DESIGN AND DEVELOPEMENT OF ENCODER SENSOR
WITH GRAPHICAL USER INTERFACE (GUI)

IHSAN BIN AHMAD ZUBIR

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS*®

JUDUL: DESIGN AND DEVELOPEMENT OF ENCODER SENSOR
WITH GRAPHICAL USER INTERFACE (GUI)

SESI PENGAJIAN:_ 2007/2008

Saya THSAN BIN AHMAD ZUBIR (851103-08-5947)
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /DekterEalsafah)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

Tesis adalah hakmilik Kolej Universiti Kejuruteraan & Teknologi Malaysia.

Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.

**Sila tandakan (\)

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub

di dalam AKTA RAHSIA RASMI 1972)

(Mengandungi maklumat TERHAD yang telah ditentukan

oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)
Alamat Tetap:

NO 4 KAMPUNG BANJIR, MUHAMMAD SHARFI BIN NAJIB
JALAN TAAYAH, (Nama Penyelia)

33000 KUALA KANGSAR,

PERAK DARUL RIDZUAN.

Tarikh: 30 NOVEMBER 2007 Tarikh: : 30 NOVEMBER 2007

CATATAN: * Potong yang tidak berkenaan.

HoH Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.

. Tesis dimaksudkan sebagai tesis bagi [jazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

‘Thereby declare that I have read this thesis and in
My opinion this thesis is sufficient in terms of scope and
Quality for the award of the Degree of

Bachelor of Electrical & Electronic Engineering’

Signature L ettt ettt et eeteenaeea
Supervisor : Mr. Muhammad Sharfi bin Najib
Date : 30 November 2007

DESIGN AND DEVELOPEMENT OF ENCODER SENSOR
WITH GRAPHICAL USER INTERFACE (GUI)

IHSAN BIN AHMAD ZUBIR

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor Degree of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2007

i

“All the trademark and copyrights use herein are property of their respective owner.
References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author?”

Signature

Author : IHSAN BIN AHMAD ZUBIR

Date : 30 November 2007

il

Dedicate to my beloved family and friends

who always give me a courage to finish this thesis.

Also, to those people who have been supportive through all this time.

Thank you for the kindness and advices that have been given.

God bless you all,-amin-

v

ACKNOWLEDGEMENT

Alhamdulillah, I'm grateful to the creator Allah S.W.T because of His regards
I finally finish this final year project. Without His blessing it is difficult for me to
overcome and face all problems while completing this project. I also would like to
express thousand of thank to my supervisor, Mr. Muhammad Sharfi bin Najib who

give highly encouragement, supporting and guideline in order to finish this task.

Not forgetting to my beloved parents that always prays for me and give me
strength with unlimited effort. They always remind and give lots of motivation about
patient and ask me to never give up. Thank you mum and my father, may Allah bless

you always.

Beside that, thank you very much to my entire friend who always shares ideas

and co-operation in order to finish this project. I wish you all best of luck.

Lastly, thank you for those who are involved directly or indirectly and your

co-operation will never be forgotten.

Thank you Ihsan bin Ahmad Zubir

ABSTRACT

MATLAB is one of the software that can create Graphical User Interface
(GUI). The GUI will be designed using guide to create the layout editor. The
objective of this project is to display the signal that is generated by encoder sensor in
GUI. There are three phases to develop this project. Phase one is a development of
the sensor circuit to produce signal in analogue form. The next phase is a construct
of the controller circuit in order to convert the analogue signal to digital signal. In
controller circuit it also used Intergrated Circuit (IC) MAX233. The function of the
IC is to transmit or retrive the data from external device to the computer or vice versa
and at the same time it remains the signal in stable condition by amplified the signal
in order to reduce the losses and noise. At computer, DB9 used to connect with the
port in computer. The changes of the signal form from analogue signal to digital
signal are necessary because the computer only can accept the data in digital form.
The final phase is a development of the GUI in MATLAB. In the end of this project,
the signal generated by encoder sensor displayed in GUI.

vi

ABSTRAK

MATLAB adalah satu perisian yang boleh mencipta GUI. GUI akan dicipta
menggunakan ‘guide’ untuk membuat ‘layout editor. Objektif projek ini adalah untuk
mempamerkan isyarat yang dijanakan oleh ‘encoder sensor. Terdapat tiga fasa untuk
membangunkan projek ini. Fasa pertama adalah membangunkan litar pengesan untuk
menghasilkan isyarat yang man isyarat tersebut ialah isyarat analog. Seterusnya ialah
membuat litar kawalan untuk menukar isyarat analog kepada isyarat digital. Dalam
litar kawalan tersebut ia juga menggunakan litar bersepadu MAX233. Fungsi litar
bersepadu tersebut adalah untuk hantar atau terima data daripada perkakasan luar ke
komputer atau sebaliknya dan pada masa yang sama ia akan kekalkan signal dalam
keadaan stabil dengan menguatkan isyarat bertujuan untuk mengurangkan kelesapan
atau gangguan. Di komputer DB9 telah digunakan untuk hubungkan perkakasan luar
dengan port dalam komputer. Perubahan bentuk isyarat daripada isyarat analog
kepada isyarat digital adalah perlu kerana komputer hanya boleh terima data dalam
isyarat digital sahaja. Fasa yang terakhir ialah membuat GUI dalam MATLAB. Pada
akhir projek ini, isyarat yang dihasilkan oleh ‘encoder sensor boleh dipamerkan dalam

GUL

TABLE OF CONTENTS

CHAPTER TITLE

DECLARATION
DEDICATION
ACKNOWLEDGEMENT
ABSTRACT

ABSTRAK

TABLE OF CONTENT
LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS
LIST OF APPENDICES

1 INTRODUCTION

1.0 Background

1.1 Problem Statement
1.2 Objective

1.3 Scope of Project

2 LITERATURE REVIEW

2.0 Introduction

2.1 Graphical User Interface (GUI)
2.2 Matlab GUI

2.3 Creating GUIs with GUIDE
24 Sensor and Analog sensor

2.5 Encoder

2.6 Microcontroller Motorola 6811

2.7 Oscilloscope

vii

PAGE
ii
iii

iv

vi
vii

ix

xi

xii

AW

3 METHODOLOGY

3.0
3.1
3.2
33

34

Introduction
Methodology of Work Flow
Research Methodology
Developing Hardware
3.3.0 Introduction
3.3.1 Design and Development MC6811 Circuit
3.3.2.0 Power Supply Module
3.3.2.1 Crystal Driver and External Clock
3.3.2.2 Reset
3323 MAX?233
3.3.2.4 Complete Circuit Micro-C 6811
3.3.2 Developing the Programming of Micro-C
Developing Software
3.4.0 Introduction
3.4.1 Step to Create MATLAB GUI Development
Enviroment
3.4.2 MATLAB Coding to Create GUI
3.4.2.0 Initialize Coding for GUI
3.4.2.1 Content Coding for GUI
3.5.3.2 Close coding for GUI

4 RESULT AND ANALYSIS

4.0
4.1

Result

Analysis

5 CONCLUSION AND RECOMMANDATION

5.0
5.1

Conclusion
Recommandation

5.1.1 Costing and Commercialization

REFERENCES

viii

17

17

18
19
20
20
20
21
22
23
24
25
26
27
27

27
31
31
32
33

34

34
37

38

38
39
39

41

TABLE NO.

2.1
5.0

LIST OF TABLES

TITLE

Port and Function for 68HC11

List of component and ifs cost

X

PAGE

15
40

FIGURE NO.

2.1
2.2
23
3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
4.1
4.2
4.3
4.4
4.5

LIST OF FIGURES

TITLE

Graphical User Interface (GUI) layout

The MC16F877

48-pin DIP pin assignment

Flowchart of project operation

Pin assignments

A simplified block diagram of MC68HC11-based system
Power supply module

Clock circuit

A reset circuit

(EIA 232 MODULE) or MAX233 Interface
Schematic circuit bootstrap mode connection
Coding to generate encoder sensor signal

Main window of GUI

Analysis Scope window of GUI before plot the data
Analysis scope window of GUI after plot the data.
The signal of encoder sensor in oscilloscope

The signal of encoder sensor in GUI

PAGE

13
14
18
20
21
22
23
23
24
25
26
34
35
36
37
37

GUI
MCU

LIST OF ABBREVIATIONS

Graphical Users Interafce

Microcontroller Unit

X1

APPENDIX

oy

LIST OF APPENDICES

TITLE

Full Schematic Circuit of Bootstrap Mode
Max-233 Datasheet
Full Coding of GUI

Xii

PAGE

44
46
51

CHAPTER 1

INTRODUCTION

1.0 Background

This project scope is to design and develop encoder sensor using
microcontroller Motorola 6811 through MATLAB GUI. The main contribution is the
interfacing of the MATLAB with microcontroller, GUI and Encoder Sensor. This
project focuses on the measurement of the signal that generate by encoder sensor.
The signal is in digital because the encoder sensor generate digital signal, it will

make easy to us to see the result and also can avoid from noise.

The GUI will make easy to us to see the graph in form of graphic. GUI

developed using MATLAB software because it is suitable with mathematic equation.

This project will help the students to check or trouble shooting their circuit
using this software in their rooms. The cost to make this project is low than the price
of the oscilloscope, the most important things we can determine and check the signal,
same as the function of the oscilloscope. Besides that, the maintenance cost of

oscilloscope is very high.

This project is suitable for education purpose. The students can use this

software to see the signal and measure the signal easily.

1.1 Problem Statement

This project was done because it is user friendly especially for student to
make analysis in computer as compared to oscilloscope which price is more
expensive. However, the future of this project until recently seemed unimpressive in

find the correct coding to create GUI.

It will become more complicated when GUI involves with complicated
analysis and mathematical formula. Here, the problem is to create the new coding

need more research towards GUI.

The other problem is to interface the GUI with microcontroller. The selection
of microcontroller is quite difficult in order to find suitable microcontroller. Besides

that, measuring Matlab using command window is not as user friendly as GUI.

1.2 Objective

The aim of this project is to display the actual signal that generate by encoder

sensor in GUI. The signal will display in digital signal.

Basically a graph will be displaying as an electrical signal. In most
applications the graph shows how signals change over time: the vertical (Y) axis

represents voltage and the horizontal (X) axis represents time.

The main objective of this project is to plot the actual signal that generate by

encoder sensor.

1.3 Scope of Project

This project is design to measure and displays the signal in GUI. The screen
must display the digital signal. The signal can be adjust by adjust the scale of voltage
per division or second per division. The function of voltage per division or second

per division is easily to get the accurate value.

Besides, it is necessary to interface of MATLAB with microcontroller, GUI
and Encoder Sensor. This project will use microcontroller as a connecter between
software and hardware. By using microcontroller it will make easy to program and
the type of microcontroller that will be used in this project is microcontroller
Motorola 6811. Most importantly, this project is to fulfill two scopes that are display

the signal on GUI and also can interface between GUI and microcontroller.

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In order to perform this project, literature review have been made from
various sources likewise journal, books and other references such as article. In
simple term, the reference sources emphasize on few aspects and the important
aspect is the assembly mechanism analysis and how to design and develop encoder
sensor, create GUI using MATLAB and construct microcontroller circuit. This
chapter will describe about GUI, MATLAB GUI, creating GUIs with GUIDE,
Sensor and Analog sensor, Encoder, microcontroller Motorola 6811 and

Oscilloscope.

2.1 Graphical User Interface (GUI)

A GUI is a human-computer interface that uses windows, icons and menus
and which can be manipulated by a mouse and a good GUI can make programs
easier to use by providing them with a consistent appearance and with intuitive
controls like pushbuttons, list boxes, sliders, menus, and so forth. [1][2][3] In
medical Simulink (MATLAB), it will compare the process of implementing a
Pharmaco-kinetic/ Pharmaco-dinamic model of a biological system in traditional
package. During simulation, a scope block automatically produces a time-course of

the concentration of drug in the model compartments over a specified period.[2]

A window is a (usually) rectangular portion of the monitor screen that can
display its contents (e.g., a program, icons, a text file or an image) seemingly
independently of the rest of the display screen. A major feature is the ability for
multiple windows to be open simultaneously. Each window can display a different
application, or each can display different files (e.g., text, image or spreadsheet files)
that have been opened or created with a single application. The GUI components can
be menus, toolbars, push buttons, radio buttons, list boxes, and sliders -- just to name
a few. In MATLAB, a GUI can also display data in tabular form or as plots, and can

group related components. [1][2]

2.2 MATLAB GUI

The following Graphical User Interface MATLAB programs have been
developed for the computational aids in the electrical engineering topics outlined in
the menu at left. These GUI programs with point-and-click features are designed for
ease of use. These programs together with the traditional hand-written problems can
help students to develop a stronger intuition and deeper understanding of these

topics.[4]

The following aims to present some code which is repeatedly used and

establishes what is expected from objects. The common code as below:

1. Radio Buttons

Where a group of buttons is inter-related, the following code should do:
set(handles.optionl, Valué, 1);
set(handles.option2, ’Valué, 0);
set(handles.option3, "Value, 0);
where optionl is the source of the callback. For the other options, the only part which
needs changing is the latter one where the state of the button is defined by a zero or a

one.[5]

2. Check Boxes

A naive yet useful implementation of those will involve an element state
which hold some information about the state of the checkbox or its meaning.
if (get(handles.state, Value’) == 0),
set(handles.checkbox, "Value, 0);
set(handles.state, ’String, U);
else
set(handles.checkbox, "Value, 1);
set(handles.state, ’String, T’);
end [5]

3. Drop-down Menus

In the following, the menu object needs to first be identified using:
contents = get(hObject,String);
Subsequently, the menu entry needs to be checked for extraction and setting of
information.
if (stremp(contents {get(hObject, Value)} ,; MenuEntry 1)),
set(handles.data, String, Datal’);
elseif (stremp(contents {get(hObject, Value’)} ,MenuEntry?2)),
set(handles.data, *String, Data2);
else
msgbox(Error with menu callback. Parameter passed is not recognised.’);

end[5]

4. Slhiders

The following code will fetch the quantised value of the slider and assign
it to a new object called slider value.set(handles.slider value, ’String,
num?2str(ceil(get(handles.slider,)
For items that need to be ticked and unticked, the following can be
useful.
set(handles.menuitem1, Checked, off);
set(handles.menuitem2, ‘Checked, off);
set(handles.menuitem3, ‘Checked, off);
set(handles.menuitem4, Checked, ’on);

set(handles.menu_selection, ’String,’item4’) [5]

For GUI editing, more efficient work on the code can be done by opening all
relevant files in advance. I personally write M-files to open all relevant windows at
the start. Set up a file which includes the following lines:
edit <m-file1> <m-file2>...
guide <fig-file1> <fig-file2>...
where of course the files listed are these which are frequently worked

upon. [5]

MATLAB GUI is a very powerful tool when used correctly. It takes a lot of
experimenting with and a good background in programming. We also must have a
good understanding of MATLAB and be able to use the MATLAB language and

commands to create routines.

23 Creating GUIs with GUIDE

MATLAB implements GUIs as figure windows containing various uicontrol
objects. You must program each object to perform the action you intend it to do
when a user activates the component. In addition, you must be able to save and run
your GUI. All of these tasks are simplified by GUIDE, the MATLAB graphical user

interface development environment.[9]

GUIDE, the MATLAB Graphical User Interface development environment,
provides a set of tools for creating GUIs. These tools greatly simplify the process of
laying out and programming a GUI. GUIDE is displayed when GUI is opened in the
Layout Editor, which is the control panel for all of the GUIDE tools. The Layout
Editor will enables to lay out a GUI quickly and easily by dragging components,
such as push buttons, pop-up menus, or axes, from the component palette into the

layout area. The following picture shows the Layout Editor.[9]

Alignment Tool Menu Editor M-file Editor Property Inspector Object Browser

Run Button
Undo

=1

File Edit i ayout Tools

D E| s g BB SEged| -

Redo ———"—41?9;9-:!

Push Button

[Toggle Button
@® Radio Button
M4 Checkbox Layout Area

Component [l Edit Text

Pulette

T Static Text

= Slider
[~ Frame
=l Listbox
=3 Popup Menu

it axes

Figure Resize Tab

Figure 2.1: Graphical User Interface (GUI) layout

10

Once GUI lay outed of and set each component's properties, using the tools in
the Layout Editor, GUI can be programmed with the M-file Editor. Finally, press the
Run button on the toolbar, the functioning GUI appears outside the Layout to see the

result.

GUI Development Environment

Creating a GUI involves two basic tasks. They are laying out the GUI
components and programming the GUI components. GUIDE primarily is a set of
layout tools. However, GUIDE also generates an M-file that contains code to handle
the initialization and launching of the GUI. This M-file provides a framework for the
implementation of the callbacks -- the functions that execute when users activate

components in the GUL[9]

GUIDE Generated Files

While it is possible to write an M-file that contains all the commands to lay out a
GUI, it is much easier to use GUIDE to lay out the components interactively. When

you save or run the GUI, GUIDE automatically generates two files:

o A FIG-file -- a file with a .fig file name extension, which contains a complete
description of the GUI figure and all of its children (uicontrols and axes), as
well as the values of all object properties. You make changes to the FIG-file
by editing the GUI in the Layout Editor.

e An M-file -- a file with a .m file name extension, which contains the
functions that run and control the GUI and the callbacks. This file is referred
to as the GUI M-file.

Note that the M-file does not contain the code that lays out the uicontrols; this

information is saved in the FIG-file.[9]

11

Features of the GUI M-file

GUIDE simplifies the process of creating GUIs by automatically generating
the GUI M-file directly from your layout. GUIDE generates callbacks for each
component in the GUI that requires a callback. Initially, GUIDE generates just a
function definition line for each callback. You can add code to the callback to make
it perform the operation you want. The M-file contains two other functions where

you might also need to add code:

e Opening function -- performs tasks before the GUI becomes visible to the
user, such as creating data for the GUI. GUIDE names this function
my_gui_OpeningFcn, where my gui is the name of the GUI.

e Output function -- outputs variables to the command line, if necessary.
GUIDE names this function my gui OutputFcn, where my_gui is the name

of the GUL[9]

24 Sensor and Analog sensor

Sensors translate between the physical world and the abstract world of
Microcontrollers. Sensors help translate physical world attributes into values that the
computer on a robot can use. The translation produces some sort of output value that
the Microcontroller can use. In general, most sensors fall into one of two

categories.They are analog sensor and digital sensor.[7]

An analog sensor, such as a CdS cell (Cadmium Sulfide cells measure light
intensity), might be wired into a circuit in a way that it will have an output that
ranges from 0 volts to 5 volts. The value can assume any possible value between 0
and 5 volts. An 'Analog Signal' is one that can assume any value in a range. An
interesting way to think about this is an Analog Signal works like a tuner on an older
radio. You can turn it up or down in a continuous motion. You can fine tune it by

turning the knob ever so slightly.[7]

12

Remember, to successfully use an Analog sensor, some way are needed to
convert the data into a digital form. All of the circuits shown in this section are
intended to be connected to a A/D converter port. Many Microcontrollers, such as the
68HCI11, have A/D ports built in. Others require that you add an additional support
chip, such as the ADC805 or other equivalent chip.[7]

Cadmium-Sulfide is an interesting compound. Its resistance changes readily
when exposed to light energy. Typically, the more light, the lower the resistance.

This is useful for measuring the intensity of light.[7]

2.5 Encoder

An encoder comes in two architectures. The first architecture is linear. The
second architecture is rotary. Both types sense mechanical motion and translate the
information (velocity, position, acceleration) into useful electrical data. Besides that,
an encoder defines as a device used to change a signal (such as a bitstream) or data
into a code. The code may serve any of a number of purposes such as compressing
information for transmission or storage, encrypting or adding redundancies to the
input code, or translating from one code to another. This is usually done by means of
a programmed algorithm, especially if any part is digital, while most analog

encoding is done with analog circuitry. [6] [7]

There are a few subtle differences between absolute and incremental rotary
encoders. Incremental encoders have output signals that repeat over the full range of
motion. It is important to understand that each mechanical position is not uniquely
defined. When the incremental encoder is turned on, the position of an incremental
encoder is not known since the output signals are not unique to any singular position.
Absolute encoders have a unique value (voltage, binary count, etc) for each
mechanical position. When an absolute encoder is turned on, the position of an
absolute encoder is known (this function resembles a resolver, although the
principles of operation have no similarity.) The similarities of both absolute and

incremental encoders are form factor and the issues of count and directional

13

information. They can be obtained from both absolute and incremental encoders

equally.[6]

2.6 Microcontroller Motorola 6811

M)
MCEBHCI11ATP
BOST

ZTQABB9S50

Figure 2.2 : The MC16F877

The microcontroller MC68HC11A1 is a high performance 8-bit
microcontroller units (MCUSs) base on the MC68HCI11 family. It uses the HCMOS
technology to produce faster and small controller with less power consumption and
high tolerance for noisy signal. These high speed, low power consumption chips

have multiplexed buses and a fully static design. The chips can operate at frequencies

from 3 MHz to dc.[9][10]

This microcontroller offers a lot of features than other microcontroller in
MC68HCI11 family. It has its own CPU , power saving stop and wait modes features,
8 Kbytes ROM, 512 Bytes on-chip EEPROM , 256 bytes of on-chip RAM, 16 bit
timer system, 8 bit pulse accumulator, real time interrupt circuit, COP watch dog
system, synchronous serial peripheral interface (SCI), asynchronous no return to zero

SCI, 8-channel, 8 bit ADC and 38 general purpose I/O pins.[10]

In MC68HC11, the programming used in this microcontroller is assembly
language. This language is upward compatible, means that the latest version of
MC68HCI11 family can run program from the old version of MC68HCI11 family but
the old version of MC68HCI11 family cannot run program from the latest version

MC68HC11 family.[9]

14

o/
PA7/PAIIOCT [] 1 48 [1 Vpp
PA6/OC2/0C1 [] 2 47 [1 PD5SS
PA5/0C3/0C1 [3 46 [1 PD4SCK
PA4/0C4/0C1] 4 45 1 PD3MOSI
PA3/0C5/0C1 [] 5 44 [1 PD2MISO
PA2ICT [] 6 43 [1 PDITXD
PAINC2 O 7 42 [1 PDORXD
PAO/IC3 [8 41 1 RO
PB7/A15] 9 40 0 XIRQ
PB&/A14 [] 10 39 (1 RESET
PB5/A13 [11 380 PC 7/A7iD7
PB4jA12 [12 37 [1 PC6/AG/DS
PB3/A11 [] 13 36 [1 PC5/A5/D5
PB2/A10 [] 14 35 [0 PC4/A4/D4
PB1/A9 [] 15 34 [1 PC3/A3/D3
PBW/AS [16 33 [0 PC2/A2/D2
PEO/ANO O 17 32 1 PC1/A1/D1
PE1/ANt [] 18 31 [1 PCO/M0/DO
PE2/AN2 [] 19 30 [1 XTAL
PEXAN3 [20 29 1 EXTAL
VRL O 21 28 [1 STRB/RW
VRH [22 270 E
Vgg [23 26 [] STRA/AS
MODBVgrgy [24 25 [1 MODALIR

Figure 2.3 : 48-pin DIP pin assignment

MC68HC11 have 4 modes operation, bootstrap mode, special test mode,
expanded-multiplexed mode and single-chip mode. In bootstrap mode, all the
program are place into the RAM, whereas, special test is used by manufacturer to test
the chip in factory, so this mode only can be used manufacturer. Single chip
operation by using internal memories and expanded-multiplexed is mode where users
can expand memory and I/O lines by uses the port B and port C as an address and
data buses. All mode of operation is determine by status MODA and MODB pins
during RESET operation.[9][10]

Ports in MC68HC11 are multiplexed; that is each port offers various function

with each port perform one task at one time.

15

Table 2.0: Port and Function for 68HC11

PORT FUNCTION

A Parallel I/O or timer/counter

B Output port or upper address (A8-A15) in expanded mode.

C I/0 port or lower address (A0-A7) and data bus (D0-D7) in expanded
mode.

D 6 bits I/O port or serial communication interface (SCI) and serial
peripheral interface (SPI)

E Input port or 8-cahnnels input analog for ADC

Latest version of MC68HC11 family such as version F has port F and G and

low cost version such as D version only has port A, B, C and D.[8]

2.7 Oscilloscope

An oscilloscope (sometimes abbreviated CRO, for cathode-ray oscilloscope,
or commonly just scope or O-scope) is a piece of electronic test equipment that
allows signal voltages to be viewed, usually as a two-dimensional graph of one or
more electrical potential differences (vertical axis) plotted as a function of time or of

some other voltage (horizontal axis).[11]

One of the most frequent uses of scopes is troubleshooting malfunctioning
electronic equipment. One of the advantages of a scope is that it can graphically
show signals: where a voltmeter may show a totally unexpected voltage, a scope may
reveal that the circuit is oscillating. In other cases the precise shape of a pulse is

important.

In a piece of electronic equipment, for example, the connections between
stages (e.g. electronic mixers, electronic oscillators, amplifiers) may be "probed' for
the expected signal, using the scope as a simple signal tracer. If the expected signal is
absent or incorrect, some preceding stage of the electronics is not operating correctly.

Since most failures occur because of a single faulty component, each measurement

16

can prove that half of the stages of a complex piece of equipment either work, or

probably did not cause the fault. [11]

Once the faulty stage is found, further probing can usually tell a skilled
technician exactly which component has failed. Once the component is replaced, the

unit can be restored to service, or at least the next fault can be isolated. [11]

Another use is to check newly designed circuitry. Very often a newly
designed circuit will misbehave because of design errors, bad voltage levels,
electrical noise etc. Digital electronics usually operate from a clock, so a dual-trace
scope which shows both the clock signal and a test signal dependent upon the clock
is useful. "Storage scopes" are helpful for "capturing" rare electronic events that

cause defective operation. [11]

Another use is for software engineers who must program electronics. Often a

scope is the only way to see if the software is running the electronics properly. [11]

17

CHAPTER 3

METHODOLOGY

3.0 Introduction

In developing this project, methodologies is one of the most important
element to be consider to make sure that the development of the project is smooth
and get the expected result. A good methodologies can described the structure or the
flow of the project where by it can be the guideline in managing it. It is also to avoid
the project to alter course from the objectives that have been stated or in other words
the project follow the guideline based on the objectives. Figure 3.1 shows the flow

chart of methodology of this project. Below is the step to develop this project:

i. Developing hardware

ii. Developing software

3.1 Methodology of work flow

18

Literature review

/ and collect data \

hardwa

Identify and develop

re

Study Matlab GUI

Microcontroller

No

/\

v

Encoder
sensor

Create programming
and simulate

Integrate
hardware and —
software

-
Testing the
Prototype

v Yes

| Demo the project

| —> | Project report |

{

Figure 3.1: Flowchart of project operation

The block diagram above is the method to execute this project. First

determine the title. Than, collect data by make some research and literature review.

This method divided into two sections:

develop of hardware and create

programming. For hardware, there are three circuit will develop. They are encoder

sensor circuit and microcontroller Motorola 6811 circuit, at the same time develop

the programming and then both of them, hardware and the software will test. If the

testing is successful, both of them will integrate and then test and demo, and also

submit the report.

19

3.2 Research methodology

Based on the research of this project, it is suitable to design GUI using
MATLAB. It is because this project uses more calculation programming, it is not
suitable to use visual basic because it is suitable for simple mathematical calculation.
This project will use microcontroller Motorola 6811 to interface between hard ware
and software, GUIL. In this project signal will generate by encoder sensor. Encoder
sensor consists of transmitter and receiver circuit. The signal from transmitter circuit
will transmit the signal to receiver circuit, the opaque object will cut the signal before
it get into microcontroller and then go through the MAX 233 before it display on
GUL

20

33 Developing Hardware

3.3.0 Introduction

There are a lot of components used in developing this project. The main
components are microcontroller Motorola 6811 as an interface medium between
hardware and software GUI , infrared transmitter and receiver as a sensor to create
signal and IC MAX233 will functioning as a connector between microcontroller and
computer. The signal will generate by encoder sensor than, the signal will display on

GUI through Microcontroller Motorola 6811.

3.3.1 Design and development of MC6811 circuit

Basically, microcontroller unit has internal CPU, memory and registers.
Externally, it has pins for I/O and bus signals. The I/O pins are grouped in sets of
eight called ports. For the references see figure 3.2 where it shows the pin
assignments. The MC68HC11 can be operated in different modes. They are single

chip, expanded, boot-strap, and special test.

MODB | MODA Mode Selected
1 0 Single Chip
1 1 Expanded Multiplexed
0 0 Special Bootstrap
0 1 Special Test

Figure 3.2: Pin assignments

The mode selected is determined by how pins MODA and MODB are
connected at the time of reset. To set it become bootstrap mode, both pins MODA
and MODB must be grounded to get logic ‘0. The bootstrap mode is considered a

special operating mode as distinguished from the normal single-chip operating mode.

21

This is a very versatile operating mode since there are essentially no limitations on

the special purpose program that can be loaded into the internal RAM.

CLOCK cct RESET cct
MC68HC11A1
POWER EIA232
module MModule

Figure 3.3: A simplified block diagram of MC68HC11-based system

3.3.2.0 Power Supply Module

MC68HCI11 is must be design based on it specification, this is important to
ensure the system could operate properly and more important is to avoid permanent
damage to the microcontroller. Thus, the main purpose of power supply module is to
be as power source to the microcontroller which fulfills the criteria of the
MC68HCI11. The figure 3.4 illustrates the circuitry for the power supply module.
This circuit functions to supply dc source at fixed voltage level at 5V and avoid the
over current from entering microcontroller. The condition could be achieved by

using IC regulator 7805 which provide fixed 5V although the load is changed.

22

7805
>6V 1] (1.5n) 3 5V
2
= 1uf = 1uf = 100uf
GND GND

Figure 3.4: Power supply module

3.3.2.1 Crystal Driver and External Clock Input (XTAL, EXTAL)

These two pins provide the interface for either a crystal or a CMOS
compatible clock to control the internal clock generator circuitry. The frequency
applied to these pins shall be four times higher than the desired E clock rate. The
XTAL pin is normally left exterminated when using an external CMOS compatible
clock input to the EXTAL pin. However, a 10K to 100K load resistor to ground may
be used to reduce RFI noise emission. The XTAL output is normally intended to
drive only a crystal. The XTAL output may be buffered with a high-input-impedance
buffer such as the 74HCO04, or it may be used to drive the EXTAL input of another
M68HCI11. In all cases take extra care in the circuit board layout around the
oscillator pins. Load capacitances shown in the oscillator circuits include all stray

layout capacitances.

23

EXTAL
10M
AN XTAL
1111
REEL
8 MHz
22 pF—= - 22 pF

Figure 3.5: Clock circuit

3.3.2.2 Reset (RESET)

This active low bidirectional control signal is used as an input to initialize the
MC68HC11A1/A8 to a known start-up state, and as an open-drain output to indicate
that an internal failure has been detected in either the clock monitor or computer
operating properly (COP) watchdog circuit. This reset signal is significantly different

from the reset signal used on other Motorola MCUs.

+5V

g 10k

RESET

= 4.7uF

w

Figure 3.6: A reset circuit

3.3.2.3 MAX233

24

The function of MAX233 is to amplify signal in order to reduce the losses

during transmit or receive data from Microcontroller 6811 to the PC.

DB9 interface

TX(2)05 Toud

Rin

Rx(3p&

MAX233

Tin

Rout

GND(SbE—
L

TxD

RxD

Figure 3.7: (EIA 232 MODULE) or MAX233 Interface

3.3.2.4 COMPLETE CIRCUIT MICROCONTROLLER 6811

25

7805
U1 {1.54) I 4 At
T‘luf 2 T1uf TWqu
o L oD
¥
D—g PAUICS 5 PBOIA %D
D—APAICE 5 PO D
o L PRIAID (10
o—{PRUOCIOC PBYAIT 70
O—HPAIOCHOCT PBAAIL [0
- O—-{PRIOCHOC! PBBTAIS [0
o—HpARI0CHOC PBRIAId [0
e L A
L o3 pooomo ORI e
o—SHPCUAID PO
o D—{PCHAD POIMSD g0
O HPCHRID POIMOSI 0
O—{PCUMIDE POYSCK 0
O—{PCBGIS POASS 0
0 PCiABI08 »
| e L eHo
|
’ ’ o1 0 MODAODATE
T RING. R1OUT 55 Do PEIANI RST 0
o RINS RaouT 0 D PEHAN, STRAAS F—0
! : oipEvan STRBRAY 0 -
TN TIoUT g -
DTN ToUT 0 o4 VR
2Rl —
oo . RESET
o—Hct B 2
I, W w BT 10k
C+ 4 | — -
i c 04| .
e | uaensTeY 2
% oo o—2-¥iR 5
Cmlw zz T4
L BBHCI 1A d
©)
1o
- - -
)
§ Mg
npfx =

RESET

Figure 3.8: Schematic circuit bootstrap mode connection

26

3.3.2 Developing the Programming of MICROCONTROLLER 6811

The coding of microcontroller 6811 developed in assembly language. Then
the coding will simulate in THRsim. The format of coding is in asm. Below is the

complete coding to generate the encoder sensor signal in pulse:

REGS EQU $1000
OPTION EQU $39
ADCTL EQU $30
ADRI EQU $31
SCCRI EQU $2C
SCCR2 EQU $2D
BAUD EQU $2B
SCSR EQU $2E
SCDR EQU $2F

ORG $B600
LDS #S$FF
LDX #REGS

sk ok ek ok ek sk oK [N TTTA L TZE A Dk stk e e sk e e
INI ADC LDAA #$80

STAA OPTION,X

JSR DELAY

LDAA #$20

STAA ADCTL,X

INI_SCI LDAA #30

STAA BAUD,X ;SETTING BAUD RATE TO 9600 KB/S
CLRA ;WAKE UP METHOD=IDDLE LINE,CHARACTER LENGHT=(1-ATART,8-DATA,1-STOP)
STAA SCCRI1,X
LDAA #8308 ;ENABLE TRNSMIT
STAA SCCR2,X
stttk et ookl st ok okl st kol s st okl s sk okl s stk ks st ok ks ek
LOOP CLRA
SCN_CCF BRCLR ADCTL,X $80 SCN_CCF
LDAA ADRI1,X
JSR DELAY
STAA SCDR,X
TRNSMIT BRCLR SCSR,X $80 TRNSMIT ;BRANCH TO TRANSMIT IF TDRE=1
BRA LOOP
DELAY PSHA
PSHX
LDAA #$5
REPEAT LDX #$FF
AGAIN DEX
BNE AGAIN
DECA
BNE REPEAT
PULX
PULA
RTS
ORG $FFFE
FDB $B600
END

Figure 3.9: Coding to generate encoder sensor signal

27

34 Developing software

3.4.0 Introduction

The software was used in to create GUI is MATLAB. It is because this
project uses more calculation programming, it is not suitable to use visual basic
because it is suitable for simple mathematical calculation. The signal from encoder
sensor will display on GUI using PIC as the interface medium. The type of
MATLAB that used to create the GUI is MATLAB 7.1 version. MATLAB GUI is

Script files that have interaction with user by using Windows.

3.4.1 Step to create MATLAB GUI Development Environment

1. Type GUIDE at the command window.

=) MATLAB

File Edit Debug Desktop Window Help
D | b B o |8l B | D | curentdirectory: ‘C'\ongram FilesMATLABTwark v|@
Shorteuts [2] How to Add (2] What's New
Current Directory - C:\Program Files\MATLAB7 1\work 2 X JEIERTRIGHTY a X
GRS B | |
Al Files ~ |File Type Size Last Mot To get started, select MATLAE Help or Demos from the Help me
2 PSM try Folder 14-Jul-2 4|
| ¥ fopen.asy Editor Autosa... 1 KB 0B-Aug- >> guide
E?hs_err_pitﬂMB.Iog LOG File 13 KB 08-Aug- >>
| report1_DSP.asv Editor Autosa... 1 KB 06-Aug-
4\ reportpsm fig FIG-file 2KB 20-May:
[reportpsm.m M-file 4 KB 20-Mar-
¥ Serial_ohject2.asv Editor Autosa... 1KB 13-Aug-—
| siril.asv Editor Autosa 5 KB 26-Jul-2
L)\ siri1 fig FIG-file 4 KB 26-Jul2
[sirit.m M-file 5KB 26-Jul-2v|
el & |
2 x

15/08/07 01:13 —-% l
E-%-- 15/08/07 09:26 --%
RptgenSL.setReportedSystem('£14/Controlle)
rptgen.cml_eval
cle
E-%-- 15/08/07 10:21 --%
cle
re%== 15/08/07 13:16 --%
@-5-- 15/08/07 21:31 —-%
help serial
E-5-- 15/08/07 23:12 —-% {
guide 1{;
i | >
4\ start

=

28

2. The GUIDE start dialog will pop up and select the pre-built templates. Use
the default blank GUI template.

File Edit Debug Desktop Window Help

0= ‘ & Ba B o o ‘ “ ﬂ & ‘ ? \ Current Diredory:!C:\Progrem Files\MATLABT wvork V]E]
Shortcuts [2] How to Add (2] What's New F
C:WProgram Files\MATLAB71\Wwork @ X I(:mnn'mnd Window 2 X é

All Files ~ lp or Demos from the Help me

p: GUIDE Quick Start
) PSM try

& fopent.asy Create New GUI Open Existing GUI l

[o¥ hs_err_pid2416.Ig

g ::pzz1gzsﬁp'asv GUIDE templates Preview
reioﬂssm. mg)= Blank GUI {Defaulf)
% Serial_object2.as 4\ GUIwith Uicontrals

¥ sitil.asv 4\ GUIwith Axes and Menu

< sirit fig <\ Modal Question Dialog

@ sirit.m BLANK I
< ‘

Command History
i%-— 15/08/07
BE-%-- 15/08/07
i ’ RptgensL. s
“-rptgen.cml
1 aciel [[] save on startup as: |© (P rogram FlesiiaTLAR
E-%-- 15/08/07
o lele 7]
be%—— 15/08/07 [
@-%—— 15/08/07 21:31 ——%
i help serial
B-3-- 15/08/07 23:12 —-%

Liguide
< il | >

workiuntitled! fig | [Browse

oK][Cancel][Help

=3[0

~
v

3. The GUIDE layout editor that appears for design the layout of GUI.

GUI can be creating using collection of components available in the pallet.

B O .
File Edit Debug Desktop Window Help
D & B@mo o~ | 8l B 2| curentbrectory: | cero lesMATLABT1 work v @
Shortouts, 5 -
Currentli ERIIE — 2 x
Cf 4 File Edit View Layout Tools Help .
D@ | 1o oo | s REPEIE eS| > rom the Help me

Push Button
== Slider

@® Radio Button
4 Check Box
&I Edit Text

T Static Text
=3 Pop-up Menu
=l Listoox

[Toggle Button

B-%——

%] Button Group
2X ActiveX Control

29

4. Resize the GUI

5. Add push button, pop up menu and axis from the pallet to the layout by left

click and drag on the layout.

- MATLAB B
File Edit Debug Desktop ‘Window Help

0 I ol

File Edit View Layout Tools Help
DEE | s2ev | aBHh D%

Name || R Select | | I l ‘ | |

Push Button || | e
o= Slider
@ Radio Button AxpE2 55 Bunonl.
Check Box 2 =
ol Edit Text “push Bumml.

Works

m

.]
Push Button |
—

T Static Text
\ |

=3 Pop-up Menu ¥
—_—] [— Static Text

Ipop-up Menu v]_

Toggle Button
i{ﬁ Axes
%] Panel
"8 Button Group
ActiveX Control

6. Open the Property Inspector at View > Property Inspector to change the name

of pushbutton, Panel and other function name.

% Macromedia Flash Player 8

Run the GUI by click the green button

-):MATLAB

Fils

g
File Edit View Layout Tools Help

DEeE| 2R o o

2BH UH% >

e

A

|—Plot Types—

generate code will display at M-file. Click the F symbol too

Macromedia Flash Player 8

30

After click the green button, save the GUI M-file layout, the automatic

«JkMATLAB

File Edit Text Cell Tools Debug Deskiop Window Help

Dl""'|éﬁ BE “|&Ef|?||D:NATLAB

Workspace

Dol BB o o |8

K1 |
Current Direct.. @ X
B -7
IAII Files £

W o -do s W

[
L =)

We will go to the OpeningFen

routine which is called first
when the GUI runs.

P

contour_pushbutton_Callback
mesh_pushbutton_Callback
plot_popup_Callback
plot_popup_CreateFcn
simple_qgui_OpeningFcn
simple_gui_OutputFcn
surf_pushbutton_Callback

SIMPLE GUI{'CALLBACK', hObject,eventData, handles, .
function named CALLBACK in SIMNPLE GUI.M with the given inpu

SIE0 AR KL e)

Z (BB 8| -fo [+ =]
function varargout = simpl
% SIMPLE_GUI M-file for si

% SIMPLE GUI, by itse [GUI or raises t

SIMPLE_GUI or th

<«) calls

% SIMPLE_GUI('Property','Value',...) creates a new SINPLE_GUI

9. In the function, data can be load to do the function. Then syntax for

MATLAB GUI Development Environment can be developed.

31

3.4.2 MATLAB Coding to create GUI

3.4.2.0 Initialize Coding for Graphical User Interface (GUI)

In MATLAB, GUI can be develop by create the coding in M-File. The
initialize coding must be creating first, before create the main coding. The purpose to
create the initialize coding is to assign port which is available and enable the port in
computer. The function of the port is to transfer and receive data. It will be linker
between hardware and software in computer. Below is the initialize coding in M-

File:

s=serial(COM);
fopen(s)
handles.op=s % store data

guidata(hObject, handles); %save data

Description:

1. s=serial(COM) or obj = serial('port") creates a serial port object associated
with the serial port specified by port. If port does not exist, or if it is in use,
the serial port object will not be able to connect to the device. User can justify
which port by looking at start >control panel>system at system roperties
select Hardware>device manager>Port COM&LPT)> there is he port number
eg: COM7.

2. fopen(obj) connects obj to the device.

‘obj must be connected to the device with the fopen function before execute

read and write operation. When obj is connected to the device:
- Data remaining in the input buffer or the output buffer is flushed.

- The Status property is set to open.

- The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput
properties are set to 0.

32

An error will occur when the obj is not connected to the device which is the
cannot be read or write. Some properties are read-only while the serial port
object is open (connected), and must be configured before using fopen.
Examples include InputBufferSize and OutputBufferSize. Refer to the
property reference pages to determine which properties have this constraint.
The values for some properties are verified only after obj is connected to the
device. If any of these properties are incorrectly configured, then an error is
returned when fopen is issued and obj is not connected to the device.
Properties of this type include BaudRate, and are associated with device
settings.

3. handles.op=s: When GUI is running, the M-file creates a handles structure
That contains all the data for GUI objects, such as controls, menus, and axes.
The handles structure is passed as an input to each callback. The handles
structure can be use to share data between callbacks and access GUI data.

4. guidata(hObject, handles)or guidata(object handle,data) will stores the
variable data as GUI data. If object handle is not a figure handle, then the
object's parent figure is used. data can be any MATLAB variable, but is

typically a structure, which is enables to add new fields as required.

3.4.2.1 Content Coding for Graphical User Interface (GUI)

In this project, there are several important coding that must be understood. Below is

the coding in M-File:

1. Coding to plot the graph.

s=handles.op %retrieve data
out=fread(s)

plot(out)

The function of s=handles.op coding is to retrieve data. Data will callback by using
this coding, it will define again the data. While, the function of out=fread(s)or

A=fread(obj)is reads binary data from the device connected to obj, and returns the

33

data to A. Data will be read in 10 second. The GUI Plot button callback creates a plot

of the run data and adds a legend. The data to plot is passed to the callback in the

handles structure, which also contains the gain settings used when the simulation ran.

When a user clicks on the Plot button, the callback executes the following steps:

Collects the data for each run selected in the Results list, including two
variables (time vector and output vector) and a color for each result run to
plot.

Generates a string for the legend from the stored data.

Creates the figure and axes for plotting and saves the handles for use by the
Close button callback.

Plots the data, adds a legend, and makes the figure visible.

ii. Coding to insert the picture:

guidata(hObject, handles);

[x,map]=imread('project','jpg");

image(x)

set(gca,'visible','off")

The function of coding above will put the picture that we select in GUIThe picture

must be in jpeg format.

iii. Coding to connect between the windows in GUI

function varargout=xxx_Callback(h,eventdata,handles,varagin)

figure(yyy)

3.4.2.2 Close Coding for Graphical User Interface (GUI)

Below is the coding to close the port of the GUI:

s=handles.op %retrieve data
fclose(s)

34

CHAPTER 4

RESULT AND ANALYSIS

4.0 Result

The figures below show the environment of GUI (Graphical User Interface)

created using MATLAB.

Figure 4.1: Main window of GUI

35

The figure 4.1 shows the main window of GUI. At the front of the GUI there
are three main button. There are introduction button,analysis button and close
button.the introduction button will display the introduction window when it is
clicking. The content of the introduction window is the general view of the overall
project. For the analysis scope button it will display the analysis window. The graph
will displayed the signal that generate by encoder sensor. The function of close

button is it will close the analysis scope window.

Type of Sensor.

Analog Sensor

08F

Digital Sensor

06
— Interfacing Devices—
04F O Micro-c (6811)

O PIC1BFETTA

R (O MAX 233

O Max 232

1
0 0.1 02 03 04 05 06 07 08 09 1
— Button:

0

open port] [plot data] i close port

Figure 4.2: Analysis Scope window of GUI before plot the data

The figure 4.2 shows analysis scope window. Now, the window is in initial
condition before plot the graph. The signal will disply in the window. There are three
main button in this window. They are open port window, plot data button and close
port button. The function of the open port button is to open the serial port to allow
the data to transmit or receive between hardware and software in computer. The
function of the plot data button is it will read the data from external device and plot
the data in GUI. For the close port button it will close the serial port, in other words

it will disconnect the communication between hardware and software in computer.

36

e

300 T T T T T

= ur‘w—ﬂwwm* -

200
150

Type of Sensor.

Analog Sensor

Digital Sensor

i

‘ 1 Interfacing Devices

" Micro-c (6811)
100 B

" PIC 16FE77A

50 b M&X 233
' MAX 232

D 1 1 1 1 i
0 100 200 300 400 500 600
— Button
open port data close port

Figure 4.3: Analysis scope window of GUI after plot the data.

The figure 4.3 shows the analysis scope window after plot the data. The data
displayed in digital form. The form of signal that displayed in GUI is not accurate
because the noise occurred. Beside that, this window can measured various type of

signal from various sensor at the same time.

37

4.1 Analysis

250 —“
200 l—]
150

100

1 1 1 1
0 100 200 300 400 al

Figure 4.4 The signal of Figure 4.5 The signal of encoder
encoder sensor in oscilloscope sensor in GUI

The figure above showed the comparison between the signal display in GUI
the signal display in oscilloscope. The signal display in GUI is not accurate because
it has noise and distortion occurred that give effect to the original signal.

This project used microcontroller as a connecter to link between hardware
and software (MATLAB).The microcontroller will convert the signal and transfer the
signal through MAX233. The function of MAX233 in this project is to communicate
to the computer and at the same time it remains the signal in stable condition by
amplified the signal in order to reduce the losses and to avoid noise.

In this project, to link between hardware and software or to transfer the data it
used DB9.DB9 also known as the D-subminiature or D-sub is a common type of
electrical connector used particularly in computers. It is one of the largest common
connectors used in computer after USB. DB9 usually used for RS-232 serial
communication interface (SCI) to transmit data from microcontroller.

At the end of this project, the voltage signal can be displayed and measured
through GUI The signal is in digital form, display in GUI , MATLAB.

38

CHAPTER 5

CONCLUSION AND RECOMMANDATION

5.0 Conclusion

One of the primary goals of this project is to display signal on the visual form
which is using GUI. (Besides that, the more important here is the project is user
friendly. Thus, the project is design to give as much facilities to the people especially
to student for the educational purpose. In the end of this project, the signal that
generate by encoder sensor can displayed in GUI. Microcontroller 6811 has been
used in this project to interface between hardware and software. Beside that, GUI
also must be developed as a tool to display the signal that generated by encoder
sensor. As a conclusion, this project achieved the objective and scopes. This project

also is useful because it offers the user can analyze the signal quite accurate.

39

5.1 Recommendation

For the future plan of this project, it is recommended to other candidate to do
more studies on the related information with this topic in order to continue with the
real method that has been discuss in methodology chapter. Besides that, GUI can be

created to make analysis from several of sensor.

5.1.1 Costing and commercialization

There are some components are needed to build and develop of encoder
sensor with GUI. Figure 5.1 shows the entire component related to build the system,
all the components are easy to get accept microcontroller. This system using
Motorola MC68HC11A1 microcontroller, Al is an early version of MC68HC family
so in the future A1l version of microcontroller maybe not produces anymore. But as
in chapter 2 already explain, MC68HC family is an upward compatible so program
from early version can run at the latest version of MC68HC family but not in vice

versa.

I believe this system can be commercialized because ifs a user friendly

system that can be used in any personal computer (PC) or laptop to analyze signal.

Table 5.0: List of component and if’s cost

40

No. | Components | Specification li)srtllcl:;lut:ﬁ? Quantity Estli)rzizion
1 | Micro.C MC68HC11 RM40.00 1 RM 40.00
2 | Regulator 7805 RM1.00 1 RM 1.00
3 | PCB Header RMO0.80 5 RM 4.00
4 | I.C Base 48 pin RMO0.50 1 RM 0.50

10 pin RMO0.10 1 RM 0.17
5 | Crystal 8MHz RM1.20 1 RM 1.20
6 | Strip board 10x 4 RM4.00 2 RM 8.00
7 | Reset Switch RMO0.30 2 RM 0.60
8 | MAX233 RM9.50 1 RM 9.50
9 | Capacitor 4.7 uF (25V) RMO.12 3 RM 0.36
1 Uf(25V) RMO0.12 6 RM 0.72
0.1 uF (25V) RMO.15 3 RM 0.45
22 pF(25V) RM0.08 3 RM 0.24
10uF(25V) RMO.15 3 RM 0.45
10 | Resistor 220R RMO0.02 10 RM 0.20
IM RMO0.02 3 RM 0.06
15k RMO0.02 2 RM 0.04
22k RMO0.04 2 RM 0.08
11 | DB9 Female RMO0.60 1 RM 0.60
12 | DB9 Cover RMO0.60 1 RM 0.60
13 | Heat Sink RMO0.70 1 RM 0.70
14 girffpmg RM15.00 1 RM 15.00
TOTAL ESTIMATION PRICE RM 84.47

41

REFERENCES

[1] GUI Definition, (2004)
http://www.bellevuelinux.org/gui.html

[2] Chapman, Stephen J., (2001),MATLAB Programming for Engineers, Brooks
Cole, 2001.

[3] Esazonov,(2003),“Building GUI interfaces in Matla’
http://www.intelligent-systems.info/classes/ee509/gui.htm

[4] R.S. Schestowitz, (2004),“Collated advice on construction of user
Interfaces’
http://www.mathworks.com/matlabcentral/files/5439/gui_tips.pdf

[5] Thomas, (2007),“Digital Encoder is used for motion control applications””’
http://news.thomasnet.com/fullstory/801734

[6] Wikipedia, (2007), Encoder
http://en.wikipedia.org/wiki/Encoder

[7] Wikipedia, (2007), Sensor
http://en.wikipedia.org/wiki/Sensor

[8] Tom Huber, (1997),‘Creating a GUI in Matlal®
http://physics.gac.edu/~huber/envision/matgui/matgui.htm

[9] Peter Spasov (1996).“Microcontroller Technology The 68HC1T".
Englewood Cliffs, N.J.: Prentice Hall

[10]“68HC11 Reference Manual Motorola

[11] Michael smith, (2003),“The oscilloscopg’

http://www.doctronics.co.uk/scope.htm

APPENDICES

42

APPENDIX A

43

44

U2
L7805/T03
>6V 5V U1
VIN VOUT F—4—% % 5
fa) 4}7 29 XT PA3 —U4
L ¢ z c2 = 3 EX PMH—O
9] N ED 39 PA5 Z_D
1u N | 1000 ———;9| RESET PAG 0
N B—9 IRQ PA7 —0
%! xra "
. 8 PBO [0
-0 0—= PAO PB1 =0
O—5 PA1 PB2 0
— 0—> PA2 PB3 >~
17 PB4 7
O—g| PEO PB5 [p—H
R1 B PE! PB6 -5
- O PE2 pB7 =—0
AN— O0—=— PE3 31
™ 2 PCO 5 1
el sv ot | VR PC1 I35 1
0—=H VRL PC2 [0
—||:| PC3 350
8MHZ PC4 151
- c4 c5 R3 PCS 7
I% I g ros -0
- 1 - 1 10 PC7 20
0 0 swi 9 R0
DBY EB? 43 TxD
interface — PD2 _jg_u
u3 PD3 75—
1%(2) 4 3 PD4 1771
19 RIN RIOUT %5 PD5 0
D—2 R2IN R20UT 5—‘3 2%
TN TIOUT [MODA |50
w3y] T2N T20UT 0 voos 4o
wi) | B 12 Ct+ E —u%
_i| S P AS o5
DT C2+ RIW —3
O—n— C2+
L |o lg G BBHCT1AT
0| P O
2|V
O Vi-
O— v2-
VAX233

The complete circuit for Bootstrap mode MC68HC11A1

APPENDIX B

45

46

+5V-Powered, Multichannel RS-232

Drivers/Receivers

ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243

Supply Voltage (VCC) .ovveevveeccciecsreessnen 0.3V 10 46V

Input Voltages
..0.3V 1o (Voo -0.3V)

Rin (Excapt MAX2 30V
Rip (MAX220).... s 225V
Tour (Except MAX220) (Note 1) w215V
Tour (MAX220).... e 1310V,
Qutput thages

TOUT OO0 .15V

~0.3Vto (Vee +03V)

DrrverfReoelver Output Short Circuited to GND........ Continuous
Continucus Power Dissipation (Ta = +70°C)

16-Pin Plastic DIP (derate 10.53mW/-C above +70°C)....842mW

18-Pin Plastic DIP (derate 11.11mW/=C abova +70°C)....885mW

20-Pin Plagtic DIP (derate 8.00mW/°C above +70°C) ..440mW
16-Pin Narow SO (derate 8.70mW/°C abave +70°C) .. 696mW
16-Pin Wide SO (derate 9.52mW/=C abave +70°C)...... 762mW
18-Pin Wide SO (derate 9.52mW/=C above +70°C)......762mW
20-Pin Wide SO (derate 10.00mW/°C abave +70°C)....200mW
20-Pin S30P (derate 8.00mW/°C above +70°C)640mW
16-Pin CERDIP (derate 10.00mW/*C abova +70°C).....800mW
18-Pin CERDIP (derate 10.523mW/*C above +70°C).....842mW
Operating Temperature Ranges

MAX2_ _AE_ _

MAX2_ _AN_ _ MAX._ M_
Storage Temperatu reRange..
Lead Temperatura (soldering,

S5C1o +125°C
65°Cto +160°C

Note 1: Input voltage measurad with ToyT in high-impedance state, SHDN or Vo e = 0V,
Note 2: Fortha MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute differance cannot excead 12V,

Strassas beyond those fisted under "Absolute Maximum Ratings” may cause parmanant damage fo the device. Thase ars strass raings only, and funciong’
operafion of the device at these or any other condiions beyond those indicated in the operaional sections of the specfications is not implied. Exposurs to
absolte maximum rafing conditions for extendad panods may affact device rafiabiity.

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243
(Voo = +5V £10%, C1-C4 = 0.1pF, MAX220, C1 = 0.047pF, C2-C4 = 0.33F, Ta = TN to TMAX, unless otherwise noted.)

PARAMETER | CONDITIONS | MIN TYP MAX |UNITS
RS-232 TRANSMITTERS
Output Voltage Swing All ransmitter outputs laded with 3k to GND +5 +8 v
Input Logic Threshold Low 14 08 v
)) All davices except MAX220 2 14
Input Logic Threshold High v
pULog 9 MAX220: Vo = 5.0V 24
) All except MAX220, normal operation 5 40
Logic PulkUp/Input Current — A
gic PullUpfput Cure THON = OV, MAX2221242, shutdown, MAX220 w01 = | "
Voo = 5.5V, SHDN = OV, Vot = 15V, MAX222/242 001 210
Output Leakage Current Voo ~ SO = 0V Vour = =15V 0T 20 PA
Data Rate 200 16 | kbis
Transmitter Output Resistance Voo =V+=V-=0V,Vour= 22V 00 10M Q
Output Short-Circuit Current Vour =0V +7 $22 mA
RS-232 RECEIVERS
RS-232 Input Voltage Operating Range +30 v
All excapt MAX243 Ry 08 1.3
RS-232 Input Threshold L Voo =5V v
NPt Threshold Sow = MAX243 R2)N (Mate 2) -3
) All excapt MAX243 Ray 1.8 24
RS-232 Input Threshold High Voo =5V v
b co MAX243 Rzyy (Ncte 2) 05 01
RS-232 Input Hysteresis All excapt MAX243, Vior =5V, no hystaresis in shdn. 0.2 05 v
MAX243 1
RS-232 Input Resistanca 3 5 7 kQ
TTLCMOS Output Voltage Low lour = 3.2mA 0.2 04 v
TTLCMOS Output Voltage High lout = -1.0mA 35 Vec-o02 v
TTL/CMOS Output Short-Circuit Current Sou'rcpg Vour = GND = =0 mA
Shrinking VouT = Vo 10 30

47

+5V-Powered, Multichannel RS-232
Drivers/Receivers

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued)
(Vo = +5V £10%, C1-C4 = 0.1F, MAX220, C1 = 0.047pF, C2-C4 = 0.32F, Ta = TN to TMaX, unless otherwise notad)

PARAMETER CONDITIONS MIN TYP MAX | UNITS
TILICMOS Output Leakage Cumant | SHON = VG or EN = Vo (SHDN = 0V for MAX222), 1005 +10 | pA
0V < Vout< Ve
EN Input Thrashald Low MAX242 1.4 08 v
EN Input Thrashaldl High MAX242 20 1.4 v
Operating Supply Voltage 4.5 55 v
MAX220 0.5 2
Noload - -
Voo Supply Current (SHDN = Vo), MAX222/232A/233A/242/243 4 10 =
Figures 5,6, 11,19 3Kk boad MAX220 12
hath inputs MAX222/232A/233A/242/243 15
Ta=+25°C 01 10
- Ta=0Cto+70°C 2 0
Shutdown Supply Currant MAX222/242
Supply 2 Ta = 40°C 1o +85°C 2 w] ™
Ta = -55°C to +125°C 35 100
SHDN Input Leakage Cument MAX222/242 +1 WA
SHON Thrashold Low MAX222/242 1.4 08 v
SHDN Threshold High MAX222/242 20 1.4 v
CL = 50pF to 2500pF,
R = O to ke, MAX222/232A/233A/242/243 6 12 u)
Transition Slew Rate Voo = 5V, Ta = +25°C, Vips
measured from +3V | paxe20 15 3 0
to -3V or-3Vto +3V
MAX222/232A/233A/242/243 13 a5
Transmitter Propagation Delay tPHLT MAKZ20 3 0
TLL to RS-232 (nomal operation), S
S B WAX2227230 A 23302421243 5 a5 | "
il MAX220 510
MAX222/232A/233A/242/243 0.5 1
Raceiver Propagation Delay tPHLR ANZ0 i3 3
R3-232 to TLL (nomal operation), _ S
Roree. T ol opsretor) t NAX2227230 A/ 2332421243 e 1 | "
AL MAX220 R
Receiver Propagation Delay tPHLS MAX242 0.5 10 .
RS-232 to TLL (shutdown), Figure 2 [ty g MAX242 25 10 W
Racaiver-Output Enable Time, Figure 3 | ter MAX242 125 500 ns
Recaver-Output Disable Time, Figure 3 | tor MAX242 160 500 ns
Transmitter-Output Enabla Time t MAX222/242 0.1yF caps 250
(SHDN goes high), Figure 4 2l (includes charge-pump start-up) Hs
Transmitter-Output Disable Time
(SHDN goes low), Figure 4 tot MAX222/242, 0.1yF caps @00 ns
Transmittar + to - Propagation -t MAX222/232A/233A/242/243 200 ns
Delay Differenca (nomal operation) | FHLT ~*FLHT MAX220 2000
Raceiver + to - Propagation t -t MAX222/232A4/2334/242/243 100 =
Delay Diffaranca (nomal operation) | THLR ~'FLHR MAXZ20 595

Note 3: MAX243 R2ouT is guaranteed to be low when R2)N is = OV or is floating.

48

+5V-Powered, Multichannel RS-232

20-Pin Plagtic DIP (derate 8.00mW/°C above +70°C) ..440mW
16-Pin Narow SO (derate 8.70mW/°C abave +70°C) .. 696mW
16-Pin Wide SO (derate 9.52mW/=C abave +70°C)...... 762mW
18-Pin Wide SO (derate 9.52mW/=C above +70°C)......762mW
20-Pin Wide SO (derate 10.00mW/C abave +70°C)....200mW
20-Pin S30P (derate 8.00mW/°C above +70°C)640mW
16-Pin CERDIP (derate 10.00mW/-C abova +70°C).....800mW
18-Pin CERDIP (derate 10.523mW/*C above +70°C).....842mW
Operating Temperature Ranges

Drivers/Receivers
ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243
Supply Voltage (VEC) ..o, 0.3V 10 46V
Input Voltages
TIN.... ..0.3V 1o (Voc - 0.3V)
Rin (Exoept MA)(220) +30V
Ripy (MAX220).... s 225V
Tour (Except MAX220) (Note Mg 15V
Tour (MAX220).... 13.2V
Qutput thages
TOUT .15V
~0.3Vto(Vee +03V)

DrrverfReoelver Output Short Circuited to GND........ Continuous
Continucus Power Dissipation (Ta = +70°C)
16-Pin Plastic DIP (derate 10.53mW/-C above +70°C)....842mW
18-Pin Plastic DIP (dlerate 11.11mW/=C abova +70°C)....885mW

MAX2_ _AE_ _ .
MAX2_ _AM_ _, MAX2. _M__. 65°C to +125°C
Storage Temperatu reRange.... AB5°Cto +160°C
Lead Temperatura (soldering, 1099(:) +300°C

Note 1: Input voltage measurad with ToyT in high-impedance state, SHDN or Vo e = 0V,
Note 2: Fortha MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute differance cannot excead 12V,

Strassas beyond those fisted under "Absolute Maximum Ratings” may cause parmanant damage fo the device. Thase ars strass raings only, and funciong’
operafion of the device at these or any other condiions beyond those indicated in the operaional sections of the specfications is not implied. Exposurs to
absobite maximum rafing conditions for extended panods may affact device rafiabiity.

ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243
(Voo = +5V £10%, C1-C4 = 0.1pF, MAX220, C1 = 0.047pF, C2-C4 = 0.33F, Ta = TN to TMAX, unless otherwise noted.)

PARAMETER | CONDITIONS | MIN TYP MAX |UNITS
RS-232 TRANSMITTERS
Output Voltage Swing All ransmitter outputs laded with 3k to GND +5 +8 v
Input Logic Threshold Low 14 08 v
)) All davices except MAX220 2 14
Input Logic Threshold High v
pULog 9 MAX220: Vo = 5.0V 24
) All except MAX220, normal operation 5 40
Logic PulkUp/Input Current — A
gic PullUpfnput Cum THON = OV, MAX2221242, shutdown, MAX220 w01 = | "
Voo = 5.5V, SHDN = OV, Vot = 15V, MAX222/242 001 210
Output Leakage Current Voo ~ SO = 0V Vour = =15V 0T 20 PA
Data Rate 200 16 | kbis
Transmitter Output Resistance Voo =V+=V-=0V,Vour= 22V 00 10M Q
Output Short-Circuit Current Vour =0V +7 $22 mA
RS-232 RECEIVERS
RS-232 Input Voltage Operating Range +30 v
All excapt MAX243 Ry 08 1.3
RS-232 Input Threshold L Voo =5V v
NPt Treshold Sow = MAX243 R2)N (Mate 2) -3
) All excapt MAX243 Ray 1.8 24
RS-232 Input Threshold High Voo =5V v
b co MAX243 Rzyy (Ncte 2) 05 01
RS-232 Input Hysteresis All excapt MAX243, Vior = 5V, no hystaresis in shdn. 0.2 05 v
MAX243 1
RS-232 Input Resistanca 3 5 7 kQ
TTLCMOS Output Voltage Low lout = 3.2mA 0.2 04 v
TTLCMOS Output Voltage High lout = -1.0mA 35 Vec-o02 v
TTL/CMOS Output Short-Circuit Current Sou'rcpg Vour = GND = =0 mA
Shrinking VouT = Vo 10 30

+5V-Powered, Multichannel RS-232
Drivers/Receivers

TOPVIEW
A4
T2y [I E] Regur
Tn[2] (1] Ron
RlomE 18] T2a
Wl | mnmam]V
Tan|s] MACR -
s} s Lo
o 5} 5] c2v
Yoo E E] V{01
w01+] 13] Ct-(014)
o] 12] V-(C24
V=) 05- [E E] G24(C24)
DIPISO
{) AREFORSOPACKAREOILY.

TTLCMOS
QUTRUTS

DONOT MAE

CORMECTINS TO {13(14}

L0 f |V
FORERSUPRLY § [17] .

1409)]

HNTERHAL +10V
FOER SUPFLY

TTLCMOS
INPUTS
o

8(13)

12(10)

GHD

GHD

Tha
>.—"""i.,.

RE-22
CUTPUTS

ity

Re-22
QuTPuTS

19
—

112

15
16

£|oﬁni~

sl_rls

Figure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit

TOPVIEW

. N7
T [1] 18] T
T [2] 5] T
T 2] aasmamn [T
mne] Ma [T
o [5] 1] V-
s 8] 1] C2-
(14 E E] 02+
Yt E E 1
DIP/SO

SV INPUT
10uF
el
., = B 10F
ra Vi 8 [*
10F + 0 W+
OFFT 81 e, VOLTAGEDOUELER
10
B) o
T] P "L o
I It
a0k -
P ..i Tiy Thar [1 \

TILITIE ¢
INPUTS

y 32
QUTRUTS

Figure 12. MAX234 Pin Configuration and Typical Operating Circuit

+5V-Powered, Multichannel RS-232
Drivers/Receivers

ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244-MAX249
VPRI o o) e

InputVotages
Tiny, ENA, ENB, ENR, ENT, ENRA,
ENRE, ENTA, ENTE..
LT e———
Tour (Mote 3)..

Raut ...

Shart Clrcun (one output at a nme)

Tour to GND...
RouTtto GND....

Note 4: Input voltage measured with transmitter cutput in a high-mpedance state, shutdown, or Voo = oV,

Strassas beyond those listad under "Absoluts Maximum Rafings” may cause parmanant damage io the device. Thase are stress ratings only, and functiona/
aparaian of the device at these or any other candifions beyand those indicatad in the oparational secfions of the speaffications is not imelisd, Exposurs fo
absolite maximum rafing canaitians for extanded penods may affact device raliabiity.

ELECTRICAL CHARACTERISTICS—MAX225/MAX244-MAX249

50

0.3V 10 +6V Continucus Power Dissipation (Ta = +70°C)

28-Pin Wide 30 (derate 12.50mW/°C above +70°C) TW
40-Pin Flastic DIP (derate 11.11mW/°C above +70°C) .6 11mW
~0.3Vto (Voo +0.3V) 44-Pin PLCC (derate 13.33mW/°C above +70°C)1.07W

...................... 25V Operating Temperatura Ranges
...................... £15V MAX225C_ _, MAX24_C__ccoocvemerinnnnnnn PG 10 +70°C
L0Vt (Voo +0.3V) MAX225E_ _, MAX24_E__ .ArCto +85°C
Storage Temperatura Range.......... -65°C to +160°C
...Continuous Lead Temperature (s2ldening, 1086C) ..., +300°C

...Continuous

(MAX225, Vo = 5.0V £5%; MAX244-MAX249, Voo = +5.0V £10%, extemal capacitors C1-C4 = 1pF; T = Ty to Thpax; unless oth-

erwisa noted.)
PARAMETER | CONDITIONS | MIN TYP MAX| UNITS
RS-232 TRANSMITTERS
Input Logic Threshold Low 14 0.8 v
Input Logic Threshald High 2 14 v
. Normal operation 10 30
Logic Pull-Up/input Currant Tables 1a-1d Shatdomn o = HA
Data Rate Tables 1a-1d, normal operation 120 &4 | khitsfsec
Output Voltage Swing All transmitter outputs koaded with 2k to GND 15 $7.5 v
sr:é\ \'IIE(I;IET Eri‘l1' silNTA ENTE = +0.01 +05
Output Leakage Current (shutdown) | Tables 1a-1d A
Yoc =0¥, 001 25
Vour = £15V
Transmitter Output Resistance Voo =Va = V- =0V, Vour = £2V (Nate 4) 300 10M Q
Qutput Short-Circuit Current Vour=oV +7 +30 mA
RS-232 RECEIVERS
RS-232 Input Valtage Operating Range +25 v
RS-232 Input Threshald Low Vec=5V 0.8 1.3 v
RS-232 Input Threshold High Vcc=5Y 1.8 24 v
RS-232 Input Hystarasis Vec=5Y 0.2 03 1.0 v
RS-232 Input Resistance 3 5 7 kQ
TTL/ICMOS Output Valtage Low louT = 3.2mA 0.2 0.4 v
TTL/ICMOS Output Vcltage High loyT = -1.0mA 35 Vpg-02 v
TTL/OMOS Output Short-Circuit Curent -ourcind VouT = GRD 2 0 mA
Shrinking VouT = Voo 10 30
TTLICMOS Output Leakage Current 'bel"‘;‘:' 1°£j’§"83 2@:235\'/?'%_ Ve 006 010 pA

APPENDIX C

51

Main window coding

function varargout = main(varargin)

MAIN M-file for main.fig
MAIN, by itself, creates a new MAIN or raises the existing
singleton*.

o° o° o o

o

H = MAIN returns the handle to a new MAIN or the handle to
the existing singleton*.

o0 o

oe

MAIN ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in MAIN.M with the given input arguments.

o0 oP

oo

MAIN ('Property', 'Value',...) creates a new MAIN or raises the

existing singleton*. Starting from the left, property value pairs are
applied to the GUI before main OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to main OpeningFcn via varargin.

ol o o° o° oo

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

S

% Edit the above text to modify the response to help main
% Last Modified by GUIDE v2.5 27-0ct-2007 10:42:55

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @main OpeningFcn,
'gui OutputFcn', @main OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes Jjust before main is made visible.
function main OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main
handles.output = hObject;

)

% Update handles structure

guidata (hObject, handles);
[x,map]=imread ('project', 'ipg') ;
image (%)

set (gca, 'visible', 'off")

% UIWAIT makes main wait for user response (see UIRESUME)
% uiwait (handles.figurel);

% —-- Outputs from this function are returned to the command line.
function varargout = main_OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o° o

oe

o

% Get default command line output from handles structure
varargout{1l} = handles.output;

% —--- Executes on button press in introduction.
function varargout=introduction_Callback (h,eventdata, handles,varagin)
figure (information)

% hObject handle to introduction (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —-—-- Executes on button press in pushbutton2.

function varargout=pushbutton2 Callback (h,eventdata,handles,varagin)
figure (scope)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in History.

function History Callback (hObject, eventdata, handles)

% hObject handle to History (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in Close.

function Close_Callback (hObject, eventdata, handles)

% hObject handle to Close (see GCBRO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close

% —--- Executes during object creation, after setting all properties.
function axesl_CreateFcn (hObject, eventdata, handles)

% hObject handle to axesl (see GCRO)

oo

eventdata reserved - to be defined in a future version of MATLAB

o

oe

Hint: place code in OpeningFcn to populate axesl

handles empty - handles not created until after all CreateFcns called

53

54

Information window coding

£

o

S

i

f

a
a
S

s
I

unction varargout = Information (varargin)

Last Modified by GUIDE v2.5 26-Oct-2007 23:24:25

f nargin == % LAUNCH GUI
ig = openfig(mfilename, 'reuse');

% Generate a structure of handles to pass to callbacks, and store it.
handles = guihandles(fig);
guidata (fig, handles);

xes (handles.axesInfo) % Select the proper axes
xis off
trl(l) = {['\bf Design And Developement Of
' Encoder Sensor with GUI "1}
tr2(l)= {['MATLAB is one of the software that can create GUI (Graphical User

nterface) . !
'The GUI will create using guide to create the GUI layout editor. The

objective '

i

p

S

(¢}

t

(e}

(

g

1

t
t

e

e

o o o o° o° A o o° o° o

oe

'of this project is to display the signal that generated by encoder sensor
'

n
'GUI (Graphical User Interface). There are three phase to develop this
roject. '
'Phase one is developing the sensor circuit to produce signal which is the
ignal '

'is in analogue form. The second phase is developing the controller
ircuit in !
'order to convert the analogue signal to digital signal. The changes of
he signal '
'"form from analogue signal to digital signal are necessary because the
omputer only '
'can accept the data in digital form.The third phase is developing the GUI
Graphical '
'User Interface)in MATLAB. In the end of this project, the signal
enerated by encoder '
'sensor will display in GUI (Graphical User Interface).

1}:

ext (0.2, 1, strl, 'FontSize', 14, 'color', [0 0 0.502])
ext (0, .5, str2, 'FontSize', 10, 'color', [0 0 0.502])
$text (0.36, -3.55, '\bf\copyright', 'FontSize', 10, 'color',6[1 0 0])

if nargout > 0
varargout{l} = fig;
end

lseif ischar(varargin{l}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

try
if (nargout)
[varargout{l:nargout}] = feval (varargin{:}); % FEVAL switchyard
else
feval (varargin{:}); % FEVAL switchyard
end
catch
disp(lasterr);
end
nd

ABOUT CALLBACKS:

GUIDE automatically appends subfunction prototypes to this file, and
sets objects' callback properties to call them through the FEVAL
switchyard above. This comment describes that mechanism.

Each callback subfunction declaration has the following form:
<SUBFUNCTION_ NAME>(H, EVENTDATA, HANDLES, VARARGIN)

The subfunction name is composed using the object's Tag and the
callback type separated by ' ', e.g. 'slider2 Callback',
'figurel CloseRequestFcn', 'axisl ButtondownFcn'.

oo

oo

H is the callback object's handle (obtained using GCBO)

oo

oo

EVENTDATA is empty, but reserved for future use.

o0 oP

oo

tags as fieldnames, e.g. handles.figurel, handles.slider2. This
structure is created at GUI startup using GUIHANDLES and stored in

o0 oo

oo

this structure at GUI startup, and you can change the structure
during callbacks. Call guidata(h, handles) after changing your

o° o

oo

the updates. Type "help guihandles" and "help guidata" for more
information.

o° o

oe

VARARGIN contains any extra arguments you have passed to the
callback. Specify the extra arguments by editing the callback
property in the inspector. By default, GUIDE sets the property to:
<MFILENAME> ('<SUBFUNCTION NAME>', gcbo, [], guidata(gcbo))

Add any extra arguments after the last argument, before the final
closing parenthesis.

o o o° o

o°

oe

% —--- Executes on button press in close.

function close_Callback (hObject, eventdata, handles)

hObject handle to close (see GCBRO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close

oo

HANDLES is a structure containing handles of components in GUI using

the figure's application data using GUIDATA. A copy of the structure
is passed to each callback. You can store additional information in

copy to replace the stored original so that subsequent callbacks see

Analysis Scope window coding

function varargout = scope (varargin)

SCOPE M-file for scope.fig
SCOPE, by itself, creates a new SCOPE or raises the existing
singleton*.

0P o o° o

oe

H = SCOPE returns the handle to a new SCOPE or the handle to
the existing singleton*.

oe o

o

SCOPE ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in SCOPE.M with the given input arguments.

o° o

oe

SCOPE ('Property', 'Value',...) creates a new SCOPE or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before scope OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to scope OpeningFcn via varargin.

o d° o o o

oo

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o

See also: GUIDE, GUIDATA, GUIHANDLES

o°

Edit the above text to modify the response to help scope
% Last Modified by GUIDE v2.5 28-Nov-2007 07:18:58

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui_State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @scope_OpeningFcn,
'gui OutputFcn', @scope OutputFcn,
'gui_ LayoutFcn', 1,

'gui Callback’', [1):
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui_ State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —-—-- Executes just before scope is made visible.
function scope OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oo

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

varargin command line arguments to scope (see VARARGIN)
s=serial ('COM1")

handles.op=s % store data

guidata (hObject, handles); %save data

% Choose default command line output for scope
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes scope wait for user response (see UIRESUME)
% uiwait (handles.figurel) ;

o

—--- Outputs from this function are returned to the command line.

function varargout = scope OutputFcn (hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT) ;
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

o

Get default command line output from handles structure

varargout{1l} = handles.output;

% —--- Executes on button press in open.

function open_Callback (hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %retrieve data

fopen (s)

% —--- Executes on button press in plot.

function plot_Callback (hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
out=fread(s)

plot (out)

% —--- Executes on button press in close.

function close Callback (hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %retrieve data

fclose (s)

% —--- Executes on button press in analog.

function varargout=analog Callback (h,eventdata,handles,varagin)
figure (analog)

% hObject handle to analog (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in digital.

function varargout=digital Callback (h,eventdata,handles,varagin)
figure (digit)

% hObject handle to digital (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in radiobuttonl.

function radiobuttonl_Callback (hObject, eventdata, handles)

% hObject handle to radiobuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oo

Hint: get (hObject, 'Value') returns toggle state of radiobuttonl

% —--- Executes on button press in radiobutton4.

function radiobuttond_Callback (hObject, eventdata, handles)

% hObject handle to radiobuttond (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oo

Hint: get (hObject, 'Value') returns toggle state of radiobutton4

% —--- Executes on button press in radiobutton3.

function radiobutton3_Callback (hObject, eventdata, handles)

% hObject handle to radiobutton3 (see GCRO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject, 'Value') returns toggle state of radiobutton3

)

% —--- Executes on button press in radiobutton2.
function radiobutton2 Callback (hObject, eventdata, handles)

57

% hObject handle to radiobutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject, 'Value') returns toggle state of radiobutton2

% —--- Executes on button press in tutup.

function tutup_Callback (hObject, eventdata, handles)

% hObject handle to tutup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close

% —--- Executes on button press in pushbutton8.

function pushbutton8 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton9.

function pushbutton9 Callback (hObject, eventdata, handles)

% hObject handle to pushbutton9 (see GCBO)

oo

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

oo

58

Analog window coding

function varargout = analog(varargin)

ANALOG M-file for analog.fig
ANALOG, by itself, creates a new ANALOG or raises the existing
singleton*.

o° o° o o

o

H = ANALOG returns the handle to a new ANALOG or the handle to
the existing singleton*.

o0 o

oe

ANALOG ('CALLBACK',hObject,eventData, handles,...) calls the local
function named CALLBACK in ANALOG.M with the given input arguments.

o0 oP

oo

ANALOG ('Property', 'Value',...) creates a new ANALOG or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before analog OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to analog OpeningFcn via varargin.

ol o o° o° oo

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

S

% Edit the above text to modify the response to help analog
% Last Modified by GUIDE v2.5 27-0ct-2007 11:54:20

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @analog OpeningFcn,
'gui OutputFcn', @analog OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes Jjust before analog is made visible.
function analog OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to analog (see VARARGIN)

% Choose default command line output for analog
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes analog wait for user response (see UIRESUME)
% uiwait (handles.figurel) ;

—-—-- Outputs from this function are returned to the command line.
unction varargout = analog OutputFcn(hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

H oo

oo

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1l} = handles.output;

% —--- Executes on button press in speed.
function varargout=speed Callback (h,eventdata,handles,varagin)
figure (speed)

% hObject handle to encoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in Temperature.

function varargout=Temperature_Callback (h,eventdata,handles,varagin)
figure (temperature)

% hObject handle to Temperature (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

60

61

Digital window coding

function varargout = digit(varargin)

DIGIT M-file for digit.fig
DIGIT, by itself, creates a new DIGIT or raises the existing
singleton*.

o° o° o o

o

H = DIGIT returns the handle to a new DIGIT or the handle to
the existing singleton*.

o0 o

oe

DIGIT ('CALLBACK',hObject,eventData, handles,...) calls the local
function named CALLBACK in DIGIT.M with the given input arguments.

o0 oP

oo

DIGIT ('Property', 'Value',...) creates a new DIGIT or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before digit OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to digit OpeningFcn via varargin.

ol o o° o° oo

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

S

% Edit the above text to modify the response to help digit
% Last Modified by GUIDE v2.5 27-0ct-2007 14:04:20

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @digit OpeningFcn,
'gui OutputFcn', @digit OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes Jjust before digit is made visible.
function digit_OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to digit (see VARARGIN)

% Choose default command line output for digit
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes digit wait for user response (see UIRESUME)
% uiwait (handles.figurel);

—-—-- Outputs from this function are returned to the command line.
unction varargout = digit_ OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

H oo

oo

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1l} = handles.output;

% —--- Executes on button press in pushbuttonl.
function pushbuttonl Callback (hObject, eventdata, handles)

% hObject handle to pushbuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in foto.

function varargout=foto_Callback (h,eventdata,handles,varagin)
figure (foto)

% hObject handle to foto (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in infrared.

function varargout=infrared Callback (h,eventdata,handles,varagin)
figure (infrared)

% hObject handle to infrared (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.

function pushbutton4d_Callback (hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close

% —--- Executes on button press in encoder.

function varargout=encoder_ Callback (h,eventdata, handles,varagin)
figure (encoder)

% hObject handle to encoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

62

Encoder sensor window coding

function varargout = encoder (varargin)

ENCODER M-file for encoder.fig
ENCODER, by itself, creates a new ENCODER or raises the existing
singleton*.

ol o o o

o

H = ENCODER returns the handle to a new ENCODER or the handle to
the existing singleton*.

o0 o

oe

ENCODER ('CALLBACK',hObject,eventData, handles,...) calls the local
function named CALLBACK in ENCODER.M with the given input arguments.

o0 oP

oo

ENCODER ('Property', 'Value',...) creates a new ENCODER or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before encoder_ OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to encoder OpeningFcn via varargin.

ol o o° o° oo

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

S

% Edit the above text to modify the response to help encoder
% Last Modified by GUIDE v2.5 27-0ct-2007 13:55:28

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @encoder OpeningFcn,
'gui OutputFcn', Q@encoder OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes Jjust before encoder is made visible.
function encoder OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to encoder (see VARARGIN)

s=serial ('COM4")

handles.op=s % store data

guidata (hObject, handles); %save data
% Choose default command line output for encoder
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes encoder wait for user response (see UIRESUME)
% uiwait (handles.figurel);

o

% —-—-- Outputs from this function are returned to the command line.
function varargout = encoder_OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATIAB
% handles structure with handles and user data (see GUIDATA)

oe

Get default command line output from handles structure

varargout{1l} = handles.output;

% —--- Executes on button press in open.

function open_Callback (hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %Sretrieve data

fopen (s)

% —--- Executes on button press in plot.

function plot_Callback (hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
out=fread(s)

plot (out)

% —--- Executes on button press in close.

function close Callback (hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %retrieve data

fclose (s)

% —--- Executes on button press in analog.
function analog_Callback (hObject, eventdata, handles)

% hObject handle to analog (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in digital.

function digital Callback (hObject, eventdata, handles)

% hObject handle to digital (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% —--- Executes on button press in radiobuttonl.

function radiobuttonl Callback (hObject, eventdata, handles)

% hObject handle to radiobuttonl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get (hObject, 'Value') returns toggle state of radiobuttonl

o

--- Executes on button press in radiobutton4.
function radiobuttond4_Callback (hObject, eventdata, handles)

% hObject handle to radiobutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oo

Hint: get (hObject, 'Value') returns toggle state of radiobutton4

% —--- Executes on button press in radiobutton3.

function radiobutton3_ Callback (hObject, eventdata, handles)

% hObject handle to radiobutton3 (see GCRO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oo

Hint: get (hObject, 'Value') returns toggle state of radiobutton3

)

% —--- Executes on button press in radiobutton2.

function radiobutton2_ Callback (hObject, eventdata, handles)

% hObject handle to radiobutton2 (see GCRO)

% eventdata reserved - to be defined in a future version of MATLAB

64

S

oo Hh e

o\

o
S

handles structure with handles and user data (see GUIDATA)

Hint: get (hObject, 'Value') returns toggle state of radiobutton?

--- Executes on button press in tutup.

unction tutup_Callback (hObject, eventdata, handles)

hObject handle to tutup (see GCBO)
eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Close

65

Foto sensor window coding

function varargout = foto(varargin)

FOTO M-file for foto.fig
FOTO, by itself, creates a new FOTO or raises the existing
singleton*.

ol o o o

o

H = FOTO returns the handle to a new FOTO or the handle to
the existing singleton*.

o0 o

oe

FOTO ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in FOTO.M with the given input arguments.

o0 oP

oo

FOTO ('Property', 'Value',...) creates a new FOTO or raises the

existing singleton*. Starting from the left, property value pairs are
applied to the GUI before foto OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to foto OpeningFcn via varargin.

ol o o° o° oo

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

S

% Edit the above text to modify the response to help foto
% Last Modified by GUIDE v2.5 25-0ct-2007 14:35:18

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @foto OpeningFcn,
'gui OutputFcn', @foto OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1
if nargin && ischar(varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes just before foto is made visible.
function foto OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to foto (see VARARGIN)

s=serial ('COM4")

handles.op=s % store data

guidata (hObject, handles); %save data
% Choose default command line output for foto
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes foto wait for user response (see UIRESUME)
% uiwait (handles.figurel);

o

% —-—-- Outputs from this function are returned to the command line.
function varargout = foto_ OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Get default command line output from handles structure

varargout{1l} = handles.output;

% —--- Executes on button press in open.

function open_Callback (hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %Sretrieve data

fopen (s)

% —--- Executes on button press in plot.

function plot_Callback (hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
out=fread(s)
plot (out)

67

Infrared sensor coding

function varargout = infrared(varargin)

% INFRARED M-file for infrared.fig

INFRARED, by itself, creates a new INFRARED or raises the existing
singleton*.

o0 o oe

oo

H = INFRARED returns the handle to a new INFRARED or the handle to
the existing singleton*.

o0 o

o

INFRARED ('CALLBACK',hObject,eventData,handles,...) calls the local
function named CALLBACK in INFRARED.M with the given input arguments.

0P o

oe

INFRARED ('Property', 'Value', ...) creates a new INFRARED or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before infrared OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to infrared OpeningFcn via varargin.

o o o° o o

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o0 oP

oo

See also: GUIDE, GUIDATA, GUIHANDLES

o

> Edit the above text to modify the response to help infrared
% Last Modified by GUIDE v2.5 27-0ct-2007 14:08:45

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui_State = struct('gui Name', mfilename,
'gui Singleton', gui_Singleton,
'gui_OpeningFcn', @infrared_OpeningFcn,
'gui OutputFcn', @infrared OutputFcn,
'gui_LayoutFcn', 1,

'gui_Callback’, [
if nargin && ischar (varargin{l}
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui mainfcn(gui State, varargin{:});
else
gui mainfcn(gui State, varargin{:});
end
% End initialization code - DO NOT EDIT

o

--- Executes just before infrared is made visible.

function infrared OpeningFcn (hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to infrared (see VARARGIN)

s=serial ('COM4")
handles.op=s % store data
guidata (hObject, handles); %save data

% Choose default command line output for infrared
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes infrared wait for user response (see UIRESUME)
% uiwait (handles.figurel);

°

% —--- Outputs from this function are returned to the command line.
function varargout = infrared OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

o° o o

o

68

o

% Get default command line output from handles structure
varargout{l} = handles.output;

% —--- Executes on button press in open.

function open Callback (hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %retrieve data

fopen(s)

% —--- Executes on button press in plot.

function plot Callback (hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAR
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
out=fread(s)

plot (out)

% --- Executes on button press in close.

function close_Callback (hObject, eventdata, handles)

% hObject handle to close (see GCBRO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
fclose (s)

69

Speed Sensor window coding

function varargout = speed(varargin)

SPEED M-file for speed.fig
SPEED, by itself, creates a new SPEED or raises the existing
singleton*.

ol o o o

o

H = SPEED returns the handle to a new SPEED or the handle to
the existing singleton*.

o0 o

oe

SPEED ('CALLBACK', hObject, eventData, handles, ...) calls the local
function named CALLBACK in SPEED.M with the given input arguments.

o0 oP

oo

SPEED ('Property', 'Value',...) creates a new SPEED or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before speed OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to speed OpeningFcn via varargin.

ol o o° o° oo

oe

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

o° o

o\

See also: GUIDE, GUIDATA, GUIHANDLES

S

% Edit the above text to modify the response to help speed
% Last Modified by GUIDE v2.5 27-0ct-2007 08:49:20

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @speed OpeningFcn,
'gui OutputFcn', @speed OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1
if nargin && ischar (varargin{l})
gui State.gui Callback = str2func(varargin{l});
end

if nargout
[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% —--- Executes Jjust before speed is made visible.
function speed OpeningFcn (hObject, eventdata, handles, varargin)
This function has no output args, see OutputFcn.

oe

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to speed (see VARARGIN)

s=serial ('COM4")

handles.op=s % store data

guidata (hObject, handles); %save data
% Choose default command line output for speed
handles.output = hObject;

% Update handles structure
guidata (hObject, handles);

% UIWAIT makes speed wait for user response (see UIRESUME)
% uiwait (handles.figurel);

o

% —-—-- Outputs from this function are returned to the command line.
function varargout = speed OutputFcn (hObject, eventdata, handles)
varargout cell array for returning output args (see VARARGOUT) ;

o°

% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

oe

Get default command line output from handles structure

varargout{1l} = handles.output;

% —--- Executes on button press in open.

function open_Callback (hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %Sretrieve data

fopen (s)

% —--- Executes on button press in plot.

function plot_Callback (hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
out=fread(s)

plot (out)

% —--- Executes on button press in close.

function close Callback (hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
fclose (s)

71

Temperature sensor window coding

function varargout = temperature (varargin)

o0 dC o0 ° A° A A A° A° d° A A° O° O° d° A o° o° o

o\

S

o
S

TEMPERATURE M-file for temperature.fig
TEMPERATURE, by itself, creates a new TEMPERATURE or raises the existing
singleton*.

H = TEMPERATURE returns the handle to a new TEMPERATURE or the handle to
the existing singleton*.

TEMPERATURE ('CALLBACK', hObject, eventData, handles,...) calls the local
function named CALLBACK in TEMPERATURE.M with the given input arguments.

TEMPERATURE ('Property', 'Value',...) creates a new TEMPERATURE or raises the
existing singleton*. Starting from the left, property value pairs are
applied to the GUI before temperature OpeningFunction gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to temperature OpeningFcn via varargin.

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help temperature

Last Modified by GUIDE v2.5 27-Oct-2007 08:50:08

Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui State = struct('gui Name', mfilename,
'gui Singleton', gui Singleton,
'gui OpeningFcn', @temperature OpeningFcn,
'gui OutputFcn', Q@temperature OutputFcn,
'gui LayoutFcn', 1,

'gui Callback', [1

if nargin && ischar (varargin{l})

gui State.gui Callback = str2func(varargin{l});

end

if nargout

[varargout{l:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

gui_mainfcn(gui_State, varargin{:});

end

o
S

o
S

End initialization code - DO NOT EDIT

--- Executes Jjust before temperature is made visible.

function temperature OpeningFcn (hObject, eventdata, handles, varargin)

o o0 o oP

o

s=

This function has no output args, see OutputFcn.

hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)
varargin command line arguments to temperature (see VARARGIN)

serial ('COM4")

handles.op=s % store data
guidata (hObject, handles); %save data

o

S

S

Choose default command line output for temperature

handles.output = hObject;

o
&l

Update handles structure

guidata (hObject, handles);

o
S

o
S

o

S

UIWAIT makes temperature wait for user response (see UIRESUME)
uiwait (handles.figurel);

—-—-- Outputs from this function are returned to the command line.

function varargout = temperature OutputFcn (hObject, eventdata, handles)

o
S

o° o

oe

oe

varargout cell array for returning output args (see VARARGOUT) ;
hObject handle to figure

eventdata reserved - to be defined in a future version of MATLAB
handles structure with handles and user data (see GUIDATA)

Get default command line output from handles structure

varargout{1l} = handles.output;

% —--- Executes on button press in open.

function open_Callback (hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
s=handles.op %Sretrieve data

fopen (s)

% —--- Executes on button press in plot.

function plot_Callback (hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
out=fread(s)

plot (out)

% —--- Executes on button press in close.

function close Callback (hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data
fclose (s)

73

