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A B S T R A C T   

Metaheuristic algorithms are gaining popularity amongst researchers due to their ability to solve nonlinear 
optimization problems as well as the ability to be adapted to solve a variety of problems. There is a surge of novel 
metaheuristics proposed recently, however it is uncertain whether they are suitable for FPGA implementation. In 
addition, there exists a variety of design methodologies to implement metaheuristics upon FPGA which may 
improve the performance of the implementation. The project begins by researching and identifying meta-
heuristics which are suitable for FPGA implementation. The selected metaheuristic was the Simulated Kalman 
Filter (SKF) which proposed an algorithm that was low in complexity and used a small number of steps. Then the 
Discrete SKF was adapted from the original metaheuristic by rounding all floating-point values to integers as well 
as setting a fixed Kalman gain of 0.5. The Discrete SKF was then modeled using behavioral modeling to produce 
the Binary SKF which was then implemented onto FPGA. The design was made modular by producing separate 
modules that managed different parts of the metaheuristic and Parallel-In-Parallel-Out configuration of ports was 
also implemented. The Discrete SKF was then simulated on MATLAB meanwhile the Binary SKF was imple-
mented onto FPGA and their performance were measured based on chip utilization, processing speed, and ac-
curacy of results. The Binary SKF produced speed increment of up to 69 times faster than the Discrete SKF 
simulation.   

Introduction 

Metaheuristic algorithms have emerged as the bedrock of modern 
problem-solving techniques, offering the flexibility to tackle a wide 
range of optimization challenges. It is an optimization method that is 
used to solve complex nonlinear and multimodal problems [1]. These 
algorithms draw inspiration from various natural and computational 
processes, adapting and evolving to provide innovative approaches to 
problem-solving. Within the topic of metaheuristics, the Simulated 
Kalman Filter (SKF) offers an edge of simple execution in addressing 
optimization and adaptability [1–3]. Its applications span across do-
mains as diverse as supply chain management, finance, wireless sensor 
networks, and engineering design. SKF’s ability to swiftly adapt to 
real-time optimization tasks and deliver promising results makes it a 
formidable candidate for addressing complex, real-world problems. 

As the demand for robust optimization solutions intensifies, so does 
the need for advancements in implementation methods. Among these 
methods, the implementation of metaheuristic algorithms on Field 
Programmable Gate Arrays (FPGAs) has gained considerable attention. 

FPGAs offer the promise of unparalleled processing speed and efficiency, 
potentially revolutionizing the way metaheuristic algorithms are 
executed. Nevertheless, the implementation of complex metaheuristics 
on FPGAs comes with its own set of intricacies and challenges. This 
study embarks on a comprehensive exploration of the Binary Simulated 
Kalman Filter (Binary SKF) algorithm and its FPGA implementation. The 
study delves deep into the intricacies of Binary SKF, dissecting its core 
components and principles, and elucidates its potential in addressing 
real-world optimization problems. The paper distinguishes SKF from 
alternative bio-inspired metaheuristics, laying the foundation for the 
decision to proceed with its FPGA implementation. Central to this aca-
demic exploration is a detailed examination of the SKF metaheuristic 
itself. The algorithm is dissected into its elemental components, each 
contributing significantly to its optimization capabilities. The details of 
population generation, fitness evaluation, and the Kalman Filter com-
ponents are unraveled, presenting a holistic view of the algorithm’s 
inner workings. A thorough comprehension of SKF is vital in under-
standing the intricacies of its FPGA implementation. The transition from 
the original SKF to a discrete version optimized for FPGA 
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implementation is scrutinized through MATLAB simulations. The paper 
highlighted the importance of this shift, primarily based on the adapt-
ability of the discrete version to digital systems. This implementation 
shift enables greater precision and efficiency when implementing Binary 
SKF. Furthermore, this academic journal delves into the core of the Bi-
nary SKF FPGA implementation. The intricate process of behavioral 
modeling is meticulously examined, with a particular emphasis on the 
modules that underpin the FPGA implementation. Each module is 
individually designed, optimizing FPGA resources to ensure the algo-
rithm’s robust performance. 

Crucial to this study is the exploration of speed improvements ach-
ieved through FPGA implementation. The paper seeks to identify the 
precise areas within Binary SKF where speed enhancements are most 
significant. Operations such as agent interaction, solution evaluation, 
control logic, data communication, resource allocation, and iteration 
management are scrutinized. The analysis shed light on the instrumental 
role played by FPGA technology in augmenting the performance and 
practical applicability of Binary SKF in a range of real-world optimiza-
tion problems. The limitations and areas for improvement in the Binary 
SKF implementation are discussed, focusing on issues related to accu-
racy and precision, emphasizing the necessity for transitioning from a 
fixed Kalman gain to a dynamic adaptation model. Additionally, 
resource constraints and the potential vulnerability of the Binary SKF 
implementation to security threats are also discussed. 

Additionally, the paper explores scalability, highlighting the fine 
balance between speed and resource utilization, particularly in appli-
cations with varying dimensions. Strategies to optimize resource sharing 
and ensure efficient utilization are touched upon. Moreover, this journal 
envisages the broader implications and applications of Binary SKF in 
diverse real-world scenarios. It highlights the versatility of the algorithm 
across industries and underscores the potential benefits it brings in terms 
of accuracy, efficiency, and adaptability. In pursuit of even greater ac-
curacy and precision, the study concludes by introducing strategies 
aimed at enhancing the Binary SKF implementation. These strategies 
encompass the use of dynamic Kalman gain, precision enhancement 
through fixed-point arithmetic, hybridization with complementary 
optimization methods, and post-processing and refinement techniques. 

Literature review 

Novel optimization algorithms 

The first objective of the project is to study different metaheuristic 
algorithms and to identify suitable metaheuristics for hardware imple-
mentation. The project begins by studying a variety of novel optimiza-
tion algorithms. 

Single-agent finite impulse response optimizer 
The metaheuristic proposed is a single-agent metaheuristics that is 

inspired by the unbiased finite impulse response filter. It proposes an 
algorithm that optimizes a single solution iteratively until a stopping 
condition is met. It boasts a great performance in exploration and 
exploitation which enables it to search a wide range of possible solutions 
and lastly produce a near optimum solution [3]. Its process is described 
in the flowchart as shown in Fig. 1. 

Barnacles mating optimization 
The proposed algorithm is a novel multi-agent optimization algo-

rithm which mimics the mating behaviors of barnacles as described in 
Fig. 2. It involves a sequence where barnacles are randomly selected, 
and the reproduction process occurs to a set population of barnacles. 
Then, the barnacles may only mate with the surrounding barnacles 
based on the length of their penis which is set prior to simulation. The 
offspring of the barnacles will then inherit the characteristics from its 
parents [4]. 

Orca predation algorithm 
A novel multi-agent bio-inspired metaheuristic which mimics the 

hunting behavior of orcas. The metaheuristic introduces a sequence 
where orcas drive, encircle, and attack a school of fish. The algorithm 
emphasizes on different stages of the sequence such as driving and 
encircling to effectively adjust its exploration and exploitation respec-
tively. This enables the algorithm to solve a large variety of problems as 
it was implemented onto several engineering optimization problems 
which showed great performance [5]. The metaheuristic is described 
using a complex flowchart as seen in Fig. 3. 

Simulated Kalman filter 
A multi-agent metaheuristic where each search agent acts as a Kal-

man Filter which is a state estimation method popularized in the year 
1960. Each search agent then estimates the optimum solution to the 
fitness function through several steps such as predict, measure, and es-
timate to consequently produce the best-so-far solution as shown in 
Fig. 4 [2]. 

Particle swarm optimization 
A multi-agent metaheuristic inspired by the movement of flock of 

birds such as scattering and regrouping in search of food. Each agent also 
known as a particle is a candidate solution which moves around the 
search space during each iteration in search of improvements to the 
solution. The position and velocity are influenced by each particle’s 
best-known position as well as the best-known position of other particles 
as well [6]. The flowchart for Particle Swarm Optimization is illustrated 
in Fig. 5. 

Variants of particle swarm optimization 
The Binary Particle Swarm Optimization was introduced to adapt the 

original algorithm into a discrete search space which overcomes the 
problems faced by the original algorithm which was designed to be used 
in a continuous search space. In this variant, the particles represent its 
position in binary meanwhile its velocity is defined as the probability 
that it will change its state. The structure of the variant is like the 
original algorithm however it utilizes a separate set of equations since it 
is adapted to work in binary [7]. 

Fig. 1. Flowchart for single-agent finite impulse response optimizer.  
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Binary ant colony optimization 
In the year 1991, the original Ant Colony Optimization metaheuristic 

was introduced. This paper implements the original metaheuristic into a 
binary solution domain such that the solution search space is repre-
sented in a binary format. Then its performance was verified through a 
binary function optimization problem opposed to the typical continuous 
function optimization problem [8]. 

Hybrid binary bat enhanced particle swarm optimization algorithm 
This metaheuristic combines two variants of the original Bat opti-

mization and Particle Swarm Optimization to form a hybrid meta-
heuristic namely a combination of binary Bat metaheuristic and binary 

Particle Swarm Optimization to form the Hybrid Binary Bat Enhanced 
Particle Swarm Optimization Algorithm. It is claimed that the binary 
variants of metaheuristics are capable of producing superior results. 

The binary Bat metaheuristic applies a binary map onto the solution 
found since the solution search space is continuous. Meanwhile the Bi-
nary Particle Swarm Optimization converts continuous values into bi-
nary values. The results shows that the hybrid metaheuristic is capable 
of producing better results than other binary variants of other meta-
heuristics such as binary Genetic Algorithm, binary Particle Swarm 
Optimization, binary Greywolf, binary Bat, and binary Dragonfly. The 
hybrid combination of both binary Bat and binary Particle Swarm 
Optimization produced better solutions than the individual 

Fig. 2. Flowchart for barnacles mating optimizer.  

Fig. 3. Flowchart for orca predation algorithm.  
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metaheuristics [9]. 

FPGA implementation optimization techniques 

The performance of a metaheuristics on FPGA is dependent upon its 
design methodology. A typical implementation of a metaheuristic may 
vary in comparison to the implementation with different design meth-
odology such as parallel implementations, pipeline architectures, and 
implementation of floating-point arithmetic modules. 

Parallel implementation of particle swarm optimization 
This implementation optimization technique was implemented to 

accelerate the processing speed of the algorithm. It was designed to 
process large volumes of data from processes such as Big Data and 
Mining of Massive Datasets. This was achieved through the imple-
mentation of several particle modules in parallel to concurrently 
compare the best fitness value of all particles as shown in Fig. 6. Despite 
the increment of particle modules to enable parallel computing of the 
particles, the results of the hardware costs showed that it used less 
registers and Look Up Tables in comparison to similar works from the 
literature [10]. 

Pipeline architecture of particle swarm optimization 
The paper works upon the previously mentioned variant of the 

Particle Swarm Optimization with random time-varying inertia weight 
and acceleration coefficients and its existing serial architecture imple-
mented on hardware. The improvements proposed in this paper includes 
simplifications of the hardware architecture such as changing the con-
trol mechanism from a complicated distributed style into a simple 
centralized style to improve the stability of the hardware system as 
shown in Fig. 8. This was done to overcome the calculation error that 
occurred in the previous implementation. Next, the performance of the 
implementation was improved by introducing registers and reconfigu-
ration of the state transitions. 

The implementation was able to successfully run 6 concurrent 

Fig. 4. Flowchart for simulated Kalman filter.  

Fig. 5. Flowchart for particle swarm optimization.  

Fig. 6. Parallel Implementation of Particle Modules.  
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operations through a pipeline architecture as shown in Fig. 7. In addi-
tion, the simplification of hardware architecture was able to successfully 
reduce errors and improve the rate of available results. The results re-
ported showed a significant improvement in terms of performance. 
However, an increment in chip usage was observed [11]. 

FPGA realization of particle swarm optimization algorithm using floating 
point arithmetic 

The paper introduces the implementation of the original Particle 
Swarm Optimization algorithm with a modification upon its arithmetic 
modules. The arithmetic modules were replaced with floating-point 
arithmetic modules to further improve the accuracy of each particle 
results. This is because floating-point arithmetic used such as the single 
precision and double precision floating point arithmetic module enables 
the implementation to calculate to more decimal points. However, this 
resulted in extremely high chip usage. The implementation of the double 
precision floating point arithmetic module exceeded the total hardware 
available. The hardware cost was reduced by further implementing 
resource sharing for multiplication and addition operations which 
managed to free up some Look Up Tables [12]. 

Security implications of FPGA implementation 

Security implications of FPGA implementation 
The integration of field-programmable gate arrays (FPGAs) in 

various computational domains has witnessed substantial growth and 
innovation in recent years. While FPGA technology offers exceptional 
speed and flexibility, it is imperative to recognize that FPGA-based so-
lutions are not immune to security concerns. This section explores the 
multifaceted of security implications associated with FPGA imple-
mentations, with a particular focus on the evolving landscape of post- 
quantum cryptography (PQC). 

Vulnerabilities and threats in FPGA implementations 
FPGAs have emerged as pivotal components in high-performance 

computing, embedded systems, and hardware acceleration. However, 
this increasing reliance on FPGA-based systems has exposed them to 
potential vulnerabilities and threats. Literature suggests that FPGA de-
signs can be susceptible to side-channel attacks, configuration bitstream 
tampering, and data leakage [13–15]. Understanding these vulnerabil-
ities is critical for devising robust FPGA security measures. 

FPGA-based cryptographic solutions 
FPGAs play a pivotal role in cryptographic applications, offering 

hardware acceleration for encryption and decryption tasks. This sub-
section reviews the literature on FPGA-based cryptographic solutions, 
including implementations of well-established algorithms such as 
Advanced Encryption Standard (AES) and Rivest Cipher (RC4) [16,17]. 
It also examines the performance gains achieved by utilizing FPGAs in 
cryptography, reinforcing their significance in secure data processing. 

The advent of post-quantum cryptography (PQC). The emergence of 
quantum computing technology poses a profound challenge to conven-
tional cryptographic methods, such as Elliptic Curve Cryptography 
(ECC) and RSA. This subsection delves into the recent developments in 
post-quantum cryptography (PQC) and its role in mitigating the threats 
posed by quantum adversaries. PQC algorithms, such as NTRUEncrypt 
and Lattice-based cryptography, are gaining traction as quantum- 
resistant alternatives [18,19]. The potential ramifications of PQC for 
FPGA-based security solutions are examined in light of the impending 
transition from classical to quantum-safe cryptographic practices. 

The growing significance of Post-Quantum Cryptography (PQC) and 
the need for fault detection in lightweight ciphers are essential consid-
erations in the context of our study. With the rise of quantum computing 
and its potential to undermine classical cryptographic techniques like 
RSA and ECC, PQC has emerged as a critical paradigm shift [20–22]. 
PQC is particularly crucial for ensuring the long-term security of digital 
communications and data protection. Furthermore, in constrained en-
vironments like IoT devices and FPGA-based systems, lightweight ci-
phers are paramount. Lightweight ciphers are designed to offer robust 
security while minimizing computational and memory demands, mak-
ing them ideal for resource-constrained platforms. As we explore 
FPGA-based systems in this paper, the synergy between PQC and light-
weight ciphers takes centre stage in safeguarding future-proof security 
within such resource-limited settings. 

To gain a comprehensive understanding of these topics, it is essential 
to delve into specific areas of research that provide valuable insights. 
The study on Curve448 and Ed448 on Cortex-M4 delve into the practical 
implementation of Post-Quantum Cryptography (PQC) algorithms, 
specifically focusing on Curve448 and Ed448, within the constraints of 
Cortex-M4 platforms [23]. This exploration illuminates the challenges 
and opportunities in adapting PQC for resource-limited devices. 
Ongoing research initiatives on SIKE on Cortex-M4 are dedicated to 
optimizing the SIKE (Supersingular Isogeny Key Encapsulation) algo-
rithm for Cortex-M4 platforms, ensuring its suitability for 
resource-constrained environments [24,25]. These efforts seek to 
address the unique requirements and performance considerations of 
lightweight cryptographic solutions. Recent developments in the third 
round of the SIKE competition place a strong emphasis on fine-tuning 

Fig. 7. Pipeline structure.  

Fig. 8. Data path between register.  
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SIKE for ARM Cortex-M4 platforms. This research is instrumental in 
highlighting the adaptability and utility of SIKE in constrained settings, 
further fortifying its potential [26]. Researchers have undertaken the 
task of implementing PQC algorithms like Kyber on the more 
resource-endowed 64-bit ARM Cortex-A architectures. Their work ad-
dresses not only the performance aspects but also the critical 
post-quantum security considerations inherent to these platforms [27]. 

Fault detection in lightweight ciphers. In the context of securing FPGA- 
based systems, fault detection in lightweight ciphers is crucial to 
ensure robust and reliable performance, especially in the presence of 
potential hardware faults. The integration of cryptographic accelerators 
into systems employing Ed25519, a widely adopted digital signature 
algorithm, is an area of exploration aimed at enhancing cryptographic 
performance [28]. In this work, the significance of optimizing crypto-
graphic functions within resource-constrained environments. Investi-
gating the Supersingular Isogeny Diffie–Hellman key exchange on 64-bit 
ARM platforms provides insights into its compatibility and performance 
within resource-rich architectures. This research is particularly relevant 
for applications demanding heightened security [29,30]. 

These research topics form the foundation for our understanding of 
Post-Quantum Cryptography and fault detection in lightweight ciphers. 
They provide valuable insights into the ongoing efforts to address se-
curity concerns and optimize cryptographic algorithms for various 
hardware platforms, including Cortex-M4, ARM Cortex-A, and FPGA- 
based systems. 

Bridging FPGA implementations with PQC. To secure FPGA-based systems 
against quantum threats and maintain the integrity of sensitive data, it is 
imperative to bridge the gap between FPGA implementations and post- 
quantum cryptography. This section investigates the interplay between 
FPGA technology and PQC. It explores how FPGA architectures can be 
harnessed to accelerate PQC algorithms while ensuring their resilience 
against quantum attacks [31,32]. 

Lightweight cryptography (LWC) in FPGA implementations. In recent 
years, the field of lightweight cryptography (LWC) has gained promi-
nence as a specialized area within the broader domain of cryptographic 
research. LWC is characterized by its fundamental goal of designing 
cryptographic primitives and protocols that are well-suited for resource- 
constrained environments, such as embedded systems, Internet of 
Things (IoT) devices, and notably, FPGA-based implementations. As the 
demand for efficient and secure processing in FPGA applications con-
tinues to grow, the principles of LWC hold particular relevance [33,34]. 

One of the central tenets of LWC is the optimization of computational 
resources. FPGA devices, known for their parallel processing capabil-
ities, often operate under resource constraints, making resource-efficient 
cryptographic building blocks a valuable asset. By incorporating light-
weight cryptographic primitives, FPGA implementations can strike a 
balance between high-performance computing and efficient resource 
utilization. Security remains paramount in FPGA-based solutions, 
especially when handling sensitive data or communications. LWC al-
gorithms are designed to provide robust security even in scenarios 
where computational resources are limited. The ability to maintain se-
curity without imposing excessive resource overhead aligns seamlessly 
with the requirements of FPGA implementations in various applications 
[35,36]. 

FPGA devices excel in parallel processing, a feature that is highly 
conducive to many metaheuristic optimization algorithms. Lightweight 
cryptographic algorithms, characterized by their computational and 
memory efficiency, complement FPGA architectures well. This synergy 
empowers FPGA-based implementations to harness parallelism effec-
tively, resulting in both high-performance and secure solutions. FPGA- 
based systems often operate in environments where data privacy and 
confidentiality are paramount. Lightweight cryptography, with its focus 

on protecting data with minimal computational burden, serves as a 
natural choice for ensuring the privacy and confidentiality of sensitive 
information within FPGA applications [37,38]. 

In light of these considerations, the incorporation of lightweight 
cryptographic building blocks emerges as a pertinent aspect in the 
context of FPGA implementation of metaheuristic optimization algo-
rithms. The synergy between FPGA capabilities, the principles of LWC, 
and the demand for secure, resource-efficient solutions underscores the 
relevance of exploring lightweight cryptography as a valuable tool in 
optimizing FPGA-based metaheuristic implementations. 

Post-quantum cryptography (PQC) and lightweight ciphers in resource- 
constrained environments 

Post-Quantum Cryptography (PQC) has gained immense importance 
due to the impending threat posed by quantum computing to traditional 
cryptographic methods [20,39]. Quantum computers have the potential 
to break widely used encryption techniques, such as RSA and ECC, by 
leveraging their superior computing power. This creates a pressing need 
to transition to cryptographic methods that are resistant to quantum 
attacks. 

PQC represents a paradigm shift in cryptographic research. It ex-
plores alternative mathematical foundations and encryption techniques 
that can withstand quantum attacks [40]. The importance of PQC lies in 
its ability to ensure the long-term security of digital communications, 
data protection, and privacy [31]. In constrained environments, such as 
IoT devices and resource-limited systems, PQC becomes even more 
critical because it offers a way to secure communications without 
imposing excessive computational overhead [41]. 

Importance of lightweight ciphers in constrained environments. Lightweight 
ciphers play a crucial role in constrained environments, where resources 
such as power, memory, and processing capabilities are limited. These 
environments include IoT devices, embedded systems, and even FPGA 
implementations. Lightweight ciphers are specifically designed to offer 
robust security while minimizing computational and memory re-
quirements [42]. The importance of lightweight ciphers in constrained 
environments can’t be overstated. They enable secure communication 
and data protection without burdening the already limited resources of 
these devices. Their efficiency and suitability for low-power, resour-
ce-constrained hardware make them a natural choice in scenarios where 
traditional ciphers might be impractical [43]. 

FPGA-based systems with post-quantum cryptography (PQC) and light-
weight ciphers. The increasing reliance on FPGA-based systems, such as 
the one we explore in this paper, has ushered in tremendous opportu-
nities. However, with these opportunities come challenges related to 
security, especially in a world where the threat of quantum computing 
looms large. The advent of quantum computing poses a profound chal-
lenge to conventional cryptographic methods, such as Elliptic Curve 
Cryptography (ECC) and RSA. To address this challenge and to secure 
FPGA-based systems against quantum threats, there is a growing need to 
integrate Post-Quantum Cryptography (PQC) and lightweight ciphers. 

Post-Quantum Cryptography (PQC) represents a critical paradigm 
shift in the field of cryptography. It offers cryptographic solutions that 
can withstand the computational power of quantum adversaries. Recent 
developments in PQC, including algorithms like NTRUEncrypt and 
Lattice-based cryptography [18,19], have brought quantum-resistant 
alternatives to the forefront. Similarly, Lightweight Ciphers (LWC) 
have gained prominence as specialized cryptographic tools designed for 
resource-constrained environments, which includes FPGA-based sys-
tems. These ciphers optimize computational resources without 
compromising security, making them particularly relevant in this 
context [33,34]. This paper explores the synergy between FPGA capa-
bilities, the principles of LWC, and the demand for secure, 
resource-efficient solutions. It highlights how FPGA-based systems, 
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operating in environments where data privacy and confidentiality are 
paramount, can benefit from the incorporation of lightweight crypto-
graphic building blocks. 

As we delve into the FPGA implementation of metaheuristic opti-
mization algorithms, the role of PQC and lightweight ciphers takes 
center stage in ensuring future-proof security in resource-constrained 
settings. 

Error detection and fault diagnosis mechanisms in lightweight ciphers 
The successful deployment of lightweight ciphers in resource- 

constrained environments, such as FPGA-based systems, hinges on 
their ability to maintain correct operation and security even in the 
presence of errors or faults. This section delves into the critical aspect of 
error detection and fault diagnosis mechanisms within lightweight ci-
phers, shedding light on their significance and the relevant research in 
the field. 

Error detection in lightweight Welch-Gong (WG)-oriented streamcipher 
WAGE. The lightweight cipher WAGE, which draws from the Welch- 
Gong (WG) design strategy, has gained attention for its efficiency and 
security characteristics. Error detection mechanisms play a pivotal role 
in ensuring the proper functioning of ciphers like WAGE, particularly in 
resource-constrained environments. Research endeavours have explored 
these mechanisms, emphasizing the importance of error detection to 
maintain the integrity of lightweight ciphers [44]. 

Error detection reliable architectures of Camellia block cipher. The 
Camellia block cipher, a widely recognized cryptographic algorithm, 
requires robust fault detection strategies to safeguard its security and 
reliability. Recent work has addressed the development of reliable ar-
chitectures and techniques for error detection and correction within the 
context of the Camellia block cipher. These advancements are essential 
for ensuring the resilience of cryptographic systems to faults [45,46]. 

Fault diagnosis of low-energy Midori cipher. The Midori cipher, designed 
with a focus on energy-efficient applications, demands fault diagnosis 
mechanisms to maintain its security in low-power environments. Recent 
research has explored fault diagnosis techniques specifically tailored to 
the energy-efficient Midori cipher. The incorporation of such mecha-
nisms becomes crucial to ensure fault tolerance in cryptographic systems 
with low energy consumption [47,48]. 

Block cipher QARMA with error detection mechanisms. QARMA, a block 
cipher designed for lightweight and efficient applications, benefits from 
the integration of error detection mechanisms to enhance its fault 
tolerance. Relevant studies have emphasized the importance of incor-
porating these mechanisms within the QARMA block cipher, thereby 
enhancing its resilience and reliability [49]. 

Incorporating error detection and fault diagnosis mechanisms is vital 
to the successful implementation of lightweight ciphers in constrained 
environments. These mechanisms bolster the security and reliability of 
cryptographic systems, ensuring their continued operation and data 
integrity. The research presented in these references underlines the 
importance of addressing these aspects in the context of lightweight 
ciphers and provides valuable insights for their efficient and fault- 
tolerant utilization. 

Hardware/software platform selection and security implications in FPGA 
implementation 

The choice of hardware/software platforms plays a pivotal role in the 
security implications of FPGA implementation. FPGA (Field-Program-
mable Gate Arrays), ASIC (Application-Specific Integrated Circuits), 
ARM (Advanced RISC Machine), and RISC-V (Reduced Instruction Set 
Computer - V) each present distinct advantages and considerations when 

it comes to security in the context of your metaheuristic optimization 
algorithm. 

FPGAs offer flexibility and high processing speed, making them an 
attractive choice for various applications. However, this comes with a 
trade off in the context of security. The reconfigurable nature of FPGAs 
allows for quick adaptations but also introduces vulnerabilities if not 
properly secured. It’s crucial to consider FPGA bitstream security to 
safeguard against unauthorized access or tampering. Moreover, as 
FPGAs are often used in constrained environments, ensuring security 
without significant computational overhead is vital. 

ASICs, on the other hand, provide dedicated, efficient processing 
tailored to specific tasks, enhancing security in some aspects. Since 
ASICs are not reconfigurable, they can be more resistant to certain at-
tacks, but they are less adaptable for algorithm updates or changes. In 
the context of your metaheuristic optimization algorithm, ASICs might 
provide a balance between security and performance, particularly when 
considering fixed, long-term deployment. 

ARM and RISC-V architectures often serve as the foundation for 
many embedded systems, including FPGA-based implementations. Se-
curity considerations extend to both the choice of processor architecture 
and the implementation of secure boot processes, cryptographic accel-
erators, and secure coding practices. RISC-V, being open-source, allows 
for more transparency and customization, but security must be metic-
ulously managed. 

The security of various hardware and software platforms like FPGA, 
ASIC, ARM, and RISC-V relies on different aspects, which include 
looking at secure development methods to prevent vulnerabilities, the 
use of specialized cryptographic components, secure boot procedures to 
ensure trusted software execution, and the balance between perfor-
mance and adaptability in the context of security. These considerations 
play a critical role in hardware/software platform selection. This is to 
ensure the security of the FPGA implementation of metaheuristic opti-
mization algorithms, particularly in diverse application domains with 
varying security requirements. 

Methodology 

Simulated Kalman filter 

Through the process of elimination, the metaheuristic chosen for 
FPGA implementation was the Simulated Kalman Filter (SKF). The bio- 
inspired metaheuristics Barnacles Mating Optimizer and Orca Predation 
Algorithm proposed steps that were too complex and numerous. This 
would result in a difficult implementation of the algorithm as it may 
incur high costs to implement all the different states and modules of the 
algorithm. The Single-Agent Finite Impulse Response Optimizer pro-
poses an iterative process with a sub-iterative process which introduces 
the same problem as mentioned above. 

The SKF metaheuristic is composed of 4 major components namely 
the population generation, fitness evaluation of agents, fitness evalua-
tion comparison and storage, and the Kalman Filter components which 
are the predict, measure, and estimate steps as shown in Fig. 4. These 
steps are carried out iteratively until a stopping condition is met which is 
typically the maximum number of iterations. There are several variables 
of the Kalman Filter components which are significant such as the initial 
error covariance estimate, P(0), process noise, Q, measurement noise, R, 
and the Kalman gain, K. 

Before the first iteration starts, several parameters need to be defined 
such as the number of agents, N, number of dimensions, D, and 
maximum number of iterations, tmax. Then the initial generation of 
population is done by generating a random floating-point value between 
the range of − 100 to 100 and loading it into a multidimensional array X 
which has N columns and D rows. 

Then the evaluation step is carried out by evaluating the fitness of the 
agents through the activation function. The activation function of the 
original SKF metaheuristic utilizes the CEC2014 benchmark function 
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which contains a set of 30 activation functions. Table 1. illustrates the 
generation of population of 3 agents with 3 dimensions and fitness 
evaluation using the sphere activation function. The sphere activation 
function is described in Eq. (1). 

Fitness(t) =
∑D

n=1
D(t)2 (1) 

After all agents have their fitness evaluated, all the fitness evaluation 
values are compared and the agent with the best fitness evaluation for 
the current iteration is selected as the Xbest(t). The selection process for 
Xbest(t) depends on whether it is a minimization problem or maximiza-
tion problem. Eq. (2) is used to determine Xbest(t) if it is a minimization 
problem and Eq. (3) is used if it is a maximization problem. The Xbest(t) is 
then used to update the best-so-far solution of the run, Xtrue by replacing 
the best-so-far solution with the Xbest(t) value if Xbest(t)) < Xtrue for 
minimization problems and Xbest(t)) > Xtrue for maximization problems. 

Xbest = mini∈1,….,nfitnessi(X(t)) (2)  

Xbest = maxi∈1,….,nfitnessi(X(t)) (3) 

In the first iteration, the predict step is carried out by setting the 
initial error covariance to 1000, P(0) = 1000, the process noise is set to 
0.5, Q = 0.5, and the measurement noise is set to 0.5, R = 0.5. Then the 
error covariance is calculated using Eq. (4). 

P = P + Q (4) 

Then the measurement step is carried out using Eq. (5). where the X 
is the position of the agents and Y is the measured value of the agents. 

Y = X + (sin(rand(n, 1)× 2π)) × |X − X true| (5) 

Then the estimate step is proceeded to calculate the Kalman gain 
value as shown in Eq. (6). Then the position of agents is updated using 
the Eq. (7) and lastly the new error covariance is updated through the 
Eq. (8). 

K =
P

(P + R)
(6)  

X = X + K × (Y − X) (7)  

P = (1 − K) × P (8) 

At the end of the estimate step of the Kalman Filter components, the 
stopping condition is checked and the run stops if the maximum number 
of iterations have been achieved. Else the run continues on to the next 
iteration and the steps are repeated from the evaluation of fitness agent. 

Discrete simulated Kalman filter adaptation 

The original SKF metaheuristic was simulated using MATLAB uti-
lizing floating-point values. The operation of this simulation is repre-
sented in Table 2 where the agent positions as well as its fitness 
evaluation are represented by whole numbers, decimal point, and its 
corresponding fractional part. This introduced complications into the 
design of the FPGA implementation as it is difficult to represent the 
fractional parts of a number in a digital system. Hence, the original SKF 
was adapted into a Discrete SKF to remove this complication. 

The Discrete SKF utilizes the same minimization sphere function but 
utilizes only integer values. This is done by rounding all the floating- 
point agent position values to the nearest integer. This would conse-
quently produce fitness evaluation values in whole number as well. The 
generation of population and fitness evaluation by Discrete SKF is 
illustrated in Table 2. 

The Kalman gain which was previously calculated using Eq. (6) is set 
to a fixed value of K = 0.5. This is done because a multiplication of 0.5 
can be translated into a division by 2 which can be operated in binary as 
a logical right shift of 1 bit. The deliberate value of 0.5 is set after 
thorough investigation of the transition of the Kalman gain in the 
original SKF MATLAB simulation. The Kalman gain can be observed to 
slowly decrease from 0.9995 at the first iteration and converges to 
0.6180 by 7th iteration as shown in Table 3. 

Table 4 presents a detailed account of the population generation and 
fitness evaluation within the context of the Binary Simulated Kalman 
Filter (SKF) implementation. The population is composed of individual 
agents denoted as X1, X2, and X3, each possessing multiple dimensions 
represented by D1, D2, and D3. These dimensions encode binary se-
quences that encapsulate specific parameters or characteristics pertinent 
to the optimization algorithm. For instance, in D1, Agent X1 is associ-
ated with the binary sequence ``11,110,101,’’ while Agent X2 exhibits 
``00,001,111,’’ and Agent X3 features ``11,110,101.’’ The fitness eval-
uation, as depicted in the ``Evaluation’’ row, comprises binary bits 
signifying fitness scores attributed to each agent. These fitness scores are 
indicative of the performance of each agent concerning the optimization 
problem under consideration. The table serves as an informative visual 
representation of the binary population, dimensions, and fitness as-
sessments, offering insights into the algorithm’s functionality and its 
capacity to adapt to the optimization task. These results constitute a 
pivotal component of the iterative optimization process facilitated by 
the Binary SKF algorithm, guiding its pursuit of optimal solutions within 
the population. 

This Discrete SKF was then simulated in MATLAB to verify its results. 
The significance of the adaptation from the original to discrete version of 
SKF is that the discrete version can be readily implemented in a digital 
system by representing the integer values as binary values. The imple-
mentation of Discrete SKF as Binary SKF is illustrated in 00 where the 
integer values are represented in 2 s complement binary values. 

Binary simulated Kalman filter behavioral modeling 

Each section of the Binary SKF metaheuristic was segmented and 

Table 1 
Generation of population and fitness evaluation for SKF.  

ArrayX Agents 

X1 X2 X3 

Dimension D1 − 10.6638 14.53027 − 10.9522 
D2 48.57666 − 20.4318 40.2808 
D3 53.30432 − 56.9214 11.46109 

Evaluation 5314.759 3868.633 1873.85  

Table 2 
Generation of population and fitness evaluation for Discrete SKF.  

Array X Agents 

X1 X2 X3 

Dimension D1 − 11 15 − 11 
D2 49 − 20 40 
D3 53 − 57 11 

Evaluation 5331 3874 1842  

Table 3 
Progression of Kalman gain in original SKF.  

Iteration, t P Q R K 

1 1000 0.5 0.5 0.9995 
2 0.4998 0.5 0.5 0.6666 
3 0.3333 0.5 0.5 0.6250 
4 0.3125 0.5 0.5 0.6190 
5 0.3095 0.5 0.5 0.6182 
6 0.3091 0.5 0.5 0.6181 
7 0.3090 0.5 0.5 0.6180 
8 0.3090 0.5 0.5 0.6180 
9 0.3090 0.5 0.5 0.6180  
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individually designed into separate modules using System Verilog. The 
major components that needed to be designed were the random number 
generator to generate the initial population of agents, Random-Access 
Memory (RAM) to store the agent position and measurement values, 
Activation Function module to evaluate the fitness of each agent ac-
cording to Eq. (1), Measure module to carry out measurement calcula-
tions as shown in Eq. (5), and the Estimate module to update the position 
of agents according to Eq. (7). The initial design produced is capable of 
processing 10 dimensions. This design is repurposed to produce 3 
different variants which are the 5-dimension, 10-dimension and 20- 
dimension Binary SKF for FPGA implementation. 

Behavioral modeling of modules 
The Random Number Generator (RNG) module is designed upon the 

concept of Linear Feedback Shift Register to produce a sequence of 
random numbers which are dependent on the initial seed provided. The 
generated values are in 8-bits which represents the initial position of 
agents. The values are internally bounded within − 100 to 100 to ensure 

the values produced are in the search region. The Random-Access 
Memory (RAM) is designed to temporarily store the position values 
and measured values of all the dimensions of the agents. This module is 
essentially a multidimensional array of registers with N number of col-
umns and D number of rows. RAM_X is instantiated to store the position 
values of all the dimensions of the agents generated by the RNG module 
and the Estimate module. Meanwhile RAM_Y is instantiated to store the 
output of the Measure module. 

The activation function module facilitates the computation required 
to evaluate the fitness of agents as described in Eq. (1). The module 
receives input from RAM_X which holds the position values of all the 
agents. The module then determines the agent with the overall best 
evaluation of the current iteration and stores it at the Xbest register. The 
measure module facilitates the calculations required to carry out the 
measure step as described in Eq. (5). It receives inputs from RAM_X 
which holds the current position values of all agents and best_agent_D# 
registers which stores the position value of the Xtrue register. This 
module then offloads the calculated values into RAM_Y. This module 

Table 4 
Generation of population and fitness evaluation of Binary SKF.  

Array X Agents 

X1 X2 X3 

Dimension D1 11110101 00001111 11110101 
D2 00110001 11101100 00101000 
D3 00110101 11000111 00001011 

Evaluation 0001010011010011 0000111100100010 0000011100110010  

Fig. 9. Modules generated through behavioral modeling.  
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facilitates the final step of SKF by computing Eq. (7). The module re-
ceives input from RAM_X containing current position values of all agents 
and RAM_Y containing measured values from the Measure module. The 
module then updates the current position values of all agents and 
overwrites RAM_X with the new agent position values for the next 
iteration. 

Parallel-in-parallel-out configuration of modules 
During the behavioral modeling of the required modules, it was 

discovered that it was possible to produce modules with multiple input 
and output ports. This was significant as it enabled a module to receive 
multiple inputs, process the inputs, and produce multiple outputs at 
once. This Parallel-In-Parallel-Out (PIPO) configuration was exploited to 
maximize the number of inputs and outputs of each module and 
consequently improve their performance. The number of ports is 
dependent on the number of dimensions for that implementation. The 
modules designed are shown in Fig. 9. 

Finite state machine controller 
To ensure proper timing and flow of data between modules, a finite 

state machine (FSM) was modeled using System Verilog. The FSM in-
stantiates all the necessary modules and the necessary wires for inter-
connection between modules. The FSM has 6 states in sequence of s0 

Reset, s1 Generate population, s2 Fitness evaluation and comparison, s3 
Measure, s4 Estimate, and s5 Complete. A simplified state diagram of the 
FSM is illustrated in Fig. 10. 

Hardware components 

The board chosen for the implementation of the Binary SKF was the 
DE10 - Lite which is powered by the 10M50DAF474G chip produced by 
Altera. Included on the board is a clock generation chip which outputs a 
stable 50 MHz clock cycle to drive the FPGA. The FPGA chip is suffi-
ciently powerful to power the design as it contains 50 thousand logical 
elements, and 144 units of 18 × 18 multiplier. 

Meanwhile, the MATLAB simulation of Discrete SKF is ran on a HP 
ProBook 440 G7 which is equipped with a 10th generation Intel pro-
cessor namely the Intel Core i5 – 10210U CPU and is paired with 16 
gigabytes of RAM. 

Results and discussion 

The run parameter set for both the MATLAB simulation and FPGA 
implementation is set to 50 maximum runs, 5000 maximum iterations, 
50 agents, and fixed Kalman gain of 0.5. The runs are conducted 3 times 
on MATLAB using 3 different dimension values which are 5-dimensions, 

Fig. 10. State diagram of finite state machine controller.  
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followed by 10-dimensions, and lastly 20-dimensions. The FPGA is 
programmed with 3 different designs and ran 3 separate times to facil-
itate the run of the 3 different variants namely the 5-dimension, 10- 
dimension, and 20-dimension. The time taken to complete all calcula-
tions, the value of Xtrue and chip utilization of each design is noted is 
compiled into Table 5. 

Chip utilization 

The logical elements utilization increases by 43 % when the number 
of dimensions increases from 5 to 10. Meanwhile, an increment of 46 % 
is observed when the number of dimensions increases from 10 to 20. The 
utilization of logical elements on the FPGA is a crucial aspect of our 
implementation. We configured our FPGA with a fixed Kalman gain of 
0.5 and conducted multiple runs with different dimensions (5, 10, and 
20). The logical elements utilization increased by 43 % when the 
number of dimensions increased from 5 to 10. Moreover, an increment 
of 46 % was observed when the number of dimensions increased from 10 
to 20. The increase in logical elements utilization with the rise in di-
mensions highlights the resource-intensive nature of our FPGA imple-
mentation. This finding highlighted the importance of optimizing FPGA 
resources efficiently to accommodate higher dimensions without 
exceeding logical element capacity. 

Processing speed 

The time taken to complete the simulation on MATLAB increases by 
25 % when the number of dimensions increased from 5 to 10. Mean-
while increasing the dimensions from 10 to 20 further increased the time 
taken by 33 %. This shows that the time taken to complete the simula-
tion increases as the number of dimensions increases for the MATLAB 
simulation. However, the FPGA implementation completes all its runs in 
0.780 s. It is observed that the time taken to complete the run remains 
the same despite increasing the number of dimensions for the FPGA 
implementation. This is because the modules of the FPGA implementa-
tion are designed using the PIPO configuration which enables all di-
mensions of a single agent to be loaded and processed in a single clock 
cycle. Consequently, the PIPO configuration of modules will result in the 
same processing time despite an increment or decrement of number of 
dimensions. 

Accuracy of result 

The accuracy of our results is crucial for evaluating the effectiveness 
of our FPGA implementation. We assessed the accuracy of both the 
MATLAB simulated Discrete SKF and the FPGA-implemented Binary 
SKF. Both the MATLAB simulated Discrete SKF and the FPGA- 
implemented Binary SKF exhibited challenges in producing accurate 
results. In the MATLAB simulation, the inaccuracy stemmed from 
rounding floating-point values to integers and the use of a fixed Kalman 
gain of 0.5. These factors reduced resolution and accuracy. The error 
introduced in the MATLAB simulation carried forward to the FPGA 
implementation, which uses binary format to represent integer values. 
The diminished accuracy of both simulations highlights the importance 
of fine-tuning our FPGA implementation to mitigate these challenges. 
The use of binary representation can lead to precision loss, particularly 

in cases where floating-point accuracy is essential. Future work should 
focus on optimizing the FPGA design to enhance result accuracy while 
maintaining the efficiency achieved through PIPO configuration. 

Comparison with previous works 

Comparing the implementation of Binary SKF to other works in the 
literature poses challenges due to variations in the employed meta-
heuristics, testing methodologies, and configurations. A comparative 
analysis of these unique approaches is provided in Table 6. 

Binary SKF FPGA implementation speed improvements 

This section further investigates the areas within the Binary Simu-
lated Kalman Filter (Binary SKF) algorithm where speed improvements 
are significant. It focuses on operations that have been optimized 
through FPGA parallelism or other hardware-accelerated techniques, 
which are agent interaction, solution evaluation, control logic, data 
communication, resource allocation and iteration management. Within 
the Binary SKF algorithm, the interactions and information exchange 
among individual agents play a crucial role. FPGA implementations 
accelerate these interactions, especially when numerous agents are 
involved, leading to substantial speed improvements. 

Binary SKF typically involves evaluating the quality of solutions 
generated by agents. FPGA hardware expedites this evaluation process, 
leading to faster convergence and more efficient optimization. The 
control and coordination of various modules in the Binary SKF algorithm 
benefited from FPGA acceleration. This includes the management of the 
optimization process, the decision to terminate, and the synchronization 
of operations. The FPGA’s parallel processing capabilities enhanced the 
communication of data between modules. This acceleration is particu-
larly valuable in multi-agent systems, where data exchange is frequent. 

In applications where Binary SKF is used for resource allocation, such 
as energy management or manufacturing, the allocation process can 
experience significant speed improvements on FPGA hardware. The 
speed of iterating through the optimization process is substantially 
enhanced through FPGA implementation, reducing the time needed to 
find optimal solutions. 

Project limitations 

Accuracy and precision 
In order to accurately represent the original SKF metaheuristic, the 

employment of floating-point arithmetic is vital. This is because the 
Kalman gain which is calculated in the estimation step of SKF is in the 
form of floating-point. In the implementation of Binary SKF, the Kalman 
gain is set to a fixed value of 0.5 which impedes the performance of the 
metaheuristic during the exploitation phase and consequently fails to 
find the optimum solution. By modifying each module to facilitate ar-
ithmetics in floating point, the implementation will be able to produce a 
dynamic Kalman gain and reap the benefits of the original SKF which 
boasts great performance in the exploitation process enabling it to 
produce accurate results [4]. 

Resource constraints 
The implementation of floating-point arithmetic would significantly 

Table 5 
Generation of population and fitness evaluation for Binary SKF.  

Array X Agents 

X1 X2 X3 

Dimension D1 11110101 00001111 11110101 
D2 00110001 11101100 00101000 
D3 00110101 11000111 00001011 

Evaluation 0001010011010011 0000111100100010 0000011100110010  
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impact the resource consumption of the implementation. This is because 
each module and register would require modifications to be able to 
process calculations and store floating-point values adhering to the IEEE 
754 format. The implementation of the 20-dimension Binary SKF 
consumed up to 55 % of the logical elements of the FPGA. The inclusion 
of floating-point arithmetic would further increase the logical elements 
required and may exceed the hardware limit [11]. 

Security considerations 
The implemented Binary SKF can be vulnerable to side-channel at-

tacks and data leakages. This is because no security features were 
implemented to prevent these occurrences. The implementation of LWC 
can be an effective and resource efficient method of intercepting side- 
channel attacks by encrypting the computation and transmission of 
sensitive data. 

Scalability 
The implementation of the PIPO configuration of models have shown 

to enable parallel processing of multidimensional optimization prob-
lems. This is because in a single clock cycle, every dimension of an agent 
is loaded into the subsequent modules and processed at once. This en-
ables the implementation to process optimization problems with a large 
range of dimensions without affecting the time taken to complete. 
However, this speed comes at the cost of resource utilization as the 
increment in dimensions would consequently increase the number of 
logical elements consumed. This issue could be minimized by simpli-
fying and modifying the modules to enable resource sharing. 

Potential implications and applications of the Binary SKF algorithm in real- 
world optimization problems 

The Binary Simulated Kalman Filter (Binary SKF) algorithm in real- 
world optimization problems. This algorithm exhibits versatility across 
various problem domains, offering potential benefits over existing 
optimization techniques. In the domain of supply chain management, 
Binary SKF can effectively address intricate demand forecasting, in-
ventory management, and production planning challenges. In the 
financial sector, it is well-suited for real-time portfolio optimization, 
asset allocation, and risk management, courtesy of its rapid processing 
capabilities. Its adaptability extends to wireless sensor network config-
uration, optimizing sensor placement for maximal coverage and mini-
mal energy consumption. In engineering design, Binary SKF aids in tasks 
such as parameter tuning, component placement, and circuit design, 
fostering efficiency and cost-effectiveness. Moreover, its application in 
healthcare for biomedical parameter estimation enhances the accuracy 
of physiological modeling. 

Enhancing accuracy in Binary SKF implementation 
Improving the precision of Binary Simulated Kalman Filter (SKF) 

implementation is of paramount importance, particularly while 
considering the constraints posed by the Discrete SKF and the fixed 
Kalman gain. To achieve this, various strategies have been explored in 
the context of conceptual simulations, and further possibilities exist for 
enhancing the precision of Binary Simulated Kalman Filter (SKF) 
implementation. One promising approach involves moving away from 
binary implementation and the fixed Kalman gain. Instead, it proposes 

replacing them with a novel version of the Discrete SKF, which leverages 
concepts like distance evaluation with state encoding [50]. This tran-
sition holds the potential to refine the SKF’s precision and suitability for 
combinatorial optimization problems. A complementary strategy in-
volves the development of Discrete SKF variants tailored to discrete 
search spaces. This adaptation necessitates modifying measurement and 
estimation methods within the SKF to align with the requirements of 
discrete search spaces [51]. Such modifications hold promise for 
enhanced precision in solving problems like the Traveling Salesman 
Problem. 

Instead of adhering to the fixed 0.5 gain, an adaptive approach al-
lows the algorithm to dynamically adjust the gain during runtime, 
responding to the optimization process’s progress. This adaptability can 
lead to improved accuracy and convergence. Employing fixed-point 
arithmetic with adjustable scaling factors offers a path to fine-tune 
precision. This strategy aims to balance computational accuracy with 
resource efficiency. Combining the Binary SKF algorithm with comple-
mentary optimization methods, such as Genetic Algorithms or Particle 
Swarm Optimization, creates a hybrid approach. This integration allows 
leveraging the strengths of multiple algorithms to enhance precision and 
robustness. Post-processing techniques, like gradient-based optimiza-
tion or simulated annealing, can be employed to fine-tune discrete so-
lutions. Iteratively optimizing results through these methods can 
significantly improve overall accuracy. Exploring these strategies not 
only addresses existing limitations but also opens new avenues for 
advancing the precision of SKF implementations. The choice of strategy 
may depend on the specific problem domain and the trade-offs between 
precision, computation, and adaptability. These research directions 
contribute to the ongoing quest for efficient and accurate metaheuristic 
optimization solutions (Table 7). 

Conclusion 

The work provided a detailed overview of the SKF metaheuristic, 
breaking down its major components, from population generation to the 
Kalman Filter steps, highlighting the critical variables. The utilization of 
MATLAB simulations to verify the transition from the original SKF to a 
discrete version that can be implemented in digital systems was pre-
sented. The paper effectively discussed the behavioral modeling of 
modules, emphasizing the advantages of the Parallel-In-Parallel-Out 
(PIPO) configuration. The exploration of FPGA implementation under-
lined its significant speed improvements, particularly in scenarios 
involving agent interactions, solution evaluation, control logic, data 
communication, resource allocation, and iteration management. The 
observed benefits in processing speed, despite an increase in dimensions, 
were attributed to FPGA’s parallel processing capabilities. The study, 
however, noted the challenges related to the accuracy and precision of 
results. It recognized that achieving greater accuracy would necessitate 
a transition from a fixed Kalman gain to dynamic adaptation and the use 
of floating-point arithmetic. These changes would increase resource 
consumption, potentially exceeding hardware limits and necessitating 
optimization. Moreover, security considerations were raised, empha-
sizing the vulnerability of the implementation to side-channel attacks. 
The practical applications of Binary SKF in various domains, such as 
supply chain management, finance, wireless sensor networks, and 

Table 6 
Compiled result of simulation and FPGA implementation.  

Platform Agents, N Dimensions, D Xtrue Expected value Time taken (s) Logical elements Registers 

Simulation 50 5 14 0 27.329 – – 
50 10 503 0 36.481 – – 
50 20 3936 0 54.571 – – 

FPGA 50 5 32 0 0.780 8220 4686 
50 10 253 0 0.780 14,637 9146 
50 20 4749 0 0.780 27,413 18,066  
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engineering design, underlining its versatility. Strategies for enhancing 
accuracy and precision are discussed, suggesting the exploration of new 
implementations, dynamic gain adjustment, fixed-point arithmetic, hy-
bridization with complementary optimization methods, and post- 
processing techniques. These strategies aimed to strike a balance be-
tween precision and efficiency in the context of specific problem do-
mains. In conclusion, a comprehensive exploration of Binary SKF, from 
its FPGA implementation to strategies for improving its precision and 
accuracy. It opens new avenues for research and optimization in the field 
of metaheuristic algorithms. 
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Sādhanā 43 (2018) 1–15. 

[4] M.H. Sulaiman, Z. Mustaffa, M.M. Saari, H. Daniyal, Barnacles mating optimizer: a 
new bio-inspired algorithm for solving engineering optimization problems, Eng. 
Appl. Artif. Intell. 87 (2020), 103330. 

[5] Y. Jiang, Q. Wu, S. Zhu, L. Zhang, Orca predation algorithm: a novel bio-inspired 
algorithm for global optimization problems, Expert Syst. Appl. 188 (2022), 
116026. 

[6] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95- 
International Conference on Neural Networks, 1995, pp. 1942–1948. 

[7] M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm 
optimization, in: 2007 Mediterranean Conference on Control & Automation, 2007, 
pp. 1–6. 

[8] M. Kong, P. Tian, Introducing a binary ant colony optimization, in: Ant Colony 
Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006, 
Brussels, Belgium, September 4–7, 2006. Proceedings 5, 2006, pp. 444–451. 

[9] M.A. Tawhid, K.B. Dsouza, Hybrid binary bat enhanced particle swarm 
optimization algorithm for solving feature selection problems, Appl. Comput. 
Inform. 16 (2018) 117–136. 

[10] A.L. Da Costa, C.A. Silva, M.F. Torquato, M.A. Fernandes, Parallel implementation 
of particle swarm optimization on FPGA, IEEE Trans. Circuits Syst. II 66 (2019) 
1875–1879. 

[11] X. Cai, S. Ngah, H. Zhu, Y. Tanabe, T. Baba, Pipeline architecture of particle swarm 
optimization, in: 2010 IEEE/ACIS 9th International Conference on Computer and 
Information Science, 2010, pp. 3–8. 

[12] A. Rathod, R. Thakker, FPGA realization of particle swarm optimization algorithm 
using floating point arithmetic, in: 2014 International Conference on High 
Performance Computing and Applications (ICHPCA), 2014, pp. 1–6. 

[13] J.Y. Koh, T. Nandha Kumar, Review of side channel attacks and countermeasures 
of FPGA based systems, in: 2021 IEEE 19th Student Conference on Research and 
Development (SCOReD), 2021, pp. 102–107. 

[14] S. Sunkavilli, Z. Zhang, Q. Yu, New security threats on FPGAs: from FPGA design 
tools perspective, in: 2021 IEEE Computer Society Annual Symposium on VLSI 
(ISVLSI), 2021, pp. 278–283. 

[15] B. Erbagci, "Hardware-Entangled Inherently Secure Field Programmable Gate 
Arrays," 2018. 

[16] A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar, An FPGA-based performance evaluation 
of the AES block cipher candidate algorithm finalists, IEEE Trans. Very Large Scale 
Integr. (VLSI) Syst. 9 (2001) 545–557. 

[17] L. Bahadur and M.B. Badoniya, "Study of AES implementation on FPGA by using 
Rijndael Algorithm," 2014. 

[18] A.K. Sherdel, B. Schneider, Post-Quantum Cryptography: An Introductory 
Overview and Implementation Challenges of Quantum-Resistant Algorithms, in: 
K. Hinkelmann, A. Gerber (Eds.), Proceedings of the Society 5.0 Conference 2022 - 
Integrating Digital World and Real World to Resolve Challenges in Business and 
Society 84, EasyChair, 2022, pp. 61–71. 10.29007/2tpw. 

[19] E. Zeydan, Y. Turk, B. Aksoy, S.B. Ozturk, Recent advances in post-quantum 
cryptography for networks: a survey, in: 2022 Seventh International Conference On 
Mobile And Secure Services (MobiSecServ), 2022, pp. 1–8. 

[20] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, et al., Report on post- 
quantum cryptography vol. 12: US Department of Commerce, National Institute of 
Standards and Technology …, 2016. 

[21] D.J. Bernstein, Introduction to post-quantum cryptography, in: D.J. Bernstein, 
J. Buchmann, E. Dahmen (Eds.), Post-Quantum Cryptography, Springer Berlin 
Heidelberg, Berlin, Heidelberg, 2009, pp. 1–14. 

[22] J.B.J. Ding, "Post-quantum cryptography," 2008. 
[23] M. Hamburg, Ed448-Goldilocks, a new elliptic curveCryptol, IACR Cryptol. ePrint 

Arch. 2015 (2015) 625. 
[24] D. Jao, L. De Feo, Towards quantum-resistant cryptosystems from supersingular 

elliptic curve isogenies, in: Post-Quantum Cryptography: 4th International 
Workshop, PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011. 
Proceedings 4, 2011, pp. 19–34. 

[25] H. Seo, A. Jalali, R. Azarderakhsh, SIKE round 2 speed record on ARM Cortex-M4, 
in: Cryptology and Network Security: 18th International Conference, CANS 2019, 
Fuzhou, China, October 25–27, 2019, Proceedings 18, 2019, pp. 39–60. 

[26] M. Anastasova, R. Azarderakhsh, M.M. Kermani, Fast strategies for the 
implementation of SIKE round 3 on ARM Cortex-M4, IEEE Trans. Circuits Syst. I 68 
(2021) 4129–4141. 

Table 7 
Binary SKF FPGA Implementation Comparisons.  

Implementation Parallel implementation Pipeline architecture Floating point arithmetic PIPO configuration 

Metaheuristic used Particle swarm optimization Binary Kalman filter 

Metaheuristic 
configuration 

Dimension: 3, 6, & 10 
Particles: 5, 10, & 15 
Max iterations: - 
Max runs: - 

Dimension: 1 
Particles: 10 
Max iterations: 50 
Max runs: - 

Dimension: 2 
Particles: 5, 10, & 20 
Max iterations: 6000 
Max runs: - 

Dimension: 5, 10, & 20 
Particles: 50 
Max iterations: 5000 
Max runs: 50 

Activation 
Function used 

Rastrigin Non-standard function Sphere, Rosenbrock, & Rastrigin Sphere 

Method Implementation of multiple Particle 
Modules to calculate the fitness of 
multiple particles simultaneously 

Implementation of a pipeline 
architecture by simplifying and 
restructuring the FSM 

Introduction of floating point 
arithmetic module to improve 
computation accuracy and speed 

Implementation of parallel input and 
output for each module to enable 
parallel computing of multiple 
dimensions 

Result Calculation speed improvements 
compared to previous 
implementations: 
6 dimensions: 212×

Calculation speed improvement 
by 18 % compared to previous 
implementation 

Average calculation speed 
improvement compared to previous 
implementations: 
Sphere: 281×
Rastrigin: 46×
Rosenbrock 30×

Calculation speed improvement 
compared to Matlab simulation: 
5 dimension: 35.04×
10 dimension: 46.77×
20 dimension: 69.96×

N.H. Noordin et al.                                                                                                                                                                                                                             

http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0001
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0001
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0001
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0002
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0002
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0002
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0003
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0003
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0003
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0004
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0004
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0004
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0005
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0005
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0005
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0006
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0006
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0007
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0007
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0007
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0010
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0010
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0010
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0012
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0012
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0012
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0013
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0013
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0013
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0014
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0014
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0014
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0016
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0016
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0016
https://doi.org/10.29007/2tpw
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0021
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0021
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0021
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0023
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0023
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0025
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0025
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0025
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0026
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0026
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0026


e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

14

[27] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, M. Mozaffari-Kermani, Kyber on 
ARM64: compact implementations of Kyber on 64-bit ARM Cortex-A processors, in: 
International Conference on Security and Privacy in Communication Systems, 
2021, pp. 424–440. 

[28] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang, High-speed high-security 
signatures, J. Cryptogr. Eng. 2 (2012) 77–89. 

[29] A. Jalali, R. Azarderakhsh, M.M. Kermani, D. Jao, Supersingular isogeny 
Diffie–Hellman key exchange on 64-bit ARM, IEEE Trans. Dependable Secure 
Comput. 16 (2017) 902–912. 

[30] H. Seo, P. Sanal, R. Azarderakhsh, SIKE in 32-bit ARM processors based on 
redundant number system for NIST level-II, ACM Trans. Embed. Comput. Syst. 
(TECS) 20 (2021) 1–23. 

[31] H. Li, Y. Tang, Z. Que, J. Zhang, FPGA accelerated post-quantum cryptography, 
IEEE Trans. Nanotechnol. 21 (2022) 685–691. 

[32] Z. Ni, A. Khalid, M. O’Neill, High performance FPGA-based post quantum 
cryptography implementations, in: 2022 32nd International Conference on Field- 
Programmable Logic and Applications (FPL), 2022, pp. 456–457. 

[33] S.J. B, V. Sankar, R.S. Lopez, V. K S, C.M. Stuart, A review on FPGA implementation 
of lightweight cryptography for wireless sensor network, in: 2023 International 
Conference on Power, Instrumentation, Control and Computing (PICC), 2023, 
pp. 1–6. 

[34] I. El Gaabouri, M. Senhadji, M. Belkasmi, A survey on lightweight cryptography 
approach for IoT devices security, in: 2022 5th International Conference on 
Networking, Information Systems and Security: Envisage Intelligent Systems in 
5G//6G-based Interconnected Digital Worlds (NISS), 2022, pp. 1–8. 

[35] H.S. Lamkuche, D. Pramod, CSL: FPGA implementation of lightweight block cipher 
for power-constrained devices, Int. J. Inf. Comput. Secur. 12 (2020) 349–377. 

[36] J.G. Pandey, A. Laddha, S.D. Samaddar, A lightweight VLSI architecture for 
RECTANGLE cipher and its implementation on an FPGA, in: 2020 24th 
International Symposium on VLSI Design and Test (VDAT), 2020, pp. 1–6. 

[37] K. Kumar.V.G, A. Poojary, C.S. Rai, H.R. Nagesh, Implementation of lightweight 
cryptographic algorithms in FPGA, in: 2017 International Conference on Circuits, 
Controls, and Communications (CCUBE), 2017, pp. 232–235. 

[38] A.A. Yazdeen, S.R.M. Zeebaree, M. Sadeeq, S.F. Kak, O.M. Ahmed, R.R. Zebari, 
FPGA implementations for data encryption and decryption via concurrent and 
parallel computation: A review, Qubahan Academic Journal 1 (2021) 8–16. 

[39] J. Buchmann, J. Ding, Post-Quantum Cryptography: Second International 
Workshop, PQCrypto 2008 Cincinnati, OH, USA October 17–19, 2008 Proceedings, 
5299, Springer Science & Business Media, 2008. 
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