

DESIGN AND DEVELOPEMENT OF ENCODER SENSOR

WITH GRAPHICAL USER INTERFACE (GUI)

IHSAN BIN AHMAD ZUBIR

UNIVERSITI MALAYSIA PAHANG

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Kolej Universiti Kejuruteraan & Teknologi Malaysia.

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

NO 4 KAMPUNG BANJIR, MUHAMMAD SHARFI BIN NAJIB

JALAN TAAYAH, (Nama Penyelia)

 33000 KUALA KANGSAR,

 PERAK DARUL RIDZUAN.

Tarikh: 30 NOVEMBER 2007 Tarikh: : 30 NOVEMBER 2007

CATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2007/2008

 IHSAN BIN AHMAD ZUBIR (851103-08-5947)

DESIGN AND DEVELOPEMENT OF ENCODER SENSOR

WITH GRAPHICAL USER INTERFACE (GUI)

“I hereby declare that I have read this thesis and in

My opinion this thesis is sufficient in terms of scope and

Quality for the award of the Degree of

Bachelor of Electrical & Electronic Engineering”

Signature : ...

Supervisor : Mr. Muhammad Sharfi bin Najib

Date : 30 November 2007

DESIGN AND DEVELOPEMENT OF ENCODER SENSOR

WITH GRAPHICAL USER INTERFACE (GUI)

IHSAN BIN AHMAD ZUBIR

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor Degree of Electrical Engineering (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2007

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : IHSAN BIN AHMAD ZUBIR

Date : 30 November 2007

iii

Dedicate to my beloved family and friends

who always give me a courage to finish this thesis.

 Also, to those people who have been supportive through all this time.

 Thank you for the kindness and advices that have been given.

God bless you all,-amin-

iv

ACKNOWLEDGEMENT

Alhamdulillah, I’m grateful to the creator Allah S.W.T because of His regards

I finally finish this final year project. Without His blessing it is difficult for me to

overcome and face all problems while completing this project. I also would like to

express thousand of thank to my supervisor, Mr. Muhammad Sharfi bin Najib who

give highly encouragement, supporting and guideline in order to finish this task.

 Not forgetting to my beloved parents that always prays for me and give me

strength with unlimited effort. They always remind and give lots of motivation about

patient and ask me to never give up. Thank you mum and my father, may Allah bless

you always.

 Beside that, thank you very much to my entire friend who always shares ideas

and co-operation in order to finish this project. I wish you all best of luck.

 Lastly, thank you for those who are involved directly or indirectly and your

co-operation will never be forgotten.

 Thank you Ihsan bin Ahmad Zubir

v

ABSTRACT

MATLAB is one of the software that can create Graphical User Interface

(GUI). The GUI will be designed using guide to create the layout editor. The

objective of this project is to display the signal that is generated by encoder sensor in

GUI. There are three phases to develop this project. Phase one is a development of

the sensor circuit to produce signal in analogue form. The next phase is a construct

of the controller circuit in order to convert the analogue signal to digital signal. In

controller circuit it also used Intergrated Circuit (IC) MAX233. The function of the

IC is to transmit or retrive the data from external device to the computer or vice versa

and at the same time it remains the signal in stable condition by amplified the signal

in order to reduce the losses and noise. At computer, DB9 used to connect with the

port in computer. The changes of the signal form from analogue signal to digital

signal are necessary because the computer only can accept the data in digital form.

The final phase is a development of the GUI in MATLAB. In the end of this project,

the signal generated by encoder sensor displayed in GUI.

vi

ABSTRAK

MATLAB adalah satu perisian yang boleh mencipta GUI. GUI akan dicipta

menggunakan ‘guide’ untuk membuat ‘layout editor’. Objektif projek ini adalah untuk

mempamerkan isyarat yang dijanakan oleh ‘encoder sensor’. Terdapat tiga fasa untuk

membangunkan projek ini. Fasa pertama adalah membangunkan litar pengesan untuk

menghasilkan isyarat yang man isyarat tersebut ialah isyarat analog. Seterusnya ialah

membuat litar kawalan untuk menukar isyarat analog kepada isyarat digital. Dalam

litar kawalan tersebut ia juga menggunakan litar bersepadu MAX233. Fungsi litar

bersepadu tersebut adalah untuk hantar atau terima data daripada perkakasan luar ke

komputer atau sebaliknya dan pada masa yang sama ia akan kekalkan signal dalam

keadaan stabil dengan menguatkan isyarat bertujuan untuk mengurangkan kelesapan

atau gangguan. Di komputer DB9 telah digunakan untuk hubungkan perkakasan luar

dengan port dalam komputer. Perubahan bentuk isyarat daripada isyarat analog

kepada isyarat digital adalah perlu kerana komputer hanya boleh terima data dalam

isyarat digital sahaja. Fasa yang terakhir ialah membuat GUI dalam MATLAB. Pada

akhir projek ini, isyarat yang dihasilkan oleh ‘encoder sensor’ boleh dipamerkan dalam

GUI.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENT vii

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF ABBREVIATIONS xi

LIST OF APPENDICES xii

1 INTRODUCTION 1

 1.0 Background 1

 1.1 Problem Statement 2

 1.2 Objective 3

 1.3 Scope of Project 4

 2 LITERATURE REVIEW 5

 2.0 Introduction 5

 2.1 Graphical User Interface (GUI) 6

 2.2 Matlab GUI 7

 2.3 Creating GUIs with GUIDE 9

 2.4 Sensor and Analog sensor 11

 2.5 Encoder 12

 2.6 Microcontroller Motorola 6811 13

 2.7 Oscilloscope 15

viii

 3 METHODOLOGY 17

 3.0 Introduction 17

3.1 Methodology of Work Flow 18

3.2 Research Methodology 19

3.3 Developing Hardware 20

 3.3.0 Introduction 20

 3.3.1 Design and Development MC6811 Circuit 20

 3.3.2.0 Power Supply Module 21

 3.3.2.1 Crystal Driver and External Clock 22

 3.3.2.2 Reset 23

 3.3.2.3 MAX 233 24

 3.3.2.4 Complete Circuit Micro-C 6811 25

 3.3.2 Developing the Programming of Micro-C 26

3.4 Developing Software 27

 3.4.0 Introduction 27

 3.4.1 Step to Create MATLAB GUI Development

 Enviroment 27

 3.4.2 MATLAB Coding to Create GUI 31

 3.4.2.0 Initialize Coding for GUI 31

 3.4.2.1 Content Coding for GUI 32

 3.5.3.2 Close coding for GUI 33

4 RESULT AND ANALYSIS 34

4.0 Result 34

4.1 Analysis 37

5 CONCLUSION AND RECOMMANDATION 38

 5.0 Conclusion 38

5.1 Recommandation 39

 5.1.1 Costing and Commercialization 39

 REFERENCES 41

ix

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Port and Function for 68HC11 15

 5.0 List of component and it’s cost 40

x

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Graphical User Interface (GUI) layout 9

2.2 The MC16F877 13

2.3 48-pin DIP pin assignment 14

3.1 Flowchart of project operation 18

3.2 Pin assignments 20

3.3 A simplified block diagram of MC68HC11-based system 21

3.4 Power supply module 22

3.5 Clock circuit 23

3.6 A reset circuit 23

3.7 (EIA 232 MODULE) or MAX233 Interface 24

3.8 Schematic circuit bootstrap mode connection 25

3.9 Coding to generate encoder sensor signal 26

4.1 Main window of GUI 34

4.2 Analysis Scope window of GUI before plot the data 35

4.3 Analysis scope window of GUI after plot the data. 36

4.4 The signal of encoder sensor in oscilloscope 37

4.5 The signal of encoder sensor in GUI 37

xi

LIST OF ABBREVIATIONS

GUI Graphical Users Interafce

MCU Microcontroller Unit

xii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Full Schematic Circuit of Bootstrap Mode 44

 B Max-233 Datasheet 46

 C Full Coding of GUI 51

1

CHAPTER 1

INTRODUCTION

1.0 Background

This project scope is to design and develop encoder sensor using

microcontroller Motorola 6811 through MATLAB GUI. The main contribution is the

interfacing of the MATLAB with microcontroller, GUI and Encoder Sensor. This

project focuses on the measurement of the signal that generate by encoder sensor.

The signal is in digital because the encoder sensor generate digital signal, it will

make easy to us to see the result and also can avoid from noise.

The GUI will make easy to us to see the graph in form of graphic. GUI

developed using MATLAB software because it is suitable with mathematic equation.

This project will help the students to check or trouble shooting their circuit

using this software in their rooms. The cost to make this project is low than the price

of the oscilloscope, the most important things we can determine and check the signal,

same as the function of the oscilloscope. Besides that, the maintenance cost of

oscilloscope is very high.

 This project is suitable for education purpose. The students can use this

software to see the signal and measure the signal easily.

2

1.1 Problem Statement

This project was done because it is user friendly especially for student to

make analysis in computer as compared to oscilloscope which price is more

expensive. However, the future of this project until recently seemed unimpressive in

find the correct coding to create GUI.

It will become more complicated when GUI involves with complicated

analysis and mathematical formula. Here, the problem is to create the new coding

need more research towards GUI.

The other problem is to interface the GUI with microcontroller. The selection

of microcontroller is quite difficult in order to find suitable microcontroller. Besides

that, measuring Matlab using command window is not as user friendly as GUI.

3

1.2 Objective

The aim of this project is to display the actual signal that generate by encoder

sensor in GUI. The signal will display in digital signal.

Basically a graph will be displaying as an electrical signal. In most

applications the graph shows how signals change over time: the vertical (Y) axis

represents voltage and the horizontal (X) axis represents time.

The main objective of this project is to plot the actual signal that generate by

encoder sensor.

4

1.3 Scope of Project

This project is design to measure and displays the signal in GUI. The screen

must display the digital signal. The signal can be adjust by adjust the scale of voltage

per division or second per division. The function of voltage per division or second

per division is easily to get the accurate value.

Besides, it is necessary to interface of MATLAB with microcontroller, GUI

and Encoder Sensor. This project will use microcontroller as a connecter between

software and hardware. By using microcontroller it will make easy to program and

the type of microcontroller that will be used in this project is microcontroller

Motorola 6811. Most importantly, this project is to fulfill two scopes that are display

the signal on GUI and also can interface between GUI and microcontroller.

5

CHAPTER 2

LITERATURE REVIEW

2.0 Introduction

In order to perform this project, literature review have been made from

various sources likewise journal, books and other references such as article. In

simple term, the reference sources emphasize on few aspects and the important

aspect is the assembly mechanism analysis and how to design and develop encoder

sensor, create GUI using MATLAB and construct microcontroller circuit. This

chapter will describe about GUI, MATLAB GUI, creating GUIs with GUIDE,

Sensor and Analog sensor, Encoder, microcontroller Motorola 6811 and

Oscilloscope.

6

2.1 Graphical User Interface (GUI)

A GUI is a human-computer interface that uses windows, icons and menus

and which can be manipulated by a mouse and a good GUI can make programs

easier to use by providing them with a consistent appearance and with intuitive

controls like pushbuttons, list boxes, sliders, menus, and so forth. [1][2][3] In

medical Simulink (MATLAB), it will compare the process of implementing a

Pharmaco-kinetic/ Pharmaco-dinamic model of a biological system in traditional

package. During simulation, a scope block automatically produces a time-course of

the concentration of drug in the model compartments over a specified period.[2]

A window is a (usually) rectangular portion of the monitor screen that can

display its contents (e.g., a program, icons, a text file or an image) seemingly

independently of the rest of the display screen. A major feature is the ability for

multiple windows to be open simultaneously. Each window can display a different

application, or each can display different files (e.g., text, image or spreadsheet files)

that have been opened or created with a single application. The GUI components can

be menus, toolbars, push buttons, radio buttons, list boxes, and sliders -- just to name

a few. In MATLAB, a GUI can also display data in tabular form or as plots, and can

group related components. [1][2]

7

2.2 MATLAB GUI

The following Graphical User Interface MATLAB programs have been

developed for the computational aids in the electrical engineering topics outlined in

the menu at left. These GUI programs with point-and-click features are designed for

ease of use. These programs together with the traditional hand-written problems can

help students to develop a stronger intuition and deeper understanding of these

topics.[4]

The following aims to present some code which is repeatedly used and

establishes what is expected from objects. The common code as below:

1. Radio Buttons

Where a group of buttons is inter-related, the following code should do:

set(handles.option1, ’Value’, 1);

set(handles.option2, ’Value’, 0);

set(handles.option3, ’Value’, 0);

where option1 is the source of the callback. For the other options, the only part which

needs changing is the latter one where the state of the button is defined by a zero or a

one.[5]

2. Check Boxes

A naive yet useful implementation of those will involve an element state

which hold some information about the state of the checkbox or its meaning.

if (get(handles.state,’Value’) == 0),

set(handles.checkbox, ’Value’, 0);

set(handles.state, ’String’, ’0’);

else

set(handles.checkbox, ’Value’, 1);

set(handles.state, ’String’, ’1’);

end [5]

8

3. Drop-down Menus

In the following, the menu object needs to first be identified using:

contents = get(hObject,’String’);

Subsequently, the menu entry needs to be checked for extraction and setting of

information.

if (strcmp(contents{get(hObject,’Value’)},’MenuEntry1’)),

set(handles.data, ’String’, ’Data1’);

elseif (strcmp(contents{get(hObject,’Value’)},’MenuEntry2’)),

set(handles.data, ’String’, ’Data2’);

else

msgbox(’Error with menu callback. Parameter passed is not recognised.’);

end[5]

4. Sliders

The following code will fetch the quantised value of the slider and assign

it to a new object called slider_value.set(handles.slider_value, ’String’,

num2str(ceil(get(handles.slider,)

For items that need to be ticked and unticked, the following can be

useful.

set(handles.menuitem1, ’Checked’, ’off’);

set(handles.menuitem2, ’Checked’, ’off’);

set(handles.menuitem3, ’Checked’, ’off’);

set(handles.menuitem4, ’Checked’, ’on’);

set(handles.menu_selection, ’String’, ’item4’) [5]

For GUI editing, more efficient work on the code can be done by opening all

relevant files in advance. I personally write M-files to open all relevant windows at

the start. Set up a file which includes the following lines:

edit <m-file1> <m-file2>...

guide <fig-file1> <fig-file2>...

where of course the files listed are these which are frequently worked

upon. [5]

9

MATLAB GUI is a very powerful tool when used correctly. It takes a lot of

experimenting with and a good background in programming. We also must have a

good understanding of MATLAB and be able to use the MATLAB language and

commands to create routines.

2.3 Creating GUIs with GUIDE

MATLAB implements GUIs as figure windows containing various uicontrol

objects. You must program each object to perform the action you intend it to do

when a user activates the component. In addition, you must be able to save and run

your GUI. All of these tasks are simplified by GUIDE, the MATLAB graphical user

interface development environment.[9]

GUIDE, the MATLAB Graphical User Interface development environment,

provides a set of tools for creating GUIs. These tools greatly simplify the process of

laying out and programming a GUI. GUIDE is displayed when GUI is opened in the

Layout Editor, which is the control panel for all of the GUIDE tools. The Layout

Editor will enables to lay out a GUI quickly and easily by dragging components,

such as push buttons, pop-up menus, or axes, from the component palette into the

layout area. The following picture shows the Layout Editor.[9]

Figure 2.1: Graphical User Interface (GUI) layout

10

Once GUI lay outed of and set each component's properties, using the tools in

the Layout Editor, GUI can be programmed with the M-file Editor. Finally, press the

Run button on the toolbar, the functioning GUI appears outside the Layout to see the

result.

GUI Development Environment

Creating a GUI involves two basic tasks. They are laying out the GUI

components and programming the GUI components. GUIDE primarily is a set of

layout tools. However, GUIDE also generates an M-file that contains code to handle

the initialization and launching of the GUI. This M-file provides a framework for the

implementation of the callbacks -- the functions that execute when users activate

components in the GUI.[9]

GUIDE Generated Files

While it is possible to write an M-file that contains all the commands to lay out a

GUI, it is much easier to use GUIDE to lay out the components interactively. When

you save or run the GUI, GUIDE automatically generates two files:

 A FIG-file -- a file with a .fig file name extension, which contains a complete

description of the GUI figure and all of its children (uicontrols and axes), as

well as the values of all object properties. You make changes to the FIG-file

by editing the GUI in the Layout Editor.

 An M-file -- a file with a .m file name extension, which contains the

functions that run and control the GUI and the callbacks. This file is referred

to as the GUI M-file.

Note that the M-file does not contain the code that lays out the uicontrols; this

information is saved in the FIG-file.[9]

11

Features of the GUI M-file

GUIDE simplifies the process of creating GUIs by automatically generating

the GUI M-file directly from your layout. GUIDE generates callbacks for each

component in the GUI that requires a callback. Initially, GUIDE generates just a

function definition line for each callback. You can add code to the callback to make

it perform the operation you want. The M-file contains two other functions where

you might also need to add code:

 Opening function -- performs tasks before the GUI becomes visible to the

user, such as creating data for the GUI. GUIDE names this function

my_gui_OpeningFcn, where my_gui is the name of the GUI.

 Output function -- outputs variables to the command line, if necessary.

GUIDE names this function my_gui_OutputFcn, where my_gui is the name

of the GUI.[9]

2.4 Sensor and Analog sensor

 Sensors translate between the physical world and the abstract world of

Microcontrollers. Sensors help translate physical world attributes into values that the

computer on a robot can use. The translation produces some sort of output value that

the Microcontroller can use. In general, most sensors fall into one of two

categories.They are analog sensor and digital sensor.[7]

 An analog sensor, such as a CdS cell (Cadmium Sulfide cells measure light

intensity), might be wired into a circuit in a way that it will have an output that

ranges from 0 volts to 5 volts. The value can assume any possible value between 0

and 5 volts. An 'Analog Signal' is one that can assume any value in a range. An

interesting way to think about this is an Analog Signal works like a tuner on an older

radio. You can turn it up or down in a continuous motion. You can fine tune it by

turning the knob ever so slightly.[7]

12

 Remember, to successfully use an Analog sensor, some way are needed to

convert the data into a digital form. All of the circuits shown in this section are

intended to be connected to a A/D converter port. Many Microcontrollers, such as the

68HC11, have A/D ports built in. Others require that you add an additional support

chip, such as the ADC805 or other equivalent chip.[7]

 Cadmium-Sulfide is an interesting compound. Its resistance changes readily

when exposed to light energy. Typically, the more light, the lower the resistance.

This is useful for measuring the intensity of light.[7]

2.5 Encoder

An encoder comes in two architectures. The first architecture is linear. The

second architecture is rotary. Both types sense mechanical motion and translate the

information (velocity, position, acceleration) into useful electrical data. Besides that,

an encoder defines as a device used to change a signal (such as a bitstream) or data

into a code. The code may serve any of a number of purposes such as compressing

information for transmission or storage, encrypting or adding redundancies to the

input code, or translating from one code to another. This is usually done by means of

a programmed algorithm, especially if any part is digital, while most analog

encoding is done with analog circuitry. [6] [7]

There are a few subtle differences between absolute and incremental rotary

encoders. Incremental encoders have output signals that repeat over the full range of

motion. It is important to understand that each mechanical position is not uniquely

defined. When the incremental encoder is turned on, the position of an incremental

encoder is not known since the output signals are not unique to any singular position.

Absolute encoders have a unique value (voltage, binary count, etc) for each

mechanical position. When an absolute encoder is turned on, the position of an

absolute encoder is known (this function resembles a resolver, although the

principles of operation have no similarity.) The similarities of both absolute and

incremental encoders are form factor and the issues of count and directional

13

information. They can be obtained from both absolute and incremental encoders

equally.[6]

2.6 Microcontroller Motorola 6811

Figure 2.2 : The MC16F877

The microcontroller MC68HC11A1 is a high performance 8-bit

microcontroller units (MCUs) base on the MC68HC11 family. It uses the HCMOS

technology to produce faster and small controller with less power consumption and

high tolerance for noisy signal. These high speed, low power consumption chips

have multiplexed buses and a fully static design. The chips can operate at frequencies

from 3 MHz to dc.[9][10]

 This microcontroller offers a lot of features than other microcontroller in

MC68HC11 family. It has its own CPU , power saving stop and wait modes features,

8 Kbytes ROM, 512 Bytes on-chip EEPROM , 256 bytes of on-chip RAM, 16 bit

timer system, 8 bit pulse accumulator, real time interrupt circuit, COP watch dog

system, synchronous serial peripheral interface (SCI), asynchronous no return to zero

SCI, 8-channel, 8 bit ADC and 38 general purpose I/O pins.[10]

In MC68HC11, the programming used in this microcontroller is assembly

language. This language is upward compatible, means that the latest version of

MC68HC11 family can run program from the old version of MC68HC11 family but

the old version of MC68HC11 family cannot run program from the latest version

MC68HC11 family.[9]

14

Figure 2.3 : 48-pin DIP pin assignment

MC68HC11 have 4 modes operation, bootstrap mode, special test mode,

expanded-multiplexed mode and single-chip mode. In bootstrap mode, all the

program are place into the RAM, whereas, special test is used by manufacturer to test

the chip in factory, so this mode only can be used manufacturer. Single chip

operation by using internal memories and expanded-multiplexed is mode where users

can expand memory and I/O lines by uses the port B and port C as an address and

data buses. All mode of operation is determine by status MODA and MODB pins

during RESET operation.[9][10]

Ports in MC68HC11 are multiplexed; that is each port offers various function

with each port perform one task at one time.

15

Table 2.0: Port and Function for 68HC11

PORT FUNCTION

A Parallel I/O or timer/counter

B Output port or upper address (A8-A15) in expanded mode.

C I/O port or lower address (A0-A7) and data bus (D0-D7) in expanded

mode.

D 6 bits I/O port or serial communication interface (SCI) and serial

peripheral interface (SPI)

E Input port or 8-cahnnels input analog for ADC

Latest version of MC68HC11 family such as version F has port F and G and

low cost version such as D version only has port A, B, C and D.[8]

2.7 Oscilloscope

An oscilloscope (sometimes abbreviated CRO, for cathode-ray oscilloscope,

or commonly just scope or O-scope) is a piece of electronic test equipment that

allows signal voltages to be viewed, usually as a two-dimensional graph of one or

more electrical potential differences (vertical axis) plotted as a function of time or of

some other voltage (horizontal axis).[11]

One of the most frequent uses of scopes is troubleshooting malfunctioning

electronic equipment. One of the advantages of a scope is that it can graphically

show signals: where a voltmeter may show a totally unexpected voltage, a scope may

reveal that the circuit is oscillating. In other cases the precise shape of a pulse is

important.

In a piece of electronic equipment, for example, the connections between

stages (e.g. electronic mixers, electronic oscillators, amplifiers) may be 'probed' for

the expected signal, using the scope as a simple signal tracer. If the expected signal is

absent or incorrect, some preceding stage of the electronics is not operating correctly.

Since most failures occur because of a single faulty component, each measurement

16

can prove that half of the stages of a complex piece of equipment either work, or

probably did not cause the fault. [11]

Once the faulty stage is found, further probing can usually tell a skilled

technician exactly which component has failed. Once the component is replaced, the

unit can be restored to service, or at least the next fault can be isolated. [11]

Another use is to check newly designed circuitry. Very often a newly

designed circuit will misbehave because of design errors, bad voltage levels,

electrical noise etc. Digital electronics usually operate from a clock, so a dual-trace

scope which shows both the clock signal and a test signal dependent upon the clock

is useful. "Storage scopes" are helpful for "capturing" rare electronic events that

cause defective operation. [11]

Another use is for software engineers who must program electronics. Often a

scope is the only way to see if the software is running the electronics properly. [11]

17

CHAPTER 3

METHODOLOGY

3.0 Introduction

In developing this project, methodologies is one of the most important

element to be consider to make sure that the development of the project is smooth

and get the expected result. A good methodologies can described the structure or the

flow of the project where by it can be the guideline in managing it. It is also to avoid

the project to alter course from the objectives that have been stated or in other words

the project follow the guideline based on the objectives. Figure 3.1 shows the flow

chart of methodology of this project. Below is the step to develop this project:

i. Developing hardware

ii. Developing software

18

3.1 Methodology of work flow

The block diagram above is the method to execute this project. First

determine the title. Than, collect data by make some research and literature review.

This method divided into two sections: develop of hardware and create

programming. For hardware, there are three circuit will develop. They are encoder

sensor circuit and microcontroller Motorola 6811 circuit, at the same time develop

the programming and then both of them, hardware and the software will test. If the

testing is successful, both of them will integrate and then test and demo, and also

submit the report.

Figure 3.1: Flowchart of project operation

Start

Literature review
and collect data

Identify and develop
hardware

Study Matlab GUI

Testing the
Prototype

End

Create programming
and simulate

Test

Encoder
sensor

Test Integrate
hardware and

software

Yes

Demo the project Project report

No

Microcontroller

19

3.2 Research methodology

 Based on the research of this project, it is suitable to design GUI using

MATLAB. It is because this project uses more calculation programming, it is not

suitable to use visual basic because it is suitable for simple mathematical calculation.

This project will use microcontroller Motorola 6811 to interface between hard ware

and software, GUI. In this project signal will generate by encoder sensor. Encoder

sensor consists of transmitter and receiver circuit. The signal from transmitter circuit

will transmit the signal to receiver circuit, the opaque object will cut the signal before

it get into microcontroller and then go through the MAX 233 before it display on

GUI.

20

3.3 Developing Hardware

3.3.0 Introduction

 There are a lot of components used in developing this project. The main

components are microcontroller Motorola 6811 as an interface medium between

hardware and software GUI , infrared transmitter and receiver as a sensor to create

signal and IC MAX233 will functioning as a connector between microcontroller and

computer. The signal will generate by encoder sensor than, the signal will display on

GUI through Microcontroller Motorola 6811.

3.3.1 Design and development of MC6811 circuit

Basically, microcontroller unit has internal CPU, memory and registers.

Externally, it has pins for I/O and bus signals. The I/O pins are grouped in sets of

eight called ports. For the references see figure 3.2 where it shows the pin

assignments. The MC68HC11 can be operated in different modes. They are single

chip, expanded, boot-strap, and special test.

Figure 3.2: Pin assignments

The mode selected is determined by how pins MODA and MODB are

connected at the time of reset. To set it become bootstrap mode, both pins MODA

and MODB must be grounded to get logic ‘0’. The bootstrap mode is considered a

special operating mode as distinguished from the normal single-chip operating mode.

21

This is a very versatile operating mode since there are essentially no limitations on

the special purpose program that can be loaded into the internal RAM.

Figure 3.3: A simplified block diagram of MC68HC11-based system

3.3.2.0 Power Supply Module

MC68HC11 is must be design based on it specification, this is important to

ensure the system could operate properly and more important is to avoid permanent

damage to the microcontroller. Thus, the main purpose of power supply module is to

be as power source to the microcontroller which fulfills the criteria of the

MC68HC11. The figure 3.4 illustrates the circuitry for the power supply module.

This circuit functions to supply dc source at fixed voltage level at 5V and avoid the

over current from entering microcontroller. The condition could be achieved by

using IC regulator 7805 which provide fixed 5V although the load is changed.

22

100uf1uf

>6V 5V3

1uf

2

1

GND

7805

(1.5A)

GND

Figure 3.4: Power supply module

3.3.2.1 Crystal Driver and External Clock Input (XTAL, EXTAL)

These two pins provide the interface for either a crystal or a CMOS

compatible clock to control the internal clock generator circuitry. The frequency

applied to these pins shall be four times higher than the desired E clock rate. The

XTAL pin is normally left exterminated when using an external CMOS compatible

clock input to the EXTAL pin. However, a 10K to 100K load resistor to ground may

be used to reduce RFI noise emission. The XTAL output is normally intended to

drive only a crystal. The XTAL output may be buffered with a high-input-impedance

buffer such as the 74HC04, or it may be used to drive the EXTAL input of another

M68HC11. In all cases take extra care in the circuit board layout around the

oscillator pins. Load capacitances shown in the oscillator circuits include all stray

layout capacitances.

23

XTAL

22 pF
8 MHz

EXTAL

22 pF

10M

Figure 3.5: Clock circuit

3.3.2.2 Reset (RESET)

This active low bidirectional control signal is used as an input to initialize the

MC68HC11A1/A8 to a known start-up state, and as an open-drain output to indicate

that an internal failure has been detected in either the clock monitor or computer

operating properly (COP) watchdog circuit. This reset signal is significantly different

from the reset signal used on other Motorola MCUs.

Figure 3.6: A reset circuit

24

3.3.2.3 MAX233

The function of MAX233 is to amplify signal in order to reduce the losses

during transmit or receive data from Microcontroller 6811 to the PC.

GND(5)

Tout
Tx(2)

TxD

Rout

DB9 interface

RxD

Tin

MAX233

Rin
Rx(3)

Figure 3.7: (EIA 232 MODULE) or MAX233 Interface

25

3.3.2.4 COMPLETE CIRCUIT MICROCONTROLLER 6811

Figure 3.8: Schematic circuit bootstrap mode connection

26

3.3.2 Developing the Programming of MICROCONTROLLER 6811

 The coding of microcontroller 6811 developed in assembly language. Then

the coding will simulate in THRsim. The format of coding is in asm. Below is the

complete coding to generate the encoder sensor signal in pulse:

Figure 3.9: Coding to generate encoder sensor signal

REGS EQU $1000

OPTION EQU $39
ADCTL EQU $30

ADR1 EQU $31

SCCR1 EQU $2C
SCCR2 EQU $2D

BAUD EQU $2B

SCSR EQU $2E
SCDR EQU $2F

 ORG $B600
 LDS #$FF

 LDX #REGS

****************************INITIALIZE ADC***************************

INI_ADC LDAA #$80

STAA OPTION,X
JSR DELAY

LDAA #$20

STAA ADCTL,X

****************************INITIALIZE SCI***************************

INI_SCI LDAA #30
STAA BAUD,X ;SETTING BAUD RATE TO 9600 KB/S

CLRA ;WAKE UP METHOD=IDDLE LINE,CHARACTER LENGHT=(1-ATART,8-DATA,1-STOP)

STAA SCCR1,X
LDAA #$08 ;ENABLE TRNSMIT

STAA SCCR2,X

LOOP CLRA

SCN_CCF BRCLR ADCTL,X $80 SCN_CCF
LDAA ADR1,X

JSR DELAY

STAA SCDR,X
TRNSMIT BRCLR SCSR,X $80 TRNSMIT ;BRANCH TO TRANSMIT IF TDRE=1

BRA LOOP

DELAY PSHA

 PSHX

 LDAA #$5
REPEAT LDX #$FF

AGAIN DEX

 BNE AGAIN
 DECA

 BNE REPEAT

 PULX
 PULA

 RTS

 ORG $FFFE

 FDB $B600
 END

27

3.4 Developing software

3.4.0 Introduction

 The software was used in to create GUI is MATLAB. It is because this

project uses more calculation programming, it is not suitable to use visual basic

because it is suitable for simple mathematical calculation. The signal from encoder

sensor will display on GUI using PIC as the interface medium. The type of

MATLAB that used to create the GUI is MATLAB 7.1 version. MATLAB GUI is

Script files that have interaction with user by using Windows.

3.4.1 Step to create MATLAB GUI Development Environment

1. Type GUIDE at the command window.

28

2. The GUIDE start dialog will pop up and select the pre-built templates. Use

the default blank GUI template.

3. The GUIDE layout editor that appears for design the layout of GUI.

 GUI can be creating using collection of components available in the pallet.

29

4. Resize the GUI

5. Add push button, pop up menu and axis from the pallet to the layout by left

click and drag on the layout.

6. Open the Property Inspector at View > Property Inspector to change the name

of pushbutton, Panel and other function name.

30

7. Run the GUI by click the green button

8. After click the green button, save the GUI M-file layout, the automatic

generate code will display at M-file. Click the F symbol too

9. In the function, data can be load to do the function. Then syntax for

MATLAB GUI Development Environment can be developed.

31

3.4.2 MATLAB Coding to create GUI

3.4.2.0 Initialize Coding for Graphical User Interface (GUI)

In MATLAB, GUI can be develop by create the coding in M-File. The

initialize coding must be creating first, before create the main coding. The purpose to

create the initialize coding is to assign port which is available and enable the port in

computer. The function of the port is to transfer and receive data. It will be linker

between hardware and software in computer. Below is the initialize coding in M-

File:

s=serial(‘COM’);

fopen(s)

handles.op=s % store data

guidata(hObject, handles); %save data

Description:

1. s=serial(‘COM’) or obj = serial('port') creates a serial port object associated

with the serial port specified by port. If port does not exist, or if it is in use,

the serial port object will not be able to connect to the device. User can justify

which port by looking at start >control panel>system at system roperties

select Hardware>device manager>Port COM&LPT)> there is he port number

eg: COM7.

2. fopen(obj) connects obj to the device.

‘obj’ must be connected to the device with the fopen function before execute

read and write operation. When obj is connected to the device:

- Data remaining in the input buffer or the output buffer is flushed.

- The Status property is set to open.

- The BytesAvailable, ValuesReceived, ValuesSent, and BytesToOutput

properties are set to 0.

32

An error will occur when the obj is not connected to the device which is the

cannot be read or write. Some properties are read-only while the serial port

object is open (connected), and must be configured before using fopen.

Examples include InputBufferSize and OutputBufferSize. Refer to the

property reference pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected to the

device. If any of these properties are incorrectly configured, then an error is

returned when fopen is issued and obj is not connected to the device.

Properties of this type include BaudRate, and are associated with device

settings.

 3. handles.op=s: When GUI is running, the M-file creates a handles structure

That contains all the data for GUI objects, such as controls, menus, and axes.

The handles structure is passed as an input to each callback. The handles

structure can be use to share data between callbacks and access GUI data.

4. guidata(hObject, handles)or guidata(object_handle,data) will stores the

variable data as GUI data. If object_handle is not a figure handle, then the

object's parent figure is used. data can be any MATLAB variable, but is

typically a structure, which is enables to add new fields as required.

3.4.2.1 Content Coding for Graphical User Interface (GUI)

In this project, there are several important coding that must be understood. Below is

the coding in M-File:

i. Coding to plot the graph.

s=handles.op %retrieve data

out=fread(s)

plot(out)

The function of s=handles.op coding is to retrieve data. Data will callback by using

this coding, it will define again the data. While, the function of out=fread(s)or

A=fread(obj)is reads binary data from the device connected to obj, and returns the

33

data to A. Data will be read in 10 second. The GUI Plot button callback creates a plot

of the run data and adds a legend. The data to plot is passed to the callback in the

handles structure, which also contains the gain settings used when the simulation ran.

When a user clicks on the Plot button, the callback executes the following steps:

- Collects the data for each run selected in the Results list, including two

variables (time vector and output vector) and a color for each result run to

plot.

- Generates a string for the legend from the stored data.

- Creates the figure and axes for plotting and saves the handles for use by the

Close button callback.

- Plots the data, adds a legend, and makes the figure visible.

ii. Coding to insert the picture:

guidata(hObject, handles);

[x,map]=imread('project','jpg');

image(x)

set(gca,'visible','off')

The function of coding above will put the picture that we select in GUIThe picture

must be in jpeg format.

iii. Coding to connect between the windows in GUI

function varargout=xxx_Callback(h,eventdata,handles,varagin)

figure(yyy)

3.4.2.2 Close Coding for Graphical User Interface (GUI)

Below is the coding to close the port of the GUI:

s=handles.op %retrieve data

fclose(s)

34

CHAPTER 4

RESULT AND ANALYSIS

4.0 Result

 The figures below show the environment of GUI (Graphical User Interface)

created using MATLAB.

Figure 4.1: Main window of GUI

35

 The figure 4.1 shows the main window of GUI. At the front of the GUI there

are three main button. There are introduction button,analysis button and close

button.the introduction button will display the introduction window when it is

clicking. The content of the introduction window is the general view of the overall

project. For the analysis scope button it will display the analysis window. The graph

will displayed the signal that generate by encoder sensor. The function of close

button is it will close the analysis scope window.

Figure 4.2: Analysis Scope window of GUI before plot the data

 The figure 4.2 shows analysis scope window. Now, the window is in initial

condition before plot the graph. The signal will disply in the window. There are three

main button in this window. They are open port window, plot data button and close

port button. The function of the open port button is to open the serial port to allow

the data to transmit or receive between hardware and software in computer. The

function of the plot data button is it will read the data from external device and plot

the data in GUI. For the close port button it will close the serial port, in other words

it will disconnect the communication between hardware and software in computer.

36

Figure 4.3: Analysis scope window of GUI after plot the data.

 The figure 4.3 shows the analysis scope window after plot the data. The data

displayed in digital form. The form of signal that displayed in GUI is not accurate

because the noise occurred. Beside that, this window can measured various type of

signal from various sensor at the same time.

37

4.1 Analysis

The figure above showed the comparison between the signal display in GUI

the signal display in oscilloscope. The signal display in GUI is not accurate because

it has noise and distortion occurred that give effect to the original signal.

This project used microcontroller as a connecter to link between hardware

and software (MATLAB).The microcontroller will convert the signal and transfer the

signal through MAX233. The function of MAX233 in this project is to communicate

to the computer and at the same time it remains the signal in stable condition by

amplified the signal in order to reduce the losses and to avoid noise.

In this project, to link between hardware and software or to transfer the data it

used DB9.DB9 also known as the D-subminiature or D-sub is a common type of

electrical connector used particularly in computers. It is one of the largest common

connectors used in computer after USB. DB9 usually used for RS-232 serial

communication interface (SCI) to transmit data from microcontroller.

At the end of this project, the voltage signal can be displayed and measured

through GUI The signal is in digital form, display in GUI , MATLAB.

Figure 4.4 The signal of

encoder sensor in oscilloscope

Figure 4.5 The signal of encoder

sensor in GUI

38

CHAPTER 5

CONCLUSION AND RECOMMANDATION

5.0 Conclusion

 One of the primary goals of this project is to display signal on the visual form

which is using GUI. (Besides that, the more important here is the project is user

friendly. Thus, the project is design to give as much facilities to the people especially

to student for the educational purpose. In the end of this project, the signal that

generate by encoder sensor can displayed in GUI. Microcontroller 6811 has been

used in this project to interface between hardware and software. Beside that, GUI

also must be developed as a tool to display the signal that generated by encoder

sensor. As a conclusion, this project achieved the objective and scopes. This project

also is useful because it offers the user can analyze the signal quite accurate.

39

5.1 Recommendation

For the future plan of this project, it is recommended to other candidate to do

more studies on the related information with this topic in order to continue with the

real method that has been discuss in methodology chapter. Besides that, GUI can be

created to make analysis from several of sensor.

5.1.1 Costing and commercialization

There are some components are needed to build and develop of encoder

sensor with GUI. Figure 5.1 shows the entire component related to build the system,

all the components are easy to get accept microcontroller. This system using

Motorola MC68HC11A1 microcontroller, A1 is an early version of MC68HC family

so in the future A1 version of microcontroller maybe not produces anymore. But as

in chapter 2 already explain, MC68HC family is an upward compatible so program

from early version can run at the latest version of MC68HC family but not in vice

versa.

 I believe this system can be commercialized because it’s a user friendly

system that can be used in any personal computer (PC) or laptop to analyze signal.

40

Table 5.0: List of component and it’s cost

No. Components Specification
Estimation

price/unit
Quantity

Estimation

price

1 Micro.C MC68HC11 RM40.00 1 RM 40.00

2 Regulator 7805 RM1.00 1 RM 1.00

3 PCB Header RM0.80 5 RM 4.00

4 I.C Base 48 pin RM0.50 1 RM 0.50

 10 pin RM0.10 1 RM 0.17

5 Crystal 8MHz RM1.20 1 RM 1.20

6 Strip board 10” x 4” RM4.00 2 RM 8.00

7 Reset Switch RM0.30 2 RM 0.60

8 MAX233 RM9.50 1 RM 9.50

9 Capacitor 4.7 uF (25V) RM0.12 3 RM 0.36

 1 Uf (25V) RM0.12 6 RM 0.72

 0.1 uF (25V) RM0.15 3 RM 0.45

 22 pF(25V) RM0.08 3 RM 0.24

 10uF(25V) RM0.15 3 RM 0.45

10 Resistor 220R RM0.02 10 RM 0.20

 1M RM0.02 3 RM 0.06

 15k RM0.02 2 RM 0.04

 22k RM0.04 2 RM 0.08

11 DB9 Female RM0.60 1 RM 0.60

12 DB9 Cover RM0.60 1 RM 0.60

13 Heat Sink RM0.70 1 RM 0.70

14
Wrapping

Wire
 RM15.00 1 RM 15.00

 TOTAL ESTIMATION PRICE RM 84.47

41

REFERENCES

[1] GUI Definition, (2004)

 http://www.bellevuelinux.org/gui.html

[2] Chapman, Stephen J., (2001),MATLAB Programming for Engineers, Brooks

 Cole, 2001.

[3] Esazonov,(2003), “Building GUI interfaces in Matlab”

 http://www.intelligent-systems.info/classes/ee509/gui.htm

[4] R. S. Schestowitz, (2004), “Collated advice on construction of user

 Interfaces”

 http://www.mathworks.com/matlabcentral/files/5439/gui_tips.pdf

[5] Thomas, (2007), “Digital Encoder is used for motion control applications.”

 http://news.thomasnet.com/fullstory/801734

[6] Wikipedia, (2007), Encoder

 http://en.wikipedia.org/wiki/Encoder

[7] Wikipedia, (2007), Sensor

 http://en.wikipedia.org/wiki/Sensor

[8] Tom Huber, (1997), “Creating a GUI in Matlab”

 http://physics.gac.edu/~huber/envision/matgui/matgui.htm

[9] Peter Spasov (1996). “ Microcontroller Technology The 68HC11”.

 Englewood Cliffs, N.J.: Prentice Hall

[10] “68HC11 Reference Manual”: Motorola

[11] Michael smith, (2003), “The oscilloscope”

 http://www.doctronics.co.uk/scope.htm

42

APPENDICES

43

APPENDIX A

44

RESET

0

0

C2

1u

TxD

Y1

8MHZ

RxD

Rx(3)

Tx(2)

R3

10k

GND(5)

U1

68HC11A1

30
29

39
41
40

8
7
6

17
18
19
20

22
21

5
4
3
2
1

16
15
14
13
12
11
10
9

31
32
33
34
35
36
37
38

42
43
44
45
46
47

25
24

27
26
28

XT
EX

RESET
IRQ
XIRQ

PA0
PA1
PA2

PE0
PE1
PE2
PE3

VRH
VRL

PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

PD0
PD1
PD2
PD3
PD4
PD5

MODA
MODB

E
AS

R/W

0

R1

1M

DB9

interface

C6

4.7u

TxD

0

>6V

C3

100u

C4

1n

5V

U2
L7805/TO3

1

3

2
VIN

G
N

D

VOUT

SW1

1 2

RxD

D17

LED

C5

1n

C1

1u

5V

0

D16

LED

U3

MAX233

4
19
2
1

8
13
15
11
10
16
14
12
17

3
20
5
18

R1IN
R2IN
T1IN
T2IN

C1+
C1-
C2+
C2+
C2-
C2-
V+
V1-
V2-

R1OUT
R2OUT
T1OUT
T2OUT

EXTAL

XTAL

The complete circuit for Bootstrap mode MC68HC11A1

45

APPENDIX B

46

47

48

49

50

51

APPENDIX C

52

Main window coding

function varargout = main(varargin)

% MAIN M-file for main.fig

% MAIN, by itself, creates a new MAIN or raises the existing

% singleton*.

%

% H = MAIN returns the handle to a new MAIN or the handle to

% the existing singleton*.

%

% MAIN('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in MAIN.M with the given input arguments.

%

% MAIN('Property','Value',...) creates a new MAIN or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before main_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to main_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help main

% Last Modified by GUIDE v2.5 27-Oct-2007 10:42:55

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @main_OpeningFcn, ...

 'gui_OutputFcn', @main_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before main is made visible.

function main_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to main (see VARARGIN)

% Choose default command line output for main

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

[x,map]=imread('project','jpg');

image(x)

set(gca,'visible','off')

% UIWAIT makes main wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = main_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

53

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in introduction.

function varargout=introduction_Callback(h,eventdata,handles,varagin)

figure(information)

% hObject handle to introduction (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton2.

function varargout=pushbutton2_Callback(h,eventdata,handles,varagin)

figure(scope)

% hObject handle to pushbutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in History.

function History_Callback(hObject, eventdata, handles)

% hObject handle to History (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in Close.

function Close_Callback(hObject, eventdata, handles)

% hObject handle to Close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close

% --- Executes during object creation, after setting all properties.

function axes1_CreateFcn(hObject, eventdata, handles)

% hObject handle to axes1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1

54

Information window coding

function varargout = Information(varargin)

% Last Modified by GUIDE v2.5 26-Oct-2007 23:24:25

if nargin == 0 % LAUNCH GUI

fig = openfig(mfilename,'reuse');

 % Generate a structure of handles to pass to callbacks, and store it.

 handles = guihandles(fig);

 guidata(fig, handles);

axes(handles.axesInfo) % Select the proper axes

axis off

str1(1) = {['\bf Design And Developement Of '

 ' Encoder Sensor with GUI ']};

str2(1)= {['MATLAB is one of the software that can create GUI (Graphical User

Interface). '

 'The GUI will create using guide to create the GUI layout editor. The

objective '

 'of this project is to display the signal that generated by encoder sensor

in '

 'GUI (Graphical User Interface). There are three phase to develop this

project. '

 'Phase one is developing the sensor circuit to produce signal which is the

signal '

 'is in analogue form. The second phase is developing the controller

circuit in '

 'order to convert the analogue signal to digital signal. The changes of

the signal '

 'form from analogue signal to digital signal are necessary because the

computer only '

 'can accept the data in digital form.The third phase is developing the GUI

(Graphical '

 'User Interface)in MATLAB. In the end of this project, the signal

generated by encoder '

 'sensor will display in GUI (Graphical User Interface).

']};

text(0.2, 1, str1, 'FontSize', 14, 'color', [0 0 0.502])

text(0, .5, str2, 'FontSize', 10, 'color', [0 0 0.502])

 %text(0.36, -3.55,'\bf\copyright', 'FontSize', 10, 'color',[1 0 0])

 if nargout > 0

 varargout{1} = fig;

 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

 try

 if (nargout)

 [varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard

 else

 feval(varargin{:}); % FEVAL switchyard

 end

 catch

 disp(lasterr);

 end

end

%| ABOUT CALLBACKS:

%| GUIDE automatically appends subfunction prototypes to this file, and

%| sets objects' callback properties to call them through the FEVAL

%| switchyard above. This comment describes that mechanism.

%|

%| Each callback subfunction declaration has the following form:

%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)

%|

%| The subfunction name is composed using the object's Tag and the

%| callback type separated by '_', e.g. 'slider2_Callback',

%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.

55

%|

%| H is the callback object's handle (obtained using GCBO).

%|

%| EVENTDATA is empty, but reserved for future use.

%|

%| HANDLES is a structure containing handles of components in GUI using

%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This

%| structure is created at GUI startup using GUIHANDLES and stored in

%| the figure's application data using GUIDATA. A copy of the structure

%| is passed to each callback. You can store additional information in

%| this structure at GUI startup, and you can change the structure

%| during callbacks. Call guidata(h, handles) after changing your

%| copy to replace the stored original so that subsequent callbacks see

%| the updates. Type "help guihandles" and "help guidata" for more

%| information.

%|

%| VARARGIN contains any extra arguments you have passed to the

%| callback. Specify the extra arguments by editing the callback

%| property in the inspector. By default, GUIDE sets the property to:

%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))

%| Add any extra arguments after the last argument, before the final

%| closing parenthesis.

% --

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close

56

Analysis Scope window coding

function varargout = scope(varargin)

% SCOPE M-file for scope.fig

% SCOPE, by itself, creates a new SCOPE or raises the existing

% singleton*.

%

% H = SCOPE returns the handle to a new SCOPE or the handle to

% the existing singleton*.

%

% SCOPE('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in SCOPE.M with the given input arguments.

%

% SCOPE('Property','Value',...) creates a new SCOPE or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before scope_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to scope_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help scope

% Last Modified by GUIDE v2.5 28-Nov-2007 07:18:58

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @scope_OpeningFcn, ...

 'gui_OutputFcn', @scope_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before scope is made visible.

function scope_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to scope (see VARARGIN)

s=serial('COM1')

handles.op=s % store data

guidata(hObject, handles); %save data

% Choose default command line output for scope

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes scope wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = scope_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

57

varargout{1} = handles.output;

% --- Executes on button press in open.

function open_Callback(hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fopen(s)

% --- Executes on button press in plot.

function plot_Callback(hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

out=fread(s)

plot(out)

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fclose(s)

% --- Executes on button press in analog.

function varargout=analog_Callback(h,eventdata,handles,varagin)

figure(analog)

% hObject handle to analog (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in digital.

function varargout=digital_Callback(h,eventdata,handles,varagin)

figure(digit)

% hObject handle to digital (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in radiobutton1.

function radiobutton1_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1

% --- Executes on button press in radiobutton4.

function radiobutton4_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton4

% --- Executes on button press in radiobutton3.

function radiobutton3_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton3

% --- Executes on button press in radiobutton2.

function radiobutton2_Callback(hObject, eventdata, handles)

58

% hObject handle to radiobutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton2

% --- Executes on button press in tutup.

function tutup_Callback(hObject, eventdata, handles)

% hObject handle to tutup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close

% --- Executes on button press in pushbutton8.

function pushbutton8_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton9.

function pushbutton9_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

59

Analog window coding

function varargout = analog(varargin)

% ANALOG M-file for analog.fig

% ANALOG, by itself, creates a new ANALOG or raises the existing

% singleton*.

%

% H = ANALOG returns the handle to a new ANALOG or the handle to

% the existing singleton*.

%

% ANALOG('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in ANALOG.M with the given input arguments.

%

% ANALOG('Property','Value',...) creates a new ANALOG or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before analog_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to analog_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help analog

% Last Modified by GUIDE v2.5 27-Oct-2007 11:54:20

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @analog_OpeningFcn, ...

 'gui_OutputFcn', @analog_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before analog is made visible.

function analog_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to analog (see VARARGIN)

% Choose default command line output for analog

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes analog wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = analog_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

60

% --- Executes on button press in speed.

function varargout=speed_Callback(h,eventdata,handles,varagin)

figure(speed)

% hObject handle to encoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in Temperature.

function varargout=Temperature_Callback(h,eventdata,handles,varagin)

figure(temperature)

% hObject handle to Temperature (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

61

Digital window coding

function varargout = digit(varargin)

% DIGIT M-file for digit.fig

% DIGIT, by itself, creates a new DIGIT or raises the existing

% singleton*.

%

% H = DIGIT returns the handle to a new DIGIT or the handle to

% the existing singleton*.

%

% DIGIT('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in DIGIT.M with the given input arguments.

%

% DIGIT('Property','Value',...) creates a new DIGIT or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before digit_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to digit_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help digit

% Last Modified by GUIDE v2.5 27-Oct-2007 14:04:20

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @digit_OpeningFcn, ...

 'gui_OutputFcn', @digit_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before digit is made visible.

function digit_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to digit (see VARARGIN)

% Choose default command line output for digit

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes digit wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = digit_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

62

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in foto.

function varargout=foto_Callback(h,eventdata,handles,varagin)

figure(foto)

% hObject handle to foto (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in infrared.

function varargout=infrared_Callback(h,eventdata,handles,varagin)

figure(infrared)

% hObject handle to infrared (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

close

% --- Executes on button press in encoder.

function varargout=encoder_Callback(h,eventdata,handles,varagin)

figure(encoder)

% hObject handle to encoder (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

63

Encoder sensor window coding

function varargout = encoder(varargin)

% ENCODER M-file for encoder.fig

% ENCODER, by itself, creates a new ENCODER or raises the existing

% singleton*.

%

% H = ENCODER returns the handle to a new ENCODER or the handle to

% the existing singleton*.

%

% ENCODER('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in ENCODER.M with the given input arguments.

%

% ENCODER('Property','Value',...) creates a new ENCODER or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before encoder_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to encoder_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help encoder

% Last Modified by GUIDE v2.5 27-Oct-2007 13:55:28

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @encoder_OpeningFcn, ...

 'gui_OutputFcn', @encoder_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before encoder is made visible.

function encoder_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to encoder (see VARARGIN)

s=serial('COM4')

handles.op=s % store data

guidata(hObject, handles); %save data

% Choose default command line output for encoder

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes encoder wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = encoder_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

64

varargout{1} = handles.output;

% --- Executes on button press in open.

function open_Callback(hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fopen(s)

% --- Executes on button press in plot.

function plot_Callback(hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

out=fread(s)

plot(out)

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fclose(s)

% --- Executes on button press in analog.

function analog_Callback(hObject, eventdata, handles)

% hObject handle to analog (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in digital.

function digital_Callback(hObject, eventdata, handles)

% hObject handle to digital (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in radiobutton1.

function radiobutton1_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton1

% --- Executes on button press in radiobutton4.

function radiobutton4_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton4

% --- Executes on button press in radiobutton3.

function radiobutton3_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton3

% --- Executes on button press in radiobutton2.

function radiobutton2_Callback(hObject, eventdata, handles)

% hObject handle to radiobutton2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

65

% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of radiobutton2

% --- Executes on button press in tutup.

function tutup_Callback(hObject, eventdata, handles)

% hObject handle to tutup (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

Close

66

Foto sensor window coding

function varargout = foto(varargin)

% FOTO M-file for foto.fig

% FOTO, by itself, creates a new FOTO or raises the existing

% singleton*.

%

% H = FOTO returns the handle to a new FOTO or the handle to

% the existing singleton*.

%

% FOTO('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in FOTO.M with the given input arguments.

%

% FOTO('Property','Value',...) creates a new FOTO or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before foto_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to foto_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help foto

% Last Modified by GUIDE v2.5 25-Oct-2007 14:35:18

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @foto_OpeningFcn, ...

 'gui_OutputFcn', @foto_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before foto is made visible.

function foto_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to foto (see VARARGIN)

s=serial('COM4')

handles.op=s % store data

guidata(hObject, handles); %save data

% Choose default command line output for foto

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes foto wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = foto_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

67

varargout{1} = handles.output;

% --- Executes on button press in open.

function open_Callback(hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fopen(s)

% --- Executes on button press in plot.

function plot_Callback(hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

out=fread(s)

plot(out)

68

Infrared sensor coding

function varargout = infrared(varargin)

% INFRARED M-file for infrared.fig

% INFRARED, by itself, creates a new INFRARED or raises the existing

% singleton*.

%

% H = INFRARED returns the handle to a new INFRARED or the handle to

% the existing singleton*.

%

% INFRARED('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in INFRARED.M with the given input arguments.

%

% INFRARED('Property','Value',...) creates a new INFRARED or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before infrared_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to infrared_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help infrared

% Last Modified by GUIDE v2.5 27-Oct-2007 14:08:45

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @infrared_OpeningFcn, ...

 'gui_OutputFcn', @infrared_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before infrared is made visible.

function infrared_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to infrared (see VARARGIN)

s=serial('COM4')

handles.op=s % store data

guidata(hObject, handles); %save data

% Choose default command line output for infrared

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes infrared wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = infrared_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

69

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in open.

function open_Callback(hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fopen(s)

% --- Executes on button press in plot.

function plot_Callback(hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

out=fread(s)

plot(out)

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fclose(s)

70

Speed Sensor window coding

function varargout = speed(varargin)

% SPEED M-file for speed.fig

% SPEED, by itself, creates a new SPEED or raises the existing

% singleton*.

%

% H = SPEED returns the handle to a new SPEED or the handle to

% the existing singleton*.

%

% SPEED('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in SPEED.M with the given input arguments.

%

% SPEED('Property','Value',...) creates a new SPEED or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before speed_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to speed_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help speed

% Last Modified by GUIDE v2.5 27-Oct-2007 08:49:20

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @speed_OpeningFcn, ...

 'gui_OutputFcn', @speed_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before speed is made visible.

function speed_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to speed (see VARARGIN)

s=serial('COM4')

handles.op=s % store data

guidata(hObject, handles); %save data

% Choose default command line output for speed

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes speed wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = speed_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

71

varargout{1} = handles.output;

% --- Executes on button press in open.

function open_Callback(hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fopen(s)

% --- Executes on button press in plot.

function plot_Callback(hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

out=fread(s)

plot(out)

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fclose(s)

72

Temperature sensor window coding

function varargout = temperature(varargin)

% TEMPERATURE M-file for temperature.fig

% TEMPERATURE, by itself, creates a new TEMPERATURE or raises the existing

% singleton*.

%

% H = TEMPERATURE returns the handle to a new TEMPERATURE or the handle to

% the existing singleton*.

%

% TEMPERATURE('CALLBACK',hObject,eventData,handles,...) calls the local

% function named CALLBACK in TEMPERATURE.M with the given input arguments.

%

% TEMPERATURE('Property','Value',...) creates a new TEMPERATURE or raises the

% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before temperature_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. All inputs are passed to temperature_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one

% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help temperature

% Last Modified by GUIDE v2.5 27-Oct-2007 08:50:08

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @temperature_OpeningFcn, ...

 'gui_OutputFcn', @temperature_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

% End initialization code - DO NOT EDIT

% --- Executes just before temperature is made visible.

function temperature_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to temperature (see VARARGIN)

s=serial('COM4')

handles.op=s % store data

guidata(hObject, handles); %save data

% Choose default command line output for temperature

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes temperature wait for user response (see UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = temperature_OutputFcn(hObject, eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

73

varargout{1} = handles.output;

% --- Executes on button press in open.

function open_Callback(hObject, eventdata, handles)

% hObject handle to open (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fopen(s)

% --- Executes on button press in plot.

function plot_Callback(hObject, eventdata, handles)

% hObject handle to plot (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

out=fread(s)

plot(out)

% --- Executes on button press in close.

function close_Callback(hObject, eventdata, handles)

% hObject handle to close (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

s=handles.op %retrieve data

fclose(s)

