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ABSTRACT Medium voltage (MV) switchgear is a vital part of modern power systems, responsible for
regulating the flow of electrical power and ensuring the safety of equipment and personnel. However,
switchgear can experience various types of faults that can compromise its reliability and safety. Common
faults in switchgear include arcing, tracking, corona, normal cases, andmechanical faults. Accurate detection
of these faults is essential for maintaining the safety of MV switchgear. In this paper, we propose a novel
approach for fault detection using a hybrid model (1D-CNN-LSTM) in both the time domain (TD) and
frequency domain (FD). The proposed approach involves gathering a dataset of switchgear operation data
and pre-processing it to prepare it for training. The hybrid model is then trained on this dataset, and its
performance is evaluated in the testing phase. The results of the testing phase demonstrate the effectiveness
of the hybrid model in detecting faults. The model achieved 100% accuracy in both the time and frequency
domains for classifying faults in Switchgear, including arcing, tracking, and mechanical faults. Additionally,
the model achieved 98.4% accuracy in detecting corona faults in the TD. The hybrid model proposed in this
study provides an effective and efficient approach for fault detection in MV switchgear. By learning spatial
and temporal features simultaneously, this model can accurately classify faults in both the TD and FD.
This approach has significant potential to improve the safety of MV switchgear as well as other industrial
applications.

INDEX TERMS Energy, fault detection, arcing fault, hybrid model, medium voltage switchgear, power
system safety, deep learning.
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I. INTRODUCTION
In order to ensure the safe and reliable distribution of
electricity, medium voltage (MV) switchgear is utilized.
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However, problems with switchgear can lead to costly down-
time and potential dangers. Early fault detection is crucial
to avoid these issues [1]. Failures in switchgear can be
categorized into mechanical faults and electrical faults [2].
Mechanical faults include wear and tear, corrosion, mis-
alignment, and component failure [3]. These faults can
result in contact erosion, overheating, and tripped circuit
breakers [4], [5], [6], [7].

Electrical faults, on the other hand, encompass insulation
failure, short circuits, and overloads [8], [9], [10]. These
failures can lead to arcing [11], [12], [13], corona [14], [15],
and Tracking [16], [17]. MV switchgear failures can progress
from initial stages of deterioration to more complex stages
involving arcing, corona, and tracking. Arcing occurs when
an electrical current jumps across a gap between two con-
ductors due to problems like contamination, wear, or contact
erosion. It can result in elevated temperatures, pressure, and
potential catastrophic failure [18].
Corona, another type of electrical discharge, happens when

two conductors with a significant electrical potential differ-
ence ionize the surrounding air, causing visible discharge.
Corona can produce hazardous ozone and damage insula-
tion [15]. Tracking, the deterioration of insulation surfaces,
occurs when moisture or contaminants are present, creating
a conductive path for electrical current to flow across the
surface.

To address these issues, it is essential to detect and resolve
switchgear problems as early as possible through mainte-
nance and testing programs [19]. Various methods and tools
such as visual inspection, electrical testing, partial discharge
monitoring, condition monitoring, and remote monitoring
have been implemented to effectively recognize and mon-
itor faults in switchgear [20], [21], [22], [23], [24]. While
mechanical and electrical faults are the most common types,
other factors like environmental conditions and human error
can also cause failures [25], [26].
In addition, there are studies that provide valuable insights

into fault diagnosis methodologies and their application in
various domains. These studies encompass different methods,
such as Digital twin-driven fault diagnosis, optimal sen-
sor placement, and diagnosing faults in closed-loop control
systems [27], [28], [29].

For instance, Yang et al. in this study [27] proposes a
fault diagnosis method that combines virtual and real data
through digital twins. By utilizing virtual models to simulate
physical systems and comparing them with real-time data,
this approach enhances the accuracy and effectiveness of fault
diagnosis. Furthermore, another study by Kong et al. [28]
focuses on optimal sensor placement methodology for fault
diagnosis in hydraulic control systems. Its objective is to
determine the best sensor locations that facilitate effective
fault detection and diagnosis. Additionally, Kong et al. in [29]
introduces a fault diagnosis methodology for redundant
closed-loop feedback control systems, employing a subsea
blowout preventer system as a case study. This methodology
combines analytical redundancy, model-based diagnosis, and

data-driven techniques to detect and diagnose faults in the
control system. The effectiveness of this approach is demon-
strated through the case study. These studies significantly
contribute to enhancing our understanding of fault detection
and diagnosis in the field.

Deep learning techniques, specifically deep learning (DL)
and convolutional neural networks (CNNs), have shown
promising results in fault detection in various domains,
including power systems [30]. DL techniques can accurately
classify faults by automatically learning features from data,
making them useful for fault diagnosis in switchgear sys-
tems [31], [32]. Traditional fault diagnosis methods relying
on expert knowledge can be time-consuming and prone to
errors [33].
On the other hand DL approaches automate the diagnosis

process by learning from large datasets of sensor measure-
ments and maintenance records, leading to more precise and
timely fault detection [34], [35]. CNNs have beenwidely used
in switchgear fault diagnosis, as they can analyze both time-
series data, such as sensor measurements, and perform image
recognition tasks [36], [37]. Additionally, long short-term
memory (LSTM) networks excel at identifying long-term
dependencies in time-series data, making them particularly
suitable for analyzing switchgear measurements [38].

The hybrid 1D-CNN-LSTMmodel combines the strengths
of both CNNs and LSTMs, where the 1D CNN extracts
relevant spatial features from the input data, and the
LSTM layer captures temporal dependencies [39], [40], [41].
The hybrid 1D-CNN-LSTM model has been successfully
applied in various domains, including speech recogni-
tion, image and video analysis, power grids, and wind
turbines [42], [43], [44], [45]. Its capacity to simultaneously
learn spatial and temporal features enhances fault detection
accuracy. The LSTM layer identifies temporal dependencies,
while the CNN layer extracts relevant spatial features. The
objective of this study is to detect faults in medium volt-
age switchgear quickly using soft computing and ultrasonic
inspection systems. The aim is to provide governments and
relevant businesses with the necessary tools to act preemp-
tively and reduce the likelihood of incidents and potential
losses. The objectives and contributions of the research are
summarized in the following points:

i. Ensuring a stable power supply, and traditional fault
detection methods can be time-consuming and inac-
curate. So, this study presented a hybrid model
(1D-CNN-LSTM) that uses DL techniques to effi-
ciently and accurately detect faults in MV switchgear.
whereas the effectiveness of the hybrid model has been
demonstrated in quickly detecting arcing faults and
distinguishing them from other types of defects. In gen-
eral, the hybrid model is considered the best model
for detecting arcing and other faults in both the time
and frequency domains. Based on the results that were
obtained and compared with other studies.

ii. The hybrid model incorporates the strengths of both
the 1D-CNN and LSTM models, making it possible to
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identify faults in a manner that is both more accurate
and more productive.

iii. This work stands out since it is the first of its kind
to examine the detection of faults in both the time
and frequency domains in switchgear. This is a novel
approach that has not been explored in previous studies
that used similar DL techniques. The proposed model’s
effectiveness in detecting switchgear faults can help
prevent equipment damage, power outages, and poten-
tial safety hazards.

iv. The use of DL techniques in fault detection has
shown promise in various applications, and this study
aims to extend its effectiveness to the context of MV
switchgear.

II. PROPOSED METHODOLOGY
The purpose of this research is to use DL methods for
fault and defect detection in switchgear in the TD and
FD. The particular sorts of electrical and mechanical prob-
lems were accurately determined by analyzing ultrasonic
data recorded during the faults in an audio format. The
fault classification system’s digital signal processing (DSP)
and hybrid model flowchart is shown in Figure 1. The
power utility company (PUC) in Peninsular Malaysia gath-
ered raw distribution data from seven states: Kedah, Kuala
Lumpur, Melaka, Selangor, Perak, Negeri Sembilan, and
Johor. MATLAB was used to read all of the data. For the
DL model, the hybrid model was chosen as the most suit-
able technique. The MATLAB program was used for data
collection and pre-processing, whereas the Google Collab
environment was used for model programming. The raw
data collected from AUT equipment was recorded in audio
formats such as mp3, MPEG, or wav. To prepare the data
for the DL algorithm, data transformation, a pre-processing
technique, was utilized to consolidate the data into a format
suitable for theMATLAB software to work with, i.e., a matrix
format. The pre-processing steps for the dataset and the
method used are explained in the following sections, as shown
in Figure 1.

A. DATA COLLECTION
The samples underwent an analysis of sound waves in the
switchgear to develop a multidimensional categorization of
faults in both the TD and FD. The classification process
involved differentiating between mechanical and electrical
faults and further analysing the pattern of electrical faults
to identify specific types such as corona, arcing, or track-
ing. To minimize errors in decision-making, an intelligent
solution was developed to emulate expert analysis given
the possibility of varying interpretations of the data by dif-
ferent engineers. To enable MATLAB R2017a to analyze
the ultrasound data, the raw data had to be retrieved using
the ‘‘audioread’’ and ‘‘audioinfo’’ functions, which respec-
tively analyze the WAVE file and obtain information about
the audio file. Table 1 presents the extracted sample audio
information.

TABLE 1. Fundamental details regarding the sample sound.

It can be observed from Table 1 that the files in the dataset
contain various sampling rates, which include:

i. 44,100 bits per second.
ii. 22,050 bits per second.
iii. 16,000 bits per second.
iv. 11,025 bits per second (Selected as base frequency)

So that the ultrasound sample could be analysed and put into
groups in a consistent way, the time-domain ultrasound data
were changed to a sampling rate of 11,025 bps. This was
a step that had to be done before the analysis could begin,
because data with a higher sampling rate would need smaller
sample sizes for the data timeline to be in sync. In this case,
a multiplier of four was needed to get data with a sampling
rate of 44,100 bps. Once the data sampling was complete, the
entire time domain data was collected, and the first part of the
data was trimmed based on the highlighted area in Figure 2.
This was necessary because the initial audio information was
deemed useless as it only captured the ultrasound equipment
being turned onwithout being properly positioned.Moreover,
the ultrasound pattern repeated itself within the allocated
time frame. Therefore, the extracted data started at the num-
ber 1000 and had a temporal frame of 10 Kbits, as shown
in Figure 3.
All five sets of data, all of which were in the TD, were

processed using the same steps:
i. Arching – 54 Sets.
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FIGURE 1. Flow-chart of research methodology.

FIGURE 2. Data extracted of time domain.

ii. Corona – 41 Sets.
iii. Mechanical – 17 Sets.
iv. Tracking – 39 Sets (available 314 data sets for single

channel wave file).

v. Normal – 13 Sets.
The time-domain data sets were employed to train
time-domain models through DL methods. Subsequently,
a one-dimensional Fast Fourier Transform (FFT) in
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FIGURE 3. Final data extracted of time domain.

MATLAB was applied to transform TD functions into
FD representations. The transformed data is illustrated
in Figure 4. In the frequency domain, the dataset for the faults
after the last process is:

i. Arching – 53 Sets.
ii. Corona – 39 Sets.
iii. Mechanical – 17 Sets.
iv. Tracking – 40 Sets.
v. Normal – 12 Sets.

B. DATA PRE-PROCESSING
This research involved the use of four different types of
equipment for diagnosing the health of switchgear using
ultrasound. The data collected from the various ultrasonic test
devices, including:

i. Ultra_TEV Plus.
ii. Ultra_TEV Plus2.
iii. Ultra_Probe 9,000.
iv. Ultra_Probe 10,000.

This equipment was utilized to diagnose the health of
switchgear using ultrasound. During the data collection pro-
cess, two common audio formats were used, which are
MPEG audio layer-3 (mp3) and waveform audio (wav).
The use of different audio formats is important because it
affects the quality and quantity of data obtained. The choice
of audio format depends on the specific equipment used,
and in this study, both mp3 and wav formats were used.

Table 2 provides a comprehensive list of the equipment used,
as well as the corresponding sampling rates for each format.
By utilizing different types of equipment and audio formats,
the study was able to gather a diverse set of data sam-
ples, which can improve the accuracy and reliability of the
analysis.

TABLE 2. Units for magnetic properties.
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FIGURE 4. Frequency domain data representation after transforms.

To address the importance of the ultrasonic sensors utilized
in our testing work, we will now provide a comprehensive
discussion on their key characteristics as shown in Table 3.
Understanding these characteristics is crucial for compre-
hending the effectiveness of the method in detecting faults
in medium voltage switchgear.

By providing detailed discussions on the characteristics of
these ultrasonic sensors, we aim to highlight their specific
functionalities and capabilities, whereas combination of high
sensitivity, wide frequency range, real-time data acquisition.

C. DATA TRANSFORMATION
The ultrasound data obtained in either the WAV or MP3 file
formats has to be converted into a matrix format in order
to be compatible with MATLAB programming and other
DL methods. The data was able to be transformed in a way
that made it suitable for additional analysis, including TD
and FD analyses of the data, which were made available
in the resulting. Mat file format. The TD data had a high
sampling rate of 17.5 megabytes, which meant that a large
amount of data was collected over a relatively short period
of time. In order to analyses this data, it was necessary to
convert it into the FD using a Fourier transform. By allowing
the data to be represented in terms of its frequency compo-
nents, this transformation made it simpler to spot patterns
and other features in the data. The FD data had a smaller size
of 11.3 megabytes after the Fourier transform was applied to
the TD data, which made it easier to handle for additional
analysis. In order to be compatible with DL algorithms, the
ultrasound data that was gathered in WAV or MP3 format
was converted into a matrix format. The data then had a high
sampling rate of 17.5 megabytes in the TD andwas accessible

in both the TD and FD. The data was transformed into the
FD using the Fourier transform, resulting in a smaller size
of 11.3 megabytes.

D. DATA ANALYSIS AND CORRELATION
Finding the best sampling rate for the data is crucial during
the data analysis process. In this study, the ideal sampling
rate was established after a thorough analysis of the data that
had been gathered. Following data analysis, it was determined
that the baseline sampling rate for the ultrasound sample data
should be 11,025 bits per second. To ensure that all data
sets are compatible with one another, a data normalization
procedure is necessary when the data come from different
sampling rates. This procedure involves modifying the data
to create a connection with other sets of data and to make it
possible to fairly compare various data sets. After collecting
the original data in its entirety, the next step was to filter
out any interference from the environment to obtain a clear
representation of the ultrasound sound that accurately reflects
the current situation. This was achieved by removing the ini-
tial sampling, which consisted of background noise and other
irrelevant sounds that were recorded before the ultrasound
equipment was properly positioned. The filtering process was
necessary to obtain accurate and reliable results from the
analysis.

E. DATA NORMALIZATION
Normalization is a method of data transformation that is
comparable to scaling, with the exception that it scales ‘‘indi-
vidual samples to the unit norm.’’ In this study, the input
data was normalized, which also resulted in the values being
scaled between 0 and 1. The main objective of the application
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TABLE 3. Detailed of characteristics for the ultrasonic sensors.

was to facilitate feature selection and extraction for identi-
fying waveforms based on the TD and frequency domain.
For reducing unnecessary noise caused by interference during
the setup of the test equipment, the system employed a noise
suppression technique by removing the first 1000 bits of data.
This initial part of the data is typically useless because it only
contains background noise generated when the equipment

is turned on and the technician has not positioned it in the
appropriate spot. By eliminating this noise, the accuracy of
the analysis is improved, and only the relevant data is used
for analysis.

F. DATA CLASSIFICATION
We will explain each step-in detail, as shown in Figure 1.

1) USE THE MEL SPECTROGRAM FOR FEATURE EXTRACTION
The Mel spectrogram is a popular feature extraction tech-
nique used in speech recognition and audio processing [46].
It is based on the Mel scale, which is a logarithmic scale that
is used to convert frequency into a perceptual scale that is
more in linewith human hearing. TheMel spectrogram shows
the power spectral density of the audio signal, but with the
frequency axis changed to the Mel scale. In this article on
fault detection for medium voltage switchgear, a Mel spec-
trogram has been used to extract features from the ultrasound
data. This can be done by converting the TD data into a
Mel spectrogram using a spectrogram function. The spectro-
gram function splits the audio signal into a number of brief,
overlapping frames, and then each frame receives a unique
window function. The short-time Fourier transform (STFT)
is then used to calculate the power spectral density of each
frame. A Mel spectrogram is created by turning each frame’s
power spectral density into one. Time is plotted on the x-axis
and frequency is plotted on the y-axis in the resulting Mel
spectrogram, which is a two-dimensional representation of
the audio signal. Each point in the Mel spectrogram corre-
sponds to a frequency band’s energy at a specific time. The
Mel spectrogram can be viewed as a picture of the audio
signal, with various features represented as patterns. These
features have been used as inputs to DLmodels, including the
hybrid 1D-CNN-LSTMmodel employed in this study. where
the presence or absence of switchgear faults can be used to
classify the spectrograms by the model. The model can be
trained to recognize patterns and features that are suggestive
of faults in the switchgear by exposing it to a large dataset
of labeled spectrograms. Using a window size of 25 ms and
a hop length of 10 ms, the Mel spectrogram was produced
from the pre-processed audio signals. As a result, the audio
signals were represented as time-frequency data that could
be used as input into the hybrid model. Convolutional and
recurrent operations are then used by the hybrid 1D-CNN-
LSTM model to extract and learn the pertinent features from
the audio signals using the Mel spectrogram as input.

2) SPLITTING DATASET TO: TRAINING, VALIDATION,
AND TESTING PHASES
During the testing phase, when predictions are made using
data that was not used for model training, the train-valid-
test split approach is frequently used to assess the perfor-
mance of a DL model. The dataset is divided into three
subsets, with 70% of the data designated for training,
15% for validation, and the remaining 15% for testing and
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performance evaluation. With the help of this technique, it is
possible to test the model’s generalization capabilities on
previously unreported data, which is essential for evaluating
the model’s predictive power. In order to get the best perfor-
mance on the test set, the model’s hyperparameters, like the
learning rate and batch size, are adjusted on the validation set.
This method offers a more accurate simulation of the model’s
performance on new data, making it possible to estimate the
model’s accuracy more precisely than when the entire dataset
is used for training.

3) HYBRID 1D-CNN-LSTM MODEL
The hybrid 1D-CNN-LSTM model is a DL approach that
combines both CNNs and LSTM Models for fault detection
in MV switchgear. The model takes as input the Mel spectro-
gram of the sound signal obtained from the switchgear, which
is a 2D array of intensities that represent the frequency con-
tent of the signal over time. TheMel spectrogram is computed
by applying a filterbank of Mel-scale triangular overlapping
windows to the signal. The model has two main components:
the 1D-CNN and the LSTM. The 1D-CNN is responsible for
extracting local features from the Mel spectrogram. It applies
a set of learnable filters to the Mel spectrogram to generate
a feature map that highlights certain frequency patterns. The
filters are learned through backpropagation during training.
The output of the 1D-CNN is a 3D tensor that represents the
learned local features of the spectrogram. The LSTM com-
ponent processes the sequence of local features extracted by
the 1D-CNN. It takes as input a sequence of feature maps and
uses a set of learnable gates to selectively remember or forget
certain features based on their importance to the task at hand.
The LSTM also has a hidden state that is updated at each time
step and serves as a memory of the past inputs. The output
of the LSTM is a vector that summarizes the sequence of
local features into a global feature representation. The output
of the LSTM is then fed into a fully connected layer that
maps the global feature representation to the output classes
(arcing or non-arcing and the same process for another faults
like corona and tracking). The model is trained using the
categorical cross-entropy loss function, which measures the
difference between the predicted and actual output classes,
and backpropagation is used to update the model parameters.
The equations for the 1D-CNN and LSTM components of the
model are as follows:

x lo,fl = f
(∑

im
x l−1
i ∗ k lio,fl + bl

)
(1)

x lo = f
[
max

(∑
im
x l−1
i

)
+ bl

]
(2)

x l0 = f (x l−1
i ∗ d lio + bl) (3)

The input to the model is a one-dimensional matrix repre-
sented by x, with n elements. An activation function, denoted
as f , is applied to the output of each layer of the model.
The kernel filter for each layer is denoted as k lio,fl and has
a dimension of k × 1. The model has l convolutional lay-
ers and F filters. The output of the lth convolutional layer

is represented as x lo,fl . The bias vectors for each layer are
denoted as b, and the learnable parameters are denoted as d .
These parameters are used in the computation of the output
of each layer of the model.

it = σ (Wixt + Uiht−1 + bi) (4)

where it is the input gate activation, σ is the sigmoid function,
Wi is the weight matrix for the input gate, ht−1 is the previous
hidden state, xt is the current input, and bi is the bias vector
for the input gate.

ft = σ
(
Wf xt + Uf ht−1 + bf

)
(5)

where ft is the forget gate activation, σ is the sigmoid func-
tion, Wf is the weight matrix for the forget gate, ht−1 is the
previous hidden state, xt is the current input, and bf is the bias
vector for the forget gate.

Ot = σ (Woxt + Uoht−1 + bo) (6)

where Ot is the output gate activation, σ is the sigmoid
function, Wo is the weight matrix for the output gate, ht−1
is the previous hidden state, xt is the current input, and bo is
the bias vector for the output gate.

Ct = σ
(
ft ⊙ Ct−1 + it ⊙ Č t

)
(7)

where Ct is the current cell state, ft is the forget gate acti-
vation, Ct−1 is the previous cell state, it is the input gate
activation, and ⊙ is the candidate cell state.

Č t = tanh (Wcxt + Ucht−1 + bc) (8)

where Č t is the candidate cell state, tanh is the hyperbolic
tangent function, Wc is the weight matrix for the candidate
cell state, ht−1 is the previous hidden state, xt is the current
input, and bc is the bias vector for the candidate cell state.

ht = tanh (Ct) ⊙ Ot (9)

where ht is the current hidden state,Ot is the output gate acti-
vation, Ct is the current cell state, and tanh is the hyperbolic
tangent function. In addition, Figure 5 shows the architecture
of a 1D-CNN model. The 1D-CNN model takes the input
signal and uses a set of convolutional filters to pull out
features.

These filters slide over the input signal, performing con-
volutional operations and producing a set of feature maps.
As for Figure 6, it shows the architecture of an LSTMmodel.
The LSTM model uses a set of gates to control the flow
of information through the network. The gates selectively
pass, or block information based on the current input and the
previous state of the network. Whereas Figure 7 shows the
architecture of the proposed hybrid 1D-CNN-LSTM model,
which combines the feature extraction capabilities of the
1D-CNN model with the sequential modeling capabilities of
the LSTM model. The input signal is first processed by the
1D-CNN model to extract a set of high-level features, which
are then passed to the LSTM model for sequential modeling.
The output of the LSTM model is then passed through a
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FIGURE 5. The architecture of a 1D-CNN model.

FIGURE 6. The architecture of a LSTM model.

fully connected layer for classification. By combining the
strengths of the 1D-CNN and LSTM models, the hybrid
1D-CNN-LSTM model is able to effectively model time
series data and extract meaningful features for classification
tasks. This model has been shown to achieve high levels of
accuracy in various applications, including fault detection in
medium voltage switchgear.

4) TRAINING AND VALIDATION DATASET
The training and validation phases are critical steps in
the development of a DL model, including the hybrid
1D-CNN-LSTMmodel for fault detection in medium voltage
switchgear. In the training phase, the model is fed a dataset
containing input features and corresponding output labels.
The model uses this data to learn the relationship between the
input features and output labels, adjusting its internal param-
eters through a process called backpropagation. The training
phase typically involves a large portion of the available data;
in this case, 70% of the dataset. Once the model has been
trained, it is important to evaluate its performance on new
data that it has not seen before. This is where the valida-
tion phase comes in. In this phase, a portion of the dataset,
typically 15% in this case, is held out of the training data
and used to assess the model’s performance. The validation
data is used to tune hyperparameters, such as learning rate,
number of layers, and activation functions, to improve the

model’s accuracy. During the validation phase, the model is
tested on the validation dataset, and metrics like accuracy
and loss are used to change the model’s hyperparameters.
This process is repeated until the models. performance on
the validation data is optimized. It is important to note that
the validation phase is not used to train. the model. Instead,
it is used to evaluate the model’s performance and improve its
hyperparameters. Once the model has been optimized using
the validation data, it can be tested on the remaining 15% of
the dataset to evaluate its generalization performance.

Finally, the decision-making stage, the result is assessed
against specific criteria to determine its acceptance. In order
to select the best-performing model, the validation data
is used to compare the performance of different models.
A model with an accuracy of above 90% is considered suc-
cessful in the training phase, enabling the program tomove on
to the testing and prediction steps. However, if the accuracy
is below the desired threshold, the entire process of splitting
the data, training the model, and evaluating performance is
repeated until the desired accuracy is achieved.

Testing plays a crucial role in evaluating the performance
of a trained model. In this phase, the model is applied to
unseen test data to determine its accuracy and ability to
generalize to new data. The predicted values are compared to
the actual values in the test data to evaluate the performance of
the model. The confusion matrix and classification report are
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FIGURE 7. The architecture of a hybrid 1D-CNN-LSTM model.

commonly used metrics to assess the model’s performance,
including accuracy, precision, recall, and F1 score. By iden-
tifying the strengths and weaknesses of the model, the testing
phase provides valuable insights into ways to further improve
its performance.

III. RESULTS AND DISCUSSION
The development of the hybrid 1D-CNN-LSTM model
involved configuring the number of features and output
types for specific faults, including corona, arcing, track-
ing, normal cases, and mechanical faults. In this section,
we will discuss the classification results of the hybrid model
for errors in both the time and frequency domains. It is
worth mentioning that the experiments were conducted on a
high-performance deep learning workstation equipped with
an Intel 12-core i7 GHz CPU, a powerful GTX1080TI GPU,
a spacious 320 GB SSD, and 16 GB of ample memory. These
exceptional specifications ensured efficient processing and
analysis of the data. It is important to note that the calculation
time of the algorithm in the time domain (TD) was approx-
imately 40 seconds, while in the frequency domain (FD) it
was around 29 seconds. This information emphasizes the
computational efficiency of the proposed algorithm and its
ability to handle large datasets within reasonable time frames.

A. ARCING FAULTS
To identify arcing faults, the hybrid 1D-CNN-LSTM model
underwent training and evaluation using two distinct types of
domains, namely TD analysis and FD analysis, in order to
perform fault classification.

1) TIME DOMAIN ANALYSIS
Simulations were conducted to analyze the TD for both arcing
and non-arcing faults using a dataset of 438 samples, of which
54 were arcing and the rest were non-arcing faults such as
corona, tracking, mechanical, and normal cases. The samples

were randomly divided into three sets, where 70% were used
for training, 15% for model validation, and 15% for model
testing. resulting in a total of 306 samples used for training.
The obtained results were evaluated using a confusionmatrix,
which demonstrates the accuracy percentage and error rate
for each phase. The testing and validation phases each con-
sisted of 66 samples. Table 4 shows the results of the TD
for 1D-CNN-LSTM classification outcomes for arcing faults.
The results are based on several trials, and the best outcomes
are presented in the form of a confusion matrix. The confu-
sion matrix indicates the percentage of accurate detection and
error rate for each phase. The testing and validation phases
both had 66 samples. The accuracy of the model was calcu-
lated by comparing the predicted values to the actual values in
the test data. The confusion matrix provides valuable insights
into the performance of the model and helps identify areas
where it needs improvement.

TABLE 4. The classification results of the 1D-CNN-LSTM model in the
time domain for arcing faults.

The arcing fault classification model in the TD was able
to achieve perfect accuracy of 100% and a 0% error rate,
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demonstrating the high effectiveness of the 1D-CNN-LSTM
model in detecting switchgear arcing faults, as evidenced by
the performance outcomes presented in Table 5. When the
arcing TD classifier was used to classify the test dataset,
all data occurrences were categorized as either positive or
negative, resulting in four classification outcomes: ‘‘true
positive,’’ ‘‘true negative,’’ ‘‘false positive,’’ and ‘‘false neg-
ative,’’ as illustrated in Tables 5. This indicates the ability of
the model to correctly identify true instances of arcing faults
whereas alsominimizing the occurrence of false positives and
negatives, which are crucial for effective fault detection in
practical applications.

TABLE 5. The output matrix for the training, validation, and testing
phases of the arcing fault classification in time domain analysis.

The results of a binary classifier during the training phase
are presented below:

True Positive (TP): 34 instances were correctly classified
as positive.

False Positive (FP): 0 instances were incorrectly classified
as positive.

True Negative (TN): 272 instances were correctly classi-
fied as negative.

False Negative (FN): 0 instances were incorrectly classi-
fied as negative.

The evaluation of the proposed model’s performance
involved the use of a confusion matrix, which represented
arcing and non-arcing scenarios as 0 and 1, respectively.
The matrix utilized indices provided in Equations (10)-(14)
to assess the model’s reliability, dependability, sensitivity,
categorization, and F1-measure. Precision was defined as
the percentage of identified samples that were relevant,
whereas recall measured the proportion of relevant sam-
ples correctly identified out of all relevant samples. Fur-
thermore, cross-entropy loss was used to evaluate how well

the model’s predictions matched the target data specified in
Equation (13). Minimizing the distance between the arcing
and non-arcing conditions of two probability distributions
was a crucial performance requirement, and binary classifi-
cation techniques were utilized to achieve this. The model’s
classification accuracy, or arcing fault detection accuracy,
was calculated by dividing the total number of correctly
classified instances (TP + TN) by the total number of points
in the dataset (P + N). This equation was used to evaluate the
accuracy of the model’s performance for Arcing.

Acc =
TP+ TN

TP+ TN + FN + FP
× 100%

=
TP+ TN
P+ N

× 100%

=
34 + 272
34 + 272

× 100% = 100% (10)

The error rate (ERR) is derived by dividing the total number
of false classifications by the total number of entire datasets
by using the equation as follows:

ERR =
FP+ FN

TP+ TN + FN + FP
× 100%

=
FP+ FN
P+ N

× 100%

=
0 + 0
0 + 0

× 100% = 0% (11)

Recall (Sensitivity) (%) =
TP

TP+ FN
× 100%

=
34

34 + 0
× 100% = 100%

(12)

Precision (Dependability) =
TP

TP+ FP
× 100

=
34

34 + 0
× 100 = 100% (13)

F1 measure
(
%

)
= 100 × 2

×
(Precision× Recall)
(Precision+ Recall)

= 100 × 2 ×
100 × 100
100 + 100

= 100% (14)

The confusion matrix was used in Table 5. to evaluate the
performance of the model in identifying arcing and non-
arcing scenarios. The recall and precision metrics were used
to measure the model’s ability to correctly identify relevant
samples and the percentage of identified samples that were
relevant, respectively.

2) FREQUENCY DOMAIN ANALYSIS
For creating the classification model for arcing faults in a
FD analysis, 160 data samples were utilized and divided
into three sets for training, validation, and testing, with the
training set comprising 70% and the validation and testing
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sets containing 15% each, as demonstrated in Table 6. The
accuracy and error rates of the classification model were
found to be 100% and 0%, respectively, indicating the high
effectiveness of the model. The performance of the model
was further evaluated using a confusion matrix, which was
constructed for the training, validation, and testing phases
and is presented in Table 7. The confusion matrix illustrated
the model’s ability to correctly classify the data into true
positives, true negatives, false positives, and false negatives
in each phase, thereby providing valuable insights into the
model’s overall performance.

TABLE 6. The classification results of the 1D-CNN-LSTM model in the
frequency domain for arcing faults.

TABLE 7. The output matrix for the training, validation, and testing
phases of the arcing fault classification in time domain analysis.

To thoroughly assess the reliability of our hybrid model,
we conducted a comprehensive analysis using various per-
formance measures, including accuracy, loss, sensitivity,
dependability, and F1-measure. The detailed results of this

evaluation can be found in Table 8, which provides valuable
insights into the model’s performance. By considering mul-
tiple performance metrics, we gain a holistic understanding
of the model’s ability to accurately detect and classify faults,
making it highly applicable in real-world scenarios.

Furthermore, in both the TD and FD, we utilized the Adam
optimizer for weight optimization during the training process.
The RELU activation function was employed to introduce
non-linearity, and a learning rate of 0.0001 was chosen to
control the optimization process. In addition, a SoftMax acti-
vation function was utilized for the final classification layer.
For both TD and FD, a batch size of 16 was used, and the
model was trained for a total of 60 epochs to ensure optimal
convergence and performance.

Overall, the combination of the Adam optimizer, RELU
activation function, SoftMax activation function, batch size
of 16, and 60 training epochs contributed to the success of
our hybrid model in achieving high accuracy and robust fault
detection performance in both TD and FD.

TABLE 8. The assessment of metrics and performance for outcomes of
the hybrid model during testing for the TD and FD in cases of arcing and
non-arcing.

The study focused on developing a classification model for
different switchgear faults, including corona, arcing, track-
ing, normal, and mechanical faults. Table 9 presents a mini-
mum accuracy of 98.4% and a maximum accuracy of 100%,
the results show a high level of accuracy in identifying and
categorizing different types of switchgear defects. Maximum
and minimum error rates were 0.7% and 0%, respectively.
The accuracy for corona fault classification in the TD was
marginally worse compared to arcing in the TD and other
faults in the FD, according to the output matrix for all
classification faults. Since it was impossible to confirm the
accuracy of all submitted datasets with their labels, this may
be attributable to the input data’s cleanliness. The study pro-
vides evidence of the potential of hybrid models in accurately
classifying different switchgear faults. The results suggest
that the model could be useful in real-world applications
to improve the reliability and efficiency of power systems
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by detecting and diagnosing faults in a timely and accurate
manner. However, further research is needed to address the
limitations of the current study, such as the quality of the input
data and the need for a larger dataset to test the generalizabil-
ity of the models.

TABLE 9. The accuracy and error rates for various types of switchgear
faults.

TABLE 10. Comparison of the proposed algorithm with other approaches
for diagnosing switchgear faults.

On the other hand, Table 10 shows how well and how
competitively the proposed algorithm works by comparing
it to other methods like Extreme Learning Machine (ELM),
Random Forest (RF), Decision Tree (DT), and Federated

Deep Learning (FDL). The table shows the accuracy of the
proposed algorithm along with other state-of-the-art meth-
ods. The results demonstrate that the proposed algorithm
outperformed the other approaches in terms of accuracy, indi-
cating its superior performance in detecting and classifying
switchgear faults. Moreover, it is important to note that the
proposed algorithm utilizes a 1D-CNN-LSTM architecture,
which allows it to effectively capture temporal and frequency
features of the signals, resulting in a more accurate classifi-
cation. The use of DL techniques, such as CNN and LSTM,
in fault detection and classification has been gaining popu-
larity in recent years due to their ability to handle complex
data and achieve high accuracy rates. Overall, the proposed
algorithm was able to find and classify different types of
switchgear faults with high accuracy and low error rates. This
makes it a promising method for use in the real world.

IV. CONCLUSION
In this study, we proposed a novel approach for fault detection
in medium voltage switchgear using a hybrid 1D-CNN-
LSTM model. Our model demonstrated high accuracy in
both TD and FD fault detection, outperforming traditional
machine learning methods and other deep learning models,
including Extreme Learning Machine, SVM, and Random
Forest. The hybrid model successfully classified various fault
types, including arcing, tracking, mechanical, and corona
faults, with accuracy rates of 100% in TD and FD for arcing
faults and other faults, and 98.4% accuracy in corona fault
detection in TD. The key advantage of our hybrid model
is its ability to simultaneously learn spatial and temporal
features, enabling accurate fault detection in both TD and FD.
By leveraging this capability, themodel can quickly and accu-
rately identify faults, reducing the likelihood of equipment
failure and downtime. The proposed method has potential
applications in various fields, such as wind turbines, power
grids, and manufacturing processes, where accurate fault
detection can enhance maintenance efficiency, equipment
reliability, and overall safety.

In conclusion, our study has demonstrated the effective-
ness and efficiency of the hybrid 1D-CNN-LSTM model for
fault detection in medium voltage switchgear. By combining
spatial and temporal feature learning, the model provides a
comprehensive understanding of switchgear operation and
contributes to the advancement of fault detection methods in
power systems.We anticipate that our findings will contribute
to the development of advanced fault detection techniques
and promote the safe and reliable operation of power systems.
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