
e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

Available online 2 December 2023
2772-6711/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

FPGA Implementation of Metaheuristic Optimization Algorithm

Nurul Hazlina Noordin a,*, Phuah Soon Eu a, Zuwairie Ibrahim b

a UMP STEM Lab, Faculty of Electrical & Electronics Engineering, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia
b Faculty of Manufacturing & Mechatronic Engineering, Universiti Malaysia Pahang Al-Sultan Abdullah, 26600 Pekan, Pahang, Malaysia

A R T I C L E I N F O

Keywords:
FPGA design
Binary simulated Kalman filter

A B S T R A C T

Metaheuristic algorithms are gaining popularity amongst researchers due to their ability to solve nonlinear
optimization problems as well as the ability to be adapted to solve a variety of problems. There is a surge of novel
metaheuristics proposed recently, however it is uncertain whether they are suitable for FPGA implementation. In
addition, there exists a variety of design methodologies to implement metaheuristics upon FPGA which may
improve the performance of the implementation. The project begins by researching and identifying meta-
heuristics which are suitable for FPGA implementation. The selected metaheuristic was the Simulated Kalman
Filter (SKF) which proposed an algorithm that was low in complexity and used a small number of steps. Then the
Discrete SKF was adapted from the original metaheuristic by rounding all floating-point values to integers as well
as setting a fixed Kalman gain of 0.5. The Discrete SKF was then modeled using behavioral modeling to produce
the Binary SKF which was then implemented onto FPGA. The design was made modular by producing separate
modules that managed different parts of the metaheuristic and Parallel-In-Parallel-Out configuration of ports was
also implemented. The Discrete SKF was then simulated on MATLAB meanwhile the Binary SKF was imple-
mented onto FPGA and their performance were measured based on chip utilization, processing speed, and ac-
curacy of results. The Binary SKF produced speed increment of up to 69 times faster than the Discrete SKF
simulation.

Introduction

Metaheuristic algorithms have emerged as the bedrock of modern
problem-solving techniques, offering the flexibility to tackle a wide
range of optimization challenges. It is an optimization method that is
used to solve complex nonlinear and multimodal problems [1]. These
algorithms draw inspiration from various natural and computational
processes, adapting and evolving to provide innovative approaches to
problem-solving. Within the topic of metaheuristics, the Simulated
Kalman Filter (SKF) offers an edge of simple execution in addressing
optimization and adaptability [1–3]. Its applications span across do-
mains as diverse as supply chain management, finance, wireless sensor
networks, and engineering design. SKF’s ability to swiftly adapt to
real-time optimization tasks and deliver promising results makes it a
formidable candidate for addressing complex, real-world problems.

As the demand for robust optimization solutions intensifies, so does
the need for advancements in implementation methods. Among these
methods, the implementation of metaheuristic algorithms on Field
Programmable Gate Arrays (FPGAs) has gained considerable attention.

FPGAs offer the promise of unparalleled processing speed and efficiency,
potentially revolutionizing the way metaheuristic algorithms are
executed. Nevertheless, the implementation of complex metaheuristics
on FPGAs comes with its own set of intricacies and challenges. This
study embarks on a comprehensive exploration of the Binary Simulated
Kalman Filter (Binary SKF) algorithm and its FPGA implementation. The
study delves deep into the intricacies of Binary SKF, dissecting its core
components and principles, and elucidates its potential in addressing
real-world optimization problems. The paper distinguishes SKF from
alternative bio-inspired metaheuristics, laying the foundation for the
decision to proceed with its FPGA implementation. Central to this aca-
demic exploration is a detailed examination of the SKF metaheuristic
itself. The algorithm is dissected into its elemental components, each
contributing significantly to its optimization capabilities. The details of
population generation, fitness evaluation, and the Kalman Filter com-
ponents are unraveled, presenting a holistic view of the algorithm’s
inner workings. A thorough comprehension of SKF is vital in under-
standing the intricacies of its FPGA implementation. The transition from
the original SKF to a discrete version optimized for FPGA

* Corresponding author.
E-mail address: hazlina@umpsa.edu.my (N.H. Noordin).

Contents lists available at ScienceDirect

e-Prime - Advances in Electrical
Engineering, Electronics and Energy

journal homepage: www.elsevier.com/locate/prime

https://doi.org/10.1016/j.prime.2023.100377
Received 2 July 2023; Received in revised form 5 November 2023; Accepted 24 November 2023

mailto:hazlina@umpsa.edu.my
www.sciencedirect.com/science/journal/27726711
https://www.elsevier.com/locate/prime
https://doi.org/10.1016/j.prime.2023.100377
https://doi.org/10.1016/j.prime.2023.100377
https://doi.org/10.1016/j.prime.2023.100377
http://crossmark.crossref.org/dialog/?doi=10.1016/j.prime.2023.100377&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

2

implementation is scrutinized through MATLAB simulations. The paper
highlighted the importance of this shift, primarily based on the adapt-
ability of the discrete version to digital systems. This implementation
shift enables greater precision and efficiency when implementing Binary
SKF. Furthermore, this academic journal delves into the core of the Bi-
nary SKF FPGA implementation. The intricate process of behavioral
modeling is meticulously examined, with a particular emphasis on the
modules that underpin the FPGA implementation. Each module is
individually designed, optimizing FPGA resources to ensure the algo-
rithm’s robust performance.

Crucial to this study is the exploration of speed improvements ach-
ieved through FPGA implementation. The paper seeks to identify the
precise areas within Binary SKF where speed enhancements are most
significant. Operations such as agent interaction, solution evaluation,
control logic, data communication, resource allocation, and iteration
management are scrutinized. The analysis shed light on the instrumental
role played by FPGA technology in augmenting the performance and
practical applicability of Binary SKF in a range of real-world optimiza-
tion problems. The limitations and areas for improvement in the Binary
SKF implementation are discussed, focusing on issues related to accu-
racy and precision, emphasizing the necessity for transitioning from a
fixed Kalman gain to a dynamic adaptation model. Additionally,
resource constraints and the potential vulnerability of the Binary SKF
implementation to security threats are also discussed.

Additionally, the paper explores scalability, highlighting the fine
balance between speed and resource utilization, particularly in appli-
cations with varying dimensions. Strategies to optimize resource sharing
and ensure efficient utilization are touched upon. Moreover, this journal
envisages the broader implications and applications of Binary SKF in
diverse real-world scenarios. It highlights the versatility of the algorithm
across industries and underscores the potential benefits it brings in terms
of accuracy, efficiency, and adaptability. In pursuit of even greater ac-
curacy and precision, the study concludes by introducing strategies
aimed at enhancing the Binary SKF implementation. These strategies
encompass the use of dynamic Kalman gain, precision enhancement
through fixed-point arithmetic, hybridization with complementary
optimization methods, and post-processing and refinement techniques.

Literature review

Novel optimization algorithms

The first objective of the project is to study different metaheuristic
algorithms and to identify suitable metaheuristics for hardware imple-
mentation. The project begins by studying a variety of novel optimiza-
tion algorithms.

Single-agent finite impulse response optimizer
The metaheuristic proposed is a single-agent metaheuristics that is

inspired by the unbiased finite impulse response filter. It proposes an
algorithm that optimizes a single solution iteratively until a stopping
condition is met. It boasts a great performance in exploration and
exploitation which enables it to search a wide range of possible solutions
and lastly produce a near optimum solution [3]. Its process is described
in the flowchart as shown in Fig. 1.

Barnacles mating optimization
The proposed algorithm is a novel multi-agent optimization algo-

rithm which mimics the mating behaviors of barnacles as described in
Fig. 2. It involves a sequence where barnacles are randomly selected,
and the reproduction process occurs to a set population of barnacles.
Then, the barnacles may only mate with the surrounding barnacles
based on the length of their penis which is set prior to simulation. The
offspring of the barnacles will then inherit the characteristics from its
parents [4].

Orca predation algorithm
A novel multi-agent bio-inspired metaheuristic which mimics the

hunting behavior of orcas. The metaheuristic introduces a sequence
where orcas drive, encircle, and attack a school of fish. The algorithm
emphasizes on different stages of the sequence such as driving and
encircling to effectively adjust its exploration and exploitation respec-
tively. This enables the algorithm to solve a large variety of problems as
it was implemented onto several engineering optimization problems
which showed great performance [5]. The metaheuristic is described
using a complex flowchart as seen in Fig. 3.

Simulated Kalman filter
A multi-agent metaheuristic where each search agent acts as a Kal-

man Filter which is a state estimation method popularized in the year
1960. Each search agent then estimates the optimum solution to the
fitness function through several steps such as predict, measure, and es-
timate to consequently produce the best-so-far solution as shown in
Fig. 4 [2].

Particle swarm optimization
A multi-agent metaheuristic inspired by the movement of flock of

birds such as scattering and regrouping in search of food. Each agent also
known as a particle is a candidate solution which moves around the
search space during each iteration in search of improvements to the
solution. The position and velocity are influenced by each particle’s
best-known position as well as the best-known position of other particles
as well [6]. The flowchart for Particle Swarm Optimization is illustrated
in Fig. 5.

Variants of particle swarm optimization
The Binary Particle Swarm Optimization was introduced to adapt the

original algorithm into a discrete search space which overcomes the
problems faced by the original algorithm which was designed to be used
in a continuous search space. In this variant, the particles represent its
position in binary meanwhile its velocity is defined as the probability
that it will change its state. The structure of the variant is like the
original algorithm however it utilizes a separate set of equations since it
is adapted to work in binary [7].

Fig. 1. Flowchart for single-agent finite impulse response optimizer.

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

3

Binary ant colony optimization
In the year 1991, the original Ant Colony Optimization metaheuristic

was introduced. This paper implements the original metaheuristic into a
binary solution domain such that the solution search space is repre-
sented in a binary format. Then its performance was verified through a
binary function optimization problem opposed to the typical continuous
function optimization problem [8].

Hybrid binary bat enhanced particle swarm optimization algorithm
This metaheuristic combines two variants of the original Bat opti-

mization and Particle Swarm Optimization to form a hybrid meta-
heuristic namely a combination of binary Bat metaheuristic and binary

Particle Swarm Optimization to form the Hybrid Binary Bat Enhanced
Particle Swarm Optimization Algorithm. It is claimed that the binary
variants of metaheuristics are capable of producing superior results.

The binary Bat metaheuristic applies a binary map onto the solution
found since the solution search space is continuous. Meanwhile the Bi-
nary Particle Swarm Optimization converts continuous values into bi-
nary values. The results shows that the hybrid metaheuristic is capable
of producing better results than other binary variants of other meta-
heuristics such as binary Genetic Algorithm, binary Particle Swarm
Optimization, binary Greywolf, binary Bat, and binary Dragonfly. The
hybrid combination of both binary Bat and binary Particle Swarm
Optimization produced better solutions than the individual

Fig. 2. Flowchart for barnacles mating optimizer.

Fig. 3. Flowchart for orca predation algorithm.

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

4

metaheuristics [9].

FPGA implementation optimization techniques

The performance of a metaheuristics on FPGA is dependent upon its
design methodology. A typical implementation of a metaheuristic may
vary in comparison to the implementation with different design meth-
odology such as parallel implementations, pipeline architectures, and
implementation of floating-point arithmetic modules.

Parallel implementation of particle swarm optimization
This implementation optimization technique was implemented to

accelerate the processing speed of the algorithm. It was designed to
process large volumes of data from processes such as Big Data and
Mining of Massive Datasets. This was achieved through the imple-
mentation of several particle modules in parallel to concurrently
compare the best fitness value of all particles as shown in Fig. 6. Despite
the increment of particle modules to enable parallel computing of the
particles, the results of the hardware costs showed that it used less
registers and Look Up Tables in comparison to similar works from the
literature [10].

Pipeline architecture of particle swarm optimization
The paper works upon the previously mentioned variant of the

Particle Swarm Optimization with random time-varying inertia weight
and acceleration coefficients and its existing serial architecture imple-
mented on hardware. The improvements proposed in this paper includes
simplifications of the hardware architecture such as changing the con-
trol mechanism from a complicated distributed style into a simple
centralized style to improve the stability of the hardware system as
shown in Fig. 8. This was done to overcome the calculation error that
occurred in the previous implementation. Next, the performance of the
implementation was improved by introducing registers and reconfigu-
ration of the state transitions.

The implementation was able to successfully run 6 concurrent

Fig. 4. Flowchart for simulated Kalman filter.

Fig. 5. Flowchart for particle swarm optimization.

Fig. 6. Parallel Implementation of Particle Modules.

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

5

operations through a pipeline architecture as shown in Fig. 7. In addi-
tion, the simplification of hardware architecture was able to successfully
reduce errors and improve the rate of available results. The results re-
ported showed a significant improvement in terms of performance.
However, an increment in chip usage was observed [11].

FPGA realization of particle swarm optimization algorithm using floating
point arithmetic

The paper introduces the implementation of the original Particle
Swarm Optimization algorithm with a modification upon its arithmetic
modules. The arithmetic modules were replaced with floating-point
arithmetic modules to further improve the accuracy of each particle
results. This is because floating-point arithmetic used such as the single
precision and double precision floating point arithmetic module enables
the implementation to calculate to more decimal points. However, this
resulted in extremely high chip usage. The implementation of the double
precision floating point arithmetic module exceeded the total hardware
available. The hardware cost was reduced by further implementing
resource sharing for multiplication and addition operations which
managed to free up some Look Up Tables [12].

Security implications of FPGA implementation

Security implications of FPGA implementation
The integration of field-programmable gate arrays (FPGAs) in

various computational domains has witnessed substantial growth and
innovation in recent years. While FPGA technology offers exceptional
speed and flexibility, it is imperative to recognize that FPGA-based so-
lutions are not immune to security concerns. This section explores the
multifaceted of security implications associated with FPGA imple-
mentations, with a particular focus on the evolving landscape of post-
quantum cryptography (PQC).

Vulnerabilities and threats in FPGA implementations
FPGAs have emerged as pivotal components in high-performance

computing, embedded systems, and hardware acceleration. However,
this increasing reliance on FPGA-based systems has exposed them to
potential vulnerabilities and threats. Literature suggests that FPGA de-
signs can be susceptible to side-channel attacks, configuration bitstream
tampering, and data leakage [13–15]. Understanding these vulnerabil-
ities is critical for devising robust FPGA security measures.

FPGA-based cryptographic solutions
FPGAs play a pivotal role in cryptographic applications, offering

hardware acceleration for encryption and decryption tasks. This sub-
section reviews the literature on FPGA-based cryptographic solutions,
including implementations of well-established algorithms such as
Advanced Encryption Standard (AES) and Rivest Cipher (RC4) [16,17].
It also examines the performance gains achieved by utilizing FPGAs in
cryptography, reinforcing their significance in secure data processing.

The advent of post-quantum cryptography (PQC). The emergence of
quantum computing technology poses a profound challenge to conven-
tional cryptographic methods, such as Elliptic Curve Cryptography
(ECC) and RSA. This subsection delves into the recent developments in
post-quantum cryptography (PQC) and its role in mitigating the threats
posed by quantum adversaries. PQC algorithms, such as NTRUEncrypt
and Lattice-based cryptography, are gaining traction as quantum-
resistant alternatives [18,19]. The potential ramifications of PQC for
FPGA-based security solutions are examined in light of the impending
transition from classical to quantum-safe cryptographic practices.

The growing significance of Post-Quantum Cryptography (PQC) and
the need for fault detection in lightweight ciphers are essential consid-
erations in the context of our study. With the rise of quantum computing
and its potential to undermine classical cryptographic techniques like
RSA and ECC, PQC has emerged as a critical paradigm shift [20–22].
PQC is particularly crucial for ensuring the long-term security of digital
communications and data protection. Furthermore, in constrained en-
vironments like IoT devices and FPGA-based systems, lightweight ci-
phers are paramount. Lightweight ciphers are designed to offer robust
security while minimizing computational and memory demands, mak-
ing them ideal for resource-constrained platforms. As we explore
FPGA-based systems in this paper, the synergy between PQC and light-
weight ciphers takes centre stage in safeguarding future-proof security
within such resource-limited settings.

To gain a comprehensive understanding of these topics, it is essential
to delve into specific areas of research that provide valuable insights.
The study on Curve448 and Ed448 on Cortex-M4 delve into the practical
implementation of Post-Quantum Cryptography (PQC) algorithms,
specifically focusing on Curve448 and Ed448, within the constraints of
Cortex-M4 platforms [23]. This exploration illuminates the challenges
and opportunities in adapting PQC for resource-limited devices.
Ongoing research initiatives on SIKE on Cortex-M4 are dedicated to
optimizing the SIKE (Supersingular Isogeny Key Encapsulation) algo-
rithm for Cortex-M4 platforms, ensuring its suitability for
resource-constrained environments [24,25]. These efforts seek to
address the unique requirements and performance considerations of
lightweight cryptographic solutions. Recent developments in the third
round of the SIKE competition place a strong emphasis on fine-tuning

Fig. 7. Pipeline structure.

Fig. 8. Data path between register.

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

6

SIKE for ARM Cortex-M4 platforms. This research is instrumental in
highlighting the adaptability and utility of SIKE in constrained settings,
further fortifying its potential [26]. Researchers have undertaken the
task of implementing PQC algorithms like Kyber on the more
resource-endowed 64-bit ARM Cortex-A architectures. Their work ad-
dresses not only the performance aspects but also the critical
post-quantum security considerations inherent to these platforms [27].

Fault detection in lightweight ciphers. In the context of securing FPGA-
based systems, fault detection in lightweight ciphers is crucial to
ensure robust and reliable performance, especially in the presence of
potential hardware faults. The integration of cryptographic accelerators
into systems employing Ed25519, a widely adopted digital signature
algorithm, is an area of exploration aimed at enhancing cryptographic
performance [28]. In this work, the significance of optimizing crypto-
graphic functions within resource-constrained environments. Investi-
gating the Supersingular Isogeny Diffie–Hellman key exchange on 64-bit
ARM platforms provides insights into its compatibility and performance
within resource-rich architectures. This research is particularly relevant
for applications demanding heightened security [29,30].

These research topics form the foundation for our understanding of
Post-Quantum Cryptography and fault detection in lightweight ciphers.
They provide valuable insights into the ongoing efforts to address se-
curity concerns and optimize cryptographic algorithms for various
hardware platforms, including Cortex-M4, ARM Cortex-A, and FPGA-
based systems.

Bridging FPGA implementations with PQC. To secure FPGA-based systems
against quantum threats and maintain the integrity of sensitive data, it is
imperative to bridge the gap between FPGA implementations and post-
quantum cryptography. This section investigates the interplay between
FPGA technology and PQC. It explores how FPGA architectures can be
harnessed to accelerate PQC algorithms while ensuring their resilience
against quantum attacks [31,32].

Lightweight cryptography (LWC) in FPGA implementations. In recent
years, the field of lightweight cryptography (LWC) has gained promi-
nence as a specialized area within the broader domain of cryptographic
research. LWC is characterized by its fundamental goal of designing
cryptographic primitives and protocols that are well-suited for resource-
constrained environments, such as embedded systems, Internet of
Things (IoT) devices, and notably, FPGA-based implementations. As the
demand for efficient and secure processing in FPGA applications con-
tinues to grow, the principles of LWC hold particular relevance [33,34].

One of the central tenets of LWC is the optimization of computational
resources. FPGA devices, known for their parallel processing capabil-
ities, often operate under resource constraints, making resource-efficient
cryptographic building blocks a valuable asset. By incorporating light-
weight cryptographic primitives, FPGA implementations can strike a
balance between high-performance computing and efficient resource
utilization. Security remains paramount in FPGA-based solutions,
especially when handling sensitive data or communications. LWC al-
gorithms are designed to provide robust security even in scenarios
where computational resources are limited. The ability to maintain se-
curity without imposing excessive resource overhead aligns seamlessly
with the requirements of FPGA implementations in various applications
[35,36].

FPGA devices excel in parallel processing, a feature that is highly
conducive to many metaheuristic optimization algorithms. Lightweight
cryptographic algorithms, characterized by their computational and
memory efficiency, complement FPGA architectures well. This synergy
empowers FPGA-based implementations to harness parallelism effec-
tively, resulting in both high-performance and secure solutions. FPGA-
based systems often operate in environments where data privacy and
confidentiality are paramount. Lightweight cryptography, with its focus

on protecting data with minimal computational burden, serves as a
natural choice for ensuring the privacy and confidentiality of sensitive
information within FPGA applications [37,38].

In light of these considerations, the incorporation of lightweight
cryptographic building blocks emerges as a pertinent aspect in the
context of FPGA implementation of metaheuristic optimization algo-
rithms. The synergy between FPGA capabilities, the principles of LWC,
and the demand for secure, resource-efficient solutions underscores the
relevance of exploring lightweight cryptography as a valuable tool in
optimizing FPGA-based metaheuristic implementations.

Post-quantum cryptography (PQC) and lightweight ciphers in resource-
constrained environments

Post-Quantum Cryptography (PQC) has gained immense importance
due to the impending threat posed by quantum computing to traditional
cryptographic methods [20,39]. Quantum computers have the potential
to break widely used encryption techniques, such as RSA and ECC, by
leveraging their superior computing power. This creates a pressing need
to transition to cryptographic methods that are resistant to quantum
attacks.

PQC represents a paradigm shift in cryptographic research. It ex-
plores alternative mathematical foundations and encryption techniques
that can withstand quantum attacks [40]. The importance of PQC lies in
its ability to ensure the long-term security of digital communications,
data protection, and privacy [31]. In constrained environments, such as
IoT devices and resource-limited systems, PQC becomes even more
critical because it offers a way to secure communications without
imposing excessive computational overhead [41].

Importance of lightweight ciphers in constrained environments. Lightweight
ciphers play a crucial role in constrained environments, where resources
such as power, memory, and processing capabilities are limited. These
environments include IoT devices, embedded systems, and even FPGA
implementations. Lightweight ciphers are specifically designed to offer
robust security while minimizing computational and memory re-
quirements [42]. The importance of lightweight ciphers in constrained
environments can’t be overstated. They enable secure communication
and data protection without burdening the already limited resources of
these devices. Their efficiency and suitability for low-power, resour-
ce-constrained hardware make them a natural choice in scenarios where
traditional ciphers might be impractical [43].

FPGA-based systems with post-quantum cryptography (PQC) and light-
weight ciphers. The increasing reliance on FPGA-based systems, such as
the one we explore in this paper, has ushered in tremendous opportu-
nities. However, with these opportunities come challenges related to
security, especially in a world where the threat of quantum computing
looms large. The advent of quantum computing poses a profound chal-
lenge to conventional cryptographic methods, such as Elliptic Curve
Cryptography (ECC) and RSA. To address this challenge and to secure
FPGA-based systems against quantum threats, there is a growing need to
integrate Post-Quantum Cryptography (PQC) and lightweight ciphers.

Post-Quantum Cryptography (PQC) represents a critical paradigm
shift in the field of cryptography. It offers cryptographic solutions that
can withstand the computational power of quantum adversaries. Recent
developments in PQC, including algorithms like NTRUEncrypt and
Lattice-based cryptography [18,19], have brought quantum-resistant
alternatives to the forefront. Similarly, Lightweight Ciphers (LWC)
have gained prominence as specialized cryptographic tools designed for
resource-constrained environments, which includes FPGA-based sys-
tems. These ciphers optimize computational resources without
compromising security, making them particularly relevant in this
context [33,34]. This paper explores the synergy between FPGA capa-
bilities, the principles of LWC, and the demand for secure,
resource-efficient solutions. It highlights how FPGA-based systems,

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

7

operating in environments where data privacy and confidentiality are
paramount, can benefit from the incorporation of lightweight crypto-
graphic building blocks.

As we delve into the FPGA implementation of metaheuristic opti-
mization algorithms, the role of PQC and lightweight ciphers takes
center stage in ensuring future-proof security in resource-constrained
settings.

Error detection and fault diagnosis mechanisms in lightweight ciphers
The successful deployment of lightweight ciphers in resource-

constrained environments, such as FPGA-based systems, hinges on
their ability to maintain correct operation and security even in the
presence of errors or faults. This section delves into the critical aspect of
error detection and fault diagnosis mechanisms within lightweight ci-
phers, shedding light on their significance and the relevant research in
the field.

Error detection in lightweight Welch-Gong (WG)-oriented streamcipher
WAGE. The lightweight cipher WAGE, which draws from the Welch-
Gong (WG) design strategy, has gained attention for its efficiency and
security characteristics. Error detection mechanisms play a pivotal role
in ensuring the proper functioning of ciphers like WAGE, particularly in
resource-constrained environments. Research endeavours have explored
these mechanisms, emphasizing the importance of error detection to
maintain the integrity of lightweight ciphers [44].

Error detection reliable architectures of Camellia block cipher. The
Camellia block cipher, a widely recognized cryptographic algorithm,
requires robust fault detection strategies to safeguard its security and
reliability. Recent work has addressed the development of reliable ar-
chitectures and techniques for error detection and correction within the
context of the Camellia block cipher. These advancements are essential
for ensuring the resilience of cryptographic systems to faults [45,46].

Fault diagnosis of low-energy Midori cipher. The Midori cipher, designed
with a focus on energy-efficient applications, demands fault diagnosis
mechanisms to maintain its security in low-power environments. Recent
research has explored fault diagnosis techniques specifically tailored to
the energy-efficient Midori cipher. The incorporation of such mecha-
nisms becomes crucial to ensure fault tolerance in cryptographic systems
with low energy consumption [47,48].

Block cipher QARMA with error detection mechanisms. QARMA, a block
cipher designed for lightweight and efficient applications, benefits from
the integration of error detection mechanisms to enhance its fault
tolerance. Relevant studies have emphasized the importance of incor-
porating these mechanisms within the QARMA block cipher, thereby
enhancing its resilience and reliability [49].

Incorporating error detection and fault diagnosis mechanisms is vital
to the successful implementation of lightweight ciphers in constrained
environments. These mechanisms bolster the security and reliability of
cryptographic systems, ensuring their continued operation and data
integrity. The research presented in these references underlines the
importance of addressing these aspects in the context of lightweight
ciphers and provides valuable insights for their efficient and fault-
tolerant utilization.

Hardware/software platform selection and security implications in FPGA
implementation

The choice of hardware/software platforms plays a pivotal role in the
security implications of FPGA implementation. FPGA (Field-Program-
mable Gate Arrays), ASIC (Application-Specific Integrated Circuits),
ARM (Advanced RISC Machine), and RISC-V (Reduced Instruction Set
Computer - V) each present distinct advantages and considerations when

it comes to security in the context of your metaheuristic optimization
algorithm.

FPGAs offer flexibility and high processing speed, making them an
attractive choice for various applications. However, this comes with a
trade off in the context of security. The reconfigurable nature of FPGAs
allows for quick adaptations but also introduces vulnerabilities if not
properly secured. It’s crucial to consider FPGA bitstream security to
safeguard against unauthorized access or tampering. Moreover, as
FPGAs are often used in constrained environments, ensuring security
without significant computational overhead is vital.

ASICs, on the other hand, provide dedicated, efficient processing
tailored to specific tasks, enhancing security in some aspects. Since
ASICs are not reconfigurable, they can be more resistant to certain at-
tacks, but they are less adaptable for algorithm updates or changes. In
the context of your metaheuristic optimization algorithm, ASICs might
provide a balance between security and performance, particularly when
considering fixed, long-term deployment.

ARM and RISC-V architectures often serve as the foundation for
many embedded systems, including FPGA-based implementations. Se-
curity considerations extend to both the choice of processor architecture
and the implementation of secure boot processes, cryptographic accel-
erators, and secure coding practices. RISC-V, being open-source, allows
for more transparency and customization, but security must be metic-
ulously managed.

The security of various hardware and software platforms like FPGA,
ASIC, ARM, and RISC-V relies on different aspects, which include
looking at secure development methods to prevent vulnerabilities, the
use of specialized cryptographic components, secure boot procedures to
ensure trusted software execution, and the balance between perfor-
mance and adaptability in the context of security. These considerations
play a critical role in hardware/software platform selection. This is to
ensure the security of the FPGA implementation of metaheuristic opti-
mization algorithms, particularly in diverse application domains with
varying security requirements.

Methodology

Simulated Kalman filter

Through the process of elimination, the metaheuristic chosen for
FPGA implementation was the Simulated Kalman Filter (SKF). The bio-
inspired metaheuristics Barnacles Mating Optimizer and Orca Predation
Algorithm proposed steps that were too complex and numerous. This
would result in a difficult implementation of the algorithm as it may
incur high costs to implement all the different states and modules of the
algorithm. The Single-Agent Finite Impulse Response Optimizer pro-
poses an iterative process with a sub-iterative process which introduces
the same problem as mentioned above.

The SKF metaheuristic is composed of 4 major components namely
the population generation, fitness evaluation of agents, fitness evalua-
tion comparison and storage, and the Kalman Filter components which
are the predict, measure, and estimate steps as shown in Fig. 4. These
steps are carried out iteratively until a stopping condition is met which is
typically the maximum number of iterations. There are several variables
of the Kalman Filter components which are significant such as the initial
error covariance estimate, P(0), process noise, Q, measurement noise, R,
and the Kalman gain, K.

Before the first iteration starts, several parameters need to be defined
such as the number of agents, N, number of dimensions, D, and
maximum number of iterations, tmax. Then the initial generation of
population is done by generating a random floating-point value between
the range of − 100 to 100 and loading it into a multidimensional array X
which has N columns and D rows.

Then the evaluation step is carried out by evaluating the fitness of the
agents through the activation function. The activation function of the
original SKF metaheuristic utilizes the CEC2014 benchmark function

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

8

which contains a set of 30 activation functions. Table 1. illustrates the
generation of population of 3 agents with 3 dimensions and fitness
evaluation using the sphere activation function. The sphere activation
function is described in Eq. (1).

Fitness(t) =
∑D

n=1
D(t)2 (1)

After all agents have their fitness evaluated, all the fitness evaluation
values are compared and the agent with the best fitness evaluation for
the current iteration is selected as the Xbest(t). The selection process for
Xbest(t) depends on whether it is a minimization problem or maximiza-
tion problem. Eq. (2) is used to determine Xbest(t) if it is a minimization
problem and Eq. (3) is used if it is a maximization problem. The Xbest(t) is
then used to update the best-so-far solution of the run, Xtrue by replacing
the best-so-far solution with the Xbest(t) value if Xbest(t)) < Xtrue for
minimization problems and Xbest(t)) > Xtrue for maximization problems.

Xbest = mini∈1,….,nfitnessi(X(t)) (2)

Xbest = maxi∈1,….,nfitnessi(X(t)) (3)

In the first iteration, the predict step is carried out by setting the
initial error covariance to 1000, P(0) = 1000, the process noise is set to
0.5, Q = 0.5, and the measurement noise is set to 0.5, R = 0.5. Then the
error covariance is calculated using Eq. (4).

P = P + Q (4)

Then the measurement step is carried out using Eq. (5). where the X
is the position of the agents and Y is the measured value of the agents.

Y = X + (sin(rand(n, 1)× 2π)) × |X − X true| (5)

Then the estimate step is proceeded to calculate the Kalman gain
value as shown in Eq. (6). Then the position of agents is updated using
the Eq. (7) and lastly the new error covariance is updated through the
Eq. (8).

K =
P

(P + R)
(6)

X = X + K × (Y − X) (7)

P = (1 − K) × P (8)

At the end of the estimate step of the Kalman Filter components, the
stopping condition is checked and the run stops if the maximum number
of iterations have been achieved. Else the run continues on to the next
iteration and the steps are repeated from the evaluation of fitness agent.

Discrete simulated Kalman filter adaptation

The original SKF metaheuristic was simulated using MATLAB uti-
lizing floating-point values. The operation of this simulation is repre-
sented in Table 2 where the agent positions as well as its fitness
evaluation are represented by whole numbers, decimal point, and its
corresponding fractional part. This introduced complications into the
design of the FPGA implementation as it is difficult to represent the
fractional parts of a number in a digital system. Hence, the original SKF
was adapted into a Discrete SKF to remove this complication.

The Discrete SKF utilizes the same minimization sphere function but
utilizes only integer values. This is done by rounding all the floating-
point agent position values to the nearest integer. This would conse-
quently produce fitness evaluation values in whole number as well. The
generation of population and fitness evaluation by Discrete SKF is
illustrated in Table 2.

The Kalman gain which was previously calculated using Eq. (6) is set
to a fixed value of K = 0.5. This is done because a multiplication of 0.5
can be translated into a division by 2 which can be operated in binary as
a logical right shift of 1 bit. The deliberate value of 0.5 is set after
thorough investigation of the transition of the Kalman gain in the
original SKF MATLAB simulation. The Kalman gain can be observed to
slowly decrease from 0.9995 at the first iteration and converges to
0.6180 by 7th iteration as shown in Table 3.

Table 4 presents a detailed account of the population generation and
fitness evaluation within the context of the Binary Simulated Kalman
Filter (SKF) implementation. The population is composed of individual
agents denoted as X1, X2, and X3, each possessing multiple dimensions
represented by D1, D2, and D3. These dimensions encode binary se-
quences that encapsulate specific parameters or characteristics pertinent
to the optimization algorithm. For instance, in D1, Agent X1 is associ-
ated with the binary sequence ``11,110,101,’’ while Agent X2 exhibits
``00,001,111,’’ and Agent X3 features ``11,110,101.’’ The fitness eval-
uation, as depicted in the ``Evaluation’’ row, comprises binary bits
signifying fitness scores attributed to each agent. These fitness scores are
indicative of the performance of each agent concerning the optimization
problem under consideration. The table serves as an informative visual
representation of the binary population, dimensions, and fitness as-
sessments, offering insights into the algorithm’s functionality and its
capacity to adapt to the optimization task. These results constitute a
pivotal component of the iterative optimization process facilitated by
the Binary SKF algorithm, guiding its pursuit of optimal solutions within
the population.

This Discrete SKF was then simulated in MATLAB to verify its results.
The significance of the adaptation from the original to discrete version of
SKF is that the discrete version can be readily implemented in a digital
system by representing the integer values as binary values. The imple-
mentation of Discrete SKF as Binary SKF is illustrated in 00 where the
integer values are represented in 2 s complement binary values.

Binary simulated Kalman filter behavioral modeling

Each section of the Binary SKF metaheuristic was segmented and

Table 1
Generation of population and fitness evaluation for SKF.

ArrayX Agents

X1 X2 X3

Dimension D1 − 10.6638 14.53027 − 10.9522
D2 48.57666 − 20.4318 40.2808
D3 53.30432 − 56.9214 11.46109

Evaluation 5314.759 3868.633 1873.85

Table 2
Generation of population and fitness evaluation for Discrete SKF.

Array X Agents

X1 X2 X3

Dimension D1 − 11 15 − 11
D2 49 − 20 40
D3 53 − 57 11

Evaluation 5331 3874 1842

Table 3
Progression of Kalman gain in original SKF.

Iteration, t P Q R K

1 1000 0.5 0.5 0.9995
2 0.4998 0.5 0.5 0.6666
3 0.3333 0.5 0.5 0.6250
4 0.3125 0.5 0.5 0.6190
5 0.3095 0.5 0.5 0.6182
6 0.3091 0.5 0.5 0.6181
7 0.3090 0.5 0.5 0.6180
8 0.3090 0.5 0.5 0.6180
9 0.3090 0.5 0.5 0.6180

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

9

individually designed into separate modules using System Verilog. The
major components that needed to be designed were the random number
generator to generate the initial population of agents, Random-Access
Memory (RAM) to store the agent position and measurement values,
Activation Function module to evaluate the fitness of each agent ac-
cording to Eq. (1), Measure module to carry out measurement calcula-
tions as shown in Eq. (5), and the Estimate module to update the position
of agents according to Eq. (7). The initial design produced is capable of
processing 10 dimensions. This design is repurposed to produce 3
different variants which are the 5-dimension, 10-dimension and 20-
dimension Binary SKF for FPGA implementation.

Behavioral modeling of modules
The Random Number Generator (RNG) module is designed upon the

concept of Linear Feedback Shift Register to produce a sequence of
random numbers which are dependent on the initial seed provided. The
generated values are in 8-bits which represents the initial position of
agents. The values are internally bounded within − 100 to 100 to ensure

the values produced are in the search region. The Random-Access
Memory (RAM) is designed to temporarily store the position values
and measured values of all the dimensions of the agents. This module is
essentially a multidimensional array of registers with N number of col-
umns and D number of rows. RAM_X is instantiated to store the position
values of all the dimensions of the agents generated by the RNG module
and the Estimate module. Meanwhile RAM_Y is instantiated to store the
output of the Measure module.

The activation function module facilitates the computation required
to evaluate the fitness of agents as described in Eq. (1). The module
receives input from RAM_X which holds the position values of all the
agents. The module then determines the agent with the overall best
evaluation of the current iteration and stores it at the Xbest register. The
measure module facilitates the calculations required to carry out the
measure step as described in Eq. (5). It receives inputs from RAM_X
which holds the current position values of all agents and best_agent_D#
registers which stores the position value of the Xtrue register. This
module then offloads the calculated values into RAM_Y. This module

Table 4
Generation of population and fitness evaluation of Binary SKF.

Array X Agents

X1 X2 X3

Dimension D1 11110101 00001111 11110101
D2 00110001 11101100 00101000
D3 00110101 11000111 00001011

Evaluation 0001010011010011 0000111100100010 0000011100110010

Fig. 9. Modules generated through behavioral modeling.

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

10

facilitates the final step of SKF by computing Eq. (7). The module re-
ceives input from RAM_X containing current position values of all agents
and RAM_Y containing measured values from the Measure module. The
module then updates the current position values of all agents and
overwrites RAM_X with the new agent position values for the next
iteration.

Parallel-in-parallel-out configuration of modules
During the behavioral modeling of the required modules, it was

discovered that it was possible to produce modules with multiple input
and output ports. This was significant as it enabled a module to receive
multiple inputs, process the inputs, and produce multiple outputs at
once. This Parallel-In-Parallel-Out (PIPO) configuration was exploited to
maximize the number of inputs and outputs of each module and
consequently improve their performance. The number of ports is
dependent on the number of dimensions for that implementation. The
modules designed are shown in Fig. 9.

Finite state machine controller
To ensure proper timing and flow of data between modules, a finite

state machine (FSM) was modeled using System Verilog. The FSM in-
stantiates all the necessary modules and the necessary wires for inter-
connection between modules. The FSM has 6 states in sequence of s0

Reset, s1 Generate population, s2 Fitness evaluation and comparison, s3
Measure, s4 Estimate, and s5 Complete. A simplified state diagram of the
FSM is illustrated in Fig. 10.

Hardware components

The board chosen for the implementation of the Binary SKF was the
DE10 - Lite which is powered by the 10M50DAF474G chip produced by
Altera. Included on the board is a clock generation chip which outputs a
stable 50 MHz clock cycle to drive the FPGA. The FPGA chip is suffi-
ciently powerful to power the design as it contains 50 thousand logical
elements, and 144 units of 18 × 18 multiplier.

Meanwhile, the MATLAB simulation of Discrete SKF is ran on a HP
ProBook 440 G7 which is equipped with a 10th generation Intel pro-
cessor namely the Intel Core i5 – 10210U CPU and is paired with 16
gigabytes of RAM.

Results and discussion

The run parameter set for both the MATLAB simulation and FPGA
implementation is set to 50 maximum runs, 5000 maximum iterations,
50 agents, and fixed Kalman gain of 0.5. The runs are conducted 3 times
on MATLAB using 3 different dimension values which are 5-dimensions,

Fig. 10. State diagram of finite state machine controller.

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

11

followed by 10-dimensions, and lastly 20-dimensions. The FPGA is
programmed with 3 different designs and ran 3 separate times to facil-
itate the run of the 3 different variants namely the 5-dimension, 10-
dimension, and 20-dimension. The time taken to complete all calcula-
tions, the value of Xtrue and chip utilization of each design is noted is
compiled into Table 5.

Chip utilization

The logical elements utilization increases by 43 % when the number
of dimensions increases from 5 to 10. Meanwhile, an increment of 46 %
is observed when the number of dimensions increases from 10 to 20. The
utilization of logical elements on the FPGA is a crucial aspect of our
implementation. We configured our FPGA with a fixed Kalman gain of
0.5 and conducted multiple runs with different dimensions (5, 10, and
20). The logical elements utilization increased by 43 % when the
number of dimensions increased from 5 to 10. Moreover, an increment
of 46 % was observed when the number of dimensions increased from 10
to 20. The increase in logical elements utilization with the rise in di-
mensions highlights the resource-intensive nature of our FPGA imple-
mentation. This finding highlighted the importance of optimizing FPGA
resources efficiently to accommodate higher dimensions without
exceeding logical element capacity.

Processing speed

The time taken to complete the simulation on MATLAB increases by
25 % when the number of dimensions increased from 5 to 10. Mean-
while increasing the dimensions from 10 to 20 further increased the time
taken by 33 %. This shows that the time taken to complete the simula-
tion increases as the number of dimensions increases for the MATLAB
simulation. However, the FPGA implementation completes all its runs in
0.780 s. It is observed that the time taken to complete the run remains
the same despite increasing the number of dimensions for the FPGA
implementation. This is because the modules of the FPGA implementa-
tion are designed using the PIPO configuration which enables all di-
mensions of a single agent to be loaded and processed in a single clock
cycle. Consequently, the PIPO configuration of modules will result in the
same processing time despite an increment or decrement of number of
dimensions.

Accuracy of result

The accuracy of our results is crucial for evaluating the effectiveness
of our FPGA implementation. We assessed the accuracy of both the
MATLAB simulated Discrete SKF and the FPGA-implemented Binary
SKF. Both the MATLAB simulated Discrete SKF and the FPGA-
implemented Binary SKF exhibited challenges in producing accurate
results. In the MATLAB simulation, the inaccuracy stemmed from
rounding floating-point values to integers and the use of a fixed Kalman
gain of 0.5. These factors reduced resolution and accuracy. The error
introduced in the MATLAB simulation carried forward to the FPGA
implementation, which uses binary format to represent integer values.
The diminished accuracy of both simulations highlights the importance
of fine-tuning our FPGA implementation to mitigate these challenges.
The use of binary representation can lead to precision loss, particularly

in cases where floating-point accuracy is essential. Future work should
focus on optimizing the FPGA design to enhance result accuracy while
maintaining the efficiency achieved through PIPO configuration.

Comparison with previous works

Comparing the implementation of Binary SKF to other works in the
literature poses challenges due to variations in the employed meta-
heuristics, testing methodologies, and configurations. A comparative
analysis of these unique approaches is provided in Table 6.

Binary SKF FPGA implementation speed improvements

This section further investigates the areas within the Binary Simu-
lated Kalman Filter (Binary SKF) algorithm where speed improvements
are significant. It focuses on operations that have been optimized
through FPGA parallelism or other hardware-accelerated techniques,
which are agent interaction, solution evaluation, control logic, data
communication, resource allocation and iteration management. Within
the Binary SKF algorithm, the interactions and information exchange
among individual agents play a crucial role. FPGA implementations
accelerate these interactions, especially when numerous agents are
involved, leading to substantial speed improvements.

Binary SKF typically involves evaluating the quality of solutions
generated by agents. FPGA hardware expedites this evaluation process,
leading to faster convergence and more efficient optimization. The
control and coordination of various modules in the Binary SKF algorithm
benefited from FPGA acceleration. This includes the management of the
optimization process, the decision to terminate, and the synchronization
of operations. The FPGA’s parallel processing capabilities enhanced the
communication of data between modules. This acceleration is particu-
larly valuable in multi-agent systems, where data exchange is frequent.

In applications where Binary SKF is used for resource allocation, such
as energy management or manufacturing, the allocation process can
experience significant speed improvements on FPGA hardware. The
speed of iterating through the optimization process is substantially
enhanced through FPGA implementation, reducing the time needed to
find optimal solutions.

Project limitations

Accuracy and precision
In order to accurately represent the original SKF metaheuristic, the

employment of floating-point arithmetic is vital. This is because the
Kalman gain which is calculated in the estimation step of SKF is in the
form of floating-point. In the implementation of Binary SKF, the Kalman
gain is set to a fixed value of 0.5 which impedes the performance of the
metaheuristic during the exploitation phase and consequently fails to
find the optimum solution. By modifying each module to facilitate ar-
ithmetics in floating point, the implementation will be able to produce a
dynamic Kalman gain and reap the benefits of the original SKF which
boasts great performance in the exploitation process enabling it to
produce accurate results [4].

Resource constraints
The implementation of floating-point arithmetic would significantly

Table 5
Generation of population and fitness evaluation for Binary SKF.

Array X Agents

X1 X2 X3

Dimension D1 11110101 00001111 11110101
D2 00110001 11101100 00101000
D3 00110101 11000111 00001011

Evaluation 0001010011010011 0000111100100010 0000011100110010

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

12

impact the resource consumption of the implementation. This is because
each module and register would require modifications to be able to
process calculations and store floating-point values adhering to the IEEE
754 format. The implementation of the 20-dimension Binary SKF
consumed up to 55 % of the logical elements of the FPGA. The inclusion
of floating-point arithmetic would further increase the logical elements
required and may exceed the hardware limit [11].

Security considerations
The implemented Binary SKF can be vulnerable to side-channel at-

tacks and data leakages. This is because no security features were
implemented to prevent these occurrences. The implementation of LWC
can be an effective and resource efficient method of intercepting side-
channel attacks by encrypting the computation and transmission of
sensitive data.

Scalability
The implementation of the PIPO configuration of models have shown

to enable parallel processing of multidimensional optimization prob-
lems. This is because in a single clock cycle, every dimension of an agent
is loaded into the subsequent modules and processed at once. This en-
ables the implementation to process optimization problems with a large
range of dimensions without affecting the time taken to complete.
However, this speed comes at the cost of resource utilization as the
increment in dimensions would consequently increase the number of
logical elements consumed. This issue could be minimized by simpli-
fying and modifying the modules to enable resource sharing.

Potential implications and applications of the Binary SKF algorithm in real-
world optimization problems

The Binary Simulated Kalman Filter (Binary SKF) algorithm in real-
world optimization problems. This algorithm exhibits versatility across
various problem domains, offering potential benefits over existing
optimization techniques. In the domain of supply chain management,
Binary SKF can effectively address intricate demand forecasting, in-
ventory management, and production planning challenges. In the
financial sector, it is well-suited for real-time portfolio optimization,
asset allocation, and risk management, courtesy of its rapid processing
capabilities. Its adaptability extends to wireless sensor network config-
uration, optimizing sensor placement for maximal coverage and mini-
mal energy consumption. In engineering design, Binary SKF aids in tasks
such as parameter tuning, component placement, and circuit design,
fostering efficiency and cost-effectiveness. Moreover, its application in
healthcare for biomedical parameter estimation enhances the accuracy
of physiological modeling.

Enhancing accuracy in Binary SKF implementation
Improving the precision of Binary Simulated Kalman Filter (SKF)

implementation is of paramount importance, particularly while
considering the constraints posed by the Discrete SKF and the fixed
Kalman gain. To achieve this, various strategies have been explored in
the context of conceptual simulations, and further possibilities exist for
enhancing the precision of Binary Simulated Kalman Filter (SKF)
implementation. One promising approach involves moving away from
binary implementation and the fixed Kalman gain. Instead, it proposes

replacing them with a novel version of the Discrete SKF, which leverages
concepts like distance evaluation with state encoding [50]. This tran-
sition holds the potential to refine the SKF’s precision and suitability for
combinatorial optimization problems. A complementary strategy in-
volves the development of Discrete SKF variants tailored to discrete
search spaces. This adaptation necessitates modifying measurement and
estimation methods within the SKF to align with the requirements of
discrete search spaces [51]. Such modifications hold promise for
enhanced precision in solving problems like the Traveling Salesman
Problem.

Instead of adhering to the fixed 0.5 gain, an adaptive approach al-
lows the algorithm to dynamically adjust the gain during runtime,
responding to the optimization process’s progress. This adaptability can
lead to improved accuracy and convergence. Employing fixed-point
arithmetic with adjustable scaling factors offers a path to fine-tune
precision. This strategy aims to balance computational accuracy with
resource efficiency. Combining the Binary SKF algorithm with comple-
mentary optimization methods, such as Genetic Algorithms or Particle
Swarm Optimization, creates a hybrid approach. This integration allows
leveraging the strengths of multiple algorithms to enhance precision and
robustness. Post-processing techniques, like gradient-based optimiza-
tion or simulated annealing, can be employed to fine-tune discrete so-
lutions. Iteratively optimizing results through these methods can
significantly improve overall accuracy. Exploring these strategies not
only addresses existing limitations but also opens new avenues for
advancing the precision of SKF implementations. The choice of strategy
may depend on the specific problem domain and the trade-offs between
precision, computation, and adaptability. These research directions
contribute to the ongoing quest for efficient and accurate metaheuristic
optimization solutions (Table 7).

Conclusion

The work provided a detailed overview of the SKF metaheuristic,
breaking down its major components, from population generation to the
Kalman Filter steps, highlighting the critical variables. The utilization of
MATLAB simulations to verify the transition from the original SKF to a
discrete version that can be implemented in digital systems was pre-
sented. The paper effectively discussed the behavioral modeling of
modules, emphasizing the advantages of the Parallel-In-Parallel-Out
(PIPO) configuration. The exploration of FPGA implementation under-
lined its significant speed improvements, particularly in scenarios
involving agent interactions, solution evaluation, control logic, data
communication, resource allocation, and iteration management. The
observed benefits in processing speed, despite an increase in dimensions,
were attributed to FPGA’s parallel processing capabilities. The study,
however, noted the challenges related to the accuracy and precision of
results. It recognized that achieving greater accuracy would necessitate
a transition from a fixed Kalman gain to dynamic adaptation and the use
of floating-point arithmetic. These changes would increase resource
consumption, potentially exceeding hardware limits and necessitating
optimization. Moreover, security considerations were raised, empha-
sizing the vulnerability of the implementation to side-channel attacks.
The practical applications of Binary SKF in various domains, such as
supply chain management, finance, wireless sensor networks, and

Table 6
Compiled result of simulation and FPGA implementation.

Platform Agents, N Dimensions, D Xtrue Expected value Time taken (s) Logical elements Registers

Simulation 50 5 14 0 27.329 – –
50 10 503 0 36.481 – –
50 20 3936 0 54.571 – –

FPGA 50 5 32 0 0.780 8220 4686
50 10 253 0 0.780 14,637 9146
50 20 4749 0 0.780 27,413 18,066

N.H. Noordin et al.

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

13

engineering design, underlining its versatility. Strategies for enhancing
accuracy and precision are discussed, suggesting the exploration of new
implementations, dynamic gain adjustment, fixed-point arithmetic, hy-
bridization with complementary optimization methods, and post-
processing techniques. These strategies aimed to strike a balance be-
tween precision and efficiency in the context of specific problem do-
mains. In conclusion, a comprehensive exploration of Binary SKF, from
its FPGA implementation to strategies for improving its precision and
accuracy. It opens new avenues for research and optimization in the field
of metaheuristic algorithms.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

We are sincerely grateful to Ministry of Higher Education Malaysia
for the generous support through the Fundamental Research Grant
Scheme - FRGS/1/2018/TK04/UMP/03/3. This has enabled the suc-
cessful realization of our research at the UMP STEM Lab, Universiti
Malaysia Pahang Al-Sultan Abdullah. We greatly appreciate the confi-
dence and belief invested in our work, and we are committed to up-
holding the highest standards of academic rigor and excellence.

References

[1] T. Ab Rahman, Z. Ibrahim, N.A.A. Aziz, S. Zhao, N.H.A. Aziz, Single-agent finite
impulse response optimizer for numerical optimization problems, IEEE Access 6
(2018) 9358–9374.

[2] Z. Ibrahim, N.H.A. Aziz, N.A.A. Aziz, S. Razali, M.S. Mohamad, Simulated Kalman
filter: a novel estimation-based metaheuristic optimization algorithm, Adv. Sci.
Lett. 22 (2016) 2941–2946.

[3] N.H. Abdul Aziz, Z. Ibrahim, N.A. Ab Aziz, M.S. Mohamad, J. Watada, Single-
solution simulated Kalman filter algorithm for global optimisation problems,
Sādhanā 43 (2018) 1–15.

[4] M.H. Sulaiman, Z. Mustaffa, M.M. Saari, H. Daniyal, Barnacles mating optimizer: a
new bio-inspired algorithm for solving engineering optimization problems, Eng.
Appl. Artif. Intell. 87 (2020), 103330.

[5] Y. Jiang, Q. Wu, S. Zhu, L. Zhang, Orca predation algorithm: a novel bio-inspired
algorithm for global optimization problems, Expert Syst. Appl. 188 (2022),
116026.

[6] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-
International Conference on Neural Networks, 1995, pp. 1942–1948.

[7] M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm
optimization, in: 2007 Mediterranean Conference on Control & Automation, 2007,
pp. 1–6.

[8] M. Kong, P. Tian, Introducing a binary ant colony optimization, in: Ant Colony
Optimization and Swarm Intelligence: 5th International Workshop, ANTS 2006,
Brussels, Belgium, September 4–7, 2006. Proceedings 5, 2006, pp. 444–451.

[9] M.A. Tawhid, K.B. Dsouza, Hybrid binary bat enhanced particle swarm
optimization algorithm for solving feature selection problems, Appl. Comput.
Inform. 16 (2018) 117–136.

[10] A.L. Da Costa, C.A. Silva, M.F. Torquato, M.A. Fernandes, Parallel implementation
of particle swarm optimization on FPGA, IEEE Trans. Circuits Syst. II 66 (2019)
1875–1879.

[11] X. Cai, S. Ngah, H. Zhu, Y. Tanabe, T. Baba, Pipeline architecture of particle swarm
optimization, in: 2010 IEEE/ACIS 9th International Conference on Computer and
Information Science, 2010, pp. 3–8.

[12] A. Rathod, R. Thakker, FPGA realization of particle swarm optimization algorithm
using floating point arithmetic, in: 2014 International Conference on High
Performance Computing and Applications (ICHPCA), 2014, pp. 1–6.

[13] J.Y. Koh, T. Nandha Kumar, Review of side channel attacks and countermeasures
of FPGA based systems, in: 2021 IEEE 19th Student Conference on Research and
Development (SCOReD), 2021, pp. 102–107.

[14] S. Sunkavilli, Z. Zhang, Q. Yu, New security threats on FPGAs: from FPGA design
tools perspective, in: 2021 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2021, pp. 278–283.

[15] B. Erbagci, "Hardware-Entangled Inherently Secure Field Programmable Gate
Arrays," 2018.

[16] A.J. Elbirt, W. Yip, B. Chetwynd, C. Paar, An FPGA-based performance evaluation
of the AES block cipher candidate algorithm finalists, IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 9 (2001) 545–557.

[17] L. Bahadur and M.B. Badoniya, "Study of AES implementation on FPGA by using
Rijndael Algorithm," 2014.

[18] A.K. Sherdel, B. Schneider, Post-Quantum Cryptography: An Introductory
Overview and Implementation Challenges of Quantum-Resistant Algorithms, in:
K. Hinkelmann, A. Gerber (Eds.), Proceedings of the Society 5.0 Conference 2022 -
Integrating Digital World and Real World to Resolve Challenges in Business and
Society 84, EasyChair, 2022, pp. 61–71. 10.29007/2tpw.

[19] E. Zeydan, Y. Turk, B. Aksoy, S.B. Ozturk, Recent advances in post-quantum
cryptography for networks: a survey, in: 2022 Seventh International Conference On
Mobile And Secure Services (MobiSecServ), 2022, pp. 1–8.

[20] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, et al., Report on post-
quantum cryptography vol. 12: US Department of Commerce, National Institute of
Standards and Technology …, 2016.

[21] D.J. Bernstein, Introduction to post-quantum cryptography, in: D.J. Bernstein,
J. Buchmann, E. Dahmen (Eds.), Post-Quantum Cryptography, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, pp. 1–14.

[22] J.B.J. Ding, "Post-quantum cryptography," 2008.
[23] M. Hamburg, Ed448-Goldilocks, a new elliptic curveCryptol, IACR Cryptol. ePrint

Arch. 2015 (2015) 625.
[24] D. Jao, L. De Feo, Towards quantum-resistant cryptosystems from supersingular

elliptic curve isogenies, in: Post-Quantum Cryptography: 4th International
Workshop, PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011.
Proceedings 4, 2011, pp. 19–34.

[25] H. Seo, A. Jalali, R. Azarderakhsh, SIKE round 2 speed record on ARM Cortex-M4,
in: Cryptology and Network Security: 18th International Conference, CANS 2019,
Fuzhou, China, October 25–27, 2019, Proceedings 18, 2019, pp. 39–60.

[26] M. Anastasova, R. Azarderakhsh, M.M. Kermani, Fast strategies for the
implementation of SIKE round 3 on ARM Cortex-M4, IEEE Trans. Circuits Syst. I 68
(2021) 4129–4141.

Table 7
Binary SKF FPGA Implementation Comparisons.

Implementation Parallel implementation Pipeline architecture Floating point arithmetic PIPO configuration

Metaheuristic used Particle swarm optimization Binary Kalman filter

Metaheuristic
configuration

Dimension: 3, 6, & 10
Particles: 5, 10, & 15
Max iterations: -
Max runs: -

Dimension: 1
Particles: 10
Max iterations: 50
Max runs: -

Dimension: 2
Particles: 5, 10, & 20
Max iterations: 6000
Max runs: -

Dimension: 5, 10, & 20
Particles: 50
Max iterations: 5000
Max runs: 50

Activation
Function used

Rastrigin Non-standard function Sphere, Rosenbrock, & Rastrigin Sphere

Method Implementation of multiple Particle
Modules to calculate the fitness of
multiple particles simultaneously

Implementation of a pipeline
architecture by simplifying and
restructuring the FSM

Introduction of floating point
arithmetic module to improve
computation accuracy and speed

Implementation of parallel input and
output for each module to enable
parallel computing of multiple
dimensions

Result Calculation speed improvements
compared to previous
implementations:
6 dimensions: 212×

Calculation speed improvement
by 18 % compared to previous
implementation

Average calculation speed
improvement compared to previous
implementations:
Sphere: 281×
Rastrigin: 46×
Rosenbrock 30×

Calculation speed improvement
compared to Matlab simulation:
5 dimension: 35.04×
10 dimension: 46.77×
20 dimension: 69.96×

N.H. Noordin et al.

http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0001
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0001
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0001
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0002
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0002
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0002
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0003
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0003
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0003
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0004
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0004
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0004
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0005
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0005
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0005
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0006
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0006
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0007
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0007
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0007
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0008
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0009
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0010
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0010
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0010
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0011
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0012
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0012
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0012
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0013
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0013
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0013
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0014
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0014
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0014
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0016
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0016
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0016
https://doi.org/10.29007/2tpw
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0019
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0021
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0021
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0021
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0023
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0023
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0024
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0025
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0025
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0025
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0026
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0026
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0026

e-Prime - Advances in Electrical Engineering, Electronics and Energy 6 (2023) 100377

14

[27] P. Sanal, E. Karagoz, H. Seo, R. Azarderakhsh, M. Mozaffari-Kermani, Kyber on
ARM64: compact implementations of Kyber on 64-bit ARM Cortex-A processors, in:
International Conference on Security and Privacy in Communication Systems,
2021, pp. 424–440.

[28] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, B.-Y. Yang, High-speed high-security
signatures, J. Cryptogr. Eng. 2 (2012) 77–89.

[29] A. Jalali, R. Azarderakhsh, M.M. Kermani, D. Jao, Supersingular isogeny
Diffie–Hellman key exchange on 64-bit ARM, IEEE Trans. Dependable Secure
Comput. 16 (2017) 902–912.

[30] H. Seo, P. Sanal, R. Azarderakhsh, SIKE in 32-bit ARM processors based on
redundant number system for NIST level-II, ACM Trans. Embed. Comput. Syst.
(TECS) 20 (2021) 1–23.

[31] H. Li, Y. Tang, Z. Que, J. Zhang, FPGA accelerated post-quantum cryptography,
IEEE Trans. Nanotechnol. 21 (2022) 685–691.

[32] Z. Ni, A. Khalid, M. O’Neill, High performance FPGA-based post quantum
cryptography implementations, in: 2022 32nd International Conference on Field-
Programmable Logic and Applications (FPL), 2022, pp. 456–457.

[33] S.J. B, V. Sankar, R.S. Lopez, V. K S, C.M. Stuart, A review on FPGA implementation
of lightweight cryptography for wireless sensor network, in: 2023 International
Conference on Power, Instrumentation, Control and Computing (PICC), 2023,
pp. 1–6.

[34] I. El Gaabouri, M. Senhadji, M. Belkasmi, A survey on lightweight cryptography
approach for IoT devices security, in: 2022 5th International Conference on
Networking, Information Systems and Security: Envisage Intelligent Systems in
5G//6G-based Interconnected Digital Worlds (NISS), 2022, pp. 1–8.

[35] H.S. Lamkuche, D. Pramod, CSL: FPGA implementation of lightweight block cipher
for power-constrained devices, Int. J. Inf. Comput. Secur. 12 (2020) 349–377.

[36] J.G. Pandey, A. Laddha, S.D. Samaddar, A lightweight VLSI architecture for
RECTANGLE cipher and its implementation on an FPGA, in: 2020 24th
International Symposium on VLSI Design and Test (VDAT), 2020, pp. 1–6.

[37] K. Kumar.V.G, A. Poojary, C.S. Rai, H.R. Nagesh, Implementation of lightweight
cryptographic algorithms in FPGA, in: 2017 International Conference on Circuits,
Controls, and Communications (CCUBE), 2017, pp. 232–235.

[38] A.A. Yazdeen, S.R.M. Zeebaree, M. Sadeeq, S.F. Kak, O.M. Ahmed, R.R. Zebari,
FPGA implementations for data encryption and decryption via concurrent and
parallel computation: A review, Qubahan Academic Journal 1 (2021) 8–16.

[39] J. Buchmann, J. Ding, Post-Quantum Cryptography: Second International
Workshop, PQCrypto 2008 Cincinnati, OH, USA October 17–19, 2008 Proceedings,
5299, Springer Science & Business Media, 2008.

[40] J.A. Buchmann, D. Butin, F. Göpfert, A. Petzoldt, Post-quantum cryptography: state
of the art, in: The New Codebreakers: Essays Dedicated to David Kahn on the
Occasion of His 85th Birthday, 2016, pp. 88–108.

[41] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, R. Cammarota, Post-
quantum lattice-based cryptography implementations: a survey, ACM Comput.
Surv. (CSUR) 51 (2019) 1–41.

[42] Y. Todo, M. Morii, Bit-based division property and application to Simon family, in:
Fast Software Encryption: 23rd International Conference, FSE 2016, Bochum,
Germany, March 20–23, 2016, Revised Selected Papers 23, 2016, pp. 357–377.

[43] E.R. Naru, H. Saini, M. Sharma, A recent review on lightweight cryptography in
IoT, in: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics
and Cloud)(I-SMAC), 2017, pp. 887–890.

[44] N. Zidarič, K. Mandal, G. Gong, M. Aagaard, The Welch-Gong stream cipher -
evolutionary path, Cryptogr. Commun. (2023) 1–37, https://doi.org/10.1007/
s12095-023-00656-0.

[45] X.-j. Zhao, T. Wang, An improved differential fault attack on Camellia, IACR
Cryptol. ePrint Arch. 2009 (2009) 585.

[46] M.M. Kermani, R. Azarderakhsh, J. Xie, Error detection reliable architectures of
Camellia block cipher applicable to different variants of its substitution boxes, in:
2016 IEEE Asian Hardware-Oriented Security and Trust (AsianHOST), 2016,
pp. 1–6.

[47] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, et al.,
Midori: a block cipher for low energy, in: Advances in Cryptology–ASIACRYPT
2015: 21st International Conference on the Theory and Application of Cryptology
and Information Security, Auckland, New Zealand, November 29–December 3,
2015, Proceedings, Part II 21, 2015, pp. 411–436.

[48] X. Dong, Y. Shen, Cryptanalysis of reduced-round midori64 block cipher, Cryptol.
ePrint Arch. (2016).

[49] J. Smith, A. Johnson, Block cipher QARMA with error detection mechanisms, in:
Proceedings of the IEEE International Conference on Cryptography, London, UK,
2023, pp. 29–30.

[50] Zulkifli Yusof, Zuwairie Ibrahim, Ismail Ibrahim, K.Z.M. Azmi, Nor Aziz, Abdul
Aziz, Nor Hidayati, Mohd. Mohamad, Distance evaluated simulated kalman filter
for combinatorial optimization problems, ARPN J. Eng. Appl. Sci. 11 (2016)
4911–4916.

[51] S.A. Rahmad, Z. Ibrahim, Z.Md Yusof, Simulated Kalman filter with modified
measurement, substitution mutation and hamming distance calculation for solving
traveling salesman problem, in: Enabling Industry 4.0 through Advances in
Mechatronics, Singapore, 2022, pp. 309–320.

Associate Professor Ir Dr Nurul Hazlina Noordin holds a
Doctor of Philosophy (Ph.D.) in Electrical and Electronics En-
gineering from the University of Edinburgh, as evidenced by
her academic profile. Currently, she is affiliated with Universiti
Malaysia Pahang (UMP) Al-Sultan Abdullah, where she serves
as an Associate Professor in the Faculty of Electrical and Elec-
tronics Engineering Technology. Throughout her career, Nurul
Hazlina Noordin has made substantial contributions to her
field, including expertise in Antenna Design, FPGA Imple-
mentation and Design, Adaptive Arrays, Beamforming Algo-
rithms, and Engineering Education. Her work, under UMP
STEM Lab, has received recognition and citations, reflecting
the significance of her contributions to the academic commu-

nity. Moreover, her dedication extends to both research and education, exemplified by her
roles in academia and her commitment to nurturing future engineering professionals.

Phuah Soon Eu receives his B.Eng. in Electrical and Elec-
tronics Engineering from the Universti Malaysia Pahang Al-
Sultan Abdullah in 2021. He is currently a product engineer
at Intel (M) Sdn Bhd., Penang where he supported the high-
volume manufacturing of the 13th and 14th generation of
client CPUs. Phuah Soon Eu’s research interest includes
embedded system and electronic systems design. His work re-
flects a strong commitment to advancing the field of electrical
engineering and electronics, as well as contributing to the ever-
evolving landscape of technology. Phuah Soon Eu actively
engages in mentorship roles, particularly as a mentor for the
UMP STEM Lab outreach programs.

Associate Professor Dr Zuwairie Ibrahim received his B.Eng.
in electrical engineering and an M.Eng. degree in image pro-
cessing from Universiti Teknologi Malaysia, Johor, Malaysia,
in 2000 and 2003, respectively. In 2006, he received his Ph.D.
degree in DNA computing from Meiji University, Tokyo, Japan.
From 2002 to 2008, he was a lecturer at Universiti Teknologi
Malaysia, Johor, Malaysia. He was then promoted to senior
lecturer in 2008 and served Universiti Teknologi Malaysia until
2012. In 2012, he transferred to Universiti Malaysia Pahang,
Pahang, Malaysia, to work as an associate professor. He is one
of the inventors of the SKF algorithm and SAFIRO. His research
interests include the fundamentals and applications of
computational intelligence, specifically, particle swarm opti-

mization, ant colony optimization, gravitational search algorithm, and black hole
algorithms.

N.H. Noordin et al.

http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0027
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0027
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0027
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0027
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0028
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0028
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0029
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0029
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0029
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0030
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0030
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0030
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0031
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0031
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0032
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0032
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0032
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0033
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0033
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0033
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0033
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0034
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0034
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0034
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0034
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0035
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0035
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0036
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0036
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0036
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0037
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0037
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0037
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0038
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0038
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0038
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0039
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0039
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0039
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0040
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0040
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0040
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0041
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0041
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0041
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0042
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0042
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0042
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0043
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0043
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0043
https://doi.org/10.1007/s12095-023-00656-0
https://doi.org/10.1007/s12095-023-00656-0
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0045
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0045
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0046
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0046
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0046
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0046
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0047
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0047
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0047
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0047
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0047
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0048
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0048
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0049
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0049
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0049
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0050
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0050
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0050
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0050
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0051
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0051
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0051
http://refhub.elsevier.com/S2772-6711(23)00272-3/sbref0051

	FPGA Implementation of Metaheuristic Optimization Algorithm
	Introduction
	Literature review
	Novel optimization algorithms
	Single-agent finite impulse response optimizer
	Barnacles mating optimization
	Orca predation algorithm
	Simulated Kalman filter
	Particle swarm optimization
	Variants of particle swarm optimization
	Binary ant colony optimization
	Hybrid binary bat enhanced particle swarm optimization algorithm

	FPGA implementation optimization techniques
	Parallel implementation of particle swarm optimization
	Pipeline architecture of particle swarm optimization
	FPGA realization of particle swarm optimization algorithm using floating point arithmetic

	Security implications of FPGA implementation
	Security implications of FPGA implementation
	Vulnerabilities and threats in FPGA implementations
	FPGA-based cryptographic solutions
	The advent of post-quantum cryptography (PQC)
	Fault detection in lightweight ciphers
	Bridging FPGA implementations with PQC
	Lightweight cryptography (LWC) in FPGA implementations

	Post-quantum cryptography (PQC) and lightweight ciphers in resource-constrained environments
	Importance of lightweight ciphers in constrained environments
	FPGA-based systems with post-quantum cryptography (PQC) and lightweight ciphers

	Error detection and fault diagnosis mechanisms in lightweight ciphers
	Error detection in lightweight Welch-Gong (WG)-oriented streamcipher WAGE
	Error detection reliable architectures of Camellia block cipher
	Fault diagnosis of low-energy Midori cipher
	Block cipher QARMA with error detection mechanisms

	Hardware/software platform selection and security implications in FPGA implementation

	Methodology
	Simulated Kalman filter
	Discrete simulated Kalman filter adaptation
	Binary simulated Kalman filter behavioral modeling
	Behavioral modeling of modules
	Parallel-in-parallel-out configuration of modules
	Finite state machine controller

	Hardware components

	Results and discussion
	Chip utilization
	Processing speed
	Accuracy of result
	Comparison with previous works
	Binary SKF FPGA implementation speed improvements
	Project limitations
	Accuracy and precision
	Resource constraints
	Security considerations
	Scalability
	Potential implications and applications of the Binary SKF algorithm in real-world optimization problems
	Enhancing accuracy in Binary SKF implementation

	Conclusion
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

