

AN AUTOMATED STRABISMUS

CLASSIFICATION USING CASE-BASED

REASONING ALGORITHM FOR BINOCULAR

VISION MANAGEMENT SYSTEM

MUHAMMAD AMIRUL ISYRAF BIN

ROHISMADI

BACHELOR OF COMPUTER SCIENCE

(SOFTWARE ENGINEERING)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : Muhammad Amirul Isyraf bin Rohismadi

Date of Birth

Title : An Automated Strabismus Classification using Case-Based

 Reasoning Algorithm for Binocular Vision Management System

Academic Session : Semester 1 2022/2023

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number

Date: 29/01/2023

 (Supervisor’s Signature)

Name of Supervisor

Date:

THESIS DECLARATION LETTER

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name

Thesis Title

Reasons (i)

 (ii)

 (iii)

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is

adequate in terms of scope and quality for the award of the degree of Bachelor of

Computer Science (Software Engineering)

 (Supervisor’s Signature)

Full Name : DR. ANIS FARIHAN BINTI MAT RAFFEI

Position : PROJECT SUPERVISOR

Date : 29 JANUARY 2023

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti

Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : MUHAMMAD AMIRUL ISYRAF BIN ROHISMADI

ID Number : CB20014

Date : 29 JANUARY 2023

AN AUTOMATED STRABISMUS CLASSIFICATION USING CASE-BASED

REASONING ALGORITHM FOR BINOCULAR VISION MANAGEMENT

SYSTEM

MUHAMMAD AMIRUL ISYRAF BIN ROHISMADI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering)

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

FEBRUARY 2023

ii

ACKNOWLEDGEMENTS

Alhamdulillah, praise be to Allah the Almighty of God the most Gracious and the most

Merciful, first of all the writer would like to thank God for His Blessing in the completion

of this thesis. The writer also deeply thankful to everyone who was involved in this

project, as without their support and guidance, it would not have been possible to

complete. Special thanks to the supervisor, Dr. Anis Farihan binti Mat Raffei, from the

Faculty of Computing, University Malaysia Pahang, for providing valuable wisdom and

guidance throughout the entire project. Not to forget, huge gratitude also to the lecturers,

parents, family members, and friends for their unwavering support and encouragement

from time to time in completing this project.

iii

ABSTRACT

Binocular vision is a type of vision that allows an individual to perceive depth and

distance using both eyes to create a single image of their environment. However, there is

an illness called strabismus, where it is difficult for some people to focus on seeing things

clearly at a time. There are a lot of diagnosis need to be done for doctors to diagnose

whether patients suffer from strabismus or not. One of them is to perform accommodate

amplitude test, which is time-consuming. Thus, with the Agile methodology, the

Binocular Vision Management system is proposed which comprised of two components,

a web-based component for patient, treatment, and appointment management, and a

machine learning component for automating the strabismus classification by using case-

based reasoning algorithm. Therefore, this will significantly hasten the process of

classifying strabismus and help keep all clinical records in one place.

iv

ABSTRAK

Penglihatan binokular ialah sejenis penglihatan yang membolehkan seseorang individu

melihat kedalaman dan jarak menggunakan kedua-dua mata untuk mencipta satu imej

persekitaran mereka. Walau bagaimanapun, terdapat penyakit yang dipanggil strabismus,

di mana sukar bagi sesetengah orang untuk memberi tumpuan kepada melihat sesuatu

dengan jelas pada satu masa. Terdapat banyak diagnosis yang perlu dilakukan untuk

doktor mendiagnosis sama ada pesakit mengalami strabismus atau tidak. Salah satunya

adalah untuk melakukan ujian “Accommodate Amplitude”, yang memakan masa. Oleh

itu, dengan metodologi Agile, sistem “Binocular Vision Management” telah dicadangkan

yang terdiri daripada dua komponen, iaitu komponen berasaskan web untuk pengurusan

pesakit, rawatan dan temu janji, serta komponen pembelajaran mesin untuk

mengautomasikan klasifikasi strabismus dengan menggunakan algoritma “Case-Based

Reasoning”. Oleh itu, ini akan mempercepatkan proses pengelasan strabismus dengan

ketara dan membantu menyimpan semua rekod klinikal di satu tempat.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xiii

LIST OF ABBREVIATIONS xiv

CHAPTER 1 INTRODUCTION 1

1.1 INTRODUCTION 1

1.2 PROBLEM STATEMENTS 3

1.3 OBJECTIVES 4

1.4 SCOPE OF PROJECT 4

1.5 SIGNIFICANCE OF PROJECT 4

1.6 THESIS ORGANIZATION 5

CHAPTER 2 LITERATURE REVIEW 6

2.1 INTRODUCTION 6

2.2 REVIEW OF EXISTING SYSTEMS 6

2.2.1 Odoo Eye Clinic Management 6

vi

2.2.2 Optic Clinic 8

2.2.3 Smart Eye Care 9

2.3 COMPARISON BETWEEN EXISTING SYSTEMS AND PROPOSED

SYSTEM 12

2.4 CURRENT ALGORITHMS FOR CLASSIFICATION 15

2.4.1 Fuzzy Logic 15

2.4.2 Case-Based Reasoning 15

2.4.3 Artificial Neural Network 16

2.5 COMPARISON BETWEEN ALGORITHMS 17

2.6 CHAPTER SUMMARY 18

CHAPTER 3 METHODOLOGY 19

3.1 INTRODUCTION 19

3.2 METHODOLOGY 19

3.3 PROJECT REQUIREMENT 23

3.3.1 Functional Requirements 23

3.3.2 Non-Functional Requirement 26

3.3.3 Constraints 27

3.3.4 Limitations 27

3.4 STRABISMUS DIAGNOSIS 28

3.4.1 Accommodative Amplitude (AA) 28

3.4.2 Lag of Accommodation (LA) 29

3.5 CASE-BASED REASONING ALGORITHM JUSTIFICATION 30

3.6 PROPOSED DESIGN 31

3.6.1 Context Diagram 31

3.6.2 Use Case Diagram 32

vii

3.6.3 Activity Diagram 46

3.7 DATA DESIGN 51

3.7.1 Entity Relationship Diagram 51

3.7.2 Data Dictionary 52

3.8 CASE-BASED REASONING PROCESSES 56

3.9 DATASETS 58

3.9.1 Dataset Collection 58

3.9.2 Data Pre-Processing 58

3.10 HARDWARE AND SOFTWARE SPECIFICATIONS 59

3.11 DESIGN PROTOTYPE 60

3.12 TESTING METHOD 66

3.12.1 Functional Testing 66

3.12.2 User Acceptance Test Plan 66

3.13 POTENTIAL USE OF PROPOSED SOLUTION 69

3.14 GANTT CHART 70

CHAPTER 4 RESULT AND DISCUSSION 71

4.1 INTRODUCTION 71

4.2 DEVELOPMENT ENVIRONMENT 71

4.3 BINOCULAR VISION MANAGEMENT SYSTEM IMPLEMENTATION 72

4.4 CASE-BASED REASONING IMPLEMENTATION 82

4.4.1 Introduction 82

4.4.2 Algorithm Processes 83

4.5 SYSTEM OUTPUT 87

4.6 CASED-BASED REASONING PERFORMANCE EVALUATION 103

4.7 USER ACCEPTANCE TEST 107

viii

CHAPTER 5 CONCLUSION 110

5.1 INTRODUCTION 110

5.2 OBJECTIVE REVISITED 110

5.2.1 Limitations 111

5.2.2 Future Works 112

REFERENCES 113

APPENDIX A USER ACCEPTANCE TEST RESPONSES 114

APPENDIX B SOFTWARE REQUIREMENT SPECIFICATION FOR

BINOCULAR VISION MANAGEMENT SYSTEM 125

APPENDIX C SOFTWARE DESIGN DESCRIPTION FOR BINOCULAR

VISION MANAGEMENT SYSTEM 126

ix

LIST OF TABLES

Table 2.1 Comparison between existing systems and proposed system 12

Table 2.2 Comparison between machine learning classification algorithms 17

Table 3.1 Non-functional requirments 26

Table 3.2 System constraints and its descriptions 27

Table 3.3 System limitations and its descriptions 27

Table 3.4 Data dictionary of table doctors 52

Table 3.5 Data dictionary of table users 52

Table 3.6 Data dictionary of table patients 52

Table 3.7 Data dictionary of table treatments 53

Table 3.8 Data dictionary of table treatment_doctors 53

Table 3.9 Data dictionary of table accommodative_amplitudes 54

Table 3.10 Data dictionary of table lag_accommodations 54

Table 3.11 Data dictionary of table appointment_events 55

Table 3.12 Data dictionary of table appointment_categories 55

Table 3.13 Hardware specifications 59

Table 3.14 Software specifications 59

Table 3.15 Test cases of the proposed system 66

x

LIST OF FIGURES

Figure 1.1 Example of human eyes. (a) Normal eyes condition (b) Strabismus

disease 2

Figure 2.1 Patient information interface of Odoo Eye Clinic Management 7

Figure 2.2 Appoinment record interface of Odoo Eye Clinic Management 7

Figure 2.3 Manage patient interface of Optic Clinic 8

Figure 2.4 Booking interface of Optic Clinic 9

Figure 2.5 Patient details interface of Smart Eye Care 9

Figure 2.6 Add new patient interface of Smart Eye Care 10

Figure 2.7 Appointment module of Smart Eye Care 11

Figure 2.8 Basic representation of a neural network application 16

Figure 3.1 Agile methodology and its phases 20

Figure 3.2 Accommodative Amplitude diagnosis 28

Figure 3.3 Lag of Accommodation diagnosis 29

Figure 3.4 Context Diagram 31

Figure 3.5 Use Case Diagram 32

Figure 3.6 Use Case Description Diagram for Manage Login 33

Figure 3.7 Use Case Description Diagram for Manage Doctor 35

Figure 3.8 Use Case Description Diagram for Manage Patient 38

Figure 3.9 Use Case Description Diagram for Manage Treatment 41

Figure 3.10 Use Case Description Diagram for Manage Treatment 44

Figure 3.11 Activity Diagram for Manage Login 46

Figure 3.12 Activity Diagram for Manage Doctor 47

Figure 3.13 Activity Diagram for Manage Patient 48

Figure 3.14 Activity Diagram for Manage Treatment 49

Figure 3.15 Activity Diagram for Manage Appointment 50

Figure 3.16 Entity Relationship Diagram of the proposed system 51

Figure 3.17 Case-Based Reasoning processes 56

Figure 3.18 Dataset collection 58

Figure 3.19 Accommodate Amplitude dataset. 58

Figure 3.18 Gantt chart for system development 70

Figure 4.1 Development Environments 71

Figure 4.2 Project’s structure in Visual Studio code 72

Figure 4.3 Doctor’s table resource snippet code 74

xi

Figure 4.4 Doctor’s form resource snippet code 76

Figure 4.5 Patient’s table resource snippet code 77

Figure 4.6 Patient’s form resource snippet code 80

Figure 4.7 AA Classification function snippet code. 81

Figure 4.8 Jupyter Notebook IDE 82

Figure 4.9 Dataset reading code snippet. 83

Figure 4.10 Finding range value of features code snippet. 83

Figure 4.11 Dataset features sample. 84

Figure 4.12 AA measurement arguments code snippet. 84

Figure 4.13 Local similarity, global similarity calculations code snippet. 85

Figure 4.14 Print highest similarity result code snippet. 85

Figure 4.15 CBR retain process code snippet. 86

Figure 4.16 Login screen 87

Figure 4.17 Wrong username or password error message 87

Figure 4.18 Dashboard screen 88

Figure 4.19 Dashboard in dark mode theme 88

Figure 4.20 Doctor’s list screen 89

Figure 4.21 Create doctor profile screen 89

Figure 4.22 View doctor screen 90

Figure 4.23 Edit doctor screen 91

Figure 4.24 Delete doctor screen 91

Figure 4.25 Search doctor screen 92

Figure 4.26 Export doctor record screen 92

Figure 4.27 Patient list screen 93

Figure 4.28 Create patient profile (patient detail) screen 93

Figure 4.29 Create patient profile (symptom) screen 94

Figure 4.30 View patient screen 94

Figure 4.31 Edit patient screen 95

Figure 4.32 Delete patient screen 96

Figure 4.33 Treatments list screen 96

Figure 4.34 Add treatment (patient) screen 97

Figure 4.35 Add treatment (accommodate amplitude treatment) screen 97

Figure 4.36 Accommodate amplitude treatment result screen 98

Figure 4.37 Add treatment (lag of accommodation treatment) screen 98

Figure 4.38 Lag of accommodation treatment result screen 99

xii

Figure 4.39 Add treatment (person in charge) screen 99

Figure 4.40 Add treatment (remark) screen 100

Figure 4.41 Appointment calendar screen 100

Figure 4.42 View event details screen 101

Figure 4.43 View event details screen 102

Figure 4.44 Event list screen 102

Figure 4.45 Edit event screen 103

Figure 4.46 Model performance data statistics 103

Figure 4.47 Model performance test statistics 104

Figure 4.48 Model accuray overtime 105

Figure 4.49 Model performance measures 105

Figure 4.50 Model confusion matrix 106

Figure 4.51 Live meeting of user acceptance test 107

Figure 4.52 User acceptance test form introduction 107

Figure 4.53 Respondent personal details 108

Figure 4.54 Declaration agreement response 108

Figure 4.55 Respondent signatures and stamps 109

xiii

LIST OF SYMBOLS

xiv

LIST OF ABBREVIATIONS

AA Accommodative Amplitude

AI Artificial Intelligence

BAF Binocular Accommodative Facility

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

IIUM International Islamic University Malaysia

LA Lag of Accommodation

MAF Monocular Accommodative Facility

NRA Negative Relative Accommodation

PRA Positive Relative Accommodation

RAF Royal Air Force

SDD Software Design Document

SRS Software Requirement Specification

UAT User Acceptance Test

1

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Every human being is normally born with a pair of eyes that enable them to see

the world. Binocular vision is a type of vision in which a human use both of their eyes to

perceive a single three-dimensional view of their environment. Hence, they can keep both

eyes focused on an object and create a single visual image concurrently (Stidwell &

Fletcher, 2017). There are many advantages of binocular vision. One of them is human

will have better depth perception, making it is easier to judge speed and velocity

accurately. For example, human can estimate how quicky a car is approaching while

crossing roads. Moreover, it also enables people to walk faster and more confidently over

and around obstacles.

However, despite its advantages, some people suffer from eye illness that makes

it difficult for them to focus on seeing things clearly at a time. The condition is called a

squint or strabismus, where the eyes do not align properly and point in different direction

(Repka, Lum, & Burugapalli, 2018). Figure 1.1 shows the comparison of a normal human

eye condition and a strabismus disease. Also, strabismus is the most common cause of

amblyopia, where both eyes does not develop properly during childhood. If the patient’s

is untreated, he or she will experience vision loss that is permanent and irreversible (Chen,

Fu, Lo, & Chi, 2018). Thus, an automated strabismus recognition is essential, and early

screening is necessary to prevent strabismus from worsening.

2

(a) (b)

Figure 1.1 Example of human eyes. (a) Normal eyes condition (b) Strabismus

disease

Strabismus can be diagnosed through several methods. One of these methods is

evaluating the accommodative amplitude (AA), which is the maximum amount that the

eyes can focus on an object at different distances. The doctor may also assess the lag of

accommodation (LA), which is the delay in the eyes’ ability to focus on an object as it

moves closer or farther away. In addition, the doctor may also measure the monocular

accommodative facility (MAF), which is the speed at which the eyes can focus on an

object when only one eye is used. On the other hand, the binocular accommodative

facility (BAF) measures the speed at which the eyes can focus on an object when both

eyes are used together. Next, the doctor may also evaluate the negative and positive

relative accommodation of the eyes. Negative relative accommodation (NRA) occurs

when the eyes are unable to focus on an object that is too close, while positive relative

accommodation (PRA) occurs when the eyes are unable to focus on an object that is too

far away. Overall, these tests help the doctor understand the extent of the misalignment

and determine the appropriate treatment for strabismus.

However, these diagnoses are very time-consuming as doctor may need to

perform these tests multiple times to get an accurate measurement. Some of the tests,

such as the monocular and binocular accommodative facility, may also require the use of

specialized equipment, which can further prolong the diagnostic process. Finally, the

doctor may need to consider other factors when making a diagnosis, such as the patient’s

age, overall health, and any other underlying conditions that may be contributing to the

misalignment of the eyes.

Therefore, binocular vision management system with the integration of machine

learning is proposed to help doctors in diagnosing their patients whether they are

suffering from strabismus or not. It would definitely ease the flow, as well as improve

3

the efficiency of the current strabismus test that requires a significant amount of skilled

labour and time to complete.

1.2 PROBLEM STATEMENTS

The traditional way of inspecting patient strabismus is time-consuming as it

involves various tests that may need to be performed multiple times in order to get a

reliable measurement. Besides, although some types of strabismus are visibly noticeable,

there is a risk of human error in diagnosing it. It is also a challenging process since

performing the diagnostic requires a high level of skills, and if mistakes are made, the

strabismus condition may be misinterpreted.

Additionally, the traditional diagnostic process may not be as accurate as some

newer methods that are available, such as computerized systems with artificial

intelligence (AI) capabilities. Artificial intelligences are programmes that allow a

machine to do a task without the need for human intervention (Shakya, 2020). Nowadays,

AI algorithms, especially in the medical profession, has been widely used in computer

vision and pattern recognition for many applications including psychological analysis,

facial expression recognition, and medical diagnosis (Zhang, Cao, Yang, & Zhao, 2017).

Therefore, these systems also may apply to optometry field where they can be used to

quickly analyse large amounts of data and identify patterns so that the accuracy of the

strabismus classification can be improved.

Other than that, doctors usually record their patient and treatment information in

a piece of paper, which are prone to typos and other mistakes. This can lead to incorrect

or incomplete information being recorded, which can have serious consequences for the

patient’s data. Furthermore, paper-based method is often difficult to access and update in

a timely manner. For example, if a doctor needs to review a patient’s medical history or

treatment information, they may need to physically locate and review the relevant paper

records. To make matters worse, if the patient file together with the result are missing,

the doctors will have to repeat the strabismus test once again. Because of that, it is

essential to keep all the patient and appointment details in a computerised system.

4

1.3 OBJECTIVES

The objectives of this project are:

• To study current limitation of existing eye clinic systems.

• To develop a binocular vision management system that utilizes case-based

reasoning algorithms for automating strabismus classification and

treatment management.

• To test the functionality of the proposed system.

1.4 SCOPE OF PROJECT

The scope of this project is to develop a web-based system for doctors who

specialize in eye treatment. The system will be written in PHP and Python programming

language and will use a machine learning algorithm to classify strabismus. The system

will be accessible via the internet and will require an internet connection to be used.

 Furthermore, it is also designed specifically for IIUM doctors and will be tailored

to their needs and requirements. The system will be able to classify strabismus based on

data input by the doctor, such as the results of various diagnostic tests, and will be able

to make decision based on the inputs. Finally, the system will also have the ability to

store and manage doctor, patient, and treatment records, as well as scheduling

appointments and events, making it easier for doctors to access and update this

information as needed.

1.5 SIGNIFICANCE OF PROJECT

The significance of this project lies in its ability to assist doctors at the

International Islamic University Malaysia (IIUM) in managing patient information and

treatment records in a more efficient and organized manner. It can help the doctors to

quickly access and update patient information, which can lead to better patient

management. Additionally, the system’s ability to classify strabismus using a machine

learning algorithm can provide accurate and precise diagnosis, which can improve

treatment outcomes. For example, by using the system, the doctors at IIUM can easily

5

access patient’s medical history, current treatment records, and predict Accommodate

Amplitude value accurately based on patient’s age, which can help in making a more

informed decision about the patient’s treatment. Therefore, by using the proposed system,

it definitely can improve the efficiency and effectiveness of the clinic system by reducing

the amount of time spent on administrative tasks and allowing doctors to focus more on

other important tasks.

1.6 THESIS ORGANIZATION

In Chapter 1, the definition of strabismus and the methods used to diagnose it are

discussed, as well as the objectives and criteria for evaluating the success of the proposed

system. Chapter 2 reviews the existing literature on strabismus diagnosis and treatment,

focusing on three relevant systems and their strengths and weaknesses. Chapter 3 outlines

the methods used in the project, including the flow chart, hardware, and software. The

results of the project are presented in Chapter 4, which includes a detailed discussion of

the project’s activities and outcomes, as well as the User Acceptance Testing (UAT)

report. Finally, Chapter 5 concludes the project, presents future plans and

recommendations, and summarizes the overall findings.

6

CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Chapter 2 reviews related studies regarding existing eye clinic systems and

current machine learning algorithms used for classification and prediction. The

comparison’s findings will be used to influence the development of this project in order

to improve user experience and system performance.

2.2 REVIEW OF EXISTING SYSTEMS

There are three existing systems that are somewhat similar to the proposed

system. This allows a comparison of these systems to be made in order to discover their

features, strengths, and weaknesses, as well as what aspects of the proposed system can

be improved. The chosen eye clinic systems are Odoo Eye Clinic Management, Optic

Clinic and Smart Eye Care.

2.2.1 Odoo Eye Clinic Management

Odoo Eye Clinic Management is a specific tool designed for ophthalmology

professionals. It can be used to keep track of all of the patients record who come to the

eye clinic for making appointment and treatment. The features also include scheduling,

billing, treatment plan and so on. The system is a web-based system that runs on a web

browser, and it costs $500 to register.

7

Figure 2.1 Patient information interface of Odoo Eye Clinic Management

Based on the Figure 2.1, doctors can view the patient information by their full

name, date of birth, age, and sex. It can also keep records of the patient's family

information, making it easy to schedule future appointments. Other treatment information

including medication, operation and disease are recorded to provide doctors with further

information about patient's eye.

Figure 2.2 Appoinment record interface of Odoo Eye Clinic Management

In addition, doctors are able to record appointment record of their patients like

shown in the Figure 2.2. Doctors can save appointment records by entering patient

information, appointment date, and urgency level into the system. Doctors also can decide

where to do the treatment as the health centre field is provided. The system also has a

notification feature, in which appointments that must be completed on a specific day are

notified automatically to the physician as a reminder.

8

2.2.2 Optic Clinic

Optic clinic is an open source web-based eye clinic management system that is

available to download for free on Github.com. It is developed by a single developer with

the intention of optimising the current healthcare practice. It has several capabilities

including manages patient records, record prescription for patient, check patients’ history,

manage staff records and handle bookings. There are two users for the system which are

doctor and patient.

Doctors can add new patient by click the <<add patient>> button in the manage

patient interface like shown in the Figure 2.3. Patient’s first name, last name and phone

number are recorded for recognising each patient so that it is easier to trace them in the

future. Doctors also able to edit or delete the patient in the system.

Figure 2.3 Manage patient interface of Optic Clinic

Patient can book their eye treatment appointment in the system. Meanwhile,

doctors able to view all the booking that their patient made like shown in the Figure 2.4

below. They also can add booking by clicking the <<add book>> button which requires

them to input the patient's name, phone number, and the prescribed date and time so that

the patient can see them at that particular time. On the other hand, doctors also can view

the patient’s name that will be consulted on certain day by applying search filter that is

provided. If the patient forgets his or her appointment, the doctor can remind them by

calling the phone number that is given and rescheduling the appointment for the following

day if it is too late.

9

Figure 2.4 Booking interface of Optic Clinic

2.2.3 Smart Eye Care

Smart Eye Care is a famous eye hospital management software that is utilised by

a lot of eye hospitals in India and around the world. It is developed by Spark Systech, a

software development company based in India. Users need to contact their help support

to purchase and download the system. The system is only available for Windows

operating system and can be run offline without an active internet connection.

Figure 2.5 Patient details interface of Smart Eye Care

10

Figure 2.5 shows the patient details interface where doctors can manage patient

information by add, update, delete and search for patients. Doctors can use the filters

provided to search patients by entering the patient ID, first name, or age. The system also

allows doctor to use keyboard shortcuts to add new patient or search patient. The print

module is also available for doctors to print the patient information to view in physically

on paper.

Figure 2.6 Add new patient interface of Smart Eye Care

By referring to the Figure 2.6, doctors can add new patient by entering patient ID,

full name, gender, age and so on. The system also offers add fingerprint module to verify

patient identity. Doctors also can add patient photo so that it will be easier to recognise

the patient when they visit the clinic. After finished filling in all required fields, doctors

can click <<Save>> button to store the patient information in the database.

11

Figure 2.7 Appointment module of Smart Eye Care

Figure 2.7 illustrates the appointment module for the system to allow doctors

record appointment information of patient’s eye treatment. Doctors may enter the patient

ID that is already added and the patient information like their name, mobile number and

age field will automatically be shown in each text field. The system can also set the

appointment date and time, as well as assign which doctors will assess the patient.

12

2.3 COMPARISON BETWEEN EXISTING SYSTEMS AND PROPOSED SYSTEM

The section compares existing systems and proposed system based on various aspects and parameters. Table 2.1 below summarises each

specification.

Table 2.1 Comparison between existing systems and proposed system

Specification Odoo Eye Clinic

Management

Optic Clinic Smart Eye Care Proposed System

Platform Web-Based Web-Based Windows Web-Based

Connection Type Online Online Offline Online

Pricing $500 for lifetime - Not mentioned. -

Features 1) Book Appointment

Doctor can book

appointment for specific

patient by assigning time

and date.

2) Eye Reading

Through appointment,

patient’s eye reading,

and chart can be viewed

by doctors on particular

eyes that are being

diagnose.

1) Manage Patient

Record

Doctors and staffs can

manage patient record

by add, edit, and delete

patient.

2) Check Patient History

Patient history can be

traced through search

patient function.

1) Patient Management

with Fingerprint

Doctors can manage

patient information

along with their

fingerprint for better

security and

identification.

2) Consultation Module

Doctors can consult

patient and give

comments on the

consultation.

1) Doctor Management

Doctor information can

be managed, and their

performed treatments

can be keep tracked

easily.

2) Patient Management

Patient information can

be managed, and doctors

can easily follow up the

treatment on specific

patient.

13

3) Billing

Billing for appointment

can be made upon

completing treatment

and invoice will

automatically be

generated.

3) Handle Booking

Doctors can set booking

date for patient

treatment.

3) Treatment Schedule

Treatment schedule is

automatically generated

by the system based on

eye disease.

3) Treatment

Management

Keep track of all

performed treatment in

one place.

4) Appointment

Management

It can manage

appointments and

events, allowing for

better scheduling and

organization of the

clinic.

5) Automated Strabismus

Classification

Able to classify

accommodate amplitude

and lag of

accommodation

diagnosis by predicting

its result for both eyes

accurately.

14

Advantages • Ease of use where the

user interface is user

friendly and neat.

• Cashless since the

payment of treatment

can be made online.

• Open source so anyone

can modify the code.

• Faster accessibility

where patient just need

to scan their fingerprint

to access their profile.

• Treatment information

are provided with

infographics.

• Saves doctor time which

machine learning will

predict the binocular

vision automatically.

Disadvantages • No free or trial versions

are provided.

• Bad user interface since

all modules look the

same.

• Hard to navigate

because there is no

navigation menu

provided.

• Bad user interface and

poor choice of colours.

• Only available on

Windows operating

system.

• May requires high-end

machine to train the

algorithm model.

15

2.4 CURRENT ALGORITHMS FOR CLASSIFICATION

The section reviews current machine learning algorithms used to classify or make

prediction based on existing datasets. There are three classification algorithms that are

being reviewed including Fuzzy Logic, Case-Based Reasoning, and Artificial Neural

Network.

2.4.1 Fuzzy Logic

Fuzzy logic is one of the classification algorithms that uses “degrees” of truth

rather than the traditional “true or false” or Boolean value (0 or 1) that the modern

computer is built on. Unlike two-valued Boolean logic, fuzzy logic is multi-valued that

involves a range of logical values from 0 (totally false) to 1 (totally true). A numerical

value that are being applied to the eye treatment such as age and date of birth, are required

to model fuzzy logic. Then, fuzzy rules can be determined by combining the values that

doctors are free to choose according to their preferences. In addition, the output value

based on the fuzzy rules will be converted into crisp value through defuzzification. For

example, rather than predicting whether a patient has strabismus or not, the fuzzy logic

result will be how much (in percentage) of strabismus that the patient has.

2.4.2 Case-Based Reasoning

Case-Based Reasoning is a type of analogical reasoning algorithm in which the

solution to a new query case is derived from a database of previously solved cases (Lamy,

Sekar, Guezennec, Bouaud, & Séroussi, 2019). The output of the new case in CBR will

follow the one that has the highest similarity in existing datasets. There are two

components that the CBR algorithm needs which are specification and solution. The

specification is represented by a set of attributes and values, whereas the solution

represents the problem solving for such case. Besides, CBR also contains four cycles

including retrieve, reuse, revise and retain in order to make a decision.

16

2.4.3 Artificial Neural Network

The neural network architecture used in this system, as depicted in Figure 2.8, is

composed of multiple layers of interconnected neurons. The input layer receives data

from the user, such as accommodative amplitude and lag of accommodation

measurements, and passes it through the network to the hidden layer. The hidden layer

applies non-linear functions, such as the sigmoid or rectified linear unit (ReLU) activation

function, to the input data to extract meaningful features. Finally, the output layer

produces the final classification result, such as whether the patient has normal,

accommodative excess or insufficient, or failed condition. Each neuron in the network is

connected to the next layer through links, called synapses, which have numerical weights

attached to them that indicate their importance in the classification process. These

weights are adjusted during the training phase of the network to optimize its performance.

Figure 2.8 Basic representation of a neural network application

17

2.5 COMPARISON BETWEEN ALGORITHMS

Table 2.2 shows the comparison of machine learning classification algorithms including its methodology, advantages, and disadvantages.

Table 2.2 Comparison between machine learning classification algorithms

Criteria Fuzzy Logic Case-Based Reasoning Artificial Neural Network

Methodology • Deals with degrees of truth to

predict the occurrence of an

event.

• Output is based on membership

function and fuzzy rules.

• Solve new case based on past

experience that has the highest

similarity.

• Involves four cycles to predict

output.

• Structured with layers of

neurons that are linked to each

other.

• Weightage decides the

importance of each neuron.

Advantages • Flexible since it allows

modification on fuzzy rules any

time.

• Easy to implement as the

process is not as complicated as

other two algorithms.

• Able to handle multiple sorts of

inputs at the same time and

make precise decision.

• No knowledge elicitation

required to create rules or

methods.

• The larger the model, the more

accurate the prediction.

• Fault tolerance where if some

cells are corrupted, it does not

prevent the algorithm from

predicting output.

• Information is stored in the

network rather than database

which provide better

accessibility.

Disadvantages • Human intelligence and

expertise are fully reliant on

them.

• Not extensively used due to

inaccuracy of dataset

• Requires high-end computer to

train and test large datasets.

• Old cases may be poor or

inaccurate which will influence

the output.

• Requires high-end computer to

train and test large datasets.

• Difficult to implement as there

are many processes involved to

model the algorithm.

18

2.6 CHAPTER SUMMARY

Based on the comparison on three existing eye clinic systems, the proposed

system will be more functional, and features will be designed specifically for the

Binocular Vision IIUM Clinic. The proposed classification algorithm that has been

discussed will be determined on Chapter three based on parameters that the doctors used

to classify binocular vision type.

19

CHAPTER 3

METHODOLOGY

3.1 INTRODUCTION

In this chapter, the methodology of the project will be discussed. The Software

Development Life Cycle model also will be chosen as guidance on work phases for the

development of Binocular Vision Management system. After enough consideration,

Agile SDLC methodology is selected as it is the most suitable model for this project.

3.2 METHODOLOGY

This project’s software development life cycle will be based on the Agile model.

It focuses on incremental delivery methodologies, which execute minor increments while

including the client in the development process for quick feedback and modifications.

Also, it is a conceptual framework for software engineering that begins with a planning

phase and progresses through iterative and incremental interactions throughout the

project’s life cycle (Alsaqqa, Sawalha, & Abdel-Nabi, 2020). Thus, overhead can be

reduced during the development process since this model can adapt to changes without

affecting the process or requiring extensive rework.

There are multiple reasons to choose the Agile model for this project. Among

them is because client satisfaction is the highest priority, and it must be achieved early

and continuously until all requirements are met and satisfied. In addition, even late in

development, it welcomes changing requirements. This will allow the client to provide

feedback on what needs to be altered or improved during the development process.

Furthermore, since the project needs to be completed in a short time frame which is less

than a year, Agile model is suitable, because it recommends the early and quick delivery

20

to satisfy client needs. Also, throughout the development process, the software developer

and the client must collaborate often so that the client can provide feedback and answer

the software developer’s questions.

Figure 3.1 Agile methodology and its phases

By referring to Figure 3.1 Agile methodology and its phases, there are six phases

involved in the software development of Binocular Vision Management System. The

description of each phase is as follow:

i) Phase 1: Requirements

During the requirements phase, by referring to Appendix B, the Software

Requirement Specification (SRS) is produced to outline the functionality of the

proposed system. This SRS also can be used as an input for the following phase.

Requirement analysis is a term that refers to all of the actions that are carried out

in order to discover the needs of the stakeholders (Babu, Jalaiah, & Bhushanam,

2019). In addition, meetings with supervisor tasks to discuss the project will be

held on a regular basis to ask for advice during the system’s development.

Interview sessions with IIUM eye doctor will also be conducted periodically to

gather requirements of the proposed system and to study the basics of strabismus

and its parameters to classify the disease. The client also needs to be close with

21

the developer during development until they are satisfied with the requirements.

Furthermore, three existing eye clinic systems were analysed to identify their

strengths and weaknesses, as well as which aspects of the weaknesses the

proposed system could improve. The process is followed by the revision of the

current machine learning classification algorithms for predicting the disease

automatically. Thoughtfully, Case-Based Reasoning will be used for the

algorithm in this project.

ii) Phase 2: Design

Throughout the design phase, the Software Design Document (SDD) is

created to define the architecture of the proposed system based on Laravel

framework. Basically, this document specifies the design aspects that are required

by the SRS that contains both the software’s architectural description and its

detailed design (Montalvo, Parra, & R. Polo, 2019). Besides, it also covers data

design of the proposed system including the entity relationship diagram and the

data dictionary. The prototype of the proposed system will be created in this phase

to provide early representations of how the system would look in the future. As a

result, before the development phase begins, the IIUM doctor can assess the

prototype and request for modifications. In addition, the implementation of

chosen machine learning algorithm is also discussed in this phase.

iii) Phase 3: Development

During this phase, the developer will use programming languages and

frameworks to build the various components of the system. The development

phase can be broken down into several sub-phases, such as:

i) Database design: Involves creating the database schema for storing patient

and doctor information, treatment records, and other data related to the

system.

22

ii) Front-end development: Focuses on the creating the user interface of the

system based on the designed prototype. The overall architecture and

framework of the proposed system will be based on the Laravel and

Livewire.

iii) Back-end development: Handles the logic and data processing of the

proposed system. In addition, server-side scripts using Node JS and

Python library are used to handle the system’s functionalities such as

patient registration, treatment classification, and appointment

management.

iv) Phase 4: Testing

This phase involves the testing of the proposed system to discover defects

or bugs. Thus, the system will be free of bugs and remain functional during

operation. In addition, a User Acceptance Test (UAT) will also be conducted to

check that the system is complete and meets all the criteria specified during the

requirement collecting stage. For example, the doctors will test the system’s

registration and login process to ensure that it is secure and easy to use. They will

also test the patient management module to ensure that it is able to list, search,

add, edit, and delete patient records as expected. Additionally, they will test the

treatment management module to ensure that it is able to predict the expected AA

value accurately, classify strabismus using machine learning algorithm, and

display treatment information and its result correctly.

Once UAT is completed and any issues identified have been resolved, the

system will be considered ready for deployment. Any flaws discovered will be

fixed immediately so that doctors may utilise the system without difficulty.

v) Phase 5: Deployment

After confirming that the system is ready for release, the proposed system is

installed on the servers and made available to the IIUM doctor. To check that the

23

proposed system is running properly, it will be tested and run on the client’s web

browser. This phase will also include user training, which will require more

documentation. Hence, the doctor can learn how to use the system effectively even

they are new users. When all of this is finished, the final iteration of the product may

be released into production.

vi) Phase 6: Review

In the last phase of Agile methodology, the proposed system is examined to

ensure that documentation such as requirements, system designs, code, test plans, and

test cases are complete and adhere to the plan. The proposed application’s developer

will provide solutions for resolving problems that occurred throughout the previous

phases. Following that, the steps of the software development lifecycle are restarted

with a new iteration.

3.3 PROJECT REQUIREMENT

3.3.1 Functional Requirements

The following are the functional requirements for the binocular vision management

system, categorised by module:

Manage Login

• The system shall allow the doctor to login by entering username and password to

access the system.

• The system shall display error message when wrong login credentials are entered.

Dashboard

• The system shall allow the doctor to view the number of the treatment made by

today, this week, this month and overall.

24

• The system shall allow the doctor to view the statistics of treatment report.

Manage Doctor

• The system shall be able to list all doctors in a table.

• The system shall be able to search the doctors whenever the doctor enters a search

keyword in the search doctor field.

• The system shall allow the doctor to add new doctors by filling doctor’s

information.

• The system shall be able to display the doctor information and their performed

treatments.

• The system shall allow the doctor to edit doctor according to the doctor’s input.

• The system shall be able to delete the doctors after the doctor confirm their action

on the deletion confirmation dialog.

Manage Patient

• The system shall be able to list all registered patients in a table.

• The system shall be able to search the patients whenever the doctor enters a search

keyword in the search patient field.

• The system shall allow the doctor to add new patients by filling in patient name,

phone number, age, gender, date of birth, occupation, home address, office

address, and parent’s name.

• The system shall be able to display the patient information and their treatment

history.

• The system shall allow the doctor to edit patients according to the doctor’s input.

• The system shall be able to delete the patients after the doctor confirm their action

on the deletion confirmation dialog.

25

Manage Treatment

• The system shall allow the doctor to select specific patient for the treatment.

• The system shall classify the accommodate amplitude diagnosis for each eye

(Normal or Failed) through Case-Based Reasoning algorithm.

• The system shall classify the lag of accommodation diagnosis for both eyes

(Normal or Accommodate Insufficient or Accommodate Excess) through Case-

Based Reasoning algorithm.

• The system shall be able to assign person in charge according to their role in the

treatment.

• The system shall allow the doctor to add new treatments by filling treatment

information.

• The system shall be able to list all treatments made in a table.

• The system shall be able to search the treatments whenever the doctor enters a

search keyword in the search treatment field.

• The system shall be able to display the treatment information and its result.

• The system shall allow the doctor to edit treatments according to the doctor’s

input.

• The system shall be able to delete the treatments after the doctor confirm their

action on the deletion confirmation dialog.

Manage Appointment

• The system shall allow doctors to make appointment by creating new event.

• The system shall be able to display the created events in the calendar.

• The system shall allow doctors to drag and drop events to different date.

• The system shall be able to display event details.

• The system shall be able to edit event as required.

• The system shall be able to delete event as required.

26

3.3.2 Non-Functional Requirement

Table 3.1 below shows the non-functional requirements for the proposed system

categorised by quality criteria.

Table 3.1 Non-functional requirments

Criteria Descriptions

Performance • The system shall be able to classify Accommodate

Amplitude and Lag of Accommodation diagnosis in not

more than 30 seconds.

• The system shall be able to classify Accommodate

Amplitude and Lag of Accommodation diagnosis of a

patient with less than 50% of CPU usage.

• The system shall be able to query patient and treatment data

without any latency.

Security • The system shall identify doctor’s credential before

allowing them to use the system.

• The system shall assure that the patient sensitive

information is kept secured.

• The system shall destroy doctor’s session in one hour’ time

when idling.

Usability • Novice doctors shall be able to perform login and

registration functionality in less than five minutes.

• Most doctors shall be able to manage patient and manage

treatment within fifteen minutes after a 3-hours introduction

to the system.

• The system shall be able to adapt its interfaces in different

screen sizes.

Reusability • The system code shall be reusable to minimize the doctor’s

machine resource.

• The system shall minimize coupling between modules by

using Laravel design pattern.

27

3.3.3 Constraints

Table 3.2 depicts the system constraints based on certain criteria.

Table 3.2 System constraints and its descriptions

Criteria Descriptions

Privacy policy • Patient’s sensitive data and their treatment records shall not

be shared or sold to public or third party.

Software

developer

• The project is developed by only a single developer under

the supervision of a supervisor.

Culture • Any symbols or graphics that could be regarded offensive to

any culture must be eliminated from the system.

Eye measuring

tool

• The system requires the doctor to use RAF ruler to measure

AA distance value (in Dioptre) of a patient’s eyes.

3.3.4 Limitations

Table 3.3 depicts the system constraints based on certain criteria.

Table 3.3 System limitations and its descriptions

Criteria Descriptions

Web browser

version

• The system may not be supported with old version of web

browsers.

Internet

connectivity

• The system cannot be used without an active internet

connectivity since it requires connection with database to

access the patient and treatment data.

Server

downtime

• Doctors may not be able to access the system during system

maintenance since the system needs to be fixed and

diagnosed periodically.

Lack of

professional

• Because the system is new, and there may be no existing

system that uses a case-based reasoning algorithm to

classify strabismus, more skilled personnel with expertise in

web application and machine learning will be necessary in

the future to improve the system.

28

3.4 STRABISMUS DIAGNOSIS

3.4.1 Accommodative Amplitude (AA)

Figure 3.2 Accommodative Amplitude diagnosis

Accommodative amplitude (AA) is a measure of the maximum amount that the

eyes can focus on an object at different distances. It is one of the diagnostic tests used to

evaluate a patient for strabismus. By referring to the figure 3.2, the test is typically

performed using a device called a RAF ruler (Ruler for Accommodative Function). RAF

ruler is a hand-held device that consist of a series of lines with different thickness and

font size. The device is moved toward or away from the eyes while the patient is fixating

a target, until the patient can no longer clearly read the lines. The distance at which this

occurs is the patient’s accommodative amplitude.

For example, if a patient has a 20 dioptre (a unit used for accommodative

amplitude), this means that the patient can read the lines on the RAF ruler 20 dioptres

away with clear vision. And if the patient has 10 dioptre accommodative amplitude, this

means that the patient can only read the lines on the RAF ruler 10 dioptres away. The test

is typically done for three repetitions to get accurate measurement for each eye. In short,

accommodative amplitude is affected by age and it decreases as we get older. Patient that

is older than 40 years old is no longer valid for this type of test.

29

3.4.2 Lag of Accommodation (LA)

Figure 3.3 Lag of Accommodation diagnosis

The lag of accommodation (LA) is the delay in the eyes’ ability to focus on an

object as it moves closer or farther away. It is another diagnostic test used to evaluate a

patient for strabismus. The test is typically performed using a device called a plus lens

flipper test. During this test (refer figure 3.3), the doctor will place a plus lens (convex

lens) in front of the patient’s eye, and then have the patient focus on a target, such as a

small letter or symbol, at a fixed distance. Then, the doctor will gradually move the lens

closer to the eye while the patient continues to fixate on the target. The point at which the

patient can no longer maintain clear focus on the target is the patient’s lag of

accommodation.

 For example, if a patient has a 1 dioptre lag of accommodation, this means that

the patient’s eyes take 1 dioptre closer for them to be able to focus on the target. This test

is usually done for both eyes separately and the results are compared to each other and to

the normal range for the patient’s age.

The lag of accommodation test can be classified into three categories:

i) Accommodative Excess (AE): This occurs when the patient’s eyes take more

dioptres of plus lens before they can maintain clear focus on the target. This

means the eyes have difficulty focusing on nearby objects.

ii) Accommodative Insufficient (AI): This occurs when the patient’s eyes take

fewer dioptres of plus lens before they can maintain clear focus on the target.

This means that the eyes have difficulty focusing on distant objects.

30

iii) Normal (N): When the patient’s eyes take the appropriate dioptres of plus

lens for their age, it’s considered normal range for their lag of

accommodation.

3.5 CASE-BASED REASONING ALGORITHM JUSTIFICATION

Case-Based Reasoning (CBR) is a suitable algorithm for this project because it is

well-suited for making decisions based on past cases. CBR is a form of Artificial

Intelligence that learns by analysing and comparing previous cases. The system stores

information about previous cases and their outcomes, and when faced with a new case, it

retrieves the most similar cases from its memory and uses the information from those

cases to make prediction.

For this project, the CBR algorithm will be able to learn from previous cases of

strabismus and their corresponding diagnostic test results, such as accommodative

amplitude, lag of accommodation, monocular and binocular accommodative facility, and

relative accommodation. The system will then be able to make a decision on whether or

not a new patient has strabismus based on the similarity of their case to previous cases.

For example, assume that the system has previously encountered a case of a patient with

a normal accommodative amplitude, and accommodative excess on monocular and

binocular accommodative facility. The CBR algorithm will be able to retrieve this case

from its memory and use the information from this case to decide for a new patient with

similar test results.

Furthermore, CBR algorithm can be improved over time by feeding it more data

and updating its knowledge base with new cases and their outcomes. This allows the

system to become more accurate and efficient over time. In addition, CBR can be useful

in this project as it can help to classify strabismus while considering the patient’s age and

other medical history and other underlying conditions, which may have a significant

impact on the diagnosis. By including these additional factors in the case-based

reasoning, the algorithm will be able to improve the accuracy of its classification.

Overall, CBR is a suitable algorithm for this project because it is well-suited for

making decisions based on past cases, it can handle incomplete or ambiguous

31

information, it can learn from previous cases and it can also consider the patient’s age or

other medical history, which may be essential for the diagnosis.

3.6 PROPOSED DESIGN

3.6.1 Context Diagram

In Figure 3.4, the system’s context diagram represents the connection between

external entities and internal system. There are two entities which are doctor and case-

based reasoning algorithm. The arrows illustrate the system’s process, whether it’s

coming in or going out.

Figure 3.4 Context Diagram

32

3.6.2 Use Case Diagram

The Figure 3.5 shows the use case diagram of the proposed system. There are five

modules in the system which are, manage login, manage doctor, manage patient, manage

treatment and manage appointment.

Figure 3.5 Use Case Diagram

33

3.6.2.1 Use Case Description of Manage Login Module

Figure 3.6 Use Case Description Diagram for Manage Login

Use Case Manage Login

Brief

Description

This use case is used to login using doctor’s username and password

in order to access the system.

Actor Doctor

Pre-

Conditions

The doctor account should be registered in the system for the login

function to work.

Basic Flow 1. The doctor may click on <<Sign Up>> if he or she does not

have any account. [A1: Sign Up]

2. The doctor enters username.

3. The doctor enters password. [A2: Show password]

4. The doctor clicks on <<Login>> button.

5. The system validates and verifies the login credentials in the

database. [E1: Invalid username or password]

6. The system redirects the doctor to the dashboard page.

7. The use case ends.

Alternative

Flow

A1: Sign Up

1. The system redirects the doctor to the doctor account registration

page.

2. The doctor creates a new username.

3. The system checks whether the entered username is already

existed in the database. [E2: Username already taken]

4. The doctor enters email address.

34

5. The system validates email address input. [E3: Invalid email

address format]

6. The doctor creates a new password.

7. The doctor enters full name.

8. The doctor enters phone number.

9. The doctor clicks on <<Sign Up>> button to register new

account.

10. The system saves the doctor account information in the

database.

11. The system redirects the doctor to login page.

12. The use case continues to step 2 in basic flow.

A2: Show password

1. The system converts the password format into plain text in the

password input field.

2. The use case continues to step 4 in basic flow.

Exception

Flow

E1: Invalid username or password

1. The system displays error message that the username or

password is invalid.

2. The doctor re-enter the valid username and password.

3. The use case continues to step 4 in basic flow.

E2: Username already taken

1. The system displays error message that the username has already

been taken.

2. The doctor re-enter new username.

3. The use case continues to step 4 in Alternative Flow A1.

E3: Invalid email address format

1. The system displays error message that the email address format

is invalid.

2. The doctor re-enter the valid email address.

3. The use case continues to step 6 in Alternative Flow A1.

35

Post-

Conditions

The user can create a new account and able to access the system by

login with their username and password.

Rules -

3.6.2.2 Use Case Description of Manage Doctor Module

Figure 3.7 Use Case Description Diagram for Manage Doctor

Use Case Manage Doctor

Brief

Description

This use case indicates the manage doctor function where doctors

able to add, edit, delete, and search for doctors. The doctors are also

able to view the treatment history of a doctors.

Actor Doctor

Pre-

Conditions

1. The doctor has logged in with their username and password.

2. The doctor has an active internet connection.

Basic Flow 1. The doctor clicks on the manage doctor menu.

2. The system redirects the doctor to the manage doctor page.

3. The system displays registered doctor in a table.

4. The doctor able to:

a) Add new doctor [A1: Add doctor]

b) Select one patient doctor and clicks on view icon [A2: View

doctor]

c) Select one doctor record and clicks on edit icon [A3: Edit

doctor]

Binocular Vision Management System

36

d) Select one doctor record and clicks on delete icon [A4:

Delete doctor]

e) Enter search keyword [A5: Search doctor]

5. The use case ends.

Alternative

Flow

A1: Add doctor

1. The system redirects the doctor to the add new doctor page.

2. The doctor enters doctor information.

3. The doctor clicks on the <<Submit>> button.

4. The system saves the doctor record in the database. [E1:

Required field]

5. The system displays success message.

6. The use case continues to step 2 in basic flow.

A2: View doctor

1. The system redirects the doctor to the view doctor information

page.

2. The system retrieves the doctor information from the database.

3. The system retrieves the treatment history of the doctor if

available.

4. The doctor views the doctor information.

5. The use case continues to step 2 in basic flow.

A3: Edit doctor

1. The system redirects the doctor to the edit doctor page.

2. The system retrieves the doctor information from the database.

3. The system populates the doctor information to each input field.

4. The doctor edits the doctor information.

5. The doctor clicks on <<Update>> button.

6. The system updates the doctor record in the database.

7. The use case continues to step 2 in basic flow.

A4: Delete doctor

1. The system displays doctor deletion confirmation dialog.

37

2. If the doctor clicks yes, the system deletes the doctor record in

the database. Else, the systems abort the operation.

3. The use case continues to step 2 in basic flow.

A5: Search doctor

1. The doctor enters search keyword in the search doctor field.

2. The system updates the doctor table according to search input.

[E2: Doctor record unavailable]

3. The doctor empties the search doctor field.

4. The use case continues to step 3 in basic flow.

Exception

Flow

E1: Required field

1. The system displays error message that the input field cannot be

empty.

2. The doctor input data to empty field.

3. The use case continues to step 3 in Alternative Flow A1.

E2: Doctor record unavailable

1. The system displays alert message that the doctor record not

found.

2. The doctor re-enter valid search keyword.

3. The use case continues to step 2 in Alternative Flow A5.

Post-

Conditions

The doctor record can be managed, and treatment of the doctor can

be performed.

Rules -

38

3.6.2.3 Use Case Description of Manage Patient Module

Figure 3.8 Use Case Description Diagram for Manage Patient

Use Case Manage Patient

Brief

Description

This use case indicates the manage patient function where doctors

able to add, edit, delete, and search for patients. The doctors are also

able to view the treatment history of a patient.

Actor Doctor

Pre-

Conditions

1. The doctor has logged in with their username and password.

2. The doctor has an active internet connection.

Basic Flow 1. The doctor clicks on the manage patient menu.

2. The system redirects the doctor to the manage patient page.

3. The system displays registered patients in a table.

4. The doctor able to:

a) Add new patient [A1: Add patient]

b) Select one patient record and clicks on view icon [A2: View

patient]

c) Select one patient record and clicks on edit icon [A3: Edit

patient]

d) Select one patient record and clicks on delete icon [A4:

Delete patient]

e) Enter search keyword [A5: Search patient]

5. The use case ends.

Alternative

Flow

A1: Add patient

1. The system redirects the doctor to the add new patient page.

Binocular Vision Management System

39

2. The doctor enters patient name, phone number, age, gender, date

of birth, occupation, home address, office address, and parent’s

name.

3. The doctor clicks on the <<Submit>> button.

4. The system saves the patient record in the database. [E1:

Required field]

5. The system displays success message.

6. The use case continues to step 2 in basic flow.

A2: View patient

1. The system redirects the doctor to the view patient information

page.

2. The system retrieves the patient information from the database.

3. The system retrieves the treatment history of the patient if

available.

4. The doctor views the patient information.

5. The use case continues to step 2 in basic flow.

A3: Edit patient

1. The system redirects the doctor to the edit patient page.

2. The system retrieves the patient information from the database.

3. The system populates the patient information to each input field.

4. The doctor edits the patient information.

5. The doctor clicks on <<Update>> button.

6. The system updates the patient record in the database.

7. The use case continues to step 2 in basic flow.

A4: Delete patient

1. The system displays patient deletion confirmation dialog.

2. If the doctor clicks yes, the system deletes the patient record in

the database. Else, the systems abort the operation.

3. The use case continues to step 2 in basic flow.

40

A5: Search patient

1. The doctor enters search keyword in the search patient field.

2. The system updates the patient table according to search input.

[E2: Patient record unavailable]

3. The doctor empties the search patient field.

4. The use case continues to step 3 in basic flow.

Exception

Flow

E1: Required field

1. The system displays error message that the input field cannot be

empty.

2. The doctor input data to empty field.

3. The use case continues to step 3 in Alternative Flow A1.

E2: Patient record unavailable

1. The system displays alert message that the patient record not

found.

2. The doctor re-enter valid search keyword.

3. The use case continues to step 2 in Alternative Flow A5.

Post-

Conditions

The patient record can be managed, and treatment of the patient can

be performed.

Rules -

41

3.6.2.4 Use Case Description of Manage Treatment Module

Figure 3.9 Use Case Description Diagram for Manage Treatment

Use Case Manage Treatment

Brief

Description

This use case indicates the manage treatment function where doctors

able to add, edit, delete, and search for treatments.

Actor Doctor, Case-Based Reasoning

Pre-

Conditions

1. The doctor has logged in with their username and password.

2. The doctor has an active internet connection.

3. The doctor has registered at least one patient.

Basic Flow 1. The doctor clicks on the manage treatment menu.

2. The system redirects the doctor to the manage treatment page.

3. The system displays treatment records in a table.

4. The doctor able to:

a) Add new treatment [A1: Add treatment]

b) Select one treatment record and clicks on view icon [A2:

View treatment]

c) Select one treatment record and clicks on edit icon [A3: Edit

treatment]

d) Select one treatment record and clicks on delete icon [A4:

Delete treatment]

e) Enter search keyword [A5: Search treatment]

5. The use case ends.

Alternative

Flow

A1: Add treatment

1. The system redirects the doctor to the add new treatment page.

2. The doctor enters patient NRIC number.

Binocular Vision Management System

Case-Based

Reasoning

42

3. The system populates the patient information to each field.

[E1: Patient not found]

4. The system calculates the expected AA value according to

patient’s age.

5. The doctor enters AA values for three repetitions to each patient

eyes.

6. The doctor enters treatment remark.

7. The doctor clicks on the <<Calculate>> icon button.

8. The case-based reasoning predicts the squint type based on the

entered AA values.

9. The doctor clicks on the <<Submit>> button.

10. The system saves the treatment record in the database. [E2:

Required field]

11. The system displays success message.

12. The use case continues to step 2 in basic flow.

A2: View treatment

1. The system redirects the doctor to the view treatment

information page.

2. The system retrieves the treatment information from the

database.

3. The system retrieves the patient information from the database.

4. The doctor views the treatment information.

5. The use case continues to step 2 in basic flow.

A3: Edit treatment

1. The system redirects the doctor to the edit treatment page.

2. The system retrieves the patient information from the database.

3. The system populates the patient information to each input field.

4. The system retrieves the treatment information from the

database.

5. The system populates the treatment information to each input

field.

43

6. The doctor edits the treatment information.

7. The doctor clicks on <<Update>> button.

8. The system updates the treatment record in the database.

9. The use case continues to step 2 in basic flow.

A4: Delete treatment

1. The system displays treatment deletion confirmation dialog.

2. If the doctor clicks yes, the system deletes the treatment record

in the database. Else, the systems abort the operation.

3. The use case continues to step 2 in basic flow.

A5: Search treatment

1. The doctor enters search keyword in the search treatment field.

2. The system updates the treatment table according to search

input. [E3: Treatment record unavailable]

3. The doctor empties the search treatment field.

4. The use case continues to step 3 in basic flow.

Exception

Flow

E2: Patient not found

1. The system displays error message that the patient NRIC

number not found.

2. The doctor re-enter valid patient NRIC number.

3. The use case continues to step 4 in Alternative Flow A1.

E2: Required field

1. The system displays error message that the input field cannot be

empty.

2. The doctor input data to empty field.

3. The use case continues to step 9 in Alternative Flow A1.

E3: Treatment record unavailable

1. The system displays alert message that the treatment record not

found.

2. The doctor re-enter valid search keyword.

44

3. The use case continues to step 2 in Alternative Flow A5.

Post-

Conditions

The treatment record can be managed and the squint type can be

classified using Case-Based Reasoning.

Rules -

3.6.2.5 Use Case Description of Manage Treatment Module

Figure 3.10 Use Case Description Diagram for Manage Treatment

Use Case Manage Appointment

Brief

Description

The Manage Appointment module allows doctors to create, view,

edit, and delete appointments for their patients.

Actor Doctor

Pre-

Conditions

• The doctor must be logged in to the system.

• The doctor must have the necessary permissions to create

and manage appointments.

Basic Flow 1. The use case begins when the doctor clicks on the "New

Appointment" button on the Appointment page.

2. The system prompts the doctor to enter the events subject,

patient name, date, and time of the appointment.

3. The doctor enters the required information and clicks on

"Submit" button.

4. The system creates the appointment and displays it on the

calendar.

5. The doctor can view the details of the appointment by

clicking on it.

45

6. The doctor can edit the appointment by clicking on the

"Edit" button and making the necessary changes.

7. The doctor can delete the appointment by clicking on the

"Delete" button.

Alternative

Flow

If the doctor wants to change the date or time of an appointment,

they can drag and drop the event to the desired date on the calendar.

Exception

Flow

• If the doctor tries to create an appointment for a date and

time that has already passed, the system will prompt an error

message.

Post-

Conditions

• The appointment is successfully created, viewed, edited, or

deleted as per the doctor's action.

• The system records all the changes made to the appointment.

• The appointment will be visible to the patient and the doctor

in the calendar.

Rules • The doctor can only create, view, edit and delete

appointments that they have created.

• The doctor can only view and edit the details of the

appointment they have created.

• The doctor can only delete the appointment they have

created.

46

3.6.3 Activity Diagram

The Activity Diagram of the Binocular Vision Management System depicts the

behaviour of the system during different situations. The Figure 3.11 shows the activity

diagram for manage login, the Figure 3.12 demonstrates the activity diagram for manage

doctor module, Figure 3.13 is about the manage patient module, manage treatment

module of activity diagram is shown in the Figure 3.14, and manage appointment is

shown in the Figure 3.15.

Figure 3.11 Activity Diagram for Manage Login

47

Figure 3.12 Activity Diagram for Manage Doctor

48

Figure 3.13 Activity Diagram for Manage Patient

49

Figure 3.14 Activity Diagram for Manage Treatment

50

Figure 3.15 Activity Diagram for Manage Appointment

51

3.7 DATA DESIGN

3.7.1 Entity Relationship Diagram

Figure 3.16 Entity Relationship Diagram of the proposed system

52

3.7.2 Data Dictionary

Table 3.4 Data dictionary of table doctors

Field Name Description Data Type Constraint

id Doctor auto-generated id CHAR PK

salutation Doctor salutation VARCHAR NULL

first_name Doctor first name VARCHAR

last_name Doctor last name VARCHAR

nric Doctor NRIC number BIGINT

phone_number Doctor phone number BIGINT

date_of_birth Doctor date of birth DATE

age Doctor age INT

gender Doctor gender VARCHAR

email Doctor email VARCHAR NULL

role Doctor role (Doctor, student,

trainee)

VARCHAR

profile_picture Doctor profile picture path VARCHAR NULL

staff_id Doctor staff ID VARCHAR UNIQUE

created_at Doctor record time and date

created

TIMESTAMP NULL

updated_at Doctor record time and date

updated

TIMESTAMP NULL

Table 3.5 Data dictionary of table users

Field Name Description Data Type Constraint

id User auto-generated id CHAR PK

doctor_id Doctor_id who owns this account VARCHAR

email Doctor email VARCHAR

password Doctor password VARCHAR

Table 3.6 Data dictionary of table patients

Field Name Description Data Type Constraint

id Patient auto-generated id CHAR PK

patient_name Patient name VARCHAR

nric Patient NRIC number VARCHAR

date_of_birth Patient date of birth DATE

age Patient age INT

phone_number Patient phone number BIGINT

gender Patient gender VARCHAR

53

occupation Patient occupation (if any) VARCHAR NULL

parent_name Patient parent name or guardian

(if patient is minor)

VARCHAR NULL

home_address1 Patient home address line 1 VARCHAR NULL

home_address2 Patient home address line 2 VARCHAR NULL

home_city Patient home city VARCHAR NULL

home_statre Patient home state VARCHAR NULL

office_address1 Patient office address line 1 VARCHAR NULL

office_address2 Patient office address line 2 VARCHAR NULL

office_city Patient office city VARCHAR NULL

office_state Patient office state VARCHAR NULL

chief_complain Patient chiefs complain VARCHAR NULL

medical_history Patient medical history VARCHAR NULL

created_at Patient record time and date

created

TIMESTAMP NULL

updated_at Patient record time and date

updated

TIMESTAMP NULL

Table 3.7 Data dictionary of table treatments

Field Name Description Data Type Constraint

id Treatment auto-generated id CHAR PK

treatment_no Treatment auto-generated no VARCHAR UNIQUE

patient_id Patient who receives the

treatment

CHAR

treatment date Treatment date DATE

remark Treatment remark VARCHAR NULL

aa_result_r Accommodate Amplitude result

for right eye

VARCHAR NULL

aa_result_l Accommodate Amplitude result

for left eye

VARCHAR NULL

la_result Lag accommodation result VARCHAR NULL

created_at Treatment record time and date

updated

TIMESTAMP NULL

updated_at Treatment record time and date

updated

TIMESTAMP NULL

Table 3.8 Data dictionary of table treatment_doctors

Field Name Description Data Type Constraint

id Treatment doctors auto-

generated id

CHAR PK

54

staff_id Doctor that involves in the

treatment

VARCHAR FK

treatment_id Treatment id CHAR FK

created_at Treatment doctors record time

and date created

TIMESTAMP NULL

updated_at Treatment doctors record time

and date updated

TIMESTAMP NULL

Table 3.9 Data dictionary of table accommodative_amplitudes

Field Name Description Data Type Constraint

id Accommodation amplitude auto-

generated id

CHAR PK

treatment_id Treatment id CHAR FK

r1 Right eye of AA value

(repetition 1)

DOUBLE NULL

r2 Right eye of AA value

(repetition 2)

DOUBLE NULL

r3 Right eye of AA value

(repetition 3)

DOUBLE NULL

l1 Left eye of AA value

(repetition 1)

DOUBLE NULL

l2 Left eye of AA value

(repetition 2)

DOUBLE NULL

l3 Left eye of AA value

(repetition 3)

DOUBLE NULL

created_at Accommodate amplitude record

time and date created

TIMESTAMP NULL

updated_at Accommodate amplitude record

time and date updated

TIMESTAMP NULL

Table 3.10 Data dictionary of table lag_accommodations

Field Name Description Data Type Constraint

id Lag accommodation auto-

generated id

CHAR PK

treatment_id Treatment id CHAR FK

la_r LA right eye DOUBLE NULL

la-l LA left eye DOUBLE NULL

created_at Lag accommodation record time

and date created

TIMESTAMP NULL

55

updated_at Lag accommodation record time

and date updated

TIMESTAMP NULL

Table 3.11 Data dictionary of table appointment_events

Field Name Description Data Type Constraint

id Appointment event auto-

generated id

CHAR PK

attachment Event attachment JSON NULL

body Event body LONGTEXT NULL

category Event category VARCHAR NULL

end Event end date DATE

endTime Event end time TIME NULL

isAllDay Event is all day TINYINT NULL

organizer Event organizer (doctor) CHAR NULL

participants Event participants (patient) JSON NULL

subject Event subject LONGTEXT

start Event start date DATE

startTime Event start time TIME NULL

created_at Event created time and date TIMESTAMP NULL

updated_at Event updated time and date TIMESTAMP NULL

Table 3.12 Data dictionary of table appointment_categories

Field Name Description Data Type Constraint

id Appointment category auto-

generated id

CHAR PK

value Appointment category value VARCHAR

icon Appointment category icon VARCHAR NULL

color Appointment category color VARCHAR NULL

56

3.8 CASE-BASED REASONING PROCESSES

Figure 3.17 Case-Based Reasoning processes

The process of case-based reasoning (CBR) involves several processes, as

illustrated in the figure 3.17. The explanation of each process are as follows:

i) New Problem: This is the first step in the CBR process, where the doctor

inputs the patient’s age, Accommodate Amplitude and Lag of

Accommodation test results of a new patient.

ii) Case Retrieval: This step involves retrieving similar cases from the case base,

which is a database of previous treatment cases. The system uses the

information from the new problem to search for similar cases in the case base.

For example, if a new patient has symptoms of strabismus, the system will

search for cases in the case base that have similar symptoms.

iii) Case Base: This is the database of previous treatment cases that the system

uses for retrieval and storage. The case base is updated with new cases after

each treatment. For example, after a patient has been diagnosed and treated

57

for strabismus, the doctor will store the patient’s treatment information in the

case base.

iv) Similar Cases: After the system retrieves similar cases from the case base, it

will present them to the doctor for evaluation. The CBR model will

automatically choose the similar case and make a decision.

v) Reasoning Results: The CBR model uses the information from the selected

similar case to produce results for the new patient. The reasoning results are

then displayed to the doctor in the web system.

vi) Case revise: After evaluating the reasoning results, the doctor may revise

them if necessary. This step allows the doctor to tailor the treatment plan to

the new patient. For example, if the diagnosis and treatment plan from the

similar case is not appropriate for the new patient, the doctor may revise it to

better suit the new patient’s needs.

vii) Case Retain: The final step in the CBR process is to store the new case in the

case base. This step ensures that the new patient’s treatment information is

available for future reference and retrieval. For example, after the new

patient’s treatment is completed, the doctor will store their treatment

information in the case base so that it can be used for future reference.

58

3.9 DATASETS

3.9.1 Dataset Collection

Figure 3.18 Dataset collection

Based on the figure 3,18, the data collection process for the case-based reasoning

algorithm involved the gathering of real patient data from the IIUM Binocular Vision

clinic, which was conducted through a live meeting with two IIUM doctors. The collected

data includes patient information and various diagnostic results such as Accommodate

Amplitude, Lag of Accommodation, and others.

3.9.2 Data Pre-Processing

Figure 3.19 Accommodate Amplitude dataset.

In figure 3.19, the pre-processing step involved removing unnecessary features,

such as the patient’s name, and other diagnosis features that were not relevant to the

59

Accommodate Amplitude diagnosis. This was done to reduce the complexity of the data

and make it easier to work with. The data are categorized into two classes which are

“Normal” and “Failed”. The dataset includes a total of 151 records, with 70 records

belonging to the “Normal” class and the remaining records belonging to the “Failed”

class. The dataset is comprised of four features, which include patient age and three

measurements of Accommodate Amplitude in dioptre format (R1, R2, and R3) for each

eye. These four features are used as input for the model, and the algorithm outputs a

prediction for the “Result” class. Currently, the dataset is limited to patients with an age

range of 19 to 23 years old.

3.10 HARDWARE AND SOFTWARE SPECIFICATIONS

Table 3.13 Hardware specifications

Hardware Specification Function

Laptop AMD Ryzen™ 5 5600H

16GB RAM

RTX3060 6GB

To run and develop the Binocular

Vision Management System.

Table 3.14 Software specifications

Software Function

Microsoft Office 365 To write the thesis report.

Draw.IO To draw UML diagrams.

Microsoft Visual Studio Code To write code for the web-based component.

Jupyter Notebook To write code for the machine learning component.

Laragon To set up local host server.

60

3.11 DESIGN PROTOTYPE

61

62

63

64

65

66

3.12 TESTING METHOD

3.12.1 Functional Testing

Functional testing is a type of testing that verifies that each function of the

software application operates in conformance with the requirement specifications. In the

context of this project, functional testing would involve testing the various functions of

the binocular vision management system to ensure that they work as intended. For

example, one functional test for the “Manage Appointment” module could include testing

the ability to create a new event, ensuring that the event is correctly displayed in the

calendar, and that it can be correctly edited or deleted as needed. Overall, functional

testing would involve testing all of the various functions of the system to ensure that they

work correctly, and that the system is able to correctly classify the strabismus condition.

3.12.2 User Acceptance Test Plan

To analyse the functionality of the Binocular Vision Management System, a user

acceptance test is created as part of the testing plan. This is to ensure that the system’s

operation delivers the expected result. The test case will also uncover system flaws so

that the developer can resolve them (Andre Scherr, Elberzhager, & Holl, 2018). Table

3.15 below shows the test cases to be conducted for the proposed system. During the

UAT phase, the system would be tested by the actual users (IIUM clinicians) to ensure

that it meets their needs and expectations, and any issues or bugs would be identified and

reported back to the development team for resolution.

Table 3.15 Test cases of the proposed system

No. Module Process Result Remark

1 Login Doctor able to login with correct

login credentials

Pass / Fail

2 Doctor is shown error message

if incorrect username or

password has been entered.

 Pass / Fail

3 Doctor able to logout from the

system

Pass / Fail

67

4 Dashboard Doctor able to see the treatments

made by today, this week, this

month, and overall

Pass / Fail

5 Doctor able to view the

treatment statistics

Pass / Fail

6 Manage

Doctor

Doctor able to view the

registered doctors in the table

Pass / Fail

7 Doctor able to search doctors by

entering search keyword

Pass / Fail

8 Doctor able to add new doctors

by filling in doctor personal

information.

Pass / Fail

9 Doctor able to view doctor’s

information and their treatment

history.

Pass / Fail

10 Doctor able to edit the doctor’s

record.

Pass / Fail

11 Doctor able to delete the doctor

record after clicking "yes" in the

confirmation dialog.

Pass / Fail

12 Doctor able to export doctors’

records to excel, csv and pdf

format.

Pass / Fail

13 Manage

Patient

Doctor able to view the

registered patients in the table

Pass / Fail

14 Doctor able to search patients by

entering search keyword

Pass / Fail

15 Doctor able to add new patients

by filling in patient information.

Pass / Fail

16 Doctor able to view patient

information and their treatment

history.

Pass / Fail

17 Doctor able to edit the patient

record.

Pass / Fail

18 Doctor able to delete the patient

after clicking "yes" in the

confirmation dialog.

Pass / Fail

19 Doctor able to export patient

records to excel, csv and pdf

format.

Pass / Fail

20 Manage

Treatment

Doctor able to choose patient for

the treatment.

Pass / Fail

68

21 Doctor able to classify the

accommodate amplitude

diagnosis for each eye

automatically through Case-

Based Reasoning algorithm.

Pass / Fail

22 Doctor able to classify the lag of

accommodation diagnosis for

both eyes automatically through

Case-Based Reasoning

algorithm.

Pass / Fail

23 Doctor able to assign person in

charge according to their role in

the treatment.

Pass / Fail

24 Doctor able to add new

treatments.

Pass / Fail

25 Doctor able to view all

registered treatments and its

result in table.

26 Doctor able to view treatment

information.

Pass / Fail

27 Doctor able to edit the treatment Pass / Fail

28 Doctor able to delete treatment's

record after clicking "yes" in the

confirmation dialog.

Pass / Fail

29 Doctor able to export treatment

records to excel, csv and pdf

format.

Pass / Fail

30 Manage

Appointment

Doctor able to make

appointment by creating new

event.

Pass / Fail

31 Doctor able to drag and drop

event to different date.

Pass / Fail

32 Doctor able to view event

details.

Pass / Fail

33 Doctor able to edit event as

needed.

Pass / Fail

34 Doctor able to delete event after

clicking the “yes” button in the

confirmation dialog.

Pass / Fail

69

3.13 POTENTIAL USE OF PROPOSED SOLUTION

Despite technological advancements, machine learning is still not widely used in

medical applications, particularly in the field of ophthalmology in detecting type of eye

diseases. Therefore, with a computerised system, the proposed solution will be able to

assist eye doctors in easing and simplifying their strabismus disease diagnosis process,

as well as improving patient and treatment management tasks.

Furthermore, it also provides a platform for the doctors to digitalize their patient

and treatment records. By using the proposed system, doctors will be able to reduce their

use of paper for patient file management while also saving time by not having to review

each patient file individually every time they visit the clinic. Moreover, because the

classification process is automated, the doctor’s workload can be lessened, allowing him

or her to focus on more important tasks.

70

3.14 GANTT CHART

The Gantt Chart that is based on Agile methodology for the Binocular Vision Management System is shown in the Figure 3.20 below.

Figure 3.20 Gantt chart for system development

71

CHAPTER 4

RESULT AND DISCUSSION

4.1 INTRODUCTION

This chapter explains deeper into the implementation and development of the

strabismus classification system described in the previous chapter. It will provide a

detailed description of the system’s interfaces and their functions, including figures and

explanations based on the functionalities outlined. The goal is to give a clear

understanding of both Binocular Vision Management system and Case-Based Reasoning

are designed and operated.

4.2 DEVELOPMENT ENVIRONMENT

Figure 4.1 Development Environments

This system is composed of two main components which are the machine learning

component and the web-based component. The machine learning component is

responsible for classifying strabismus based on diagnostic test results such as

accommodative amplitude and lag of accommodation. Based on figure 4.1, the web

component, built using the Laravel framework, provides functionalities such as doctor

72

registration and login, patient and treatment management, and interfaces for training and

testing the machine learning model.

In the machine learning component, Python and the Pandas library are used to

train the model. Specifically, Panda’s library is used to manipulate and analyse large sets

of accommodate amplitude and lag of accommodation data where it allows to clean and

pre-process the data and make the data ready for training which is important for the

system to make accurate predictions.

Finally, Python is the programming language used for implementing the machine

learning functions in the system. It is a powerful and versatile language that is well-suited

for implementing machine learning algorithms. Overall, the combination of Laravel for

the web component and Python for the machine learning component enables the system

to effectively classify strabismus and improve patient and treatment management.

4.3 BINOCULAR VISION MANAGEMENT SYSTEM IMPLEMENTATION

Figure 4.2 Project’s structure in Visual Studio code

73

The structure of this project in Visual Studio Code is shown in the figure 4.2. As

can be seen, the project is separated into several packages, each serving a particular

function. The system’s fundamental functionality, including the controllers, models, and

views needed to manage user input and provide the necessary data, may be found under

the “app” folder. Static assets, like photos and CSS stylesheets, are kept in the “public”

folder and are utilised to improve the user interface. Files that are used to train and test

the machine learning algorithm also can be found in the “public” folder. Unit tests are

also included in the “tests” folder to make sure the system is operating properly.

public static function table(Table $table): Table

 {

 return $table

 ->columns([

 Tables\Columns\TextColumn::make(‘staff_id')->wrap()-

>sortable()->searchable()->label('Staff ID'),

 Tables\Columns\TextColumn::make('name')->wrap()-

>sortable()->searchable()->label('Name')

 ->getStateUsing(function(Doctor $record) {

 $name = $record->salutation . " " . $record-

>first_name . " " . $record->last_name;

 return $name;

 }),

 Tables\Columns\TextColumn::make('nric')->sortable()-

>searchable()->label('NRIC'),

 Tables\Columns\TextColumn::make('phone_number')-

>label('Phone No.')->prefix('+60'),

 Tables\Columns\TextColumn::make('role')->sortable()-

>label("Role"),

 Tables\Columns\BadgeColumn::make('role')

 ->colors([

 'primary' => 'Lecturer',

 'warning' => 'Student',

 'success' => 'Trainee',

]),

])->defaultSort('updated_at', 'desc')

 ->actions([

 Tables\Actions\ViewAction::make()->label('View'),

 Tables\Actions\EditAction::make()->label('Edit'),

74

 Tables\Actions\DeleteAction::make()->label('Delete'),

])

 ->bulkActions([

 FilamentExportBulkAction::make('export')-

>disablePreview()->timeFormat('d M y - h:i:sa'),

 Tables\Actions\DeleteBulkAction::make(),

]);

 }

Figure 4.3 Doctor’s table resource snippet code

In figure 4.3, his code snippet is defining a doctor table structure in the project. It

specifies the columns that the table should have, such as “staff_id”, “name”, “nric”,

“phone_number”, and “role”. The column “name” is also customised to be a combination

of the “salutation”, “first_name” and “last_name” fields from the Doctor model. It also

specifies sorting, searching, and labelling for each column. Additionally, the table has

actions such as “View”, “Edit” and “Delete” for each record, as well as bulk actions for

the whole table like “export” and “Delete All” which can be done using

FilamentExportBulkAction and DeleteBulkAction classes respectively.

public static function form(Form $form): Form

 {

 return $form

 ->schema([

 Card::make()

 ->schema([

 Forms\Components\FileUpload::make('profile_picture')

 ->label('Profile Picture')

 ->image()

 ->avatar()->columnSpanFull(),

 Forms\Components\Grid::make()

 ->schema([

 Forms\Components\Select::make('salutation')

 ->options([

 "Dr." => "Dr.",

 "Mr." => "Mr.",

 "Ms." => "Ms.",

 "Prof." => "Prof.",

])->default('')->placeholder('-'),

75

 Forms\Components\TextInput::make('first_name')-

>required()->maxLength(50)->label('First Name')->placeholder('Enter First

Name')->columnSpan(3)->disableAutocomplete(),

 Forms\Components\TextInput::make('last_name')-

>required()->maxLength(50)->label('Last Name')->placeholder('Enter Last

Name')->columnSpan(3)->disableAutocomplete(),

])->columns(7),

 Forms\Components\Grid::make()

 ->schema([

 Forms\Components\TextInput::make('nric')

 ->label(__('NRIC'))->numeric()-

>unique(ignoreRecord: true)->required()->placeholder('Enter NRIC Number')

 ->mask(fn

(Forms\Components\TextInput\Mask $mask) => $mask->pattern('000000-00-

0000'))->disableAutocomplete(),

 Forms\Components\TextInput::make('staff_id')-

>label(__('Staff ID'))->placeholder('Enter Staff ID')->required()-

>unique(ignorable: fn ($record) => $record)->disableAutocomplete(),

 Forms\Components\TextInput::make('phone_number')-

>placeholder('XX-XXXXXXXX')->label('Phone No.')->numeric()-

>maxLength(11)->prefix('+60')->required()->disableAutocomplete()

 ->mask(fn (Forms\Components\TextInput\Mask $mask)

=> $mask->pattern('00-00000000')),

])->columns(3),

 Forms\Components\Grid::make()

 ->schema([

 Forms\Components\DatePicker::make('date_of_birth')-

>placeholder('Select Date of Birth')->displayFormat('d/m/Y')->required()-

>reactive()

 ->afterStateUpdated(function

(callable $set, callable $get){

 $age =

Carbon::parse($get('date_of_birth'))->age;

 $set('age', $age);

 }),

 Forms\Components\TextInput::make('age')-

>placeholder('Age')->disabled()->required(),

76

 Forms\Components\Select::make('gender')-

>placeholder('Select gender')

 ->options([

 'Male' => 'Male',

 'Female' => 'Female',

]),

])->columns(3),

 Forms\Components\Select::make('role')->label('Staff

role')->placeholder('Select role')

 ->options([

 'Lecturer' => 'Lecturer',

 'Student' => 'Student',

 'Trainee' => 'Trainee',

]),

 Forms\Components\TextInput::make('email')->required()-

>email()->label('Email Address')->placeholder('Enter Email Address')-

>disableAutocomplete(),

])

 ->columns(2)

]);

 }

Figure 4.4 Doctor’s form resource snippet code

Figure 4.4, this code defines a form for creating and editing doctor profiles in the

system. It includes fields for the staff's name, NRIC, staff ID, phone number, date of

birth, age, gender, role, email and profile picture. The form uses a number of components

such as text input, select, date picker, file upload, grid and card to build the layout of the

form. The form also includes validation and constraints such as unique, required, email

format and max length for each field. Additionally, there are also some features added

such as masking for phone number, prefix for phone number, avatar for profile picture

and disable autocomplete for some fields.

77

public static function table(Table $table): Table

 {

 return $table

 ->columns([

 Tables\Columns\TextColumn::make('patient_name')-

>sortable()->searchable()->label('Name'),

 Tables\Columns\TextColumn::make('nric')->sortable()-

>searchable()->label('NRIC'),

 Tables\Columns\TextColumn::make('age')

 ->getStateUsing(function(Patient $record) {

 return Carbon::parse($record->date_of_birth)->age;;

 }),

 Tables\Columns\TextColumn::make('gender')->sortable(),

 Tables\Columns\TextColumn::make('phone_number')-

>label('Phone No.')->prefix('+60'),

 Tables\Columns\TextColumn::make('treatment')-

>label('Treatments')

 ->getStateUsing(function (Patient $record){

 $patient_id = $record->id;

 $treatment_count = DB::table('treatments')

 ->where('patient_id', $patient_id)

 ->count();

 return $treatment_count;

 })

])->defaultSort('updated_at', 'desc')

 ->filters([

 //

])

 ->actions([

 Tables\Actions\ViewAction::make()->label('View'),

 Tables\Actions\EditAction::make()->label('Edit'),

 Tables\Actions\DeleteAction::make()->label('Delete'),

])

 ->bulkActions([

 FilamentExportBulkAction::make('export')-

>disablePreview()->timeFormat('d M y - h:i:sa'),

 Tables\Actions\DeleteBulkAction::make(),

]);

 }

Figure 4.5 Patient’s table resource snippet code

In figure 4.5, this code creates a table in a web application, displaying patient

information such as name, NRIC, age, gender, phone number, and treatment count. The

78

table columns can be sorted and searched by name, NRIC, and updated at time. The table

also includes action buttons for viewing, editing, and deleting a patient's information, and

bulk actions for exporting and deleting multiple patients at once. Additionally, the age

column is calculated by getting the age of the patient based on their date of birth. The

treatment column is calculated by counting the number of treatments for each patient

based on the patient_id.

public static function form(Form $form): Form

 {

 return $form

 ->schema([

 Forms\Components\Wizard::make([

 Forms\Components\Wizard\Step::make('Patient')-

>icon('heroicon-o-user')

 ->description("Enter patient information")

 ->schema([

 Forms\Components\Card::make()

 ->schema([

 Forms\Components\Grid::make()

 ->schema([

 Forms\Components\TextInput::make('pat

ient_name')->required()->label('Name')->placeholder('Enter patient

name'),

 Forms\Components\TextInput::make('nri

c')

 ->label(__('NRIC'))->numeric()-

>unique(ignoreRecord: true)->required()

 ->mask(fn

(Forms\Components\TextInput\Mask $mask) => $mask->pattern('000000-00-

0000'))

 ->placeholder('Enter patient NRIC

number')

 ,

])->columns(2),

 Forms\Components\Grid::make()

 ->schema([

 Forms\Components\DatePicker::make('da

te_of_birth')->placeholder('Select date of birth')-

>displayFormat('d/m/Y')->required()->reactive()

79

 ->afterStateUpdated(function

(callable $set, callable $get){

 $age =

Carbon::parse($get('date_of_birth'))->age;

 $set('age', $age);

 }),

 Forms\Components\TextInput::make('age

')->placeholder('Patient age')->disabled()->required(),

 Forms\Components\TextInput::make('pho

ne_number')->label('Phone No.')->placeholder('XX-XXXXXXXX')->numeric()-

>maxLength(11)->prefix('+60')->required()

 ->mask(fn

(Forms\Components\TextInput\Mask $mask) => $mask->pattern('00-

00000000')),

 Forms\Components\Select::make('gender

')->placeholder('Select gender')->required()

 ->options([

 'Male' => 'Male',

 'Female' => 'Female',

]),

])->columns(4),

 Forms\Components\Grid::make()

 ->schema([

 Forms\Components\TextInput::make('occ

upation')->placeholder('Enter patient occupation'),

 Forms\Components\TextInput::make('par

ent_name')->hint('Required only if patient is minor')->label('Parent

Name')->placeholder('Enter patient parent name'),

])->columns(2),

 Forms\Components\Section::make("Home

Address")

 ->compact()

 ->schema([

 Forms\Components\TextInput::make('hom

e_address1')->label("Address Line 1")->placeholder("Address Line 1"),

 Forms\Components\TextInput::make('hom

e_address2')->label("Address Line 2")->placeholder("Address Line 2"),

 Forms\Components\TextInput::make('hom

e_city')->label('City')->placeholder("City"),

 Forms\Components\Select::make('home_s

tate')->placeholder('Select state')->label('State')

])->columns(4),

80

 Forms\Components\Section::make("Office

Address")

 ->compact()

 ->schema([

 Forms\Components\TextInput::make('off

ice_address1')->label("Address Line 1")->placeholder("Address Line 1"),

 Forms\Components\TextInput::make('off

ice_address2')->label("Address Line 2")->placeholder("Address Line 2"),

 Forms\Components\TextInput::make('off

ice_city')->label('City')->placeholder("City"),

 Forms\Components\Select::make('office

_state')->placeholder('Select state')->label('State')

])->columns(4),

])

]),

 Forms\Components\Wizard\Step::make('Symptom')-

>icon('heroicon-o-clipboard-list')

 ->description("Record medical symptom or

complaint")

 ->schema([

 Forms\Components\Card::make()

 ->schema([

 Forms\Components\RichEditor::make('chief_

complain'),

 Forms\Components\RichEditor::make('medica

l_history')

])

]),

]),

])->columns(1);

 }

Figure 4.6 Patient’s form resource snippet code

Based on figure 4.6, this code defines a form for creating a new patient in the

system, using the Laravel framework. It contains fields for the patient's name, NRIC

number, date of birth, age, phone number, gender, occupation, and parent's name. It also

includes sections for the patient's home and office addresses, including fields for address

lines, city, and state. It also includes a wizard for guiding the user through the form with

different steps, as well as some validation for required fields and unique NRIC number

81

for the patient. The form also contains some additional functionality such as masking for

phone numbers and NRIC number and age calculation based on date of birth.

 public function aa_classify(){

 if(!isset($_COOKIE['age']) || !isset($_COOKIE['aa_l1']) ||

!isset($_COOKIE['aa_l2']) || !isset($_COOKIE['aa_l3']) ||

!isset($_COOKIE['aa_r1']) || !isset($_COOKIE['aa_r2']) ||

!isset($_COOKIE['aa_r3'])){

 return "0";

 }else{

 $age = $_COOKIE['age'];;

 $l1 = $_COOKIE['aa_l1'];

 $l2 = $_COOKIE['aa_l2'];

 $l3 = $_COOKIE['aa_l3'];

 $r1 = $_COOKIE['aa_r1'];

 $r2 = $_COOKIE['aa_r2'];

 $r3 = $_COOKIE['aa_r3'];

 if($this->validateInput($l1) && $this->validateInput($l2) &&

$this->validateInput($l3) && $this->validateInput($r1) && $this-

>validateInput($r2) && $this->validateInput($r3)){

 $left_cmd =

escapeshellcmd("cbr\aa\classification\aa_classify.py $age $l1 $l2 $l3");

 $left = shell_exec($left_cmd);

 $right_cmd =

escapeshellcmd("cbr\aa\classification\aa_classify.py $age $r1 $r2 $r3");

 $right = shell_exec($right_cmd);

 $decodeRight = urldecode($right);

 $rightResult = substr($decodeRight, 0, 1);

 $decodeLeft = urldecode($left);

 $leftResult = substr($decodeLeft, 0, 1);

 setcookie("aa_result_r", $rightResult, time() + 3600);

 setcookie("aa_result_l", $leftResult, time() + 3600);

 return $left . $right;

 }else{

 return "1";

 }

 }

 }

Figure 4.7 AA Classification function snippet code.

82

In figure 4.7, this function classifies a patient's Accommodate Amplitude (AA)

diagnosis based on their age, left and right AA measurement values. The function first

checks whether the necessary input values are present in cookies, if not it returns “0”.

Next, it validates the input values using the validateInput function, if the inputs are invalid

it returns “1”. If input values are valid, it calls the python script ‘aa_classify.py’ and

passing it the age, left and right AA measurement values as arguments. The script then

returns a string output of the classification. This output is then stored as a cookie and

returned to the treatment page.

4.4 CASE-BASED REASONING IMPLEMENTATION

4.4.1 Introduction

Figure 4.8 Jupyter Notebook IDE

In figure 4.8, Jupyter Notebook is used in this project as the machine learning

component's development environment. It offers visual aids, such as graphs, to help users

better understand and interact with the data utilised in the Case-Based Reasoning (CBR)

process. It also enables organised and structured Python code writing.

83

4.4.2 Algorithm Processes

In a case-based reasoning (CBR) system, the “Retrieve” process is responsible for

finding the most similar case to the current problem at hand, in order to inform the

decision-making process. Based on the figure 4,9, this code is reading in a dataset file

named “aa_dataset.csv” and storing it in a variable called “aa_data” using the pandas

library’s “read_csv” function. This dataset will be used in the Retrieve step of the CBR

process, where relevant past cases are retrieved from the dataset.

Figure 4.9 Dataset reading code snippet.

Then, in figure 4.10, it is finding the minimum and maximum values for each

feature in the dataset, which is stored in the “min_value” and “max_value” variables,

respectively. The following features are the patient age, R1 (AA reading 1), R2 (AA

reading 2), and R3 (AA reading 3) like shown in the figure 4.11. Lastly, the function will

calculate the range of values for each feature by subtracting the minimum value from the

maximum value and storing the result in the “range_value” variable. These calculations

are done to normalize the data for the similarity calculations in next step.

Figure 4.10 Finding range value of features code snippet.

84

Figure 4.11 Dataset features sample.

Figure 4.12 AA measurement arguments code snippet.

By referring to figure 4.12, this code block is retrieving data passed from the web

system as command line arguments in the form of age, r1, r2, and r3. It then assigns these

values to a variable train which is an array of these values. This data is used to train a

model and predict results in the later steps of the CBR process.

 After that, based on the figure 4.13, the CBR process continues with the

calculation of the local similarity value between new case and case base. The local

similarity is calculated as 1 minus the absolute difference between the input case and the

case in the case base, divided by the range of that feature. Then it calculates the global

similarity which is the overall similarity score for the new case and the case vase in the

dataset by taking the sum of all local similarities multiplied by the weightage assigned to

each feature. Then, it finds the index of the highest similarity case and return the highest

similarity max value.

 Finally, after all calculations done, the decision is made by the CBR where it

prints the result of the highest similarity case and send the result to the web treatment

interface so that the doctor can view it like shown in the figure 4.14.

85

Figure 4.13 Local similarity, global similarity calculations code snippet.

Figure 4.14 Print highest similarity result code snippet.

Based on the figure 4.15, this code is performing the “retain” process in the Case-

Based Reasoning (CBR) system. The retain process is used to update the case base with

new information by adding new cases to the dataset. In this specific code, it is reading in

values passed in from a controller, creating a dictionary with these values and the

additional fields of “result” and “classification”, and then appending this dictionary as a

new row in the 'aa_dataset.csv' file. This allows for the case base to be updated with new

information, which can be used to improve the performance of the CBR model.

86

Figure 4.15 CBR retain process code snippet.

87

4.5 SYSTEM OUTPUT

Figure 4.16 Login screen

As seen in figure 4.16, the doctor is presented with a login page where they can

enter their username and password to access the system. To make their experience more

convenient, the system also includes a “Remember Me” function that allows the doctor

to save their credentials for future use, eliminating the need for them to enter their login

information every time they access the system. In the event that the provided credentials

are incorrect, the system will display an error message, as depicted in figure 4.17, alerting

the doctor that the entered username or password does not match any records in the

system’s database.

Figure 4.17 Wrong username or password error message

88

Figure 4.18 Dashboard screen

Upon successful login, the doctor will be directed to the system’s dashboard

screen, as depicted in figure 4.18. This screen provides a quick overview of the treatments

made by the doctor on a daily, weekly, monthly, and overall basis. Additionally, the

dashboard includes visual representations of previous treatment results for Accommodate

Amplitude and Lag of Accommodation, allowing the doctor to easily track their progress.

The doctor also has the option to switch to a dark theme by toggling the option in the user

menu, as seen in figure 4.19, for a more comfortable viewing experience.

Figure 4.19 Dashboard in dark mode theme

89

Figure 4.20 Doctor’s list screen

The doctor can access a comprehensive list of all the registered doctors in the

system by navigating to the “Doctors” menu in the sidebar, as depicted in figure 4.20.

The total number of doctors by role is displayed on the top widgets, providing a quick

overview of the available staff. Additionally, from this page, the doctor has the ability to

add new doctors, edit existing ones, delete them, or simply view their records. To add a

new doctor, the doctor can click on the “New Doctor” button, which will redirect them

to the page for creating a new doctor profile, as illustrated in figure 4.21.

Figure 4.21 Create doctor profile screen

90

From this, the doctor can create a new doctor record by uploading a profile pictre

and filling in the salutation, doctor name, nric, staff ID, phone number and other personal

details. After completing the form, they can submit it by clicking the “Create” to save the

record in the database.

Figure 4.22 View doctor screen

In figure 4.22, the doctor can view the detailed profile of a specific doctor,

including their personal information and a list of treatments they have performed

previously. By clicking on any of the treatment records listed, the doctor can view further

details about the specific treatment. Additionally, the doctor has the ability to edit the

doctor’s record by clicking the “Edit” button, which redirects them to the edit doctor page

as seen in figure 4.23. This allows the doctor to easily update or make changes to the

doctor’s information as needed.

91

Figure 4.23 Edit doctor screen

In this edit page, the doctor can update the personal details of the doctor by

making any necessary changes. To delete the record, the doctor can simply click the

delete icon and confirm the deletion by clicking “Yes” on the confirmation dialog, as

shown in figure 4.24.

Figure 4.24 Delete doctor screen

92

Figure 4.25 Search doctor screen

Moreover, the doctor can search through the doctor record by entering the search

keyword like shown in the figure 4.25. The table then will update the table doctor view

according to the entered keyword. Based on the figure 4.26, the doctor can export the

doctor record list to PDF, Excel or CSV format by clicking the “Export” button. They

also able to print the record if they wish to do so by clicking the “Print” button. The

additional columns functionality is also available for column adition but it must comes

with default value to make it available.

Figure 4.26 Export doctor record screen

93

Figure 4.27 Patient list screen

The figure 4.27 shows the manage patient interface for the doctor to view the list

of patients that have been added in the system. From the record, the doctor is provided

with actions that they can interact. The “eye” icon indicates that the functionality is for

viewing patient information, the “pen” icon shows that the functionality is for editing the

patient, and the “trash bin” icon indicates that the function is for deleting the patient.

Furthermore, the doctor also can search the patient by entering search keyword on the

provided search box.

Figure 4.28 Create patient profile (patient detail) screen

94

Figure 4.29 Create patient profile (symptom) screen

The add new patient interface in figure 4.28 allows the doctor to enter patient

information such as patient name, phone number, age, gender, date of birth, occupation,

home address, office address and parent’s name. The “red asterisk” symbols indicate that

the fields are required while the rest are optional. The parent’s name should be entered

only if the patient is minor. The process is followed by entering the medical symptom if

there is any in figure 4.29. After finished entering the patient information, the doctor can

click the “Create” button to save the record in the database.

Figure 4.30 View patient screen

95

If the doctor chooses to click the eye icon in figure 4.27, the doctor will be

redirected to the view patient information interface like shown in the figure 4.30. From

this page, doctor can view the detailed information of the patient and their treatment

history. They also can keep track of the treatment date that has been conducted

previously.

Figure 4.31 Edit patient screen

If the edit icon in the figure 4.27 is clicked, the system will redirect the doctor to

the edit patient page like shown in the figure 4.31. The doctor can edit the patient

information to any fields that they want to modify. The “Save Changes” button is

provided to allow the doctor to update the record in the database after finished modifying

the fields. Moreover, if the doctor clicks the delete icon in figure 4.27, the system will

display the doctor deletion confirmation box (figure 4.32), allowing them to double-check

their action in the event of an accident. There are two buttons provided, where “Yes”

button is used to confirm the deletion, and “Cancel” button will cancel the operation and

exit the dialog.

96

Figure 4.32 Delete patient screen

Figure 4.33 Treatments list screen

In figure 4.33, the doctor can easily access and review the treatment records of

patients stored in the system's database. The records presented in the table display the

results of AA and LA treatments. The color-coded badges displayed in the table provide

an indication of the patient’s treatment outcomes, with green indicating a normal result,

and orange and red indicating that the patient has been diagnosed with strabismus

condition.

97

Figure 4.34 Add treatment (patient) screen

Figure 4.35 Add treatment (accommodate amplitude treatment) screen

In figure 4.34, the system allows doctors to select a patient for treatment by

searching for the patient's NRIC in the database. By clicking the “Next” button, the doctor

is then able to proceed to the treatment section. In figure 4.35, the doctor is able to input

the accommodate amplitude values for each eye for three repetitions and run the diagnosis

using the case-based reasoning (CBR) algorithm. The results of the AA treatment are

displayed in figure 4.36.

98

Figure 4.36 Accommodate amplitude treatment result screen

Figure 4.37 Add treatment (lag of accommodation treatment) screen

By referring to figure 4.37, the doctor can proceed with the diagnosis of lag of

accommodation by inputting the LA values for each eye. The system will then use the

CBR algorithm to classify the condition based on the entered parameters. The result of

the diagnosis, whether it is classified as Normal (N), Accommodate Excess (AE) or

Accommodate Insufficient (AI), will be displayed in the figure 4.38 for the doctor to

review.

99

Figure 4.38 Lag of accommodation treatment result screen

The process of selecting the person in charge of the treatment is an important

aspect of the system’s functionality, as it ensures that the patients receive the appropriate

personnel for their treatment. The figure 4.39 illustrates the user interface for this feature,

where the doctor is able to select individuals for the treatment based on their role. Using

the repeater field, doctors can add multiple individuals to the treatment team, providing

them with the flexibility to assign a team of clinicians that can best cater to the patient’s

needs. Additionally, the doctor can easily remove any team members they may have

mistakenly added by clicking on the “delete” icon.

Figure 4.39 Add treatment (person in charge) screen

100

Figure 4.40 Add treatment (remark) screen

In figure 4.40, the doctor has the ability to add a detailed remark for the treatment

that has been conducted, including any observations or insights that may be relevant to

the patient’s diagnosis. For example, the doctor may include information about the

patient’s response to treatment, any challenges that were encountered during the

diagnosis process, or any other relevant information that could aid in the patient’s

ongoing care. Additionally, the doctor can also note any recommendations for follow-up

treatment or further diagnostic testing that may be necessary. By clicking on the “create”

button, the remark will be saved and stored in the treatment’s record for future reference

in the database.

Figure 4.41 Appointment calendar screen

101

In figure 4.41, the appointment calendar is depicted, displaying the records of all

previously scheduled appointments. The doctor can navigate through different months by

clicking the “January 2023” drop-down menu, which allows them to select the desired

month. To schedule a new appointment, the doctor can simply click on the “Create Event”

button. To view the details of an existing appointment, the doctor can simply click on the

event in the calendar, and a modal window will appear, displaying all relevant

information, as shown in figure 4.42. The modal displays the date of the appointment, its

category and patients that will be involved for the appointment.

Figure 4.42 View event details screen

By clicking on the “Create Event” button in the figure 4.41, a side modal appears,

allowing the doctor to schedule a new appointment which can be seen in the figure 4.43.

The doctor can fill in the subject of the appointment, such as “Follow-up Consultation”

or “Strabismus Surgery Planning” in the “Subject” field. They can also provide additional

details about the appointment in the “Body” field. The “Participants” field allows the

doctor to select the patient or patients who will be involved in the appointment.

Additionally, the “Category” field allows the doctor to categorize the appointment as a

general check-up, follow-up, or other type of appointment. The “All day” switch allows

the doctor to schedule the appointment for the entire day. Lastly, the doctor can also

attach relevant documents or images to the appointment by using the “Attachment” field.

102

Figure 4.43 View event details screen

Figure 4.44 Event list screen

In figure 4.44, the event list is displayed in a table for easy viewing of scheduled

appointments. From this view, doctors are able to quickly view event details and

categorization. Based on figure 4.45, the edit functionality allows doctors to make any

necessary changes to the appointment, such as rescheduling or updating participant

information. This way, it provides them the ability to make updates and adjustments as

needed, ensuring the efficiency of the appointment’s feature. They also able to delele the

event by clicking on the “Delete” button.

103

Figure 4.45 Edit event screen

4.6 CASED-BASED REASONING PERFORMANCE EVALUATION

The performance of the Case-Based Reasoning (CBR) model for Accommodate

Amplitude (AA) diagnosis was evaluated using various metrics, including accuracy,

precision, recall, and F1-score. The figure 4.46 presents the statistics of the model

performance for the system. The last run of testing was conducted today, and the total

number of tests performed so far is 3. The dataset used for these tests consists of 151

cases. The data was split into training and testing datasets, with a 60:40 ratio,

respectively. This split allowed the system to train on a significant amount of data and

then test its performance on the remaining data to evaluate its accuracy.

Figure 4.46 Model performance data statistics

104

Figure 4.47 Model performance test statistics

The results shown in the figure 4.47 indicate that the model achieved an overall

accuracy of 91 percent with a train and test split configuration of 60:40. In order to

measure the performance of the model, a random sample of 26 was used. The figure also

provides information about the time elapsed during the test, the number of processed

cells, the total number of cases, the number of correct and incorrect predictions. These

statistics provide valuable insights into the performance of the model.

In addition, the figure 4.48 provides a visual representation of the accuracy of the

Case-Based Reasoning model over time. The graph displays the results of multiple test

runs, allowing doctors to track the progress and improvement of the model. It is also

based on a specific random sample, and the accuracy may be different if a different

sample set is used. This highlights the importance of thoroughly testing the model using

various sample sets to ensure robust and consistent performance.

105

Figure 4.48 Model accuray overtime

The figure 4.49 provides a comprehensive evaluation of the model’s performance

by plotting four crucial metrics, which are the accuracy, precision, recall, and F1 score.

The high results of all the metrics indicate that the model has a high degree of accuracy

and is able to make correct predictions. This suggests that the model has been well trained

and is capable of providing accurate results for Accommodate Amplitude diagnosis.

Figure 4.49 Model performance measures

106

Figure 4.50 Model confusion matrix

The confusion matrix in the figure 4.50 helps to evaluate the accuracy of the

model by illustrating the number of true positive, false positive, true negative, and false

negative predictions made by the model for the "normal" and "failed" classes.

107

4.7 USER ACCEPTANCE TEST

User acceptance testing (UAT) is a critical phase in the software development

process, as it allows end-users to test the system and provide feedback on its functionality

and usability. For this project, UAT would involve a series of tests that are designed to

ensure the system meets the needs and expectations of the IIUM doctors who will be

using it. Based on the figure 4.51, The UAT would be conducted by having the IIUM

doctors test the system in a live meeting, and they are required to provide feedback by

filling out a Google Form like shown on the figure 4.52.

Figure 4.51 Live meeting of user acceptance test

Figure 4.52 User acceptance test form introduction

In figure 4.53, the system displays the details of the respondents who are

participating in the user acceptance testing (UAT) process. This includes their name and

contact information, allowing the developer to easily reach out to them in case of any

questions or concerns. Additionally, for a more detailed overview of the UAT responses,

refer to appendix A for the complete responses of the user acceptance test.

108

Figure 4.53 Respondent personal details

The figure 4.54 includes the tester declaration to confirm that they have completed

and submitted the UAT form. This serves as a way to formally document and track the

completion of the UAT process. It confirms that the testers have fully evaluated the

system and provided their feedback, allowing the developer to move forward with

confidence in the system’s readiness for deployment. Finally, as shown in figure 4.50,

the signature and stamp of the testers serve as a proof and verification of the feedback

provided. This adds a level of authenticity and accountability to the UAT process,

ensuring that the feedback is coming from a verifiable source and can be trusted.

Figure 4.54 Declaration agreement response

109

Figure 4.55 Respondent signatures and stamps

110

CHAPTER 5

CONCLUSION

5.1 INTRODUCTION

The thesis is divided into five chapters. The first chapter provides an overview of

the proposed system, including its objectives, scope, and the problems that led to its

development. The second chapter compares the proposed system with three existing

clinic systems, highlighting their advantages and disadvantages. Based on the

comparison, some parts of the system such as the machine learning classification function

were inspired by existing clinic systems as they do not have the ability to classify

strabismus using machine learning algorithms.

Furthermore, the third chapter dives into the methodology and algorithms used in

the system's development. For example, it explains how Agile methodology was used

throughout the development process and the inner workings of the case-based reasoning

algorithm used in this proposed system. It also covers the system flowcharts and the

machine learning framework. In chapter four, the output of the developed system is

presented, including its interfaces and some sample codes. The testing and results of the

proposed system are discussed in this chapter to ensure that it meets the requirements

outlined in the SRS. Overall, the proposed system does have its constraints and

limitations, therefore there is potential for further improvement in the future.

5.2 OBJECTIVE REVISITED

The objectives of this project have been fully achieved. A comprehensive study

of existing clinic systems, such as Odoo Eye Clinic, Optic Clinic, and Smart Eye Care,

was conducted to understand the limitations of current eye clinic systems. This study

revealed that all systems lack the use of machine learning for automating strabismus

classification. Thus, it served as a foundation for the development of a binocular vision

111

management system with Case-Based Reasoning as the machine learning algorithm for

classifying strabismus automatically.

Furthermore, the proposed system was developed, and its functionality was

thoroughly tested. The results of the testing have shown that the system is able to

accurately classify strabismus using the diagnostic test results generated by the case-

based reasoning algorithm. The system also includes functionalities such as doctor

registration, patient, treatment, and appointment management, and interfaces for training

and testing the machine learning model, making it a complete and useful tool for eye

doctors in the diagnosis and treatment of strabismus. In summary, the objectives of this

project were met, and the proposed binocular vision management system with the

integration of Case-Based Reasoning algorithm will be a valuable addition to IIUM

doctors in the field of ophthalmology.

5.2.1 Limitations

The proposed system has a few limitations that need to be considered. Firstly, at

the moment, it only supports two strabismus diagnosis which are accommodative

amplitude and lag of accommodation. As a result, it cannot classify strabismus with other

types of diagnosis like negative or positive relative accommodation, monocular or

binocular accommodative facility. Another limitation is that the system’s classification

accuracy may be affected by the small dataset size. The system was trained and tested on

a dataset of patients aged between 19 and 23, which means it may not function as

effectively for patients outside of this age range.

Moreover, the system only uses numerical parameters and does not support the

use of eye images or videos for strabismus classification, which means it misses out on

the additional information that can be obtained from these types of diagnostic data. For

example, if an image or video is taken of a patient’s eyes, the system would not be able

to use this information to classify the patient’s strabismus. Finally, because the system is

web-based, an internet connection is necessary to use it. This means that the system

cannot be used without an online connection and might not be usable in places with

no internet connectivity.

112

5.2.2 Future Works

The future plan of this system includes expanding the number of strabismus

diagnoses that it can perform. Currently, it only performs diagnosis of accommodative

amplitude and lag of accommodation, but in the future, it could be developed to also

perform other diagnoses such as negative and positive relative accommodation,

monocular and binocular accommodative facility. This would allow for a more

comprehensive diagnosis and ultimately lead to a more accurate strabismus prediction

for patients.

In addition, for future development, the plan also is to expand the dataset. By

having a larger and more diverse dataset, the system would be able to better generalize

to a wider range of patients and increase its accuracy for patients outside of the initial

dataset’s age range. This could be achieved by collecting more data from patients with

different characteristics or symptoms and incorporating that data into the training and

testing process.

113

REFERENCES

Alsaqqa, S., Sawalha, S., & Abdel-Nabi, H. (2020). Agile Software Development:

Methodologies and Trends. International Journal of Interactive Mobile Technologies

(iJIM), 14(11):246.

Andre Scherr, S., Elberzhager, F., & Holl, K. (2018). Acceptance Testing of Mobile

Applications - Automated Emotion Tracking for Large User Groups. 2018 IEEE/ACM

5th International Conference on Mobile Software Engineering and Systems

(MOBILESoft), 247-251.

Babu, R., Jalaiah, S., & Bhushanam, P. (2019). Quality improvement measures for Software.

The International journal of analytical and experimental modal analysis, 336.

Chen, Z., Fu, H., Lo, W.-L., & Chi, Z. (2018). Strabismus Recognition Using Eye-Tracking

Data and Convolutional Neural Networks.

Lamy, J.-B., Sekar, B., Guezennec, G., Bouaud, J., & Séroussi, B. (2019). Explainable artificial

intelligence for breast cancer: A visual case-based reasoning approach. Artificial

Intelligence in Medicine, 42-53.

Montalvo, A., Parra, P., & R. Polo, O. (2019). Towards the Use of Model-Driven Technologies

in an Integral Software Development Process. 2019 IEEE 27th International

Requirements Engineering Conference Workshops (REW). IEEE.

Repka, Lum, & Burugapalli. (2018). Strabismus, strabismus surgery, and reoperation rate in the

united. Ophthalmology, 1646–1653.

Shakya, S. (2020). Analysis of Artificial Intelligence based Image Classification Techniques.

Journal of Innovative Image Processing, 44-54.

Stidwell, D., & Fletcher, R. (2017). Normal Binocular Vision: Theory, Investigation and

Practical Aspects. John Wiley & Sons.

Zhang, L., Cao, Y., Yang, F., & Zhao, Q. (2017). Machine Learning and Visual Computing.

Applied Computational Intelligence and Soft Computing.

114

APPENDIX A

USER ACCEPTANCE TEST RESPONSES

a) Manage Login Module

115

b) Manage Doctor Module

116

117

c) Manage Patient Module

118

119

d) Manage Treatment Module

120

121

122

123

e) Manage Appointment Module

124

125

APPENDIX B

SOFTWARE REQUIREMENT SPECIFICATION FOR BINOCULAR VISION

MANAGEMENT SYSTEM

SRS_BVMS_V1.0 2023 i

SOFTWARE
REQUIREMENT
SPECIFICATION (SRS)
AN AUTOMATED STRABISMUS
CLASSIFICATION USING CASE-BASED
REASONING ALGORITH FOR BINOCULAR
VISION MANAGEMENT SYSTEM

2023

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 ii

DOCUMENT APPROVAL

 Name Date

Authenticated by:

MUHAMMAD AMIRUL ISYRAF

BIN ROHISMADI

20/01/2023

Approved by:

Client

Software : Microsoft Office 365

Archiving Place : OneDrive

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 iii

TABLE OF CONTENT

CONTENT PAGE

DOCUMENT APPROVAL ... ii

TABLE OF CONTENT .. iii

LIST OF FIGURES .. iv

1.1 PROJECT DESCRIPTION ... 1

1.2 SYSTEM IDENTIFICATION .. 2

1.3 CONTEXT DIAGRAM .. 2

1.4 DATA FLOW DIAGRAM .. 3

2.1 USE CASE DIAGRAM AND DESCRIPTION ... 4

2.1.1 Use Case Description ... 5

2.2 SEQUENCE DIAGRAM .. 5

3.1 INTERFACE DESIGN ... 10

3.2 HARDWARE AND SOFTWARE SPECIFICATION .. 10

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 iv

LIST OF FIGURES

Figure 1.1 Context Diagram .. 2

Figure 1.1 Data Flow Diagram .. 3

SRS_BVMS_V1.0 2023 1

CHAPTER 1

1.1 PROJECT DESCRIPTION

The Binocular Vision Management System is a comprehensive tool for doctors to manage

their patients and treatments for strabismus or squints disease. The system is divided into two

main components: a web-based application and a machine learning component. The web-based

application is designed to allow doctors to interact with the various system modules, including

the ability to manage login credentials, doctor profiles, patient records, treatment plans, and

appointments. The “Manage Login” module allows doctors to securely log in to the system and

access the other modules. The “Manage Doctor” module allows doctors to view and manage

the profiles of other doctors in the system, including the ability to add, edit, and delete profiles.

In addition, the “Manage Patient” module enables doctors to view, add, edit, and delete

patient records, as well as view and update patient demographics, medical history, and

treatment history. The “Manage Treatment” module provides doctors with the ability to view,

add, edit, and delete treatment records, along with the ability to perform diagnosis and

classification of strabismus conditions by integrating the machine learning component that uses

case-based reasoning algorithm. Lastly, the “Manage Appointment” module enables doctors to

schedule and manage appointments for patients, including the ability to create new events, view

and edit existing events, and view event details.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 2

1.2 SYSTEM IDENTIFICATION

The Software Requirement Specification (SRS) belongs to the AI-Powered Binocular Vision

Detection System.

System Title : Binocular Vision Management System.

System Abbreviation : BVMS

Establish : 2023

System Version : Version 1.0

Document Type : SRS

Developer : Muhammad Amirul Isyraf bin Rohismadi

1.3 CONTEXT DIAGRAM

Figure 1.1 Context Diagram

Figure 1.1 shows the context diagram of Binocular Vision Management System that

describes the relationship between external modules and internal system. The process is started

from the doctor in which the doctor sends the login detail the system and the system will

respond the process into login success indicating that the doctor has successfully login into the

system. In addition, the doctor can manage doctor by sending the doctor detail into the system

and system will output the doctor detail. Then, the doctor can manage the patient by inserting

patient detail into the system and the system will reply with patient detail indicating that the

doctor can view the registered patient. Lastly, the doctor can manage the treatment by inputting

treatment detail into the system and the system will transfer it to the case-based reasoning for

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 3

classification process and the case-based reasoning will output the treatment result to the

system and the system will display the treatment result to the doctor.

1.4 DATA FLOW DIAGRAM

Figure 1.1 Data Flow Diagram

Figure 1.1 illustrates the data flow diagram of the proposed system that is an extended

version of the context diagram in the Figure 1.1. From here, the client can see more clearly

about the processes involved in the internal system. Login, register an account, manage

patients, and manage treatments are the four processes involved in this system. The data stores

include DoctorModel, PatientModel, and TreatmentModel which are the database of this

proposed system.

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 4

CHAPTER 2

2.1 USE CASE DIAGRAM AND DESCRIPTION

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 5

2.1.1 Use Case Description

For the use case description, refer to report 3.6.2.1.

2.2 SEQUENCE DIAGRAM

Manage Login Module

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 6

Manage Patient Module

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 7

Manage Patient Module (cont..)

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 8

Manage Treatment Module

SOFTWARE REQUIREMENT SPECIFICATION (SRS) FKOM

SRS_BVMS_V1.0 2023 9

Manage Treatment Module (cont..)

SRS_BVMS_V1.0 2023 10

CHAPTER 3

3.1 INTERFACE DESIGN

For the interface design, refer to report 3.8.

3.2 HARDWARE AND SOFTWARE SPECIFICATION

Hardware Specification

CPU AMD Ryzen 5600H 4,2 GHz, 45W TDP

GPU Nvidia RTX3060 6GB GDDR6

Memory 16GB

Measuring

Tool

RAF Ruler

Software Specification

IDE Microsoft Visual Studio Code and Jupyter Notebook

Environment PHP and Python programming language

Architecture

Framework

Laravel Web Artisan, Livewire, NodeJS

Design

Framework

AlpineJS

Database MySQL

Localhost

Server

Laragon

Operating

System

Microsoft Windows

Web

Browser

Brave Browser and Microsoft Edge

126

APPENDIX C

SOFTWARE DESIGN DESCRIPTION FOR BINOCULAR VISION

MANAGEMENT SYSTEM

SDD_BVMS_V1.0 2023 i

SOFTWARE DESIGN
DESCRIPTION (SDD)
AN AUTOMATED STRABISMUS
CLASSIFICATION USING CASE-BASED
REASONING ALGORITHM FOR BINOCULAR
VISION MANAGEMENT SYSTEM

2023

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 ii

DOCUMENT APPROVAL

 Name Date

Authenticated by:

Name

MUHAMMAD AMIRUL ISYRAF

BIN ROHISMADI

20/01/2023

Approved by:

Client

Software : Microsoft Office 365

Archiving Place : OneDrive

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 iii

TABLE OF CONTENT

CONTENT PAGE

DOCUMENT APPROVAL ... ii

TABLE OF CONTENT .. iii

1.1 PROJECT DESCRIPTION .. 1

1.2 SYSTEM IDENTIFICATION .. 1

1.3 PACKAGE ARCHITECTURE ... 2

1.4 ARCHITECTURE DESCRIPTION ... 4

1.4.1 Manage Doctor... 4

1.4.2 Manage Patient... 5

1.4.3 Manage Treatment ... 6

2.1 RESOURCE DETAILED DESCRIPTION .. 7

2.1.1 DoctorResource... 7

2.1.2 PatientResource... 10

2.1.3 TreatmentResource ... 12

2.2 ENTITY RELATIONSHIP DIAGRAM ... 14

2.3 DATA DICTIONARY .. 14

SDD_BVMS_V1.0 2023 1

CHAPTER 1

1.1 PROJECT DESCRIPTION

The Binocular Vision Management System is a comprehensive tool for doctors to manage

their patients and treatments for strabismus or squints disease. The system is divided into two

main components: a web-based application and a machine learning component. The web-based

application is designed to allow doctors to interact with the various system modules, including

the ability to manage login credentials, doctor profiles, patient records, treatment plans, and

appointments. The “Manage Login” module allows doctors to securely log in to the system and

access the other modules. The “Manage Doctor” module allows doctors to view and manage

the profiles of other doctors in the system, including the ability to add, edit, and delete profiles.

In addition, the “Manage Patient” module enables doctors to view, add, edit, and delete

patient records, as well as view and update patient demographics, medical history, and

treatment history. The “Manage Treatment” module provides doctors with the ability to view,

add, edit, and delete treatment records, along with the ability to perform diagnosis and

classification of strabismus conditions by integrating the machine learning component that uses

case-based reasoning algorithm. Lastly, the “Manage Appointment” module enables doctors to

schedule and manage appointments for patients, including the ability to create new events, view

and edit existing events, and view event details.

1.2 SYSTEM IDENTIFICATION

System Title: Binocular Vision Management System

System Abbreviation: BVMS

System Identification Number: SDD_BVMS_V1.0 2023

Version number: Version 1.0.0

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 2

1.3 PACKAGE ARCHITECTURE

i) Routes

Facade of the application. Handle URL requests of the application.

ii) Filament (view package)

a) Pages: Filament custom pages for viewing dashboard and viewing records.

b) Resources: Filament resource modules for doctor, patient, and treatment.

c) Widgets: Filament widgets for statistics and charts.

iii) cbr

Case-Based Reasoning algorithm API integrations.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 3

iv) Http.Controllers

Contains controllers of the application that act as the middleware between

boundary and entity classes.

v) Http.Model

Contains entity classes of the application for CRUD operations.

vi) Config

Contains various files required for the Laravel application including database,

session, auth, and file system configuration.

vii) Database

Contains database files including factories, migration, and seeds.

a) Factories: The factories folder is used to generate a huge number of data

records.

b) Migrations: The migrations folder is used to migrate the database in web

application.

c) Seeds: The seeds folder contains the classes used to perform unit testing

database.

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 4

1.4 ARCHITECTURE DESCRIPTION

1.4.1 Manage Doctor

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 5

1.4.2 Manage Patient

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 6

1.4.3 Manage Treatment

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 7

CHAPTER 2

2.1 RESOURCE DETAILED DESCRIPTION

2.1.1 DoctorResource

Class Type Filament Resource

 Responsibility A Filament resource for managing doctor module

 Attributes Attributes Name Attributes Type

model Doctor

navigationIcon string

navigationGroup string

 Methods Method Name Description

form(Form $form) To create form schema for doctor

table(Table $table) To create table for doctor

getWidgets() To get doctor widgets

getPages() To get all doctor pages

 Algorithm FUNCTION form(Form $form)

MAKE FileUpload "profile_picture" with label "Profile

Picture", image type and avatar

MAKE Grid

MAKE Select “Salutation” with options "Dr.", "Mr.",

"Ms.", "Prof." and default value and placeholder "-"

MAKE TextInput “first_name” with required, max length

50, label “First Name”, placeholder "Enter First

Name", column span 3 and disable autocomplete

MAKE TextInput “last_name” with required, max length

50, label “Last Name”, placeholder "Enter Last Name",

column span 3 and disable autocomplete

MAKE Grid

MAKE TextInput “nric” with label “NRIC”, numeric,

unique (ignoring record), required, placeholder

"Enter NRIC Number", mask pattern "000000-00-0000"

and disable autocomplete

MAKE TextInput “staff_id” with label “Staff ID”,

placeholder "Enter Staff ID", required, unique

(ignoring current record) and disable autocomplete

MAKE TextInput “phone_number” with placeholder "XX-

XXXXXXXX", label "Phone No.", numeric, max length 11,

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 8

prefix "+60", required and disable autocomplete, mask

pattern "00-00000000"

MAKE Grid

MAKE DatePicker “date_of_birth” with placeholder

"Select Date of Birth", display format "d/m/Y",

required and reactive, after state updated set age

based on date of birth

MAKE TextInput “age” with placeholder "Age",

disabled, required

MAKE Select “gender” with placeholder "Select gender"

and options "Male" and "Female"

MAKE Select “role” with label "Staff role",

placeholder "Select role" and options "Lecturer",

"Student" and "Trainee"

MAKE TextInput “email” with required, email

validation, label "Email Address", placeholder "Enter

Email Address" and disable autocomplete

RETURN $form with schema containing above components

and 2 columns

END FUNCTION

FUNCTION table(Table $table): Table

SET $table columns as

TextColumn 'staff_id' with wrap, sortable and label

"Staff ID"

TextColumn 'name' with wrap, label "Name", state

using function that gets the name using salutation,

first_name and last_name, searchable using a query

that searches for first_name

TextColumn 'nric' with sortable, searchable and label

"NRIC"

TextColumn 'phone_number' with label "Phone No." and

prefix "+60"

TextColumn 'role' with sortable, label "Role" and

align center

BadgeColumn 'role' with colors primary for

'Lecturer', warning for 'Student' and success for

'Trainee'

SET $table default sorting as updated_at in

descending order

SET $table filters as

Filter 'created_at' with form containing

Select 'role' with placeholder "Select role"

DatePicker 'created_from' with placeholder as current

date

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 9

DatePicker 'created_until' with placeholder as

current date

query that filters based on created_at date range

indicateUsing function that returns indicators for

created_from and created_until

SET $table actions as

View, Edit and Delete actions with corresponding

labels

SET $table bulkActions as

FilamentExportBulkAction 'export' with disablePreview

andtimeFormat "d M y - h:i:sa"

DeleteBulkAction

RETURN $table

END FUNCTION

FUNCTION getPages(): array

RETURN array with routes for

'index' as Pages\ListDoctors with route '/'

'create' as Pages\CreateDoctor with route '/create'

'edit' as Pages\EditDoctor with route'/edit/{record}'

'view' as Pages\ShowDoctor with route

'/view/{record}'

END FUNCTION

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 10

2.1.2 PatientResource

Class Type Filament Resource

 Responsibility A Filament resource for managing patient module

 Attributes Attributes Name Attributes Type

recordTitleAttribute string

model Patient

navigationIcon string

navigationGroup string

 Methods Method Name Description

form(Form $form) To create form schema for patient

table(Table $table) To create table for patient

getPages() To get all patient pages

 Algorithm FUNCTION form(Form $form): Form

MAKE Wizard

MAKE Step "Patient"

MAKE Grid

MAKE TextInput "patient_name"

MAKE TextInput "nric"

MAKE Grid

MAKE DatePicker "date_of_birth"

MAKE TextInput "age"

MAKE TextInput "phone_number"

MAKE Select "gender"

MAKE Grid

MAKE TextInput "occupation"

MAKE TextInput "parent_name"

MAKE Section "Home Address"

MAKE TextInput "home_address1"

MAKE TextInput "home_address2"

MAKE TextInput "home_city"

MAKE Select "home_state"

MAKE TextInput "home_postcode"

MAKE TextInput "home_country"

END FUNCTION

FUNCTION table(Table $table): Form

Set the columns of the table to include:

'patient_name' as a sortable and searchable text

column with label 'Name'

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 11

'nric' as a sortable and searchable text column with

label 'NRIC'

'age' as a text column with the value obtained using

a callback function that calculates the age of the

patient using the date of birth

'gender' as a sortable text column

'phone_number' as a text column with label 'Phone

No.' and a prefix of '+60'

'treatment' as a badge column with label 'Treatments'

and aligned center, with the value obtained using a

callback function that counts the number of

treatments for the patient

Set the default sort order of the table to be by

'updated_at' in descending order

Add no filters to the table

Add actions to the table:

'View' with label 'View'

'Edit' with label 'Edit'

'Delete' with label 'Delete'

Add bulk actions to the table:

'export' with FilamentExportBulkAction, with preview

disabled and time format 'd M y - h:i:sa'

'Delete' with Tables\Actions\DeleteBulkAction

 Return the table

END FUNCTION

FUNCTION getPages(): array

RETURN array with routes for

'index' as Pages\ListPatients with route '/'

'create' as Pages\CreatePatient with route '/create'

'edit' as Pages\EditPatient with

route'/edit/{record}'

'view' as Pages\ShowPatient with route

'/view/{record}'

END FUNCTION

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 12

2.1.3 TreatmentResource

Class Type Filament Resource

 Responsibility A Filament resource for managing treatment module

 Attributes Attributes Name Attributes Type

model Treatment

navigationIcon string

navigationGroup string

 Methods Method Name Description

form(Form $form) To create form schema for treatment

table(Table $table) To create table for treatment

getPages() To get all doctor treatment

 Algorithm FUNCTION form(Form $form): Form

Step 1: "Patient"

Description: "Choose patient"

Icon: "heroicon-o-identification"

Schema: getFormSchema('section_patient')

Step 2: "Treatment"

Description: "Record medical parameters"

Icon: "heroicon-o-eye"

Schema: getFormSchema('section_treatment')

Step 3: "Doctor"

 Description: "Select person in charge"

Icon: "heroicon-o-user-group"

Schema: getFormSchema('section_doctor')

Step 4: "Remark"

Description: "Fill in treatment remark"

Icon: "heroicon-o-book-open"

Schema: getFormSchema('section_remark')

 RETURN $form with columns 1

END FUNCTION

FUNCTION table(Table $table)

RETURN $table

SET columns

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 13

TextColumn: treatment_no, sortable, searchable, label

'No.'

TextColumn: patient_name, label 'Patient', using

patient_name of related Patient

TextColumn: treatment_date, label 'Date', using

formatted treatment_date

BadgeColumn: aa_result_l, label 'Left AA', using

switch case to determine 'Normal' or 'Failed' color

BadgeColumn: aa_result_r, label 'Right AA', using

switch case to determine 'Normal' or 'Failed' color

BadgeColumn: la_result, label 'LA', using switch case

to determine 'Normal', 'Excess', or 'Insufficient'

color

SET defaultSort 'updated_at', 'desc'

SET actions

ViewAction

DeleteAction

SET bulkActions

FilamentExportBulkAction, disablePreview, timeFormat

'd M y - h:i:sa'

 DeleteBulkAction

END FUNCTION

FUNCTION getPages(): array

RETURN array with routes for

'index' as Pages\ListTreatments with route '/'

'create' as Pages\CreateTreatment with route

'/create'

'edit' as Pages\EditTreatment with

route'/edit/{record}'

'view' as Pages\ShowTreatment with route

'/view/{record}'

END FUNCTION

SOFTWARE DESIGN DESCRIPTION (SDD) FKOM

SDD_BVMS_V1.0 2023 14

2.2 ENTITY RELATIONSHIP DIAGRAM

2.3 DATA DICTIONARY

For data dictionary, refer to 3.7.2 in report.

