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Abstract

The COVID-19 (SARS-CoV-2) vaccine has been extensively implemented through large-scale programs
in numerous countries as a preventive measure against the resurgence of COVID-19 cases. In line with
this vaccination effort, the Indonesian government has successfully inoculated over 74% of its population.
Nevertheless, a significant decline in the duration of vaccine-induced immunity has raised concerns regarding
the necessity of additional inoculations, such as booster shots. Prior to proceeding with further inoculation
measures, it is imperative for the government to assess the existing level of herd immunity, specifically
determining whether it has reached the desired threshold of 70%. To shed light on this matter, our objective
is to ascertain the herd immunity level following the initial and subsequent vaccination programs, while also
proposing an optimal timeframe for conducting additional inoculations. This study utilizes COVID-19 data
from Jakarta and employs the SEIRV model, which integrates time-dependent parameters and incorporates an
additional compartment to represent the vaccinated population. By formulating a dynamic generator based on
the cumulative cases function, we are able to comprehensively evaluate the analytical and numerical aspects of
all state dynamics. Simulation results reveal that the number of individuals protected by the vaccine increases
following the vaccination program; however, this number subsequently declines due to the waning effect of
the vaccine. Our estimates indicate that the vaccination program in Jakarta has achieved herd immunity levels
exceeding 70% from October 2021 to February 2022, thus underscoring the necessity of rolling out further
inoculations no later than February 2022.
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1. INTRODUCTION

The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2), responsible for the COVID-
19 disease, exhibits a highly contagious nature, leading to a substantial number of infections and fatalities
worldwide [1], [2]. In comparison to its predecessors, Middle East Respiratory Syndrome (MERS) and Severe
Acute Respiratory Syndrome (SARS), this virus demonstrates heightened infectivity, primarily through close
contact transmission [3]. Healthcare workers (HCWs) face a particularly high risk of contracting COVID-19
due to their close proximity to infected patients [4]. When an infected individual sneezes, coughs, talks,
breathes, or sings, the virus-laden liquid droplets expelled from their mouth or nose can easily disseminate
and infect vulnerable individuals [5].

The COVID-19 epidemic was initially identified in Wuhan, China, in December 2019, rapidly spreading
and evolving into a global pandemic that has impacted nations across the globe [6], [7]. In Indonesia, the
first case of COVID-19 was detected in early March 2020. Subsequently, the Alpha variant (B.1.1.7), initially
identified in England in September 2020, triggered the first wave of the COVID-19 epidemic in Indonesia
in April 2021. The presence of this variant was initially confirmed on various Indonesian islands, including
Sumatra, Java, Bali, and East Kalimantan. Following this, the Beta variant (B.1.351), first detected in South
Africa in May 2020, led to the second wave of the COVID-19 epidemic in Bali, Indonesia, also in April
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2021. In April 2021, the third wave commenced with the first confirmed case of the Delta variant (B.1.617.2)
originating from Kepulauan Riau and DKI Jakarta, subsequent to its identification in India in October 2020.
Lastly, the Omicron variant (B.1.1.529), first identified in South Africa in November 2021, sparked the fourth
wave of the COVID-19 epidemic in December 2021 [8], [9]. The initial detection of the Omicron variant
occurred at Wisma Atlet in Jakarta [22].

Prior to the advent of a COVID-19 vaccine, various preventive measures were implemented to curtail
the virus’s spread, encompassing physical distancing, mask-wearing, and frequent handwashing. Research
conducted by [27] has revealed that reducing transmission rates and expediting the identification of in-
fected individuals constitute superior strategies for suppressing the virus’s spread. Researchers are confined
to analyzing the rate of propagation and exploring potential factors that may exacerbate the number of
infections. Following the development of vaccines, studies have been conducted to examine their efficacy. The
introduction of vaccines is expected to effectively suppress the virus’s rapid transmission. Several researchers
have employed the SEIR model to assess the impact of vaccines on curtailing the virus’s dissemination.
In [29], the integration of quarantine and vaccination within the SEIR model demonstrates that augmenting
both quarantine and vaccination rates can significantly reduce disease transmission. Moreover, [28] indicates,
without relying on data, that epidemic eradication can only be achieved through a fixed period of immunity.
In the absence of vaccines for this pandemic, the model predicts a long-term affliction of a small percentage
of the population [30].

The substantial decline in vaccine-induced immunity has prompted considerations regarding the necessity
of additional vaccinations. Particularly in Indonesia, the emergence of the Delta and Omicron variants post-
vaccination has raised concerns regarding vaccine effectiveness and the risk of reinfection. It is imperative for
the government to assess the current state of herd immunity before proceeding with additional inoculations,
specifically determining whether the threshold of 70% herd immunity has been attained. To shed light
on this matter, the present study aims to: (1) develop a transmission model employing vaccinated data
as input, (2) ascertain the rate of immunity waning by analyzing vaccination progress, and (3) identify
the process (vaccination or recovery) contributing most significantly to achieving optimal immunity levels.
We have employed a modified SEIR (Susceptible-Exposed-Infectious-Recovered) model, incorporating a
distinct compartment to represent the vaccinated population, referred to as the SEIRV model. This analysis
encompasses time-varying parameters and employs cumulative case data to construct an analytical and
numerical depiction of the state dynamics.

2. DATASET

As of March 5th, 2021, Jakarta, the capital of Indonesia, has witnessed a total of 346,975 confirmed cases
of COVID-19. Among these cases, there are currently 7,173 active cases, while 334,100 individuals have
successfully recovered. Regrettably, the city has also reported 5,702 fatalities [11]. These numbers continue
to surge, underscoring the urgent need for widespread vaccination efforts to curtail the relentless increase in
active cases.

For our research, we utilized data obtained from the official Covid Data in Jakarta source. The data
covers the timeframe from March 5th, 2021, to April 2nd, 2022. It spans the period encompassing the initial
distribution of vaccines in Indonesia until the completion of our study. It is noteworthy that during this
period, the emergence of two new variants, namely Delta and Omicron, was detected. Our study delves into
the analysis of daily reported data, as depicted in Figures 1, 2, and 3. These figures unveil two significant
spikes in case numbers, one occurring in June 2021 and the other in January 2022. These sudden surges in
COVID-19 cases coincided with the identification of the Omicron and Delta variants. The aforementioned
surge gave rise to a notable escalation in both the number of fatalities and recoveries. This phenomenon is
rational, as it augments the probability of either succumbing to the illness or achieving a state of recuperation.

Following the detection of these variants, the highest number of daily positive cases was recorded. For the
Delta variant, the peak was reached on July 12, 2021, with a staggering 14,619 cases reported. As for the
Omicron variant, its highest daily case count of 15,825 occurred on February 6th, 2022. However, it should
be noted that not all of these cases can be definitively attributed to the Omicron variant.

The outcomes of the research unveil a notable disparity in antibody titers between severe breakthrough
infections and mild breakthrough infections. Specifically, the antibody titers induced by Delta breakthrough
infections were found to be 10.83 times higher than those of Omicron breakthrough infections. This suggests
that Delta infections elicit a significantly stronger immune response, thereby offering greater protection against

https://corona.jakarta.go.id/id
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reinfection or infection from future variants [10]. Nevertheless, in our study, we have focused on utilizing
the data without distinguishing individuals infected with either the Delta or Omicron variants.

Figure 1: Daily and cumulative data plot of infected cases.

Figure 2: Daily and cumulative data plot of recovery cases.

Figure 3: Daily and cumulative data plot representing the deceased individuals.
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Upon careful examination of the three aforementioned plots, one can discern that the cumulative data
graphs pertaining to active cases, recoveries, and deaths exhibit a seamless trajectory, characterized by a
gentle S-shaped curvature. This significant observation forms the foundation for the utilization of Richard’s
curve in the present study. Further elaboration on this matter will be expounded upon in the subsequent
section.

3. MATHEMATICAL MODEL

We commence with the SEIR transmission model of COVID-19, encompassing the susceptible compartment
denoted as S, the exposed compartment represented by E, wherein individuals undergo an incubation period,
the infected and infectious compartment denoted as I , the recovered compartment denoted as R, and an
additional compartment for individuals who have been vaccinated, denoted as V . The depiction of these
compartments in the SEIRV model can be observed in Figure 4. In order to construct this diagram, certain
assumptions are required, which shall be elucidated as follows.
Assumptions
One of the challenges encountered in constructing models lies in the task of translating real-world phenomena
into mathematical representations that can faithfully encapsulate their inherent complexity. Thus, in order
to render the model manageable and practicable, it often becomes imperative to introduce simplifying
assumptions. However, it is crucial that these assumptions do not compromise the integrity and pertinence
of the research. Within the scope of this study, we have taken into account the following assumptions:

1) Vaccination is exclusively administered to individuals belonging to compartments S and E.
2) The recruitment rate remains constant.
3) Age is assumed to be uniformly distributed.
4) The human lifespan is considered to be 70 years.
5) Individuals who have recovered may only receive vaccination three months subsequent to their official

recovery declaration.
6) Only data officially recorded by the government is taken into consideration.
7) There are no occurrences of infection following the primary vaccine (first and second dose).
8) Every vaccine is assumed to provide equal efficacy.

Figure 4: Compartment diagram of SEIRV model.

The parameters β, γ, and µ represent constant values, while a(t), v(t), σ(t), η(t), and δ(t) denote time-
dependent parameters. A comprehensive explanation of these parameters can be found in Table 1. Each
arrow depicted in Figure 4 signifies the dynamic changes occurring over time between the compartments. It
should be noted that individuals previously in compartment R can regain susceptibility and become re-infected
by the virus due to the gradual waning of natural immunity following recovery.

In accordance with our assumptions, individuals eligible for vaccination originate from compartments S and
E, representing the uninfected population. Subsequently, those who receive the vaccine acquire temporary
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immunity against the virus. However, once this immunity diminishes, vaccinated individuals once again
become susceptible. The governing equations of SEIRV model can be formulated as follows.

dS

dt
= π + δ(t) + σ(t)− v(t)

(
S

S + E

)
−a(t)

I

N
S − µS, (1)

dE

dt
= a(t)

I

N
S − v(t)

(
E

S + E

)
−βE − µE, (2)

dI

dt
= βE − γI − η(t)− µI, (3)

dR

dt
= γI − δ(t)− µR, (4)

dV

dt
= v(t)− σ(t)− µV. (5)

Table 1: Description of SEIRV Model Parameters.

Parameter Description Value Reference
β Incubation Period 1

6 [15]
γ Infection Period 1

14 [21]
µ Natural Death Rate 1

70×356 adjusted
v(t) Daily Number of Vaccinated People data [11]
η(t) Daily deceased individuals by infections data [11]
σ(t) Daily Vaccine-induced-immune-compromised individuals - estimated
δ(t) Daily Number of People Loosing their Natural Immunity - estimated
a(t) Infection Rate - estimated

The initial two parameters elucidate the incubation and infection periods of COVID-19, respectively, with
regard to the transmission of the disease. The incubation period signifies the span in which an afflicted
individual remains devoid of symptoms and non-transmissible until the commencement of disease manifesta-
tions, whereas the infection period indicates the timeframe during which an infectious person can transmit the
disease. As a general rule, the infection period tends to surpass the incubation period in duration. The natural
mortality rate parameter, conversely, quantifies the anticipated number of fatalities arising from inherent
causes during the COVID-19 epidemic. This parameter is denoted as ”adjusted,” as it will be tailored to the
specific research location. Its significance lies in the evaluation of the overall impact of the pandemic on the
population and healthcare system.

Moreover, v(t) captures the daily count of individuals vaccinated within the population. The eligible
individuals for vaccination are those who are not currently infectious. However, in reality, this group may
consist of individuals from the susceptible population or those who have been exposed to the virus but have
not yet developed symptoms. Differentiating these two populations from infected individuals is challenging
and unpredictable, as infected individuals may exhibit immediate symptoms. Therefore, we employ a ratio
of the vaccination parameters, whereby a proportion of vaccinated individuals originates from the susceptible
population, while the remainder comes from the exposed population.

The values of v(t) and η(t) can be readily derived from the data, particularly from the cumulative
data. However, for δ(t) and σ(t), a specific transformation is employed, which will be elucidated in the
subsequent section. It should be noted that the unobservable parameter a(t) remains unknown. This parameter
is designated as a time-dependent entity to accommodate the intervention procedure and will be evaluated
using the generating operator.
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4. ESTIMATING PARAMETERS

In Section 3, we have expounded upon the model and elucidated the parameters that have been duly
considered for the purposes of this study. Within this section, we shall now endeavor to ascertain the numerical
values of said parameters. To get the value of each parameter, we fit the cumulative each case data by using
the Generalized Linear Growth Model (GLGM):

f(t; θ1, θ2, θ3, ξ) =
θ1

(1 + ξe−θ2(t−θ3))
1
ξ

,

which is widely known as Richard’s Curve [15], [24]. In this study, we use empirical fitting 3-layer generalized
Richards Curve to estimate the data.
• Daily Number of Fully-Vaccinated Individuals (v(t))

The figure on the left-hand side of Figure 5 depicts the cumulative data, which has been skillfully
fitted using the 3-layer generalized Richard curve. Additionally, we have thoughtfully provided a 90%
confidence interval to further enhance the reliability of the representation. On the right-hand side, we
present the daily vaccinated data, denoted as v(t), obtained through differentiation of the cumulative
function with respect to time. The corresponding figure on the right also includes a 90% confidence
interval, lending additional credibility to the results. Furthermore, the meticulous calculations yield a
noteworthy Sum of Squared Error (SEE) value of 3.0928. From Figure 5, we observe that the number
of fully vaccinated individuals has experienced two spikes. The Indonesian government promotes the
importance of vaccination from May 2021 until August 2021, and increased public awareness about
the severity of COVID-19 disease to reduce positive cases.

Figure 5: Daily number of fully vaccinated individuals.

• Daily Number of Deceased (η(t))
In a similar fashion to the approach used for determining v(t), we employ differentiation with respect
to time to derive the daily number of deceased, denoted as η(t), as illustrated in Figure 6. Upon
performing the SSE calculation, a value of SEE 1.1497 is obtained. The figure unmistakably reveals
the presence of two prominent peaks. The first peak is observed in August 2021, coinciding with
the commencement of the spread of the Delta variant. The second peak emerges in February 2022,
corresponding to the transmission of the Omicron variant within Indonesia.
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Figure 6: Daily number of deceased.

• Daily Number of People Loosing their Natural Immunity (δ(t, Tn))
Since the value of the δ(t), parameter is time-dependent, we cannot independently state that this value
will change at every time t. To obtain the value of δ(t), we perform the following steps:

1. Consider the simulation for T days starting at day t = 0. We derive the formula that estimates
δ(t).

2. Consider the increment of Total Recovery (RC) from day t = 0 to t = 1.
3. Let ∆R0 represent the number of people that occupies the natural immunity from t = 0 to t = 1.
4. Assume that the natural immunity loses (on average) for only Tn days, meaning that ∆R0

individuals that are recovered at t = 0 will become re-vulnerable after Tn days.
5. Hence, δ(t = Tn) = ∆RC0

6. Taking it continuously, we have

δ(t+ Tn) = RC
′(t),

or

δ(t) = RC
′(t− Tn).

Eventually, we can get the estimated δ(t) as in Figure 7 by getting the formula of RC fitting the data
to Richard’s Curve, with SSE is 2.7189. In more refined language, we can determine the function δ(t)
by initially performing a differentiation of the cumulative data function, denoted as RC , with respect
to time. Subsequently, this differentiated function is right-shifted to the extent of Tn, where the value
of Tn utilized is precisely 90 days [13]. This implies that the protective effects of natural immunity
fade away within a span of 90 days subsequent to recuperation from the infection. From the right side
of Figure 7, it can be seen that there are two spikes. The highest spike occurs around August 2021
when the Delta variant begins to spread, while in February 2022, the Omicron variant begins to spread,
leading to another spike.
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Figure 7: Daily number of people loosing their natural immunity (δ(t, Tn))
with Tn = 90 days [13].

• Daily Number of People Loosing their Vaccine-Induced Immunity (σ(t, Tv))
Similar to finding the δ(t) value, the σ(t) value is determined by shifting the vaccinated data by Tv . This
is because over time Tv , people who are vaccinated will start to lose their immunity due to the waning
of the vaccine as illustrated in Figure 8, with the SEE is 3.0928. In this context, Tv is predetermined
as 180 days according to Feikin [12]. Consequently, the efficacy of the vaccine-induced immunity
diminishes after the expiration of 180 days post-vaccination. Nevertheless, it is noteworthy that our
findings do not exhibit dual peaks akin to those observed in δ(t), owing to the inherent constraints
imposed by the data available for this study.

Figure 8: Daily number of people losing their vaccine-induced immunity (simulation)
with Tv = 180 days [12].

5. NUMERICAL RESULT

Given the availability of daily data on vaccinated individuals from March 2021 onwards, and considering our
previous discussion where we adjusted the data temporally to obtain certain parameter values, we commenced
conducting simulations spanning from October 2021 to April 2022. Before conducting the simulation, we
will first describe each compartment and the formulation used.
• Cumulative Case (K)

The prevalent global challenge lies in the accurate recording and timely reporting of daily COVID-
19 cases, leading to a dearth of dependable data. The complexity of predicting the virus’s spread
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is compounded by the fluctuation in daily cases, as erroneous data fitting can distort the outcomes.
To tackle this issue, numerous countries are relying on cumulative data to derive strategic indicators,
leveraging its smooth profile for more precise fitting. Although the detailed transmission patterns are
obscured in cumulative data, they can be retrieved by identifying the appropriate generating operator.
Among the most effective methods for fitting the S-curve shape of cumulative data is Richard’s curve,
which furnishes a valuable tool for predicting the propagation of COVID-19 and guiding public
health policies. The construction of the generating operator commences with the definition of the
supplementary compartment K(t), representing the cumulative cases at time t. Cumulative cases are
defined as the total count of individuals who have contracted the infection up to a given time point,
denoted as time t. This count is derived by aggregating the daily figures of new infections (IC), deaths
(DC), and recoveries (RC). It is worth noting that these figures are extracted from the authentic data
sources referenced in section 2. Mathematically, this can be expressed as:

K = DC +RC + IC , (6)

where
DC : Total daily deceased individuals due to COVID-19 (based on data)
RC : Total daily recovery (based on data)
IC : Total active cases (based on data)

To obtain daily data, we will compute the cumulative case differentiation with respect to time. Since
we are utilizing actual cumulative data, the retrieval of daily figures can be described as follows: firstly,
it is evident that the daily number of deaths can be directly obtained by calculating the derivative of
the cumulative death data, denoted as DC , and by assuming µI as the semblance of DC . Secondly, the
daily number of recoveries depends on the rate of the infected population (as recovery is declared after
becoming free from infection). Lastly, the daily number of active cases is obtained from the exposed
population (as infection follows exposure to the virus) and then subtracted from the daily numbers of
recoveries and deaths. Mathematically, this can be represented as follows:

dDC

dt
= η(t),

dRC

dt
= γI,

dIC
dt

= βE − γI − η(t).

Hence,
dK

dt
=

dDC

dt
+

dRC

dt
+

dIC
dt

= βE. (7)

Building upon this equation, it can be inferred that the quantity of daily cases is contingent upon the
extent of virus exposure. This rationale holds true as infected and deceased individuals are invariably
preceded by exposure to the virus.

• Exposed (E)
From Equation (7) we can straightforward get the explicit formula for E as follows:

E(K) =
1

β

dK

dt
. (8)

• Vaccinated (V)
Recall the equations of the system. Last equation gives us:

dV

dt
= v(t)− σ(t)− µV, (9)

which can be solved independently by knowing the values of v(t), σ(t) and µV .
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• Infected (I) and Recovery (R)
After obtaining the dynamic of E, we consider equations (3) and (4) in the system:

dI

dt
= βE − γI − η(t)− µI,

dR

dt
= γI − δ(t)− µR.

Since we have the values of these constants and the heterogeneous term, then I and R can be evaluated
simultaneously.

• Susceptible (S)
The susceptible individuals over time can be calculated by using the following equation:

N = S + E + I +R+ V.

We then evaluate N by considering the following equation:

dN

dt
= π − µN.

It can be seen that the population is not constant because it is affected by the natural death rate and
recruitment rate.

5.1. Cumulative Case Fitting
We employ the three-layer generalized Richards curve to effectively model the data. The disparities between

the fitted curve and the empirical observations are negligible, thereby affirming a commendable fit. In this
regard, equation (6) is specifically utilized in the cumulative case fitting process, yielding outcomes visually
depicted in Figure 9, where the SSE value is 2.2838.

5.2. Daily Cases Fitting
Let K(ti) be denoted by Ki. We estimate the daily cases with the forward-time scheme:

dKi

dt
=

Ki+1 −Ki

∆t
.

The curve fitting results in Figure 9 show that the curve is well-fitted to the data.

Figure 9: Cumulative and daily cases curve fitting.
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5.3. E, I, R, and V Simulation
Based on the simulation results depicted in Figure 10, notable trends can be observed regarding the

compartments E, I , R, and V . It is evident that the exposed compartment, E, experienced a surge in
February 2022, followed by a subsequent increase in the number of infected individuals, I . In parallel, the
count of individuals who has recovered, represented by the compartment R, exhibited a rise towards the end
of January, with expectations of a decline within the next 90 days, approximately by May 2022.

As evidenced by Figure 10, the number of fully vaccinated individuals displayed a progressive growth
from October 2021 to January 2022. The immunity conferred by the vaccine offers protection for a period of
180 days, commencing from the day of initial vaccination. The Indonesian government stipulates that herd
immunity can be achieved if a minimum of 70% of the total population possesses immunity either from
infection or through vaccination. By combining the R and V compartments, it is evident that herd immunity
was attained during the period spanning October 2021 to January 2022. However, as depicted in Figure
10, the immunity level has started to decline since February 2022 due to the waning effect of the vaccine.
Consequently, it is advisable to initiate the administration of booster doses for the COVID-19 vaccine.

Figure 10: Simulation results for E, I, R, and V.

5.4. S and N Simulation

Figure 11: Simulation results for S and N.

Although Figure 11 displays a marginal significance, it reveals the dynamic nature of the N and S
compartments. As previously indicated, the N compartment experiences fluctuations due to recruitment rates
and natural deaths, while the S compartment represents a susceptible population susceptible to the virus.
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Notably, Figure 11 illustrates a substantial surge in the S compartment subsequent to February 2022. This
change aligns with the observed waning of immunity during the corresponding timeframe, as illustrated in
Figure 10. It is noteworthy to mention that this study does not account for a vaccine booster, consequently
resulting in a subsequent increase in the number of susceptible individuals once the vaccine’s efficacy wanes.
Consequently, these individuals become vulnerable to COVID-19 infection once again.

5.5. Infected Rate (a(t)) Simulation
Based on equation (2), we can obtain the following equation:

a(t) =

(
dE
dt + v(t)

(
E

S+E

)
+βE + µE

)
N

SI
.

Having acquired the values for all variables, we proceed to conduct a simulation of a(t) with the aim of
illustrating the infected rate, as depicted in Figure 12. The outcomes reveal a notable peak in transmission
rate transpiring during the months of January and February 2022. Interestingly, this aligns precisely with the
timeframe characterized by the waning of the vaccine (Figure 10). Subsequently, a decline in the transmission
rate becomes apparent, potentially attributable to the influence of the vaccine booster administered by the
government towards the conclusion of January 2022.

Figure 12: The trajectory of the infection rate, denoted as a(t).

5.6. Effect of a(t) on E and I

In this section, we illustrate the impact of the transmission rate a(t) on the compartments E and I . As
depicted in Figure 13, elevating the transmission rate results in a subsequent rise in the population of exposed
individuals, followed by an increase in the number of infected and infectious individuals. This phenomenon
is plausible since the transmission rate signifies the extent of virus transmission, implying that augmenting
the transmission rate would engender a surge in individuals being exposed (E), subsequently leading to a
rise in individuals contracting the infection (I).
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Figure 13: The influence of a(t) on E(t) and I(t).

6. EFFECTIVE REPRODUCTIVE RATIO

In the scenario of a constant infection rate, denoted as a(t) = α, the fundamental reproductive ratio,
commonly referred to as R0, encapsulates the average quantity of subsequent infections anticipated to arise
from a solitary infected individual at the onset of an epidemic [25]. The pre-vaccination value of R0 is
expressed as:

R0 =

√
αβ

(β + µ)(γ + µ)
.

This value assumes paramount significance as it serves to ascertain the trajectory of an outbreak, whether
it will escalate or subside with the passage of time. To elucidate, if the value of R0 exceeds 1, it signifies
that each infected individual is expected to transmit the disease to more than one person on average, thereby
indicating an ongoing expansion of the outbreak. Conversely, if R0 falls below 1, it implies that the disease
is likely to dwindle gradually, since each infected individual will, on average, transmit the disease to fewer
than one person.

Nonetheless, when we introduce a time-dependent transmission rate, as observed during the COVID-19
pandemic, relying solely on the basic reproduction ratio is no longer sufficient to accurately monitor the
progression of transmission. In order to address this challenge, we can employ the effective reproduction
ratio (Rt), which takes into consideration the time-varying transmission rate as well as the proportion of
susceptible individuals within the population. The formula for Rt encompasses the transmission rate at a
specific time t, denoted by a(t), in conjunction with other parameters such as the incubation period (β), the
infection period (γ), the natural death rate (µ), and the fraction of susceptible individuals in the population
at time t, denoted by S(t)/N(t). The corresponding effective reproduction ratio can be expressed as follows.

Rt =

√
a(t)β

(β + µ)(γ + µ)
× S(t)

N(t)
.

The determination of Rt is achievable through the utilization of the next-generation matrix technique,
thereby obviating the need for the presupposition of a disease-free populace [26]. This method proves to
be considerably more precise when it comes to monitoring the evolution of transmission during an ongoing
epidemic. Depicted in Figure (14) is the temporal representation of the effective reproduction ratio. As the
count of susceptible individuals within the population diminishes, the value of Rt likewise declines, signifying
a deceleration in the transmission rate. Conversely, an escalation in the magnitude of Rt would suggest a
resurgence of the epidemic.
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Figure 14: Effective reproductive ratio, denoted as Rt.

7. DISCUSSIONS AND CONCLUSIONS

In this study, we have undertaken an analysis of the impact of primary vaccines on the dynamics of active
COVID-19 cases. Additionally, we have compared the strength of immunity derived from vaccines to natural
immunity, and have made predictions regarding the optimal timing for administering additional vaccines.
The simulation was conducted using data from October 2021 to April 2022, as we aimed to encompass the
effective period of the vaccine, starting from the first day of distribution, in order to obtain the necessary
parameters. It is important to note, however, that our model does not differentiate the data based on the
specific type of vaccine used. In reality, different vaccines may possess varying characteristics and levels of
effectiveness. Therefore, by not segregating the data according to vaccine type, our study may not provide a
comprehensive understanding of the individual contributions of each vaccine to herd immunity.

To address these considerations, we propose an innovative enhancement to the SEIR model, introducing
a new compartment called the vaccine compartment (V ). This novel model incorporates three fundamental
elements: cumulative data, the Richard curve, and the proposed compartmental model. The primary objective
of the dynamics generator is to fit the empirical cumulative data to the Richard Curve (K), subsequently
establishing the relationship between K and the other state dynamics within the SEIRV model. However,
it is worth noting that our model assumes that individuals do not contract COVID-19 after receiving the
primary vaccine. In reality, however, there exists a possibility, albeit low, of individuals being infected even
after vaccination.

In order to generate all the state dynamics, we consider the empirical data of cumulative cases. This
choice is motivated by the consistently increasing nature of this data, which facilitates the selection of an
appropriate cumulative function. Our implementation employs a three-layer Richard Curve, as the cumulative
curve exhibits a three-layer S-curve pattern. By integrating this dynamics generator into the updated SEIRV
model, we are able to generate all state dynamics and estimate the effects of primary vaccines on the dynamics
of active COVID-19 cases. A significant advantage of adopting the dynamics generator approach is that it
allows for the evaluation of time-dependent transmission rates. As evident from our simulation results, the
transmission rate significantly influences the number of cases. An increase in the transmission rate leads to
a corresponding rise in the exposed and infected population. Conversely, a decrease in the transmission rate
is followed by a reduction in the number of exposed and infected individuals, indicating a mitigation of
COVID-19 spread. These findings are consistent with the conclusions reached by Ndii et al. [27].

The simulation results obtained from the SEIRV model reveal that natural immunity plays a more dominant
role compared to vaccine-induced immunity. Despite the implementation of a vaccination program, achieving
the target of herd immunity (70%) takes place between October 2021 and February 2022. However, it is
important to note that vaccine effectiveness wanes in February 2022, necessitating the administration of a
booster dose.

This innovative compartmental model offers a more comprehensive comprehension of the transmission
dynamics of COVID-19, thus aiding in the formulation of appropriate policies and strategies to control and
prevent the virus’s spread. By considering the influence of primary vaccination on the epidemic’s dynamics,
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the dynamics generator approach provides valuable insights into the potential effects of vaccination programs
in curbing the transmission of COVID-19. Consequently, this discovery suggests that future research and
public health policies should prioritize the investigation and implementation of booster vaccine strategies to
enhance and sustain the effectiveness of COVID-19 vaccination programs.
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