage, the output layer coraptio generate a result that is an approximation,
effectively encapsulating the core of the learrpngcess. The network uses weights and biases to
process the incoming data during forward propagalfibis data is subsequently channeled through
an activation function responsible for preparing aelaying the output to the next layer in the
sequence [32,33]. This is achieved by supplyingatttezation function with the processed output
derived from the previous layer.

Input layer I Hidden layer Output layer

Input 1 N\

Figure 1. An artificial neural network architecture

The value of outpu((y;) inthe current layer is determined through an atitiv functiong(x),
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the bias term(b;) and the summation of, x;w; of inputs ;) of the previous layer multiplied by
weights (w;) as follows as Eq. (1) [34]:

n
yi=4g (bi + Z Wixi> (1)
i=1

wheren is the number of inputs used in the network. Téieirned value is sent into an
activation function once the combination of inpuith the corresponding weights is calculated.
The Logistic Sigmoid (Logsig), Hyperbolic Tangengr8oid (Tansig), and Hard Limit (Hardlim)
functions are various activation functions withieunal networks [35]. Among these, the Tansig
activation function is most frequently employedisTtunction is characterized by its output range
of (0,1) and is formally expressed as Eq. (2) [36].
1—e™* (2)
1+ e7*

The value ofy; is then propagated forward to the next layer amput to the next neuron.
An essential aspect of training a neural networkhviiack-propagation is reducing the error
function, which is accomplished by a procedure km@s gradient descent [37], where the error
function is minimum at the point where the weights optimum.

gx) =

2.1 Back-propagation

Back-propagation is a supervised learning algorigiiimarily employed in the mathematical
training neural networks. Its core function is tmimize the loss function, thereby enhancing the
accuracy and efficiency of the neural networks. Tikaral network is trained by changing the
weights and biases, also known as the hyperparesneather than the input values. The training
phase of neural networks ensures that error ismnailhiln backward propagation, the calculation
of hyperparameter changes is performed for thaileguof the ANN. Typically, the Mean Square
Error (MSE) is employed as a quadratic loss metiibin the framework of an error functio)
which is expressed in Eq. (B8]:

Ct = % 5@ - yi)? )
where §; and y; are the predicted and actual values, and m isotitput data number.
Including a square term within the error functi@mnfiula ensures its value remains consistently
positive. Adding ¥z is a strategic choice to faatkt the ease of derivative computation. The error
becomes null when the error function C is assigneero value. The error function is reduced with
each iteration of the back-propagation algorithtme Pprimary objective of back-propagation is to
ascertain the partial derivatives essential foratipd the network parameters, i.e., the weights. We
explore the mechanics of back-propagation algosthimis exploration assumes the availability
of comprehensive input and output experimentalsgasaand a set of initially hypothesized weights.
Furthermore, a predefined learning rate is conetlémtegral to the process. During the training
iteration, which persists until a local minimumaitained, a feed-forward operation is conducted
through each neural layer to determine the oufintultaneously, the error function is evaluated
to quantify the discrepancy from the expected tesdlhe process is pivotal for the iterative
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optimization of the network’s performance. Backfmgation is a mechanism to update the partial
derivatives systematically [39].
o, _ N 0C, oG, @
dw; dw;  ON; 0(

where C; = Y; C; i.e., summation of all error functions, whefe = ﬁ ($; —y;)? and

Ni = wo + Xiz1 xiw; (5)
Considering thatw® ={ wq, wq, ....... wy} is the initial weight and subsequently, weightues
for each layer undergo an update; the weight in-theposition is revised by Eq. (6).

aC (6)
k+1 _ 0k t
witt = wi - M3k

i

where n is the learning rate arld=0, 1, 2, ......

2.2 Data Normalization Techniques

Data points are typically subjected to pre-procegsieps to normalize the dataset, ensuring
that the first layer receives data with a zero méais diminishes the disparities in data scaleb an
establishes a correlation among various data ate#[40]. This phenomenon frequently arises
when there is a notable variance in scale amonglifferent attributes encompassed within the
dataset. The data pre-processing is carried autwo-fold procedure. The first step involves data
cleaning, which includes identifying and rectifyiegrors or inconsistencies within the data, for
example, missing values, outsiders, and duplicaties.second step is data transformation, where
techniques such as normalization constrain theerahgumerical data values, ensuring consistency
across the dataset [41,42]. Such pre-processingesdhe mean-variance across the value ranges
of disparate variables. This pre-processing enlsatieneural network’s ability to converge more
effectively and expedites learning [43]. Numerowsnmalization methods are utilized in data
processing, including max-min normalization, Z-gcnormalization, and others.

We assumehas the normalized data, v as unnormalized data @s the lower boundary of
the feature, maxA as the upper boundary of theifeahewaxa as 1, and nemha as -1 to normalize
to an equal scale of [-1, 1]. The equation of max-normalization for each data point is as Eq. (7)
[44].

; _ v—minA

T maxA—minA (newmaxA - neWminA) + newpina (7)

The max-min normalization technique plays a pivobé in implementing neural networks.
This method effectively scales the diverse rangewwherical values in the dataset’'s feature,
standardizing them into a unified range of [-1,)ch standardization is crucial for optimizing the
performance and efficacy of neural networks by gnglconsistent data scales for all features. The
Z-score normalization method is adeptly employedtamdardize input data, thereby enhancing
the efficiency of gradient descent. This approaetains the range extremities' maximum and
minimum values while incorporating critical statisi measures such as variance and standard
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deviation. This approach streamlines data procgssid ensures a more robust and consistent data
normalization framework. Assume we denote all gaiats asx’ of a feature with ‘n’ representing
the aggregate number of the training. In this cdnige initiate the following series of operations
[45]:

Step 1: Determine the meap) and compute the mean-substracted features repeesasx)
in the following:

1 (8)
u= ;;xi
X=x—p 9)

At this stage, all data points have been adjustetto-centred, effectively achieving a zero
mean.
Step 2: Implement the normalization step precisely, divgdthe mean-subtracted features by
the standard deviation to achieve a refined andistant standardization across the dataset.
n
1 (20)

o= o CEY

x (12)

Maintaining consistency in the data transformatmncess is essential by applying the
identical mean and variance in normalizing the priyrdataset to subsequent datasets., including
the test and validation sets. This ensures a umifstandard of normalization across all data
segments.

2.3 Performance Metrics

MSE is a standard error estimation method to detertme neural network's error rate. When
the value of the MSE is high, the error value ghhiand zero means the model has the correct and
accurate prediction [46]. The correlation coeffitigR) serves as an additional metric for
evaluating the accuracy of a model across variatia sets. An R-value nearing one indicates a
strong correlation between the data obtained fitoerekperiment and data generated by the ANN
model. The precision of the developed ANN model banevaluated through the Margin of
Deviation (MOD). The relevant formulas are defirmedflows [47,48]:

m
1
— 5. 1.)2
MSE = mZ(yl Yi) (13)
i=

m
1N o 14
RMSE = |—"(9; = y)? (1)
mi=1
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R= ?;1(.&_5\71-)(,11_}’1-) (15)
=) (-
MOD = (y" _ 5’") x 100 (16)
Vi

where, m,y; and j; are the number of output data, actual and pradlictgéputs,u and i are
the mean values of; and y; respectively.

2.4 Training Criteria

An adjustable hyperparameter’s learning rate pkysvotal role in defining the speed at
which a neural network model adepts and learns fi@pecific task. It is crucial to fine-tune this
learning rate to an optimal level, significantlgleeing error and enhancing the model’s efficiency.
Nevertheless, there are specific challenges adedaidgth setting learning rates. It may lead to a
phenomenon known as gradient explosion in the mibtied learning rate is set excessively high.
Conversely, setting the learning rate too low asult in excessively prolonged training durations,
leading to a scenario where the model takes am@etetime to converge to a minimum or may
fail to reach the minimum. Typically, learning ratare set within a spectrum ranging fronf 1@
1.0. We have initiated our learning rate at 0.G@nang it with the specific requirements and goals

3 Methodology
3.1 Data Acquisition and Splitting

The training phase of the neural network is indtihtvith an assembled dataset engineered to
predict the thermal conductivity of EG/water-bas&dC precisely. This dataset comprises three
pivotal input variables, including the proportiohE to water, the concentration of CNC, and the
elevated temperature. Additionally, it includes tbatput variable, which is the thermal
conductivity. The utilization of these data poiitistraining the neural network is illustrated in
Figure 2, demonstrating how each input parametetriboites to the accurate prediction of thermal
conductivity. The neural network model was devetbpseing a supervised learning paradigm to
predict thermal conductivity accurately. The datasenprises 1632 data points instrumental in the
model’s training, testing, and validation stagéss demonstrated by a p-value that relates to the
significance level of the dataset (p-value = 0.800.05). This dataset ensures that the neural
network is comprehensively trained on a wide raofydata, thoroughly validated for accuracy,
and tested to evaluate its predictive performante. dataset is derived from a comprehensive
research study on thermal conductivity, with expemts involving EG/water-CNC systems
conducted within the state-of-the-art Automotivegiieering Centre at the University Malaysia
Pahang Al-Sultan Abdullah, Pekan, Malaysia.

The subsequent phase involves data splitting, wisigherformed utilizing a sophisticated
technique known as data partitioning. Three distieatures enrich this dataset, comprising 1632
data points segmented into smaller subsets. Thésets play a pivotal role in the efficient tramin
of the neural network. They are categorized ingtimit phases, including training, testing, and
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validation, each allocated in specific, calculatatos to optimize the learning and validation
process. For this study, the distribution ratio bagn set at 6:2:2. This deliberate calibration
ensures that substantial data is allocated fanitrgiwhile sufficient data are allocated for tegtin
and validation. Such a balanced approach is pivwotalitigating risks associated with underfitting
and overfitting, thereby fostering the developn@rda more accurate model. The data is randomly
slit during training using the “dividerand” functias the neural network dividing mechanism. In
this setup, the 6:2:2 ratio translates to 980 gaiats for training, 326 for testing, and 326 for
validation.

Input layer | Hidden layer

Output layer

Water/EG
composition

CNC (
concentration ©

Temperature |

Figure 2: Neural network architecture where inputs are EGceatration, water concentration,
nanoparticle concentration, and temperature

3.3 Training Neural Network

As depicted in Figure 2, the neural network is tartsed using a multilayer perceptron (MLP)
network model. The network comprises an input lagehidden layer, and an output layer. It
features three neurons in the input layer, fifteearons in the hidden layer, and a single neuron in
the output layer, along with biases incorporatethiwithe hidden layer. The quality of hidden
neurons is determined by the number of input anpgutuneurons employed in the network. Upon
completing the neural network design, it embarkthertraining phase for each activation function.
This phase employed the Levenberg-Marquardt opéititim algorithm in conjunction with the
Gauss-Newton method. This mechanism illustrates shguential flow of data and the
transformative computations occurring within theira¢ network’s layered structure. The neural
network training incorporates the back-propagal@anning algorithm, aiming to minimize errors
by adjusting the network’s weights and biases thihogradient descent. In this process, the inter-
neuronal connections, weights, and biases arealigiget to random values by MATLAB. This
initialization is a standard step in neural netwindining, allowing the network to learn and refine
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these parameters through its iterative trainingg@sse. During the training phase, the weights and
biases within the model are systematically refinad optimized. This process continues until a
point is reached where it meets predefined critexiech as reaching the maximum number of
epochs.

In the context of model training, generalizatiorcharacterized by an increase in validation
error, indicating that the model has exceededptémal capacity for accurate predictions. This
phenomenon is a critical component of regularizatiechniques to enhance the model’s
performance and reliability during training. An emsive array of activation functions was
rigorously tested within the hidden layers of theural networks. This diverse set includes the
Logsig, Tansig, Softmax, Satlin, Elliotsig, Poskurelin, and Hardlim. The objective was to assess
their impact on the network’s efficacy and ovepaiformance. The neural network’s performance
is recorded and reiterated using various activdtioetions. The Mean Square Error is employed
as the loss function, a standard approach in reigretasks, providing a reliable measure of model
accuracy. The design of neural networks encompasaide array of critical hyperparameters, the
specific learning rate, and the selected optinmazagigorithm, which are integral to fine-tuning the
network’s functionality and optimizing its overalperformance. The network’s training
hyperparameters have been established based spdbtiéications outlined in Table 1.

Table 1: Test setup of the neural network

Hyperparameters Value

Optimization algorithm Levenberg — Marquardt
Learning rate 0.01

Loss function MSE

Epoch 1000

3 Resultsand Discussion

This research uses ANN to predict thermal condigtiin EG/water mixtures with
incorporated CNC. The study examines various ambinefunctions in the hidden layers of the
ANN, aiming to evaluate and enhance the accuradyralmability of the network’s predictive
capabilities. Several activation functions, inchgliTansig, Logsig, Hardlim, Poslin, Elliotsig,
Softmax, Satlin, and Purlin, are used in the nemealvork's model. Figure 3 depicts a noticeable
convergence of the MSE with the increase in epophsjcularly for training data employing
diverse activation functions. This trend indicasggnificant learning, as evidenced by the steep
decline in the curves during the initial phasekeafning. Most of these curves exhibit a remarkable
improvement in the early stages, reflecting theaiveness of the learning process. From the
analysis of Figure 3(a), it becomes evident thatrtbtwork achieves its peak performance in error
reduction when employing the Tansig activation fiorc As the learning process progresses, a
distinct plateau emerges around the epochs thiitshdicating a transition to a phase that extends
to the 48 epoch, marking the conclusion of the training @ebriAt this juncture, the model achieves
a notably refined level of precision, evidenced &y MSE of 3.7959x1%) reflecting the
culmination of optimized learning. In addition, thricate details of the network’s architecture
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are elucidated in Tables 2 and 3, which outlinewke&hts and biases associated with the Tansig
activation functions in both the hidden and outpyers of the ANN model. These results provide
a deeper understanding of the network’s operatidyiaamics.

100 10°

|Best Validation Performance is 3.8699e-08 at epoch 46] |Best Validation Performance is 4.3515¢-08 at epoch 38
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Figure 3: Convergence of MSE across epochs foerdifft transfer functions.

Table 2: Weights and biases of hidden layers

Hidden Weights Bias

layer Wiy Way Wy

neurons
1 -0.2726  0.8116 -2.2066  1.5956
2 2.3033 -1.5101 -0.1212 -4.3488
3 -1.9325 0.2230 0.4131  1.9189
4 -0.0818 -3.2331 3.4678  5.4702
5 -0.6132 -2.2786 -0.3169  0.8475
6 -6.1231  5.7153 0.0949  2.3003
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7 -2.8735 3.5602 0.7503 0.1842
8 -1.7434 -0.1216 18382 0.1931
9 -0.5370  0.9613 -0.8999 -0.6623
10 -1.7608 4.2824 0.9663  0.1224
11 -0.6548 1.7703 0.0238 -3.0588
12 2.6612 -3.8714 0.2686  2.7306
13 -0.2289 -2.8022 0.2193 -2.2740
14 1.2636 -1.0382 0.2682 1.4219
15 -1.9142 15675 -0.7351 -2.9052

Table 3: Weights and bias of output layer

Neurons Weights Bias
1 wiy  0.027438574
Woy -0.227341126

3 wsy  0.557141197

4 Wiy -0.021804455

5 Wsy -0.200701036

6 Wey  0.149936774

-

8

9

Wy -1.208035759
Wey -0.022412308 -0.980014300
Wey  0.080219847

10  w, 0.818629678

11 way, 0.123792151

12wy -3.814119540

13w, -0.419235180

14  way 5.397284068

15  ws, 1.051245690

The training data plays a pivotal role in attainihg optimal configuration of the network. In
this study, the data sets allocated for trainingstantially exceed those designated for testing and
validation purposes. In particular, 60 % of theads#t is dedicated to network training. This tragni
data is derived from a strategically randomize@d@n spanning the full spectrum of the ANN
experimental results.

Figure 4 presents a scatter plot that illustrabes dccuracy metrics for training, testing,
validation, and the overall performance of the AMMNdel. The findings distinctly reveal a strong
alignment between the output and target data, thihraining dataset exhibiting an exceptionally
high correlation coefficient of 0.99904. This tresfchigh correlation also extends to the other data
sets, with the test, validation, and overall dagasehieving correlation coefficients of 0.99885,
0.99918, and 0.99903, underscoring the model’'s meabde consistency and precision across
different evaluation phases. These results indieagérong convergence between the predicted
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values and the experimental data produced by thelalged ANN model utilizing the Tansig
activation function. Moreover, these findings sabsiate the ANN's proficiency in accurately
predicting results, highlighting its predictiveigddility and effectiveness.
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Figure4: Tansig scatter plot of the target and output \&bhfgehe ANN model

Table 4 provides an exhaustive comparative evainaif performance metrics for various
activation functions applied in thermal conductiviirediction. This comprehensive intricately
tables the diverse accuracies and correlation salneneural network training, testing, and
validation stages. It is curated to showcase theracies in a precise, descending sequence, startin
with the most effective (denoted by the lowest M&EJ progressing to the least efficient, thereby
presenting a nuanced and detailed perspective ereficiency of each activation function.
Deployment of Logsig and Tansig as activation fiord significantly enhanced the neural
network’s generalization abilities, resulting in rkedly lower training and testing errors when
compared to other activation functions. This supgserformance is primarily due to the intrinsic
characteristics of these functions, which are ogllyn designed to promote outstanding
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generalization and efficient convergence during tf@ning phase, thereby optimizing the
network’s overall learning efficiency [49]. Follomg the documentation of the initial results, the
training process is repeated, employing a variétgativation functions within the hidden layer.
This phase includes testing activation functiortge Tesults in Table 4 quantitatively demonstrate
that the Tansig and Logsig functions achieve aetation coefficient of 0.99903 and 0.99890,
respectively. However, a notable distinction arisetheir error values, with the Tansig function
exhibiting a lower error rate (3.79680%) than the Logsig (4.92%807%). This discrepancy can be
attributed to the intrinsic properties of the Tanactivation functions, particularly its centering
around zero and its superior facilitation of themadé network’s learning capabilities, as detailed
[50].

Additionally, several other activation functionsvlabeen identified as highly effective for
this specific task, demonstrating notable accurBapctions such as Elliotsig, Softmax, and Poslin
have all achieved a high correlation coefficient @99, underscoring their suitability and
effectiveness in this context. Upon comparing elivation functions that have been experimented
with, it is observed that the Hardlim function ebxits the lowest accuracy, as evidenced by its
correlation coefficient of 0.71177. Additionally gresents an MSE of 0.002712, further indicating
its relative underperformance compared to the ahgvation functions tested.

Table 4: Performance comparison of different activationthen ANN Model

AFs Epoch Time(s) MSE MOD% Train Validation Test All
Tansig 46 19 3.795%10% 1.05 0.99904 0.99918 0.99885 0.99903
Logsig 38 12 4.9218x10% 1.11 0.99901 0.99891 0.99853 0.99890
Elliotsig 459 1000 9.6291x10® 1.63 0.99852 0.99742 0.99857 0.99817
Softmax 955 94 5.4144x107 1.79 0.99574 0.99153 0.99138 0.99288
Poslin 99 12 6.6284x107 2.02 0.99492 0.99269 0.99197 0.99319
Satlin 1000 29 1.2259x10° 2.68 0.98572 0.98267 0.975230.98120
Purelin 3 0 1.8600x10° 2.12 0.81595 0.81374 0.80698 0.81374
Hardlim 4 0 2.7120x10% 2.97 0.71267 0.71170 0.70906 0.71177
1.00E-08
1.00E-07
1.00E-06 RRMSE
5 1.00E-05
o 1.00E-04
1.00E-03
1.00E-02
1.00E-01 L l
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Figure5: Error values comparison among the different atbwafunctions
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Figure 5 compares MSE and RMSE values across &aotivation functions utilizing a
logarithmic scale for enhanced clarity. The actoratunctions such as Purelin and Hardlim exhibit
notably higher MSE and RMSE values. In contrastisiga and Logsig functions demonstrate
significantly lower values, indicating enhancediaéincy in training tasks. This graphical
representation provides a clear and comprehenser@iew of the performance difference between
activation functions in the context of neural netkveraining. The evaluation reveals that other
activation functions display only moderate errovels. A comprehensive analysis of these
functions indicates that the Tansig function caesiy exhibits the lowest values in MSE and
RMSE, distinguishing it as the most efficient amdahg compared activation functions in error
minimization. Figure 6 presents the error histogfanthe Tansig-based ANN model, where it is
observed that a significant proportion of the esrare concentrated near zero, indicating minimal
deviation. This error distribution pattern indicsaten approximate zero error, highlighting the
model’s exceptional level of generalization. It gests that the ANN model is well-calibrated and
can be generalized effectively.
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Figure 6. Error histogram

Table 4 also comprehensively presents the margatewifation ranges associated with each
activation function employed in accurately predigtithermal conductivity, offering a detailed
comparison. The values delineated in Table 4 rethedlamong the activation functions, Tansig
stands out with the lowest margin of deviation ealdlosely paralleling this, the Tansig and Logsig
functions demonstrate a comparable performancebitirny MOD values at 1.05 % and 1.11 %,
indicating high precision in the predictive anadysiansig and Logsig functions can smooth
gradient transitions, leading to more efficientriéag during the model training phase. This
efficient learning translates into a lower MOD, itating that the predicted values are closer to the
experimental values. These functions are potewntiailore suitable for predicting thermal
conductivity within the given dataset, owning teitnon-linear nature, effective handling of the
data range, and efficient error minimization caliéds. The results further reveal that the Satlin
and Hardlim functions stand out with notably higkhafues in Table 4, in contrast to the other
activation functions, which display comparativelyeeage performance metrics.
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Figure 7 provides a detailed representation ofithegin of deviation range, encompassing the
training, testing, validation, and overall datasespecially utilizing the Tansig activation furcets
within the framework of the ANN model. This visualtion proposes insight into the function’s
efficacy across different data segments. Thesétseset the MOD value within a notably narrow
range of -0.1% to 0.1 %, underscoring a signifisalov error rate. This minimal margin of error
strongly indicates that the Tansig function perfedmobustly in the developed model and
demonstrated outstanding quality and reliabilitytsnapplication.
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Figure 7: MOD values with the number of data at differeatring stages

The scholarly literature extensively investigates tole of activation functions in ANNSs for
predicting thermal properties. This study's focwss fsignificantly contributed to the field,
enhancing the precision and efficacy of thermapprty predictions by strategically selecting and
applying various activation functions in ANN modelhe study in reference [51] examines the
impacts of employing diverse activation functiorithim neural networks' hidden and outer layers.
This study aimed to enhance the overall performasfcthe networks. The author's research
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achieved correlation coefficients of 0.998, 0.99898, and 0.999 across various models utilizing
different activation functions. Applying an ANN meldn [52] to predict the thermal conductivity
of MWCNT-CuO/water hybrid nanofluid yielded a natahigh correlation coefficient of 0.9964.
This precision, achieved through the adept useanfsiy and Purlin activation functions, was
further validated by a low MSE of 2.4451x3.@xemplifying the model's exceptional accuracy in
the field of nanofluid thermal mechanism. AnothédM model with Tanh and linear activations
functions accurately predicted the thermal conditgtof WOs-CuO-Ag/water hybrid nanofluids,
yielding a correlation coefficient of 0.997 and M&87.0X10°, showing the model’s high precision
in thermal analysis [53]. The study in [54] crifigareviews various neural network activation
functions, noting Tansig and Logsig’s suitability fecurrent networks but advising against their
use in convolutional networks due to poor convecgetn ANN model research documented in
[55], the authors experimented with six differewtivation functions: Tanh, Sigmoid, RelLu,
Softplus, Swish, and Exponential. While most ofsthéunctions yielded impressive results, Relu
was an exception. Consequently, the authors spaltyfirecommended the Sigmoid activation
function for the developed ANN model, highlightiitg effectiveness in achieving the desired
predicted outcomes. The authors in [56] also d@eglcan ANN model for thermal conductivity
prediction using five different activation funct®m@nd achieved an R = 0.96 and MSE = 0.0004
with the Tansig activation function. A recently posed ANN model in [57] predicts thermal
conductivity with R of 0.994 MSE of 0.00057 usingdsig and Purlin activation functions. The
research in this paper used eight activation fonstin an ANN model with a configuration of 3-
15-1. The performance of these activation functiwwas compared with others, where Tansig and
Logsig showed better performance. In addition, ANN model gained the highest exactness of
R=0.99903 and MSE=3.7950L0® with the Tansig activation function compared to titber
models.

5. Conclusion

In this research, the innovation lies in developangew ANN model to predict the precision
of thermal conductivity in a CNC nanofluid that ssemixture of EG and water for cooling internal
combustion engines. The database of the ANN modslestablished using our experimental data.
The effects of network parameters, mainly activationctions, were investigated in the ANN
modelling, and optimal ANN architecture was deteml. The conclusion could be summarized
as follows:

+ Different activation functions are used and analyizethe hidden of the developed ANN
model. The optimized network, consisting of 3 inpatles, 15 neurons in the hidden layer,
and one output neuron, performed well in modelimg rtelationship between input and
output parameters. This simulation shows that @esify activation function produces the
best result with a correlation of 0.99903 and aaresf 3.7959108,

+ It is observed that the characteristics of the ighgstivation function are almost similar
to the Tansig activation function and attain a elatron of 0.99890 and an error of 4.9218
x108. Therefore, Logsig is a good alternative duedmiod features.
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The results of this model indicate a strong coti@tebetween the thermal conductivity from
experiments and the predicted value. As differetticle types require different cooling
parameters for the vehicle to run in various opegatonditions, carmakers can use the
neural network to test the thermal conductivitynirdhe different parameters using
simulation with ANN instead of live experiments,ialinis costly and time-consuming.

1=

[

We intend to enhance the model generalization ieffiy, optimize ANN industrial
achievement, and improve cooling benefits. Theegffuture work is needed to develop a
prediction model with enormous applicability andtlier enlarge the dataset to include a
wide range of performance and control parameters.
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