
MALWARE DETECTION IN ANDROID USING

MACHINE LEARNING

MUHAMMAD HAZRIQ AKMAL BIN ZAIROL

BACHELOR'S OF COMPUTER SCIENCE

(COMPUTER SYSTEM & NETWORKING)

WITH HONOURS

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration

letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : MUHAMMAD HAZRIQ AKMAL BIN ZAIROL

Date of Birth :

Title : MALWARE DETECTION IN ANDROID USING

MACHINE LEARNING

Academic Session : SEMESTER 1 2022/2023

I declare that this thesis is classified as:

☐ CONFIDENTIAL (Contains confidential information under the Official Secret

Act 1997)*

☐ RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

☒ OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the

thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

(Student’s Signature)

_ New IC/Passport

Number Date: 7/11/2022

(Supervisor’s Signature)

Name of Supervisor

Date: 20/7/2023

13hazriqakmal@gmail.com
Typewritten text
DR MOHD FAIZAL BIN AB RAZAK

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Author’s Name

Thesis Title

Reasons (i)

(ii)

(iii)

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

20/7/2023

SUPERVISOR’S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our*

opinion, this thesis/project* is adequate in terms of scope and quality for the award of the

degree of *Doctor of Philosophy/ Master of Engineering/ Master of Science in

…………………………..

(Supervisor’s Signature)

Full Name : DR MOHD FAIZAL BIN AB RAZAK

Position : SENIOR LECTURER

Date :

(Co-supervisor’s Signature)

Full Name :

Position :

Date :

20/7/2023

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

(Student’s Signature)

Full Name : MUHAMMAD HAZRIQ AKMAL BIN ZAIROL

ID Number : CA20144

Date : 7/11/2022

MALWARE DETECTION IN ANDROID USING MACHINE LEARNING

MUHAMMAD HAZRIQ AKMAL BIN ZAIROL

Thesis submitted in fulfillment of the requirements

for the award of the degree of

BACHELOR'S OF COMPUTER SCIENCE (COMPUTER SYSTEM &

NETWORKING) WITH HONOURS

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JULY 2023

ii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to all those who have supported me

throughout my final year project.

First and foremost, I would like to thanks to Allah for making it possible for me

to finish this research without any problems. And I would like to thank my project

supervisor Ts. Dr. Mohd Faizal bin Ab Razak, for the guidance, support, and

encouragement throughout the project. His expertise and knowledge in the field of

malware detection have been invaluable, and I am grateful for the time his dedicated to

help me understand the technical aspects of the project.

I would also like to thank the rest Faculty of Computing members, for providing

me with the resources and support I needed to complete my project. I am also grateful to

my family, loved one, and friends for their unwavering support and encouragement

throughout the completion of my research. Their understanding and patience have been

a source of strength and motivation for me.

 Finally, I would like to acknowledge the contributions of the open-source

community, whose resources and tools have been essential in the development of this

research. Thank you all for your invaluable support and guidance throughout this

project.

iii

ABSTRAK

 Di era yang kian pesat dengan teknologi canggih, telefon pintar menjadi

keutamaan dan keperluan bagi semua orang. Gajet ini berkembang setiap hari kearah

yang lebih maju dan sesuai dengan cara penggunaannya. Namun, keselamatan menjadi

salah satu punca yang menjadi kerisauan ramai pengguna telefon pintar ini. Keselamatan

adalah aspek penting yang dipandang tinggi dan diambil berat oleh sesetengah pihak, dan

sekiranya isu keselamatan ini dipandang remeh dan tidak diambil peduli, ia akan

menyebabkan masalah kepada orang sekeliling. Sama seperti isu keselamatan pengguna

telefon pintar, yang kini semakin berleluasa dengan salah satu ancaman terbesar bagi

semua gajet, iaitu isu perisian perosak. Kajian telah menunjukkan bahawa terdapat

peningkatan dari tahun ke tahun mengenai perisian perosak yang lebih tertumpu kepada

menyerang dan merosakkan telefon pintar mangsa terutamanya kepada pengguna

Android. Ramai pengguna Android telah terjejas dengan masalah perisian perosak ini dan

juga pelbagai solusi sudah dijalankan. Kajian ini bertujuan untuk mengkaji cara dan

kaedah pengesanan perisian perosak yang telah menyerang system operasi Android, dan

mencadangkan pengesanan system pengesanan perisian perosak dengan menggunakan

teknik pembelajaran mesin. Keputusan menunjukkan bahawa pembelajaran mesin adalah

pendekatan yang lebih menjanjikan ketepatan 90% dalam eksperimen yang telah

dijalnkan bagi kaedah pembelajaran mesin untuk pengesanan perisian perosak yang lebih

tinggi dan membuktikan bahawa sistem pengesanan perisian perosak ini dapat mengesan

perisian perosak Android dengan lebih efisien.

iv

ABSTRACT

In an era that is increasingly fast with advanced technology, smartphones are a

priority and a necessity for everyone. These gadgets are developing every day towards

more advanced and appropriate ways of use. However, security is one of the causes of

concern for many smartphone users. Safety is an important aspect that is highly regarded

and taken seriously by some parties, and if this safety issue is taken for granted and not

taken care of, it will cause problems to the people surrounding. Just like the security issue

of smartphone users, which is now increasingly prevalent with one of the biggest threats

to all gadgets, which is the malware issue. Studies have shown that there is an increase

from year to year regarding malware that is more focused on attacking and damaging the

victim's smartphone, especially for Android users. Many Android users have been

affected by this malware problem and various solutions have been implemented. This

study aims to examine the ways and methods of detecting malware that has attacked the

Android operating system, and suggest the detection of a malware detection system by

using machine learning techniques. The results show that machine learning is a more

promising approach with 90% accuracy in experiments that have been conducted for

machine learning methods for higher malware detection and prove that this malware

detection system can detect Android malware more efficiently.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 14

1.1 Introduction 14

1.2 Problem Statement 16

1.3 Objectives 17

1.4 Scope 17

1.5 Thesis Organization 18

CHAPTER 2 LITERATURE REVIEW 20

2.1 Introduction 20

2.2 Malware 20

2.3 Types of malware attack 23

2.3.1 Adware and Backdoor 25

2.3.2 File infector and PUA 26

2.3.3 Ransomware and Riskware 27

vi

2.3.4 Scareware, Spyware, and Trojan 28

2.4 Android Malware Detection Approaches 29

2.4.1 Signature-based Detection Approaches 30

2.4.2 Anomaly-based Detection Approaches 31

2.4.3 Specification-based Detection Approaches 32

2.4.4 Comparison of Android Malware Detection Approaches 33

2.5 Analysis Technique 34

2.5.1 Static Analysis 34

2.5.2 Dynamic Analysis 35

2.5.3 Hybrid Analysis 37

2.5.4 Comparison of Analysis Techniques 38

2.6 Machine Learning 38

2.6.1 Supervised machine learning 39

2.6.2 Unsupervised machine learning 40

2.6.3 Semi-supervised learning 40

2.6.4 Reinforcement learning 40

2.7 Previous Research Works 41

2.7.1 Comparison and description of previous research paper 42

2.8 Conclusion 44

CHAPTER 3 METHODOLOGY 45

3.1 Introduction 45

3.2 Research-Based 45

3.3 Planning and Reviewing Literature 47

3.4 Developing the Architecture 48

3.4.1 Procedure Description 50

vii

3.4.2 Data Collection Phase 51

3.4.3 Decompiling the APK File 51

3.4.4 Features Selection 55

3.4.5 Machine Learning Classifiers 56

3.4.6 Machine Learning Tool 58

3.5 Design and Implementation 63

3.6 Hardware and Software 66

3.6.1 Hardware Requirement 66

3.6.2 Software Requirement 67

3.7 Testing and Evaluation 68

3.8 Conclusion 69

CHAPTER 4 RESULTS AND DISCUSSION 70

4.1 Introduction 70

4.2 Dataset Description 70

4.2.1 Used Dataset 70

4.2.2 Data Cleaning 72

4.2.3 Splitting Dataset 74

4.3 Machine Learning Approach 75

4.4 Evaluation and Results 79

4.4.1 Confusion matrix 83

4.4.2 Receiver operating characteristics curve (ROC) 86

4.4.3 Performance of Classifiers Build model 90

CHAPTER 5 92

CONCLUSION 92

viii

5.1 Introduction 92

5.2 Research Objective Revisited 93

5.3 Achievement of the study 96

5.3.1 Choosing a relevant dataset to be used 96

5.3.2 Understand the detection approaches and techniques 97

5.3.3 Find the best machine learning classifiers 97

5.4 Limitations 98

5.4.1 Availability and Quality of Datasets 98

5.4.2 Imbalanced Sample Size 98

5.4.3 Interpretability and Explain ability of Machine Learning 98

5.5 Future Works 99

5.5.1 Incorporating New Malware Techniques 99

5.5.2 Deep Learning Approaches 99

5.5.3 Real-Time Detection on Mobile Devices 99

5.5.4 Adversarial Attack Detection 99

5.6 Conclusion 100

REFERENCES 101

ix

LIST OF TABLES

Table 2.1: Type of Malware 24

Table 2.2: Comparison of malware detection approaches 33

Table 2.3: Comparison between analysis techniques 38

Table 3.1: Dataset Summary 51

Table 3.2: Top ten permission in Benign and Malware Applications 53

Table 3.3: Hardware requirement and description for this research 66

Table 3.4: Software requirement and description for this research 67

Table 4.1: Total AndroZoo Dataset 70

Table 4.2: List of permission features 79

Table 4.3: Results for each machine learning classifier 79

Table 4.4: Confusion matrix of classifiers 85

Table 4.5: AUC Classifiers Result 87

Table 4.6: Time taken to produce model (seconds) 90

Table 4.7: Time taken to test model (seconds) 91

x

LIST OF FIGURES

Figure 1.1: Overall Chapter 18

Figure 2.1: Total of Malware detected between years 21

Figure 2.2: Malware detected by categories 22

Figure 2.3: Malware Detection Approach 29

Figure 3.1: Main Phases of Research-Based 46

Figure 3.2: Malware Detection System Architecture 48

Figure 3.3: Data collection phase 52

Figure 3.4: Number of applications requesting Benign and Malware 54

Figure 3.5: Jupyter Notebook Tools 59

Figure 3.6: The main interface of the Jupyter Notebook 61

Figure 3.7: Option to start a new notebook 62

Figure 3.8: Running terminal in Jupyter Notebook 62

Figure 3.9: Jupyter Notebook cell 63

Figure 3.10: Flowchart of the procedure for improving detection method testing 64

Figure 4.1: Importing the Libraries in Jupyter Notebook 71

Figure 4.2: Reading the datasets 71

Figure 4.3: Display the datasets 72

Figure 4.4: Count the missing values in dataset 72

Figure 4.5: Data cleaning for checking the missing values 73

Figure 4.6: Separated the dataset into X and y 74

Figure 4.7: Splitting the dataset into Training and Testing 74

Figure 4.8: Accuracy testing for Naïve Bayes 80

Figure 4.9: Accuracy testing for DecisionTable 80

Figure 4.10: Accuracy testing for J48 81

Figure 4.11: Accuracy testing for Random Forest 81

Figure 4.12: Accuracy testing for Multi-Layer Perceptron 82

Figure 4.13: Level of accuracy for each classifier 83

Figure 4.14: Naïve Bayes ROC Curves 87

Figure 4.15: DecisionTable ROC Curves 88

Figure 4.16: J48 ROC Curves 88

Figure 4.17: Random Forest ROC Curves 89

Figure 4.18: Multi-Layer Perceptron ROC Curves 89

xi

LIST OF SYMBOLS

xii

LIST OF ABBREVIATIONS

MLP Multi-Layer Perceptron

RF Random Forests

xiii

LIST OF APPENDICES

 14

CHAPTER 1

INTRODUCTION

1.1 Introduction

Malware refers to any program designed to disrupt computer operations, steal

data, or break into secure networks. Software that causes unintentional harm due to a

deficiency is not considered malware since malware is defined by its malevolent purpose,

which works against the requirements of the computer user. Aside from purposefully

malicious software, the term "badware" is sometimes used to describe software that

harms by accident. threaten the availability of the internet, the security of its hosts, and

the privacy of its users by breaking into computer systems and network resources without

the owner's permission, disrupting computer operations, and collecting personal

information. Malware has had far-reaching effects, affecting everything from e-

governance and social media to digital automation and mobile networks.

Each type of malware such as virus, worm, Trojan horse, rootkit, backdoor,

botnet, spyware, or adware has its unique purpose and method of operation. Malware can

exhibit traits from numerous categories at once since these categories are not exclusive

to one another. Malware creators implement polymorphism into the harmful components

as a means of evading detection. This implies that dangerous files within the same

malware "family," exhibiting the same types of destructive behavior, are regularly

updated and obfuscated using different techniques, making them appear to be a wide

variety of distinct files.

When it comes to Internet security, malware is one of the biggest and worst risks

currently available. A study performed by Symantec in February 2019, the poll found

that 47% of firms had encountered malware security incidents/network breaches in the

previous year.[1] Malware is expanding in three dimensions: quantity (widening scope

of threats), diversity (evolving techniques of harm), and speed (fluidity of threats). These

 15

are developing, gaining sophistication, and deploying novel techniques to attack

computers and mobile devices. Over 100,000 new malware samples are added to

McAfee's database every day.[2] This equates to roughly 69 new threats per minute, or

one threat every second. There has been a rise in both the availability and sophistication

of cybercriminal tools, leading to a new generation of threats and assaults that are more

complex, persistent, and mysterious.

Since the number of Android devices and software applications known as apps

(app stores) is continually growing, a large number of Android users have benefited from

this. Concerns about safety and personal privacy are also gaining traction among a wide

range of mobile users and stakeholders. For example, an increasing number of users are

opting to keep their personal information on their mobile devices by using popular apps

such as those for shopping, banking, and social networking. As a result, attackers have

moved their emphasis to mobile applications during the last decade. As a result, malicious

software for Android smartphones has emerged as one of the most serious security

problems in the industry. That is, they believe the sources from which they obtain their

programs are trustworthy and secure. Several approaches for detecting Android malware,

including those based on signatures, behaviour, and data-flow analysis, have been

developed.

The machine learning-based strategy is one of the most promising ways to

detect out as one of the most promising ways for detecting Android malware. Because of

the availability of vast data and the progress of hardware over the preceding decade,

machine learning has proved incredibly effective in various cutting-edge fields, including

Android virus detection. In practise, all of the aforementioned security precautions are

primarily applied in app store backends. However, not all app shops are able to respond

quickly when a new family of Android malware is discovered. The analysis approach

now consists of three independent steps: investigating dangerous behaviour within

applications, building detection models with the generated characteristics, and lastly

running a detection on the whole app.

 16

1.2 Problem Statement

With the rise of the new modern gadget era, people nowadays are having mobile

phones for their daily use. According to Tech Crunch, mobility firm Ericsson predicts

that by 2020, there will be more than six billion smartphone users worldwide, surpassing

landlines. Because smartphones and tablets are quickly becoming more powerful as

companies embrace the idea of bring your own device (BYOD) policies and allow users

to access corporate networks with personal technology. However, with increased use

emerges an increase in mobile malware, which is malicious code designed to target

smartphones and tablets.

"Android malware is growing at an exponential rate, but I fear we won't see any

major changes in user behaviour until a large and significant user base is affected by

malware," Tim Armstrong, malware researcher for anti-virus firm Kaspersky Lab, told

SecurityNewsDaily. Armstrong and Wisniewski were both commenting on a new Juniper

Networks report showing that Android malware has increased 472 percent in the four

months since July 2011. Despite this astounding increase in malicious, corrupt software,

Android has captured 52.5 percent of the global smartphone market share, with more than

440.5 million units sold in the third quarter (July through September) alone, according to

technology research firm Gartner.[3] As a result, Android malware is clearly a problem.

However, as with car theft, it is not a serious issue until your vehicle is stolen.

In addition, UMP students keep browsing on their mobile phones to do simple

research on what they learn in class. And the internet platform is the place where they

may get android malware by clicking on a random advertisement and link. This may lead

to downloading any files and leaking malicious android software on their mobile devices.

Although, Zimperium Labs discovered earlier this year that 95 percent of Android

devices could be hacked with a simple text message. Cyber criminals have come out with

news-identified ways, methods, and tricks to launch an attack on android users. As

opposed to classic malware, which was widespread, well-documented, and static, modern

malware is targeted, unknown, stealthy, customized, and zero-day. After infiltrating a

system, viruses and malware conceal, reproduce, and compromise security. This can put

a risk for all android phone users.

 17

1.3 Objectives

The objectives of this research are:

i. To study the current issue with the Android malware detection system.

ii. To analyze the technique for Machine Learning that will be used to construct an

Android malware detection system.

iii. To assess the effectiveness of the Android malware detection system in terms of

its ability to identify malicious software.

1.4 Scope

The scope of this research:

i. Platform:

• This system is for Android packages only.

ii. Development / Functionality:

• The system is only able to identify malicious software and cannot

completely remove it from infected devices.

• The detection method is only effective on a mobile device that is

powered by the Android operating system.

iii. User:

• Users of Android-based smartphones only.

 18

1.5 Thesis Organization

Figure 1.1: Overall Chapter

CHAPTER 2

-Introduction

-Malware
-Type of Malware

Attacks

-Malware Detection

Approaches

CHAPTER 1

-Introduction

-Problem Statement
-Objectives

-Scope

-Thesis Organization

CHAPTER 3

-Introduction

-Research Methodology

-Planning and

Reviewing Literature

-Developing Framework

-Design and

Implementation

-Hardware and

Software

CHAPTER 4

-Introduction

-Dataset Description

-Machine Learning

Approach

-Evaluation and Results

-Confusion Matrix

-Receiving Operating

Characteristics Curve

-Performance of

Classifiers

CHAPTER 5

-Introduction

-Research Objective

Revisited

-Achievement of Study

-Limitations

-Future Works

-Conclusion

 19

In chapter 1, there are an introduction, problem statement, objectives, scope, and

thesis organization. Furthermore, chapter 2 discusses more literature reviews of the

research topic such as what is the definition of malware, the background of android

malware detection, and the current approach solution comparisons to earlier research on

the research topic. Besides, chapter 3 highlights the methodology that is utilized

throughout this study on the approach that was used. The gathering of data, the

standardization of such data, and the software that was utilized in this experiment are all

topics that are covered in this section of the study. Furthermore, Chapter 4 provides a

detailed exploration for Training and Testing of the machine learning approach for

malware detection in Android to achieve a highest results accuracy. It presents the

dataset, discusses the chosen algorithms, evaluates their performance using various

metrics, and visualizes the results through the confusion matrix and ROC curve. Lastly,

Chapter 5 of the project serves as a reflective and conclusive section. It reviews the

research objective, evaluates the achievement of the study, examines its limitations,

recommends future improvements, and wraps up the project. The results of the study are

thoroughly summarised in this chapter, which also paves the way for future developments

in machine learning-based malware detection for Android.

 20

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will be more focusing on the literature review which can describe

more about malware detection, especially android malware. Otherwise, the malware

detection approaches, techniques, and features. This chapter also determines how

malware can be found in infected devices. Furthermore, will be studying the previous

research’s comparison with the related review on related research that suggested different

techniques to detect the malware in order to further enhance the current work.

2.2 Malware

Malware is a catch-all term for computer viruses, trojan horses, and other

destructive computer programs that threat actors use to infect systems and networks in

order to gain access to sensitive information. Malware is defined as software that is

designed to interfere with the normal functioning of a computer. Malware is an

abbreviation for "malicious software," which refers to a file or piece of code that, when

transmitted typically across a network, can infect, investigate, steal, or conduct nearly

any other behaviour that an attacker desire.[3]

Hostile, intrusive, and intentionally nasty, malware seeks to invade, damage, or

disable computers, computer systems, networks, tablets, and mobile devices, often by

taking partial control over a device’s operations. Because malware comes in so many

varieties, there are countless ways to infect computers. Malware, while varying in type

and capability, typically has a goal such as providing a remote control for an attacker to

use an infected machine, sending spam from the infected machine to unsuspecting targets,

 21

investigating the infected user's local network, and, most importantly, stealing sensitive

data.

Android malware is malicious software that targets Android-powered smartphone

devices. It functions similarly to other malware variants that run on desktop or laptop

PCs. Android malware, often known as mobile malware, is any malicious software

designed to harm a mobile device by doing unauthorized activities such as installing

infected apps from unofficial app stores, visiting hacked websites, or receiving infected

email attachments. Malware is categorized into several types, including adware,

backdoors, file infectors, potentially unwanted applications (PUA), ransomware,

riskware, scareware, spyware, and trojans. Each malware type has some distinguishing

traits that set it apart from the others. Android malware develops in the same way that

humans do.

Users have access to high-performance platforms thanks to Android, which is the

industry-leading operating system. Android is expected to maintain its dominant position

in the industry with an 85 percent share of the global market in the final quarter of 2020,

as stated in a report that was issued by the International Data Corporation (IDC). In

addition, it is anticipated that the yearly shipment rate of Android would expand by 150

million units in the year 2021. In conjunction with the skyrocketing demand for Android

in the global market, the difficulties that are related to malicious software for Android are

also increasing at a breakneck speed. Its solutions identified over 3,5 million malicious

installation packages in 2021, which is roughly the same amount as in 2019, but 2.2

million fewer than in 2020. In 2021, the number of malicious installation packages was

about the same as in 2019.

Figure 2.1: Total of Malware detected between years

 22

The number of attacks that were identified continued to fall throughout 2021,

going from 5.5 million in January 2021 to 2.2 million by the end of the year. However,

according to Kaspersky, attacks on mobile have become more complex in terms of both

the functionality of the virus and the vectors that are being used. Adware and potentially

unwanted applications (PUA) typically use business models that facilitate spreading at a

large scale on as many devices as possible. These findings should not come as a surprise

given that adware and PUA tend to use business models that facilitate spreading at a large

scale on as many devices as possible with adware representing as much as 42% of all

detected mobile malware and PUA representing 35% of all detections.

Figure 2.2: Malware detected by categories

The Trojan malware category is the third most common one to be found, and

despite the fact that it only accounts for 8.86% of all detections, it is regarded as being

far more dangerous than the first two categories. It is also important to note that the

number of detected Trojans nearly doubled between the years 2020 and 2021.

 23

2.3 Types of malware attack

Researchers and cybersecurity professionals are faced with an open challenge as

a result of the unrivalled hazards provided by malicious Android software. This software

is the root cause of a wide array of security vulnerabilities that are currently plaguing the

internet. The speed with which malware samples may be identified and fixed is a critical

factor in determining whether or not this threat can be eradicated. It is impossible to do

anything else. Having a solid understanding of the many different families and types of

Android malware is essential to accomplishing this goal. Adware, backdoors, file

infectors, potentially unwanted applications (PUAs), ransomware, riskware, scareware,

spyware, trojans, trojan-sms, trojan-spies, trojan-bankers, and trojan-droppers are some

of the most frequent forms of harmful software for Android devices. [4]

Android Malware

Category

General Description of

Behaviour

Common Malware

Families

Adware Displays adverts in an unpleasant

pop-up window to the user.

gexin, batmobi, ewind,

shedun, and adcolony

Backdoor Stealthily utilizes the device by

remaining in the background.

mobby, kapuser, hiddad,

dendroid, and droidkungfu

File Infector Files are contaminated particularly

executable (APK) files.

leech, tachi, commplat,

gudex, and aqplay

PUA Acts as an annoying thing that

stops the device from doing what

it should be doing.

apptrack, secapk, wiyun,

youmi, scamapp, utchi,

cauly, and umpay

Ransomware Performs the function of a crypto

locker, which encrypts the user's

files and directories and then

requests a ransom payment from

congur, masnu, fusob,

jisut, koler, lockscreen,

slocker, and smsspy

 24

the user in order to decrypt his or

her own data.

Riskware Potentially endangers the

smartphone's weak spots that

could be exploited by attackers.

badpac, mobilepay,

wificrack, and tordow

Scareware Performs the function of a fear

coaxer, which causes the user to

experience dread and drives them

to download malicious

applications.

avpass, mobwin, and

fakeapp

Spyware Spy activities are used to get

useful information from the device

and send it to a server that is

controlled from afar.

spynote, qqspy, spydealer,

smsthief, spyagent, spyoo,

smszombie, and smforw

Trojan Performs actions in the

background similar to those of an

imposter, which continually steals

information from the device. It can

appear in a variety of myriad

forms, such as the trojan-banker,

trojan-dropper, trojan-sms, and

trojan-spy.

gluper, lotoor, rootnik,

guerrilla, gugi, hqwar,

obtes, and hypay

Table 2.1: Type of Malware

 25

2.3.1 Adware and Backdoor

Adware is short for the term "advertising malware”. It's a malicious application

that floods the user's screen with unwanted ads, usually when they're trying to use online

services. Adware is software that displays intrusive advertisements, often with enticing

offers, in the hopes that the user will click on them. The maker of this obnoxious app

makes money whenever a user interacts with the in-app advertising. [5]

Typical forms of adware include software that claims to assist users in avoiding

screen warnings about phony infections, losing weight, or making more money in less

time. Many forms of adware can be downloaded onto a smartphone after any program or

application is installed. Information such as phone number, email address, application

accounts, IMEI number of the device, device ID, and device status may be gathered by

the adware. The adware that gains access to a device's camera can steal personal data. On

occasion, the adware will try to encrypt data on infected devices and install further

malicious software, code, or files.

Backdoors are essentially secret entrances into a mobile device. Simply said,

backdoors are a method through which an attacker can bypass a smartphone's

authentication measures and get root access to the device. The term "trap door" is

commonly used to describe a back entrance. The use of backdoors enables attackers to

start attacks from a distance without physically possessing the target system. They might

be completely new programs, or they could be a part of an existing program.

For example, attackers carefully conceal malicious code within legal programs,

ensuring that it is only activated in specific circumstances. It has been noticed that in

some cases, malicious code can be injected into a device and used to take control of it

remotely if the user has not changed the default passwords of any accounts they create

on the device. Malware that gains access to a device through a backdoor can steal

sensitive data, send and receive messages, make and receive phone calls, record call

history, compile a list of installed and running applications, and allocate memory.

 26

2.3.2 File infector and PUA

Malware that adds itself as an attachment to APK files is referred to as a file

infector. The Android Package Kit, or APK, is a file that contains all of the information

about an Android app. The APK files are used to install the file infector. Malicious code

is then executed anytime an APK file is installed. APK files can represent any type of

Android program, from games to word processors to GPS applications.

As a result of recent events, Google has removed a number of apps from the Play

Store after discovering they may contain malware. When executed, file infectors slow

down the device and drain the battery significantly. These capture information regarding

the device ID, IMEI number, and the status of the phone. They might disable, damage, or

utilize the programs on your phone. They have the capacity to access, modify, and collect

data from the settings and files of the device. In the worst-case scenario, malicious files

infect the device's system files and take control of it.

PUAs are possibly undesirable apps that are packaged with genuine software that

is supplied for free. PUAs spread alongside legitimate programs because they travel in

the same channels. Potentially Unwanted Programs (PUPs) are another name for them[6].

Despite common belief, there are some situations in which a PUA would be beneficial.

It is contingent on how they are put to use.

When an application is installed that includes a PUA, the PUA is also installed

automatically. This risk can take several forms, including adware, malware, and browser

hijackers. Memory-hogging PUAs slow down the device. Spyware applications are

designed to acquire sensitive data from the device that is the target of the attack and pass

it to the attacker, and PUPs might lead to more of the same. Using GPS, they are able to

track the user's location, display unwanted advertisements, alerts, and links, and create

shortcuts on the user's home screen.

 27

2.3.3 Ransomware and Riskware

Ransomware is a form of malicious software that encrypts files and directories on

a computer system, making those files and directories inaccessible to users of the system.

For the purpose of delivering the decryption key that may be used to gain access to the

data, it asks a significant sum of money to be paid as a type of ransom. Bitcoins are

regularly utilized as a form of payment for ransomware demands.

However, some incidents have shown that some consumers have been unable to

regain access to their data even after paying the necessary quantity of money. Incomplete

files were reportedly received by some of them. At times, data would mysteriously

vanish. The evolution of Android ransomware has been dramatic, and new strains are

constantly being created.[7] Some ransomware strains pose as popular apps and manage

to avoid detection. The sending and receiving of SMS messages, the locking of SIM cards

and cell phones, the theft of network information such as Wi-Fi connection details, and

communication with the remote server that controls the ransomware attack are all

activities that are carried out by ransomware.

A program is considered to be riskware if it is completely legal but nevertheless

has the ability to compromise the system's security in some way. To steal information

from users' devices and direct them to malicious websites, hackers are exploiting a

genuine piece of software.

It may also be called malicious software if it compromised the security of the

device while performing its intended tasks. Riskware has the ability to snoop on users'

data, including phone numbers and contact lists, send and receive text messages, steal

network data, direct users to malicious websites, download, and install malicious

software, display malicious advertisements, and alter the device's settings and files.

 28

2.3.4 Scareware, Spyware, and Trojan

Scareware is software that produces fear in computer users in the hopes that they

would download or purchase apps that contain malicious code. Convincing consumers to

install a false application that promises to protect the device. Scareware is software that,

in addition to installing dangerous programs on a device, attempts to gather information

about the device, including its GPS location.

When installed on a computer, spyware can monitor user activity and steal

sensitive data. Spyware collects data and sends it to a variety of commercial and non-

profit entities. In the future, this data is put to use in the commission of criminal activities.

Android users are requested to grant permission before any spyware is installed, but

spyware can still access the phone's location, camera, and settings without the user's

awareness or approval. Spyware can send and receive text messages, track a device's

location and phone number, steal data about the networks to which a device is connected

(including the Wi-Fi networks to which it is connected), modify system files and settings,

and steal personally identifiable information.

When they are executed, Trojan’s masquerade as legitimate software so that they

can steal information and do damage. They are able to obtain sensitive data from the

device while remaining undetected in the background[8]. It is the most widespread form

of malicious software, and it incorporates a number of subtypes of malware as well, such

as trojan-banker, trojan-dropper, trojan-sms, and trojan-spy. It is also the most dangerous.

Trojans will typically engage in activities such as deleting, modifying, blocking, or

copying data in an effort to disrupt the operations that are carried out by the operating

system.

 29

2.4 Android Malware Detection Approaches

Over the span of the last several years, there has been a significant rise in the

number of academic research focused on the detection of android malware. In the

beginning, the approach of signature-based detection was implemented quite frequently.

This approach is quick and effective when used to counter previously discovered

malware, however it is not as effective when used to resist zero-day malware[9]. Over

the course of time, researchers have started employing methods such as anomaly-based,

specification-based, and model-checking-based detection. Also, completely new methods

of detection such as those based on deep learning, the cloud, mobile devices, and the

internet of things.

Figure 2.3: Malware Detection Approach

 30

2.4.1 Signature-based Detection Approaches

A signature is a feature of malware that encapsulates the program structure and

identifies each piece of malware in a way that is unique to that virus. Signature-based

detection is a common method utilized by commercially available antivirus software.

This method is quick and effective for identifying known forms of malware, however it

is insufficient for identifying unknown forms of malware. In addition, malicious software

that comes from the same family has a much better chance of evading signature-based

detection if it makes use of obfuscation techniques.

When a sample of a program needs to be determined whether it is malicious or

not, the signature of the sample in question is extracted in the same approach as it was

before, and then it is compared with signatures that are stored in the database. The sample

program is classified as either malware or benign, depending on the results of the

comparison. Creating a signature can be accomplished using a wide variety of methods,

including string scanning, top-and-tail scanning, entry-point scanning, and integrity

verification, among others.

Signature-based detection schema has been used for many years by antivirus

manufacturers since it is a very efficient method for detecting known malware, and it has

been utilized for those years.[10] In most cases, this method is utilized to identify

malicious software that is a member of the same family. On the other hand, it is unable

to detect malware of a newer generation since it employs strategies like obfuscation and

polymorphism. The signature should be as short as possible and can represent many

different types of malwares with a single signature, an effective automatic signature

generation mechanism must be built, data mining and machine learning techniques

should be used more frequently during the generation of the signature, and the signature

should be resistant to packing and obfuscation techniques. These requirements must be

met for a signature to be considered effective.

 31

2.4.2 Anomaly-based Detection Approaches

Anomaly-based detection is one type of intrusion detection system, and it works

by keeping tabs on system activity and labelling it as normal or abnormal. This enables

the system to identify malicious activity on a network or computer and prevent further

abuse of the system. Instead of looking for patterns or signs, the classification, which is

based on heuristics or rules, makes an effort to identify any kind of improper use that

deviates from the typical functioning of the system. Signature-based systems, on the other

hand, are limited in their ability to detect assaults because they can only identify those

for which a signature has already been developed.

In addition, it is also able to recognize unknown attacks by basing its analysis on

the behaviour of past intrusions that are similar. The strategy of anomaly-based detection

is one that seeks to find incidences of malware by modelling what is considered normal.

Therefore, everything that is not consistent with this model is regarded as unusual. This

method is useful for identifying previously unknown forms of malware. In order to

construct the model using anomaly-based detection, many characteristics had to be

extracted from the Manifest file of Android applications. These features included uses-

permission and uses-features. These features were utilized to develop the usual model of

multiple legitimate applications, which was then used to identify malicious programs.

Other efforts, such as the model that was developed, made use of entropy-based

anomaly detection to identify distinct abnormalities in the manner in which Android

applications behaved on the system. To detect malicious software on Android devices,

they made use of two popular entropy measures: sample entropy and changed sample

entropy. Researchers interested in computing systems and network traffic have begun to

focus on anomaly-based malware detection. Various technologies, such as those based

on data mining and machine learning, have been utilized in the process of detecting

mobile malware. These include statistically-based strategies, methods, and approaches.

The researchers merged permissions and API calls in a machine-learning approach to

malware, which allowed machine-learning methods to be applied in anomaly-based

malware detection.

 32

2.4.3 Specification-based Detection Approaches

Specification-based detection approaches monitor applications for normal and

inappropriate behaviour. Heuristic-based detection uses machine learning and AI to

recognize legitimate software's valid and invalid activities, while specification-based

detection analyses the system specification's behaviour.

Otherwise, the specification-based detection determines whether or not a program

is malicious based on the possibility that it violates a specified set of rules by referring to

a rule set that specifies what kinds of behaviours are recognized to be normal. Malicious

software is defined as any application that operates in violation of a predefined set of

rules. In specification-based malware detection, a detection method that addresses the

limitation of pattern-matching was developed. This was implemented so that malware

might be detected more effectively. This technique takes advantage of instruction

semantics in order to identify instances of malware. The method has a high degree of

resistance to conventional methods of obfuscation.

This approach does not permit the proper specification of an attribute of a

program, which is one of its limitations. The concept of anomaly-based detection

provided rise to the concept of specification-based detection. When using specification-

based detection, an approximation of the system's or application's requirements is created

rather than an estimation of the system's or application's implementation. A training phase

is present in a specification-based approach. During this phase, an attempt is made to

learn all of the valid behaviour of a program or system that has to be inspected. The

primary drawback of a system that is based on specifications is that it is extremely

challenging to provide an accurate description of the operation of the system or the

software.

 33

2.4.4 Comparison of Android Malware Detection Approaches

Many different kinds of malware detection have been developed, each of which

has seen its own set of capabilities becoming more sophisticated.[11] The following table

compares and contrasts the advantages and disadvantages of three different approaches

of detection: signature-based, anomaly-based, and specification-based detection

approaches.

Android Malware

Detection

Advantages Disadvantages

Signature-based - Can detect known

attacks accurately.

- Less amount of system

resource is required to

detect intrusion,

- Focus on attack

behaviour.

- It cannot detect new, and unknown

intrusion methods.

- Ineffective against previously

unseen attacks, as no signatures are

available for such attacks.

Anomaly-based - It can detect new

intrusion methods and

novel attacks.

- Focus on normal

behaviour to overcome

undetected unknown

attacks.

- It needs to update the data

describing the user’s behavior and the

statistics in normal usage and tends to

be large.

- Problem to select the appropriate set

of features to be able to detect

potential attacks.

- Need more resources like CPU time,

memory, and disk space.

Specification-

based

- Attacks can be detected

even though they may not

previously encounter

- It is not as effective in detecting

novel attacks, especially in network

probing and DOS attacks.

- Development of detailed

specifications is time-consuming.

Table 2.2: Comparison of malware detection approaches

 34

2.5 Analysis Technique

Analysis of malware is the first step in identifying malicious software. In order to

detect malware, we must first investigate how malware possesses its function and what

the motivation is behind the development of malware. Having this level of understanding

about malware makes it much simpler for the developers of malware detectors to put

defensive features into their products. The processes involved in analyzing malware can

be categorized into three distinct groups according to the amount of time and effort

required to complete the analysis.[12]

These techniques can be divided into three different categories: static features,

dynamic features, and hybrid features, depending on whether they are generated by

running an Android application.

2.5.1 Static Analysis

The technique of static analysis for the identification of malware does not execute

or run the code of the malware, but it relies exclusively on the properties of the malicious

abstraction. When utilizing this method to detect malware, the most reliable features for

detection come from the application's byte code or its manifest file.

Applications for Android are stored in an archive format known as APK. This

comes in a zipped-up package the majority of the time. Included in this package are each

and every one of Android's files, directories, and other resources. Most of the time, the

process of reverse engineering is applied to the apk files in order to do feature mining.

When searching for the extraction of key features, the manifest file known as

"AndroidManifest.xml" is the first thing that should be examined. This manifest file

includes permission vector features for access to the installation, locations, battery

optimization, and phone state permissions. These features may be found in this manifest

file.

 35

Ankita used 103 malware datasets and 97 benign application datasets

correspondingly, and it was able to detect malware on a Nexus 5 device with API level

19. It also found that the malware was performing high-level unauthorized permission

assaults. The XML parser extracted the permission request, which then generated binary

features of the malware. These features were stored in Attribute Relation File Format

(ARFF). The results showed a detection rate of 96.6% when the random forest algorithm

was implemented, with just a minimal difference of 0.069% from the algorithm with the

worst detection rate.[13]

Once the code that is operating the malicious program has been thoroughly

reviewed by trained systems, the appearance of the malicious application will be much

easier to spot. The power of DSA was characterized when it was applied at the input and

extraction layer of the model, and it was characterized by the different detections that

were achieved by the trained algorithms. The detection accuracy of the random forest

method was found to be 97% better compared to the other algorithms.

2.5.2 Dynamic Analysis

System calls to make it possible for applications that are based on Android to

communicate with the operating system of the device, which in turn makes it possible to

view the events that take place between the two parties. Android malware is monitored

in a controlled environment during runtime by the dynamic detection analysis. This is

accomplished by making a record of the malware pointers and deciding which detection

signatures may be modelled using them. In order to accomplish this, it is necessary to

take into consideration the dynamic behaviour of the malware. It investigates the ways in

which malicious software interacts with mobile resources and services, including

location, networks, packages, and actions carried out by the operating system.

 36

The research demonstrated the effectiveness of this detection method on 4034

malicious datasets and 10024 benign datasets, respectively. The malware was found on

those applications by the random forest classification algorithm with a success rate of

96% when the ServiceMonitor methodology was applied. The accuracy of the

information that the malware collected, such as the phone's IMEI, was determined to be

67%. 17% of the malicious applications that were found to be running on the device were

found to have attached their payload there in exchange for a premium service rating. The

overhead device performance of the mobile utilities such as CPU and Memory was

detected to be infected with a value of 0.8 percent and 2 percent, correspondingly.

After being downloaded and installed, certain malicious software will remain

hidden on the device until it is prompted to perform an action. While some execute their

payload in this approach, others do so neither during download nor during installation

or runtime. Even if the default permissions are constantly encountered throughout the

application download and installation process on Android devices, access authorization

that is routinely authorized by users provides a vast area in the attack vector for the

device. During those tests, malicious code is attached to programs that aren't malicious

at all. It is necessary to do critical monitoring at each of these stages in order to improve

the mobile platforms' level of security.

 37

2.5.3 Hybrid Analysis

This analysis combines both the features of dynamic and static analysis to provide

a more robust detection result when analyzing malware. The basic aspects of training and

detection, which can be carried out by dynamic and static analysis, are included in the

hybrid detection approach to the detection of malicious software. Because the benefits of

both approaches are combined, this seems to result in a higher detection rate than either

the dynamic or the static procedures individually. The hybrid analysis gathered a total of

192 examples for training, including both malicious and benign android software. The

model produced detection results with an accuracy of 96.60%, with only a 0.0021%

difference in accuracy amongst the various techniques that were utilized.

A comparison of the accuracy of the static and dynamic detection rates can be

made with the assistance of the hybrid technique. As an analyzer, Android Buster

Sandbox was employed, which allowed for the definition and establishment of the

maliciousness and benignness of an application. However, Android malware detection

using API call sequence was unable to circumvent the issue of malware obfuscation. This

approach is unable to build the first malware distribution state in the call graph and

sequence respectively because the observational sequence of the malware features does

not produce a relational correlation to the HMM's distinct states. Even though this

strategy was successful in preventing evasion assaults in Android malware, machine

learning was unable to solve the problem of Android malware being poisoned.

 38

2.5.4 Comparison of Analysis Techniques

There is a comparison between static, dynamic, and hybrid analysis techniques in

analyzing and detecting android malware. These are the advantages of three analysis

techniques:

Table 2.3: Comparison between analysis techniques

2.6 Machine Learning

In machine learning, data and algorithms are used to model the way humans learn,

with the ultimate goal of improving the realism of the model over time. This area of AI

and computer science is rapidly growing in popularity. Early AI researcher Arthur

Samuel coined the phrase "the branch of research that provides computers with the ability

to learn without explicitly being programmed" in the 1950s.

Approach Advantages Disadvantages

Static

Analysis

- Fast, safe, and low resource consumption.

- Multipath malware analysis and more secure

than dynamic analysis.

- Can’t analyze obfuscated and encryption

malware.

- Can’t detect unknown malware.

Dynamic

Analysis

- Can analyze obfuscated and encryption

malware.

- Can detect both known and unknown

malware.

- Slow, unsafe, and high resource

consumption.

- Time-consuming and vulnerable.

Hybrid

Analysis

- Better than static and dynamic analysis.

- Have the highest accuracy among the three

analyses.

- More time and resources consuming.

- Highest complexity.

 39

Storage and processing capacity improvements over the past few decades have

paved the way for a plethora of innovative machine learning-based solutions. Such items

include driverless vehicles and Netflix's recommendation engine, to name a few

examples.

A key topic of data science is machine learning, which is expanding rapidly.

Algorithms are frequently trained in data mining projects to produce classifications or

predictions and to discover key insights by making use of statistical methods. These

discoveries inform the ensuing application and enterprise decision-making process and,

ideally, influence key growth KPIs.[14]. As the big data industry continues to develop

and thrive, it is reasonable to anticipate that there will be an increased demand for data

scientists in the market. They will be expected to lend a hand in deciding the most

pertinent business questions, as well as the data that is necessary to answer those

questions, which will be one of the responsibilities placed on them.

There are many different ways in which machine learning algorithms can be

trained, and each of these ways has both advantages and disadvantages. Machine learning

may be roughly broken down into four distinct subfields, each of which is characterized

by a distinct set of learning strategies and techniques.

2.6.1 Supervised machine learning

Supervised learning, or supervised machine learning, is the practice of teaching

an algorithm how to accurately classify data or make predictions using only examples

from labelled datasets. No matter what information is fed into it, the model will keep

adjusting its weights until it is properly matched. In order to ensure that the model is not

overfitting or underfitting, this procedure is performed as part of the cross-validation

process. Supervised learning allows businesses to expand their efforts to solve a wide

range of real-world problems, such as identifying and deleting spam emails. Supervised

learning allows for the implementation of a wide variety of methods, including neural

networks, naïve bayes, linear regression, logistic regression, random forest, and support

vector machines (SVM).

 40

2.6.2 Unsupervised machine learning

Unsupervised machine learning, or unsupervised learning, is the application of

machine learning algorithms to data without the benefit of a labelled training set. This

kind of learning is employed to rank and classify data that has not been labelled. Unlike

human researchers, these algorithms can find new patterns and clusters in data on their

own. This strategy excels in applications where similarities and differences need to be

uncovered, such as exploratory data analysis, cross-selling strategies, consumer

segmentation, and picture and pattern recognition. As a by-product, it can be used to

reduce the number of features in a model through a technique called dimensionality

reduction. Principal component analysis (PCA) and singular value decomposition are two

methods that are commonly employed for this purpose (SVD). Unsupervised learning

can also make use of other kinds of algorithms, such as neural networks, k-means

clustering, and probabilistic clustering techniques.

2.6.3 Semi-supervised learning

The benefits of both supervised and uncontrolled learning can be seen in a semi-

supervised setting. During the training phase, it employs a smaller labelled data set to

guide the analysis of a larger unlabelled data set and the extraction of relevant features.

Semi-supervised learning can be used to address situations where a supervised learning

system does not have access to enough labelled data. It's also helpful when it would cost

too much to classify a large amount of data manually.

2.6.4 Reinforcement learning

The supervised learning model and the machine learning paradigm known as

reinforcement learning are quite similar. In contrast, the algorithm in reinforcement

learning is not learned through the use of examples. This model learns as it goes by

making mistakes. As a problem's solution, counsel, or policy is developed, it will be built

upon and supported by a series of successes.

 41

2.7 Previous Research Works

My research project and study on "MALWARE DETECTION IN ANDROID

USING MACHINE LEARNING," must begin with a review of prior research articles.

Engaging with earlier works has several benefits and can be essential for determining the

purpose and contributions of the research.

First of all, reading through earlier research papers enables to develop a thorough

awareness of the state of current knowledge and developments in the field of Android

malware detection. Able to recognise gaps, restrictions, and areas that need more research

by looking at the approaches, procedures, and experimental designs used in previous

research.

Additionally, reviewing previous research articles assists in clarifying and

identifying the research objectives and hypotheses of the study. It enables to recognise

the gaps in the corpus of knowledge and create research questions that add to it. By

evaluating the strengths and weaknesses of prior research, we can design an improved

experimental setup and choose appropriate methodologies and techniques to achieve

higher accuracy and reliability in the testing results.

Moreover, reviewing earlier research publications gives a platform for comparing

and validating the individual findings. We can compare the results to previously

published research to acquire a greater understanding of the merits and drawbacks of the

suggested method that can be apply in my research. This comparative analysis contributes

to the overall credibility and impact of the research, as it demonstrates the novelty and

advancements in study brings to the field of Android malware detection.

 42

2.7.1 Comparison and description of previous research paper

Research

Paper
Summary

Technique

Used
Dataset Advantages Disadvantages

"A

Comparative

Study of

Machine

Learning

Techniques for

Android

Malware

Detection"

This paper

compares

different

machine

learning

techniques

for Android

malware

detection. It

evaluates

classifiers

using a large

dataset.

Decision

trees, SVM,

NN

A dataset of

over

100,000

Android

applications

Provides

insights into

the

effectiveness

of various

techniques

Limited

discussion on

feature

selection and

model

evaluation

methods

"Deep

Learning-

Based Android

Malware

Detection

Using

Recurrent

Neural

Networks"

The research

focuses on

using

recurrent

neural

networks

(RNNs) for

Android

malware

detection. It

explores

LSTM and

Recurrent

Neural

Networks

A dataset of

over 10,000

Android

applications

Captures

temporal

dependencies

in app

behavior

Limited

discussion on

dataset

characteristics

and

preprocessing

techniques

 43

GRU

architectures.

"Feature

Selection

Techniques for

Android

Malware

Detection using

Machine

Learning"

This paper

investigates

feature

selection

techniques

for Android

malware

detection. It

compares

mutual

information,

chi-squared,

and RFE.

Mutual

information,

Chi-

squared,

RFE

A dataset of

over 10,000

Android

applications

Identifies

informative

features for

accurate

detection

Limited

exploration of

other feature

selection

algorithms

"Ensemble

Learning

Approaches for

Android

Malware

Detection"

The research

explores

ensemble

learning

approaches

for Android

malware

detection. It

investigates

bagging,

boosting,

and stacking

methods.

Bagging,

Boosting,

Stacking

A dataset of

over

100,000

Android

applications

Improves

detection

accuracy

through

ensemble

methods

Limited

discussion on

the specific

ensemble

configurations

and their impact

on performance

 44

"Android

Malware

Detection using

Hybrid

Machine

Learning

Models"

The paper

proposes a

hybrid

machine

learning

approach for

Android

malware

detection,

combining

decision

trees,

random

forests, and

SVM.

Decision

trees,

Random

forests,

SVM

A dataset of

over

100,000

Android

applications

Leverages

strengths of

multiple

models for

improved

accuracy

Limited

discussion on

the hybrid

model

architecture and

training process

2.8 Conclusion

This chapter makes various comparisons between past solutions that have been

suggested by another researcher and the current solution, which is Machine Learning. In

addition to that, this chapter demonstrates the many methods that the researchers utilized

to accomplish their goal of developing an analysis method that can detect malware. Over

the course of recent years, a great number of different approaches have been suggested.

And finally, we get an overview of the many methods used by android malware detection

to combat previously known malware. However, those methods required further

development to achieve more satisfactory outcomes in the future. The current solution,

which was described in Chapter 3, is intended to assist Android users in identifying

malware that may be present in their respective devices

 45

CHAPTER 3

METHODOLOGY

3.1 Introduction

The definition of malware as well as the tools that it possesses to confine itself

was covered in the chapter before this one. In Chapter 2, we've previously talked about a

few of the existing research projects that have been suggested as ways to detect malware.

As a result, the particulars regarding the strategy, method, and characteristics that will be

utilized in the course of this research will be explained in this chapter, along with the

methodology that will be utilized in the course of the experiment that will be carried out.

3.2 Research-Based

The research-based method comprises four main phases, which are the study of

existing literature, the development of new architecture, the design of the system, its

implementation, and finally, testing and evaluation. The adoption of this methodology in

this research is effective since the phases may be continuously examined to ensure high-

quality outcomes. This research-based system development life cycle is distinct from

other life cycles for system development that have already been proposed. It is for this

reason that this strategy will concentrate on managing and observing each and every

detail of the research conducted on this research title.

The review of previous research is the initial step in this research-based process.

During this stage, the prior studies that have been done on the topic of the research will

be examined and reviewed in detail. Following that, the problem statement and the aims

of this research are characterized as the definition of this research. The subsequent stage

will involve the creation of new design requirements. During this development, a critical

study of past studies will be examined as an appropriate algorithm and method to be used

 46

in this research. This will be done in order to ensure that this research has the most

accurate results possible.

 After the concept for the research has been formed, the next steps in the research

process will be to design and carry out the research. Therefore, the program, hardware,

and language are the technical requirements that are needed for this research. When all

of the needs have been planned for and are available, the research will then incorporate

the design model and the detection model. As soon as the implementation has been

finished, the research experiment will go through a process of testing and evaluation to

determine the limitations of the research and the ways in which it may be improved in

the future.

Figure 3.1: Main Phases of Research-Based

The research base is modified in this research because it is possible to revert to

earlier stages with small amounts of data loss when implementing the new and improved

research[15]. And beyond that, research-based approaches can be adjusted as needed to

address pressing issues at hand. In conclusion, research-based also allows researchers to

readily modify their methods to suit the specifics of any given project's investigation.

 47

3.3 Planning and Reviewing Literature

The first step in this research-based approach is a complete review of relevant

previous projects. The conceptualization is finished to find the appropriate kind of

research question before the previous studies are analyzed. When a topic is settled for

investigation, a collection of relevant literature is compiled. Existing research can be

understood by analyzing the data already collected on the topic. In light of this, we are

able to refine the problem description, the study goal, and the research scope. It has been

recommended that the n-gram opcode be used to locate data regarding malicious code

detection and the existing methods for detecting it.

For my study, I consulted a variety of online journals and articles as well as

student references from the past. There is also a thorough examination and filtering of the

current project studies to ensure they are relevant to the research question. What's more,

the data collected should be used for further study and applied to the advancement of the

research.

Studies of various approaches and techniques have the objective of determining

which type of approach and technique is most suited to the task of resolving the issue that

occurred on Android devices, particularly the issue that was associated with the malware.

Malware detection on smartphones has to be the primary focus of this research given that

Android's security flaws cause the most concern overall.

 The existing research projects that are relevant to the detection of malware are

evaluated critically and categorized according to the location where the malware code

structure was carried out. Each of the different methods that have been suggested for

detecting malware is investigated in order to determine its strengths and weaknesses.

Consequently, it is necessary to have this kind of information to determine the approach

that the researchers employed for the experiment testing. As a result, the limitations of

previous research will not be replicated in this study.

 48

3.4 Developing the Architecture

Based on the research done, it was determined to employ Machine Learning to

advance malware detection. The Android malware detection system may be separated

into five different phases. They consist of raw data collection, data analysis, feature

selection and transformation, classification algorithm, and malware detection system[16].

The malware detection system's architecture is depicted in the figure below.

Figure 3.2: Malware Detection System Architecture

1) Raw data collection: This is the first phase of the Android malware detection

system. During this phase, raw data is collected from a variety of sources,

including the logs of Android devices, network traffic, and APK files. The

data can be collected through various methods such as a device's APIs,

network sniffing, or by scanning file systems. The data can also be collected

by monitoring the device's behavior and activities, such as the installed apps,

usage patterns, and network connections.

 49

2) Data Analysis: During this phase, the collected raw data is analyzed in order

to recognize patterns and features that can be utilized to differentiate between

malicious and benign software. Techniques such as static analysis, dynamic

analysis, and machine learning can all be utilized during this part of the

process. The goal of this phase is to extract relevant information and features

from the raw data that can be used to train a classification algorithm.

3) Feature selection and transformation: In this phase, the most relevant features

are selected from the data obtained in the previous phase, and then they are

transformed into a format that the classification algorithm can utilize which is

the Training Set and Testing Set. This phase occurs after the data has been

collected. In this stage, there is also a reduction in the dimensionality of the

data, which is conducted in order to improve the classification algorithm's

overall performance.

4) Classification algorithm: At this stage, a classification algorithm is trained

using the features that have been identified and changed in the previous phase.

The attributes that the algorithm has been trained on are utilized to determine

if the software is malicious or benign. Different classification algorithms can

be used such as decision trees, Naïve Bayes, Random Forest, and Artificial

Neural Networks.

5) Malware Detection System: This is the final phase of the Android malware

detection system, and it involves integrating the trained classification

algorithm into a system that is capable of detecting malware on a real-time

basis. It is possible for this system to have a user interface, reporting, and

alerting capabilities, and it is also possible for it to be connected with other

security systems such as firewalls and intrusion detection systems.

It is essential to keep in mind that this is but one of many conceivable

architectures, and the manner in which these phases are actually implemented can change

considerably depending on the kind of malware detection system that is being designed.

 50

3.4.1 Procedure Description

During the process of developing the architecture for the Android malware

detection system, a machine-learning technique was developed. This technique can train

a dataset sample to learn the behaviour of both benign and malicious applications. The

purpose of the implementation of this architecture is to identify whether or not new

applications contain malware or are completely benign. In addition, this design is

comprised of three components which are a data connection, machine learning, and a

database. Each of these components is equally important.

The gathering of data began with the acquisition of all the permissions, which

included both malicious and innocuous software applications. The decompilation of an

APK file and its subsequent extraction for use in a data cleansing process that can filter

permissions are both part of this data Pre-processing step. Before loading it, the next step

in the data labelling process involves storing all of the permissions that have been

constructed in a format that is legible and then saving the file as an Attribute-Relation

File Format (x.arff) file. This arff file is where the feature attributes that are being utilized

for the purpose of the approach to feature optimization can be accessed.

During this step, the information gain and bio-inspired algorithms that are

employed for feature selection are utilized in order to locate and pick the characteristics

that are of the highest quality. One of the most important functions of this technique for

optimizing feature sets is determining the differences between a non-bio-inspired

algorithm and a bio-inspired algorithm.

The gathering of data and the process of optimizing features are also essential

components of the malware detection process. This is due to the fact that the procedure

of collecting data obtained the malware characteristics and benign from the process of

data cleansing. After that, this operation will notify the database of the change by sending

an alert. At this rate, the data filtering will depend on the authorization and its package

names in order to ensure that the same apps and features are separated from the database.

After that, the filtered features are transferred to the Machine Learning process so that

they can be used to optimize the features.

 51

3.4.2 Data Collection Phase

Dataset Source Total Use in Experiment

Malware

AndroZoo

10,000

Benign 10.000

TOTAL 20,000

Table 3.1: Dataset Summary

During this stage, the process of data collection was used to assemble the malware

applications and the benign datasets. In this stage of the process, the random samples

originate from AndroZoo[17], which is split into two datasets, Benign and Malware. The

data can be studied to discover patterns and characteristics that can be utilized to

differentiate between malicious and benign software. The data that was obtained may be

put to use for a variety of reasons, including reverse engineering, behavioural analysis,

or code analysis.

It is essential to keep in mind that the type of malware detection system that is

being developed as well as the particular dangers that it is intended to identify will

determine the precise data that is collected as well as the methods that are utilized to

collect it.

3.4.3 Decompiling the APK File

Android Application Package is what is meant by the abbreviation APK. It is the

extension of a file that is compatible with Android devices and can be installed on those

devices. After compiling a large number of files in Android Studio, an APK is an

executable file that is produced for use on an Android device[18]. This file is part of the

overall project. The process of creating source files from their compiled form is a highly

difficult and time-consuming procedure. Android Studio creates the APK file by

compiling several different types of files, including AndroidManifest.xml.java, or.kt

 52

files, layout files, various media files, and many more types of files. The act of turning

the code of an Android application's compiled version back into the application's original

source code is referred to as decompiling an APK file.

The collection of benign and malicious applications is the initial stage of this

procedure. A total of 20,000 samples of the dataset are collected, with 10,000 examples

of benign software and 10,000 examples of malware applications. The Benign dataset is

downloaded from AndroZoo, which is part of the Google Play store. The Malware dataset

is acquired from a variety of different markets. The procedures involved in the collection

of data are depicted in the figure that may be found below.

Figure 3.3: Data collection phase

An Android application's AndroidManifest.xml file is an important file that

provides important information about the app's components, permissions, and other

configurations. The file may be found in the app's root directory. The Android operating

system looks to it to figure out the app's capabilities, requirements, and overall structure.

It may be found at the very top of the application's project hierarchy.

 53

The AndroidManifest.xml file contains a variety of elements that explain the app's

components, such as activities, services, broadcast receivers, and content providers. It

also contains information about the rights that the app has been granted, such as the

permissions that are required for the app to access specific capabilities of the device, such

as the camera, microphone, or internet access.

The AndroidManifest.xml file is used to retrieve important information such as

the permissions and activities of an application. Before the permission can be saved in

the database as an x.arff file, it is necessary for all of the permission that has been

extracted to be labelled.

Table 3.2: Top ten permission in Benign and Malware Applications

Benign Applications Malware Applications

Permission Frequency Permission Frequency

INTERNET 1121 INTERNET 1199

ACCESS_NETWORK_STATE 663 ACCESS_COARSE_LOCATION 1146

READ_PHONE_STATE 391 VIBRATE 994

WRITE_EXTERNAL_STORAGE 362 WRITE_EXTERNAL_STORAGE 823

ACCESS_COARSE_LOCATION 236 READ_SMS 779

VIBRATE 210 WRITE_SMS 762

WAKE_LOCK 188 READ_CONTACTS 680

ACCESS_FINE_LOCATION 162 BLUETOOTH 633

GET_TASK 125 WRITE_CONTACTS 542

SET_WALLPAPER 102 DISABLE_KEYGUARD 491

 54

After comparing the top ten permission for benign and malicious applications (as

mentioned in Table 1), I discovered that Malware applications sought a total of 8,049

permissions, which was much greater than Benign applications (3,560 permissions)[19].

The following four most often requested permissions by both clean and malicious

applications are the INTERNET, ACCESS_COARSE_LOCATION,

WRITE_EXTERNAL_STORAGE, and VIBRATE.

The top five permission for the Benign Application the INTERNET,

ACCESS_NETWORK_STATE, READ_PHONE_STATE,

WRITE_EXTERNAL_STORAGE, and ACCESS_COARSE_LOCATION. While for

the Malware Applications, the INTERNET, ACCESS_COARSE_LOCATION,

VIBRATE, WRITE_EXTERNAL_STORAGE, and READ_SMS. The figure below

shows the number of requesting permission for benign and malware applications.

Figure 3.4: Number of applications requesting Benign and Malware

According to the graph above, benign applications are issued fewer permissions

than malicious applications. The INTERNET, READ_PHONE_STATE, and

WRITE_EXTERNAL_STORAGE proved that it has the greatest number of permissions

for Malware Applications. This demonstrates that the attacker used permissions to

propagate the malware among Android devices.

 55

3.4.4 Features Selection

A key phase in machine learning is feature selection, which aims to find and

choose the dataset's most pertinent and instructive features. The objective of the features

selection is to keep the features that are most helpful for the prediction task while

reducing the dimensionality of the data. It is necessary to think over and evaluate which

qualities are most crucial before making a decision for the dataset.

Wrapper methods in feature selection involve training and evaluating a machine

learning model with different subsets of features. It treats the feature selection process as

a search problem, where different combinations of features are evaluated based on their

impact on the model's performance. The algorithm evaluates the performance of different

subsets of features by repeatedly training and testing the model. The key advantage of

wrapper methods is that they consider the interaction and dependency between features.

By evaluating feature subsets based on the performance of the model, wrapper methods

can potentially identify relevant features that work well together, leading to improved

predictive accuracy. The feature selection process is integrated into embedded

approaches, such as decision tree-based feature importance or regularisation methods like

L1 regularisation (Lasso)[20].

To achieve the highest level of testing accuracy, it is crucial to take certain factors

into account while choosing features. I will ensure all of this steps to achieve high

accuracy results during testing. First, there should be a significant correlation between

the attributes and the target variable. Features that have a strong correlation to the target

have a higher likelihood of making a substantial contribution to the prediction challenge.

Secondly, in order to prevent multicollinearity, characteristics should demonstrate low

redundancy among one another. Overfitting can result from redundant features, which

increase the model's needless complexity. Third, take into account the features'

interpretability and domain relevance. Better generalisation and simpler interpretation of

the model's predictions are frequently brought on by intuitively significant features.

To find the best feature subset, a thorough investigation of the effects of the

chosen features on the model's performance through experimentation and validation can

be test repeatedly.

 56

3.4.5 Machine Learning Classifiers

Machine learning is a rapidly growing field that has the potential to revolutionize

many industries, including cybersecurity. One area where machine learning has shown

promise is in the detection of malware. Malware, or malicious software, is a major threat

to computer systems and networks, and traditional methods of detection are often not

enough to keep up with the constantly evolving nature of malware.

Traditionally, malware detection has relied on signature-based detection, which

looks for specific patterns or characteristics that are known to be associated with

malware. This method is limited by the fact that it can only detect malware that is already

known and that it can't detect new or unknown malware. Machine learning algorithms,

on the other hand, can be trained to detect malware based on patterns or characteristics

that are not known in advance. This is done by analyzing large sets of benign and malware

samples and using this data to train the algorithm to identify patterns or features that are

unique to malware. Once the algorithm is trained, it can be used to detect new or unknown

malware in real-time.[21]

One of the key advantages of machine learning for malware detection is that it

can adapt to changing malware threats. As new malware is discovered, the algorithm can

be retrained on new data, which allows it to continue detecting new and unknown

malware. Another advantage of machine learning for malware detection is that it can be

used to detect malware that is designed to evade traditional detection methods. For

example, machine learning can be used to detect malware that uses obfuscation

techniques to hide its code or that uses legitimate system calls to avoid detection.

In this study, five different classifiers were used so that the researchers could

compare and contrast the results obtained from the various machine learning classifiers.

The names of the five classifiers are as follows: Naive Bayes, DecisionTable, J48,

Random Forest (RF), and Multi-Layer Perceptron (MLP).

 57

3.4.5.1 Random Forest Classifier

Random Forest is an ensemble learning method that uses multiple decision trees

to make predictions. In this method, a large number of decision trees are created and their

outputs are combined to make a final prediction. Each tree is built using a random subset

of the data and a random subset of the features, which helps to reduce overfitting and

improve the generalization of the model. The final prediction is based on the majority

vote of the trees, or by averaging the predictions of the individual trees. Random Forest

is known for its high accuracy, robustness to overfitting, and ability to handle high-

dimensional data. It's also known for its ability to handle missing data and categorical

variables.

3.4.5.2 J48 Classifier

J48 is an implementation of the C4.5 algorithm, which is a decision tree

algorithm. J48 creates a decision tree by recursively partitioning the data into smaller

subsets based on the values of the input features. At each partition, J48 selects the feature

that maximizes the information gain, which is a measure of how much the data is reduced

in uncertainty by the partition. J48 is known for its simplicity, interpretability, and ability

to handle both categorical and continuous input features.

3.4.5.3 Multi-Layer Perceptron Classifier

Multi-Layer Perceptron (MLP) is a type of artificial neural network that is used

for supervised learning. An MLP consists of one or more layers of artificial neurons and

is trained using backpropagation. Each neuron in an MLP takes the input, applies a set of

weights and biases, and then applies an activation function to produce an output. The

output of one layer becomes the input for the next layer, and this process continues until

the final output is produced. MLPs are known for their ability to model non-linear

relationships and their ability to learn complex patterns in the data. However, MLPs can

be sensitive to the choice of the activation function, the number of hidden layers, and the

number of neurons per layer. They also require a large amount of labeled data to train,

and they can be computationally expensive.

 58

3.4.5.4 Decision Table Classifier

A Decision Table is a rule-based classifier that generates a set of if-then rules by

analyzing the data. Each rule represents a decision made based on the input features and

the corresponding output class. The decision Table is known for its interpretability, as the

rules generated by the algorithm can be easily understood by humans. It's also able to

handle missing data, but it's limited by the fact that it can only produce simple linear

decision rules. It's also computationally efficient.

3.4.5.5 Naïve Bayes Classifier

Naïve Bayes is a probabilistic classifier that uses Bayes' theorem to make

predictions. It is called "naive" because it makes the assumption that all input features are

independent of each other, which is often not the case in practice. Despite this

assumption, Naive Bayes is known for its simplicity, speed, and ability to handle large

amounts of data. It's also able to handle missing data and categorical variables. It's

commonly used for text classification, spam detection, and sentiment analysis.

3.4.6 Machine Learning Tool

The functionality of machine learning tools is for the analysis of data, which

automates the model construction process. When judgments or predictions are made

throughout the learning process, this model enables the system to gain knowledge from

either historical or current data sets. The analytical processes can be simplified and sped

up when a system is equipped with tools that are capable of machine learning. It is also

able to automatically apply sophisticated mathematical calculations in order to answer

problems, and this ability does not require any machine learning techniques or experience

on the part of the user. Jupyter Notebook was the tool for machine learning that was

implemented in this research.

 59

3.4.6.1 Jupyter Notebook

Figure 3.5: Jupyter Notebook Tools

Data scientists can use the open-source web tool Jupyter Notebook to create and

share documents that incorporate live code, equations, computational output,

visualizations, and other multimedia elements alongside descriptive writing. Jupyter

Notebook's ability to incorporate all of these components into a single file makes this

possible. Jupyter Notebooks are flexible and may be used for a wide range of data science

tasks, from preparing and manipulating data through numerical simulation, exploratory

data analysis, data visualization, statistical modelling, machine learning, deep learning,

and beyond.

Originally known as the IPython Notebook, the Jupyter Notebook was renamed

to reflect its expanded language support beyond Python to include R, Julia, and others.

It's a handy tool for data exploration and experimentation because users can combine

code, output, and markdown text on a single page. The notebook interface allows users

to run code blocks, visualize data, and display results all in the same document, making

it easy to keep track of the development process and share the results with others. Jupyter

Notebook also supports the use of interactive widgets, which allows users to interact with

the data and the code in a more intuitive way.

 60

Jupyter Notebook is widely used in the data science and machine learning

communities and it's supported by a large number of libraries and frameworks. It can be

run locally or on cloud-based platforms, and it's also supported by many popular machine

learning frameworks such as Tensorflow, PyTorch, and scikit-learn. Jupyter Notebook

has become a popular tool for data analysis, visualization, and machine learning, it's

widely adopted in the industry, research, and education. Here are some steps that can be

taken to use Jupyter Notebook for malware detection:

1) Install the necessary libraries: Jupyter Notebook runs on Python, so the first

step is to install the necessary libraries for machine learning and malware

detection. Some commonly used libraries include pandas for data

manipulation, scikit-learn for machine learning, and pefile for analyzing

Portable Executable (PE) files.

2) Prepare the dataset: The next step is to prepare the dataset for training and

testing the model. This may involve collecting benign and malware samples,

pre-processing the data and splitting the data into a training set and a test set.

3) Train and test the model: Once the dataset is prepared, it can be used to train

and test a machine-learning model. This can be done using Jupyter Notebook

by creating a new notebook, importing the necessary libraries, and writing

code to train and test the model.

4) Evaluate the model: After the model is trained and tested, it's important to

evaluate its performance. This can be done by using metrics such as accuracy,

precision, recall, and F1-score. It's also recommended to use a confusion

matrix to understand the model's performance.

5) Fine-tune the model: If the model's performance is not satisfactory, it can be

fine-tuned by adjusting the parameters or by using a different algorithm.

6) Deploy the model: Once the model is fine-tuned, it can be deployed to detect

malware in real time. Jupyter Notebook can be used to create a script that

takes the input files and returns the prediction made by the model.

 61

3.4.6.2 Jupyter Notebook Interface

Figure 3.6: The main interface of the Jupyter Notebook

 This is the interface for the Jupyter Notebook, and we can view all of the

files in the directory that is currently active. The notebook icon that is located next to the

name of each Jupyter Notebook makes it easy to recognize that notebook. If we already

have a Jupyter Notebook in this directory that we would want to view, we can locate it in

the list of files and then click on it to open the notebook.

 62

Figure 3.7: Option to start a new notebook

To start a new notebook, pick New and then Notebook - Python 2 from the drop-

down menu. If there are any other Jupyter Notebooks on the system that we would want

to use, all we need to do is click the Upload button and then navigate to the specific file

that we would like to use.

Figure 3.8: Running terminal in Jupyter Notebook

The icon for notebooks that are actively running will be green, while the icon for

notebooks that are not currently running will be grey. Simply select the Running tab to

bring up a list of all of the notebooks that are presently being used.

 63

Figure 3.9: Jupyter Notebook cell

 When we open a brand-new Jupyter notebook, we are going to see that it

already has a cell in it. Notebooks are organized using cells, which also serve as the spaces

in which we compose the code for our projects. To execute some code, first select the

cell by clicking on it to make it active, then either hit the SHIFT+ENTER key

combination or click the play button in the toolbar that is located above the worksheet.

3.5 Design and Implementation

After the framework has been designed, it will be necessary to demonstrate that

the proposed framework is acceptable. Before the execution of the system, the generated

is drafted in order to verify the accuracy of the anomaly detection. The proposed

technique is developed to test the idea before proceeding to the malware detection system

for Android mobile devices, as can be seen in the figure below.

The process of collecting raw datasets, defining the database, developing a

system, testing the system, and, as the final step, comparing the results obtained are the

five components that make up the design model.

 64

Figure 3.10: Flowchart of the procedure for improving detection method testing

The design and implementation phase in a malware detection system is a critical

step in the development process, as it involves creating and implementing the solution

that will be used to detect malware. The first step in the design and implementation phase

is to clearly define the problem that the malware detection system is intended to solve.

This may involve identifying the types of malwares that the system should be able to

detect, the platforms and devices that it should run on, and the specific requirements of

the users.[22]

 65

Once the problem is defined, the next step is to select a machine-learning

algorithm that will be used to detect malware. This may involve evaluating different

algorithms, such as Random Forest, J48, Multi-Layer Perceptron, Decision Table, and

Naive Bayes, to determine which one is the most suitable for the problem at hand.

 The next step is to prepare the dataset that will be used to train and test the model.

This may involve collecting benign and malware samples, pre-processing the data and

splitting the data into a training set and a test set. Once the dataset is prepared, the model

can be trained and tested. This may involve writing code to train the model on the training

set, evaluating the model's performance on the test set, and making adjustments to the

model as necessary. This step can be done using Jupyter Notebook or other programming

environments.

 After the model is trained and tested, it's important to evaluate its performance.

This can be done by using metrics such as accuracy, precision, recall, and F1-score. It's

also recommended to use a confusion matrix to understand the model's performance. If

the model's performance is not satisfactory, it can be fine-tuned by adjusting the

parameters or by using a different algorithm. Once the model is fine-tuned, it needs to be

integrated into the malware detection system. This may involve writing code to take the

input files, run the model, and return the predictions.

 Finally, the malware detection system should be thoroughly tested and evaluated

to ensure that it is working correctly and that it meets the requirements identified in the

first step.

 66

3.6 Hardware and Software

During the process of developing the project, it is required to compile a list of the

necessary specifications. In order to carry out this research, the requirements for the

experiment's hardware and software must first be determined. These requirements need

to be met before the experiment can be set up. Due to the fact that both hardware and

software are utilized in the process of carrying out this research as well as testing and

assessing the experiment in preparation for the subsequent phase, this stage is essential.

3.6.1 Hardware Requirement

HARDWARE DESCRIPTION

Processor: Intel® Core ™ i5-

5200U CPU @ 2.20GHz

- RAM: 8.0 GB

- System type: 64-bit Operating

System, x64-based processor

Utilized for the purpose of

carrying out the resource finding,

implementation, testing, and

documentation for the complete research

study.

Table 3.3: Hardware requirement and description for this research

 67

3.6.2 Software Requirement

SOFTWARE DESCRIPTION

Windows 10
An operating system used to complete

this research

Jupyter Notebook To analyze, train, and test the dataset

Microsoft Word 2021
To write documentation for this report

follow the guidelines and format

Microsoft Excel 2021
To review the dataset for Benign and

Malware applications

Microsoft Edge
To discover and collect the information

related to the topic of research

Draw.io
To create a related diagram and flowchart

for the android malware detection system

Table 3.4: Software requirement and description for this research

 68

3.7 Testing and Evaluation

The phase of testing and analyzing the results of this investigation is the final step.

At this point, the experiment will be evaluated after all of its parts have been brought

together. This testing and assessment process is carried out so that the problem statement

can be resolved, and it can be determined whether or not the limitation posed by

previously published journals can be circumvented.

The first step in the testing and evaluation phase is to thoroughly test the system

using a variety of test cases. This may include testing the system with known benign and

malware samples, as well as new or unknown malware. It's important to use a diverse set

of test cases to ensure that the system is able to detect a wide range of malware. Once the

system has been tested, the next step is to evaluate its performance. This can be done by

using metrics such as accuracy, precision, recall, and F1-score. It's also recommended to

use a confusion matrix to understand the system's performance.

After the system's performance has been evaluated, any issues that are identified

need to be addressed. This may involve fine-tuning the model, adjusting the parameters,

or making changes to the system's architecture. After the issues have been addressed, the

system should be retested and re-evaluated to ensure that the changes have improved its

performance. It's important to compare the performance of the developed malware

detection system with other systems, this comparison should be done using the same

dataset and the same evaluation metrics.

Besides, collecting feedback from users and stakeholders who will be using the

system, will help identify any additional issues or areas for improvement. And once the

system has been thoroughly tested and evaluated, it can be deployed in a production

environment. This may involve installing the system on the appropriate devices, training

users on how to use the system, and monitoring the system's performance in the

production environment.

 69

The assertions that an accurate result may be obtained by using a detection system

that uses a real-time process are one of the primary reasons for doing this test. Another

reason is to prove the claimed optimum detection method. In addition, this stage gives

researchers the opportunity to recognize the shortcomings and mistakes made during the

research, which ultimately helps them achieve their goal of making additional

advancements.

In addition, after carrying out the system with the detection technique geared

toward authorization, a thorough discussion is carried out based on the result acquired

from the experiment. This discussion is based on the findings. After that, a conclusion

will be drafted based on the results, and it will be decided whether or not the hypothesis

that this study was testing may be accepted.

The research that comprehensively details the entire procedure of carrying out

this project has finally been finished. In order to demonstrate that the study objectives

have been met, the outcome is analyzed and its significance is noted. In the following

chapter, we will go over an additional description of the implementation step in full depth.

3.8 Conclusion

One of the conclusions that can be drawn from this chapter is that it was one of

the subjects that assisted the researcher in deciding which model should be used in the

investigation. In addition, the sort of methodology and the instruments that will be used

have been discussed in this chapter so that the objectives of this thesis can be

accomplished. Moreover, the full explanation of the method that will be utilized when

conducting the research can be found in this chapter. In order for the researcher to

accomplish what they set out to do with this investigation, they will need some essential

components, such as computer hardware and software that can aid in the detection of

malicious software. The next chapter will detail the implementation as well as the testing

and evaluation that took place.

 70

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter will demonstrate how to put into action the methodology, planning,

analysis, and design that were drafted in the previous chapter. The stage of

implementation is the most important step throughout the entirety of the process of

building the tools. This is due to the fact that we will now begin the process of identifying

malicious software on Android devices by making use of the tools.

4.2 Dataset Description

4.2.1 Used Dataset

The collection of raw datasets is the initial step in the execution of this solution.

It is necessary to have the dataset in order to guarantee the accuracy of the results. The

dataset will provide additional details, explanations, and comprehension regarding the

operations of the malware. The dataset is going to be analyzed, and the results are going

to be used to try to anticipate or guess what will happen in future instances.

Labels Size

Malware 10,000

Benign 10,000

Total 20,000

Table 4.1: Total AndroZoo Dataset

AndroZoo was the source of all of the data that was obtained. This chapter has

compiled a total of 20,000 malicious features for android software, making it one of the

largest collections of its kind. The information for this dataset came from a well-known

 71

AndroZoo website as well as various Google search operators.[23] These category

values, which are "Malware" and "Benign," have been converted to numerical values by

substituting the values "1" and "0" for the values "Benign" and "Malware"

correspondingly in the collected dataset. The categorical values are "Malware" and

"Benign."

Figure 4.1: Importing the Libraries in Jupyter Notebook

 Accessing the datasets is accomplished with the help of panda's library, and

graphs are produced with the use of visualization tools such as matplotlib and seaborn.

The predictive modeling and other procedures that are connected to this will make use of

the sklearn package.

Figure 4.2: Reading the datasets

 The Jupyter Notebook needs to read the dataset on permissions. The permissions data

will show total of 20,000 row and 31 columns in ‘AndrooZooDataset.csv’.

 72

Figure 4.3: Display the datasets

 As the figure above, it showed that the dataset has been successfully read and can

be displayed in a table using the Jupyter Notebook tool with a maximum 31 columns.

4.2.2 Data Cleaning

There shouldn't be any missing values in the data. If so, it is necessary to either

delete the missing data or perform some kind of missing value imputation. In order to

guarantee accurate and trustworthy findings during testing, data cleaning is a necessary

phase in the machine learning process.

Figure 4.4: Count the missing values in dataset

 73

The process of finding and eliminating mistakes, inconsistencies, missing

numbers, and outliers from the dataset is a part of it. Data quality and integrity

significantly affect the effectiveness and validity of machine learning models, which

highlights the need of data cleaning.

‘df.isnull().’ is used to identify and count the number of missing values in each

column of a DataFrame, ‘df’, is determined and counted using ‘sum()’. Each element in

the DataFrame returned by the ‘isnull()’ method is a boolean value that indicates whether

it is a missing value (True) or not (False), and it has the same shape as the original

DataFrame. The total number of missing values in each column can be determined by

using the ‘sum()’ function on the resulting DataFrame.

This code is particularly useful in data analysis and pre-processing tasks because

missing values can have a significant impact on the accuracy and reliability of the results.

Understanding the presence and distribution of missing values is crucial for deciding how

to handle them effectively.[24]

Figure 4.5: Data cleaning for checking the missing values

 Then, we need to re-check again the data cleaning process for the dataset. By

applying the code, ‘print('The maximum number of missing values in any column is:

{}'.format(df.isnull().sum().max()))’ that is used to determine the maximum number of

missing values present in any column of a DataFrame, df, and display the result as a

formatted string.

The maximum number of missing values in any column of the DataFrame df will

be shown by executing this code. This information can be used to assess the data's general

completeness and spot columns that have a lot of missing data. It enables researchers and

data analysts to weigh the potential effects of missing values on the analysis and choose

the best course of action, such as imputation or removing specific columns from further

analysis.

 74

4.2.3 Splitting Dataset

We separate the feature variables from the target variable through these processes,

which is essential for supervised learning tasks like classification. In a typical machine

learning scenario, the objectives are to create a model that can identify patterns and

relationships between the features (X) and the target variable (y) in order to make

predictions on new, unaltered data.

Figure 4.6: Separated the dataset into X and y

We establish the input and output elements necessary for training a machine

learning model by putting the feature variables on X and the target variable on y. The

remaining processes of model training and evaluation are made easier by this subsection

of the model.

Following the data's division into X and y, model fitting can be done using

algorithms that need distinct input features and target variables. During the training

phase, we are able to give the model X as input and y as the desired outcome.

Additionally, by contrasting the projected outputs of the model with the actual target

values (y), this separation enables us to assess the model's effectiveness.

Figure 4.7: Splitting the dataset into Training and Testing

 This code plays an essential part in the process of machine learning by

partitioning the dataset into training and testing groups. By dividing the dataset into

subgroups for training and testing, we can use the ‘X_train’ and ‘y_train’ datasets, train

the machine learning model so that it can discover patterns and connections between the

input features and the target variable. And contrasting the model's projected outputs with

the actual target values (y_test), we can evaluate the model's effectiveness and

generalizability using the X_test dataset.[25]

 75

‘X_train, X_test, y_train, y_test’ This line of code assigns the split datasets to

separate variables for further use:

• ‘X_train’: This variable contains the training set of feature variables. It

represents the input data used to train the machine learning model.

• ‘X_test’: This variable contains the testing set of feature variables. It

represents the unseen input data used to evaluate the trained model's

performance.

• ‘y_train’: This variable contains the corresponding target variable for the

training set. It represents the expected output values associated with the

training set.

• ‘y_test’: This variable contains the corresponding target variable for the

testing set. It represents the ground truth output values against which the

model's predictions on the testing set will be compared.

Furthermore, the ‘X’ is the feature variables or the input data and ‘y’ is the target

variable or the class labels associated with the feature variables. The ‘test_size=0.3’

specifies the proportion of the data that should be allocated to the testing dataset. In this

research, I have separated 30% of the data will be used for testing, while the remaining

70% will be used for training. And the ‘random_state=42’ is a parameter that sets a

random seed value to ensure reproducibility. By using the same random seed, we obtain

the same random split each time we run the code. And this helps to achieve and produce

a new results accuracy each time of testing.

4.3 Machine Learning Approach

To ensure that Android users are able to optimize the malware through the usage

of the malware permission features method, a strategy based on machine learning is

utilized. This strategy reduces the amount of time required for training and testing in

order to identify malware.

 76

First, the permission features of the malware detection were trained, and then,

utilizing key features, they were categorized. In this study, the features selection method

is utilized so that the significant features that are necessary for efficient malware detection

can be chosen. Methods of feature selection are utilized to recognize and eliminate

unnecessary and duplicated attribute data, both of which do not contribute in any way,

shape, or form to the accuracy of a predictive model. As a direct result of this, the number

of malicious software features has been cut down from the 107 permissions to just the

Top 30 permission.[26] This is done in order to confirm that there is a distinct pattern

emerging between the benign and the malicious. The list of authorization features that

were employed in the study may be seen in the Table below.

Permission Description

INTERNET To allow an application to access a

network socket

ACCESS_WIFI_STATE To allow an application access to data

stored in Wi-Fi networks

READ_PHONE_STATE To allow read-only permission to the

current phone state

WRITE_EXTERNAL_STORAGE To allow all application access to writing

on the external storage

GET_ACCOUNTS To allow an access to the account list in

the Account Service

GET_TASKS To allow the application about the

currently running and recently completed

task

SEND_SMS To allow an application to send Short

Message Service (SMS)

 77

RECEIVE_SMS To allow an application to receive SMS

messages

READ_SMS To allow an application to read SMS

messages

MEDIA_CONTENT_CONTROL To allow an application to see what is

currently being played

CHANGE_WIFI_STATE To allow an application to toggle Wi-Fi

on and off

SET_ALARM To allow an application to set an alarm

for the user

ACCESS_FINE_LOCATION To allow an application to access the

specific location

WAKE_LOCK To allow the use of PowerManager

WakeLocks to control hibernating

processor or dimming screen

INSTALL_SHORTCUT To allow an application to install a

shortcut in the Launcher

ACCESS_NETWORK_STATE To allow an application to access

information about networks

BLUETOOTH To allow an application connect to paired

Bluetooth devices

BLUETOOTH_ADMIN To allow applications to discover and pair

Bluetooth devices and to make the device

discoverable to other Bluetooth devices.

 78

BROADCAST_STICKY To allow an application to broadcast

sticky intents

CALL_PHONE To allow an application to initiate a phone

call without going through the Dialer user

interface for the user to confirm the call.

CAMERA Required to access the camera device

ACCESS_COARSE_LOCATION To allow an application to access

approximate location derived from

network location sources such as cell

towers and Wi-Fi

READ_CALENDAR To allow an application to read the user's

calendar data

READ_CALL_LOG To allow an application to read the user's

call log

READ_CONTACTS To allow an application read the user's

contacts data

READ_EXTERNAL_STORAGE To allow grants read access to external

storage

RECORD_AUDIO To allow an application to record audio

VIBRATE To allow an access to the vibrator

WRITE_CALENDAR To allow an application to write the user's

calendar data

 79

WRITE_CALL_LOG To allow an application to write (but not

read) the user's call log data

Table 4.2: Top 30 of permission features

4.4 Evaluation and Results

The initial results display the outcomes that were produced by three different

machine learning classifiers. These classifiers are Naïve Bayes, DecisionTable, J48,

Random Forest, and Multi-Layer Perceptron. In addition, this research utilized the

metrics of accuracy, FPR, precision, recall, and f-measure to investigate the various

measurements that each classifier possessed. The results obtained from the 15 permission

features of the testing set that made use of the three specified classifiers are presented in

the table below.

Classifiers Accuracy (%) FPR Precision Recall F-measure

Naïve Bayes 81.06% 0.323 0.746 0.943 0.833

DecisionTable 89.20% 0.100 0.899 0.884 0.891

J48 89.33% 0.098 0.900 0.885 0.893

Random Forest 90.45 % 0.095 0.905 0.901 0.903

Multi-Layer

Perceptron

90.25 % 0.084 0.913 0.889 0.901

Table 4.3: Results for each machine learning classifier

The table presents the performance metrics of different classifiers, including

Naïve Bayes, DecisionTable, J48, Random Forest, and Multi-Layer Perceptron, for

malware detection in Android devices. Each classifier is evaluated based on its accuracy,

false positive rate (FPR), precision, recall, and F-measure.

 80

Figure 4.8: Accuracy testing for Naïve Bayes

Naïve Bayes achieved an accuracy of 81.06%, with a relatively high false positive

rate of 0.323. It exhibited good precision (0.746) and recall (0.943), indicating that it can

effectively classify malicious samples while having a relatively higher rate of false

positives. A probabilistic classifier called Naive Bayes operates under the presumption

of feature independence. It functions effectively in settings with a lot of features and uses

computational resources effectively. However, it could have trouble capturing intricate

connections and interactions between characteristics, increasing the potential of false

positives.

Figure 4.9: Accuracy testing for DecisionTable

DecisionTable demonstrated an accuracy of 89.20%, with a lower false positive

rate of 0.100. It achieved a balanced precision of 0.899 and recall of 0.884, resulting in

an F-measure of 0.891. DecisionTable, sometimes referred to as decision rules or decision

lists, classifies instances using a collection of if-then rules. It functions well in scenarios

with discrete and categorical features and is interpreted and easily understood. Its great

precision and recall are a result of the decision rules' direct feature interpretation

capability.

 81

Figure 4.10: Accuracy testing for J48

J48, a decision tree algorithm, achieved an accuracy of 89.33% with a low false

positive rate of 0.098. It demonstrated good precision (0.900) and recall (0.885), resulting

in an F-measure of 0.893. J48 builds a model that resembles a tree to make choices based

on feature values. Both cases with categorical and numerical characteristics work well,

and it can manage intricate feature interactions. The algorithm's excellent accuracy,

balanced precision and recall, and capacity to capture complex decision boundaries are

all benefits.

Figure 4.11: Accuracy testing for Random Forest

Random Forest achieved the highest accuracy among the classifiers, at 90.45%,

with a low false positive rate of 0.095. It exhibited a precision of 0.905, recall of 0.901,

and an F-measure of 0.903. Multiple decision trees are combined in the ensemble learning

technique known as Random Forest. It makes use of decision trees' advantages while

minimising their specific drawbacks, such as overfitting. It achieves excellent accuracy

and a balanced trade-off between precision and recall by combining predictions from

various trees.

 82

Figure 4.12: Accuracy testing for Multi-Layer Perceptron

Multi-Layer Perceptron attained an accuracy of 90.25%, with a relatively low

false positive rate of 0.084. It demonstrated the highest precision among the classifiers,

at 0.913, and a recall of 0.889, resulting in an F-measure of 0.901. An artificial neural

network called a multi-layer perceptron has numerous layers of interconnected neurons.

It can recognise nonlinear correlations between features and learn complex patterns. The

model's excellent precision and comparatively low false positive rate are both a result of

its capacity to extract complex feature representations.

Based on the results, Random Forest achieved the highest accuracy (90.45%),

making it the top-performing classifier in terms of overall classification performance. It

balances precision, recall, and false positive rate effectively. Naïve Bayes, on the other

hand, achieved the lowest accuracy (81.06%) due to its higher false positive rate. Despite

its lower accuracy, Naïve Bayes demonstrated a higher recall, indicating its effectiveness

in detecting true positive instances. However, for malware detection purposes, a higher

false positive rate can be undesirable, making Random Forest the preferred choice due to

its superior overall performance and lower false positive rate.

 83

Figure 4.13: Level of accuracy for each classifier

According to the figure above, Random Forest classifiers produced the best

accuracy result, which was 90.45 percent, in comparison to MLP, which achieved 90.25

percent, J48 get 89.33 percent, DecisionTable achieved 89.20 percent, and Naïve Bayes,

which achieved the lowest accuracy result, which was 81.06 percent.

4.4.1 Confusion matrix

A method for analysing and summarising the performance of a classification

model is known as a confusion matrix. The table that follows outlines two categories of

probable predictions: benign and malicious software. The confusion matrix consists of

four categories based on the predictions made by the classifier and the actual labels of the

test dataset:

• True Positives (TP): The classifier correctly predicted that an app is malicious.

• True Negatives (TN): The classifier correctly predicted that an app is benign.

 84

• False Positives (FP): The classifier incorrectly predicted that an app is

malicious, when it is actually benign. This is also known as a Type I error or a

false positive.

• False Negatives (FN): The classifier incorrectly predicted that an app is benign,

when it is actually malicious. This is also known as a Type II error or a false

negative.

The information in the confusion matrix can be used to calculate various

performance metrics for the classifier, such as accuracy, precision, recall, and F1-score.

These metrics can help to determine whether the classifier is performing well or not, and

can be used to improve the performance of the model.[27] For instance, if a model

predicts the presence of malware activity, the result will display "malware" and “benign”.

The results of the five different classifiers are presented.

Classifiers Actual Prediction

Malware Benign

Naïve Bayes Actual Malware 8326 1674

Actual Benign 1406 8594

DecisionTable Actual Malware 8873 1127

Actual Benign 969 9031

J48 Actual Malware 9088 912

Actual Benign 852 9148

Random Forest Actual Malware 9328 672

Actual Benign 696 9304

 85

Multi-Layer

Perceptron

Actual Malware 9173 827

Actual Benign 815 9185

Table 4.4: Confusion matrix of classifiers

Looking at the confusion matrix classifiers table, we can see that each row

represents the instances in the actual class, while each column represents the instances in

the predicted class. The cells of the matrix represent the count of true positives, false

positives, false negatives, and true negatives.

For the actual malware, all the classifiers correctly identified a large number of

malware instances, as shown by the high true positive counts. However, there are also

some false negatives, indicating that some malware instances were incorrectly classified

as benign. Naïve Bayes had the highest false negative count with total of 1674, while

DecisionTable get 1127, J48 get 912, Random Forest with 672, and Multi-Layer

Perceptron get 827 number of false negatives.

Besides, for the actual benign instances, all of the classifiers correctly identified

a significant number of benign instances, as shown by the high true negative counts.

However, there are also some false positives, indicating that some benign instances were

incorrectly classified as malware. Random Forest had the highest false positive count

with total of 9304, while Multi-Layer Perceptron get 9185, J48 get 9148, DecisionTable

with 9031, and Naïve Bayes get the lowest with 8594 number of false positives.

All of the classifiers perform fairly well when identifying occurrences as malware

or benign. However, among the classifiers, Random Forest and Multi-Layer Perceptron

show the highest accuracy. In comparison to the other classifiers, Random Forest has the

best accuracy (90.4%) and the lowest false positive rate. This shows that it can correctly

identify a greater variety of cases as malware or benign. The Random Forest model

performs well in properly forecasting both positive and negative instances, as seen by its

excellent precision, recall, and F1-score values.

 86

Naïve Bayes, on the other hand, has a larger false positive rate and a lower

accuracy of 81.06%. This implies that it might mistakenly label some innocent

occurrences as malware. The fact that it still exhibits a respectable level of precision,

recall, and F1-score values, demonstrating its capacity to accurately identify a sizable

number of cases, says a lot about its accuracy.

4.4.2 Receiver operating characteristics curve (ROC)

In this particular investigation, the processes were separated into two categories:

benign and malware based on the authorization features. Along with the performance

matrix, we are also calculating the receiver operating characteristics (ROC) curve for

each of the machine learning classifiers. During this stage of the process, the TPR is

considered to be the detection rate that accurately predicted the malware process, whereas

the FPR was chosen as the detection rate that incorrectly predicted normal as malware.

The curves of five different machine learning classifiers were displayed in Figure 4.1.

The ROC curve helps to evaluate the trade-off between the sensitivity (TPR) and

specificity (1 - FPR) of a classifier system. A perfect classifier would have a ROC curve

that passes through the point (0,1), indicating that it has a TPR of 1 and an FPR of 0,

regardless of the threshold setting. A random classifier, on the other hand, would have a

ROC curve that is a straight line passing through the point (0,0) and (1,1).[28] The AUC

results determined that it was possible to measure whether the detection strategy was

effective or ineffective. A score of 1 represented an absolutely accurate prediction,

whereas a score 0.5 suggested an inaccurate prediction. The results are summarised in

Table 4.5.

 87

Classifiers AUC Prediction

Naïve Bayes 0.918 Accurate Prediction

DecisionTable 0.949 Accurate Prediction

J48 0.954 Accurate Prediction

Random Forest 0.979 Accurate Prediction

Multi-Layer Perceptron 0.961 Accurate Prediction

Table 4.5: AUC Classifiers Result

4.4.2.1 Naïve Bayes (ROC)

Figure 4.14: Naïve Bayes ROC Curves

The Naive Bayes classifier has an AUC value of 0.918, which indicates that it

performs better than random but is not a perfect classifier. This means that it can correctly

classify a relatively high percentage of instances, but it may still make some errors.

 88

4.4.2.2 DecisionTable (ROC)

Figure 4.15: DecisionTable ROC Curves

The DecisionTable classifier has an AUC value of 0.949, which is higher than the

Naive Bayes classifier. This indicates that it performs better than the Naive Bayes

classifier and is closer to being a perfect classifier.

4.4.2.3 J48 (ROC)

Figure 4.16: J48 ROC Curves

 The J48 classifier has an AUC value of 0.954, which is lower than the

DecisionTable classifier. This suggests that it performs worse than the DecisionTable

classifier, but it is still better than a random classifier.

 89

4.4.2.4 Random Forest (ROC)

Figure 4.17: Random Forest ROC Curves

The Random Forest classifier has an AUC value of 0.979, which is similar to the

DecisionTable classifier. This indicates that it performs well and is closer to being a

perfect classifier.

4.4.2.5 Multi-Layer Perceptron (ROC)

Figure 4.18: Multi-Layer Perceptron ROC Curves

The Multi-Layer Perceptron classifier also has an AUC value of 0.961, which is

similar to the Random Forest classifier. This suggests that it also performs well and is

closer to being a perfect classifier.

 90

In general, we can see that the DecisionTable, Random Forest, and Multi-Layer

Perceptron classifiers have higher AUC values than the Naive Bayes and J48 classifiers,

which indicates that they perform better in general when applied to this particular

problem.

4.4.3 Performance of Classifiers Build model

During the training phase, the performance of the classifiers is evaluated on a

training dataset to ensure that they are learning and improving over time. This is typically

done by measuring metrics such as accuracy, precision, recall, F-measure, and AUC.

These metrics help to assess the quality of the classifiers and identify any areas for

improvement.

And for the testing phase, the performance of the classifiers is evaluated on a

separate testing dataset to ensure that they can generalize to new, unseen data. This is

important because classifiers that perform well on the training dataset may not necessarily

perform well on new data.

Table 4.6: Time taken to produce model (seconds)

Classifiers Time Taken to Build Model

Naïve Bayes 0.13 seconds

DecisionTable 4.36 seconds

J48 2.45 seconds

Random Forest 9.98 seconds

Multi-Layer Perceptron 67.23 seconds

 91

In the table provided, we can see that the Naïve Bayes classifier has the shortest

build time of 0.13 seconds, while the Multi-Layer Perceptron classifier has the longest

build time of 67.23 seconds. This suggests that Naïve Bayes may be more efficient and

scalable for smaller datasets or less complex models, while Multi-Layer Perceptron may

be more suitable for larger datasets or more complex models. However, the specific trade-

offs between build time and performance will depend on the specific requirements and

constraints of the application.

Table 4.7: Time taken to test model (seconds)

The time taken to test the model is also an important factor to consider in machine

learning. It indicates how quickly the model can make predictions on new data. In

practical applications, the time taken to make predictions can be a critical factor,

especially in real-time systems where predictions need to be made quickly.

By looking at the table above, we can see that the J48 classifier has the shortest

time taken to test the model, followed by DecisionTable and Multi-Layer Perceptron. The

Naive Bayes and Random Forest classifiers have slightly longer times to test the model,

but they are still relatively fast.

Classifiers Time Taken to Test Model

Naïve Bayes 0.32 seconds

DecisionTable 0.17seconds

J48 0.14 seconds

Random Forest 2.02 seconds

Multi-Layer Perceptron 0.15 seconds

 92

CHAPTER 5

CONCLUSION

5.1 Introduction

Smartphones powered by Google's Android operating system are now practically

indispensable in the highly sophisticated world of today.[29] The way in which we

engage with technology is being fundamentally altered as a result of the diversity of

capabilities and pursuits offered by these gadgets. Smartphones have become vital tools

for personal and professional convenience, being used for everything from socialising

and online shopping to accessing the internet for information, downloading files and

games, providing financial services, and entertaining oneself.

Our day-to-day lives have been completely transformed by the simplicity and

convenience that our cell phones and the internet. Effortless and speedy completion of

tasks that, in the past, demanded a large investment of both time and energy is now

possible. The capabilities of smartphones seem to have almost no ceiling, whether we're

talking about the ability to interact with friends and family through social media, stream

our favourite films and television shows, or complete financial transactions online.

However, despite the fact that smartphones provide users with an extensive range

of advantages and benefits, there is also an inherent security risk associated with their use

that the majority of users frequently fail to recognise. Malicious software, more

frequently referred to as malware, poses a substantial risk to the safety and privacy of

those who use smartphones. Malware refers to a broad category of malicious software

that can take many different forms, including viruses, worms, Trojan horses, adware,

spyware, and ransomware. These dangerous programmes are able to penetrate cell phones

through applications that are infected, websites that have been compromised, or other

means. Once inside, they can compromise important information, interrupt device

performance, and even cause financial losses.

 93

5.2 Research Objective Revisited

It is absolutely necessary, in order to guarantee the safety of Android devices, to

have an understanding of the nature of malware and to create efficient solutions for the

detection and prevention of it. The overarching goal of this project is to make a

contribution to the field of cybersecurity by concentrating on the particular challenge of

"Malware Detection in Android Using Machine Learning."

In order to find a solution to this problem, the research will compile a complete

dataset of malware. Permissions are the privileges provided to programmes on a

smartphone in order for them to access particular resources or carry out particular

operations on the device. By analysing these permissions, it is possible to uncover

patterns and characteristics that can differentiate between benign and malicious software.

This is an important step in preventing security breaches.

Objective 1: To study the current issue with the Android malware detection system.

The first objective of my research is to investigate the current issues and

challenges in the Android malware detection system. Through an in-depth study, I aimed

to gain a comprehensive understanding of the existing problems and explore potential

solutions to enhance the effectiveness of malware detection on Android devices. To

achieve this objective, I extensively studied and analyzed the works published in online

scholarly journals and some research paper.

Chapter 2 of my research served as a critical component in accomplishing this

objective. Within this chapter, I presented a detailed overview of the malware detection

system, covering various aspects such as the classification of malware detection

techniques and the utilization of machine learning approaches. Additionally, I delved into

the different algorithms employed in the field.

By conducting this thorough review, my research aimed to gather valuable

insights and knowledge about the current state of the Android malware detection system.

This served as the foundation for further investigation and analysis in subsequent chapters

of the study.

 94

In essence, Chapter 2 played a crucial role in achieving the objective of reviewing

the issues surrounding the Android malware detection system. It served as a

comprehensive resource, presenting key information and insights regarding the

classification of malware detection techniques, the utilization of machine learning

approaches, and the algorithms employed in the field. This comprehensive review laid

the groundwork for the subsequent phases of my research and contributed to a deeper

understanding of the challenges and opportunities in Android malware detection.

Objective 2: To analyze the technique for Machine Learning that will be used to

construct an Android malware detection system.

The second objective of my research was to analyze the technique for Machine

Learning that will be used to construct an Android malware detection system. I aimed to

explore and evaluate various machine learning approaches and algorithms to identify the

most suitable ones for detecting and classifying malware on Android devices. To

accomplish this objective, I utilized the Jupyter Notebook software to conduct an

experiment and testing thorough the evaluation of the system.

Chapter 4 of my research was crucial for accomplishing this objective. In this

chapter, I conducted a step-by-step experiment in Jupyter Notebook to evaluate the

usefulness of the Android malware detection system. Accuracy, False Positive Rate

(FPR), True Positive Rate (TPR), precision (ability to correctly classify malware

instances), recall (ability to identify all malware instances), and f-measure (a combined

measure of precision and recall) were used to gain a solid experiment result.

The findings of my research, presented in Chapter 4, offered a spotlight on its

effectiveness of the Android malware detection system. By analyzing the results obtained

from the evaluation measures, I was able to determine the system's accuracy, its ability

to minimize false positives, and its capability to correctly identify malware instances.

This evaluation process provided a quantitative assessment of the system's performance

and served as a basis for further improvements and enhancements.

 95

I conducted experiments and evaluations to assess the performance and accuracy

of these machine learning algorithms in detecting Android malware. By utilizing a

carefully curated dataset of malware permissions, I trained and tested the algorithms to

measure their effectiveness in accurately identifying malicious software.

Objective 3: To assess the effectiveness of the Android malware detection system in

terms of its ability to identify malicious software.

The third objective of my research was to assess the effectiveness of the Android

malware detection system in terms of its ability to identify malicious software. This

evaluation involved assessing the performance of five different classifiers. Based on the

results obtained, it was found that the random forest classifier achieved the highest

accuracy percentage in detecting Android malware.

During my research, I conducted a thorough evaluation of the performance in

terms of its ability to accurately detect malware. This evaluation process involved

comparing the performance of multiple classifiers to identify the most effective one.

By analyzing the results obtained from the evaluation, it was determined that the

random forest classifier demonstrated the highest level of accuracy in detecting Android

malware. This precision and recall allowed me to evaluate the system's performance in

terms of minimizing false positives (identifying benign apps as malware) and false

negatives (failing to detect actual malware), respectively. These metrics provided insights

into the system's ability to strike a balance between accurate malware detection and

avoiding false alarms. This finding highlights the efficacy of the random forest algorithm

in accurately identifying malicious software on Android devices.

Furthermore, I explored the receiver operating characteristic (ROC) curve and

calculated the area under the curve (AUC) to assess the system's performance across

different thresholds. The ROC curve provided a visual representation of the system's

ability to trade-off between true positive rate and false positive rate, allowing for a more

comprehensive understanding of its performance characteristics.

 96

Through my research, I obtained valuable findings regarding the effectiveness of

the Android malware detection system. I observed that the system demonstrated

promising performance in accurately identifying malicious software, with high accuracy

rates and satisfactory precision and recall scores. The AUC analysis also indicated that

the system had a favourable trade-off between true positive rate and false positive rate,

indicating its capability to effectively distinguish between malware and benign

applications.

5.3 Achievement of the study

Throughout the course of my research, I have achieved several significant

milestones and made noteworthy contributions in the field of Android malware detection

using machine learning. I’ve been conducted an extensive review of the existing literature

and scholarly works related to Android malware detection. This review provided a solid

foundation of knowledge and helped identify the key issues and challenges in the field.

And help me gained a deep understanding of the various techniques and methodologies

employed in malware detection, particularly in the context of Android devices. This

understanding allowed me to identify the limitations of current approaches and explore

potential solutions. These are some of the achievements during my research:

5.3.1 Choosing a relevant dataset to be used

Using a relevant dataset allows for accurate evaluation of the performance of the

malware detection system. By employing a dataset that closely resembles the distribution

of malware in the wild, researchers can assess the system's accuracy, precision, recall,

and other performance metrics with greater confidence.

This study teaches me to get a relevant dataset that reflects real-world scenarios

and encompasses a wide range of Android applications, including both legitimate and

malicious ones. By using a dataset that accurately represents the diversity of applications

encountered by users, the research findings can be more applicable and reliable.

 97

5.3.2 Understand the detection approaches and techniques

Understanding detection approaches and techniques enables me to properly

evaluate the performance of my models. By comparing different algorithms and

methodologies, I can successfully assess the strengths and weaknesses of each approach

and make informed decisions about which techniques are most effective on the specific

testing and experiments.

The field of machine learning is constantly evolving, with new algorithms and

techniques being developed regularly. Having a deep understanding of detection

approaches and techniques allows me to stay abreast of the latest advancements and adapt

the detection systems accordingly. This adaptability ensures that the system remains

effective and relevant as new types of malware and attack techniques emerge.

5.3.3 Find the best machine learning classifiers

Start by defining the evaluation metrics that will be used to assess the performance

of the classifiers. This selection needs to be based on prior research, expert knowledge,

or commonly used classifiers in the field. The dataset will be divided into training,

validation, and testing sets. The training set is used to train the classifiers, the validation

set is used to fine-tune hyperparameters and optimize the model, and the testing set is

used to evaluate the final performance.

Different classifiers have varying performance characteristics. By identifying the

best classifiers, I can definitely improve the overall performance of my machine learning

models. The best classifiers are those that demonstrate higher accuracy, precision, recall,

or other relevant metrics, leading to more reliable and effective predictions or

classifications.[30] This helps in advancing the field of machine learning by establishing

standards and best practices, enabling researchers and practitioners to build upon

previous work and make informed decisions about the most effective techniques.

 98

5.4 Limitations

Limitations are important to acknowledge as they can impact the validity,

reliability, generalizability, and applicability of the research findings. During the progress

of my research on Android malware detection using machine learning, there are several

limitations that have been often face:

5.4.1 Availability and Quality of Datasets

Obtaining high-quality and diverse datasets for malware detection can be

challenging. Limited access to comprehensive and up-to-date datasets may restrict the

generalizability and effectiveness of your research. Additionally, ensuring the accuracy

and reliability of labelled malware samples can be difficult, as manual labelling may be

subjective and prone to errors.

5.4.2 Imbalanced Sample Size

Imbalance between the number of malware samples and benign samples that

created a total of 10,000 in the dataset is a common issue in malware detection research.

Imbalanced datasets can lead to biased model performance, where the classifier may

favor the majority class (benign) and struggle to accurately detect the minority class

(malware).

5.4.3 Interpretability and Explain ability of Machine Learning

Machine learning models, particularly complex ones, often lack interpretability

and explain ability. Understanding the decision-making process of these models and

providing insights into why a certain classification is made can be difficult. Interpretable

models may sacrifice some accuracy, while highly accurate models may lack

transparency, making it challenging to gain user trust and acceptance.

 99

5.5 Future Works

Future works are crucial as they contribute to the advancement of knowledge,

address existing gaps, and pave the way for further research and development. These are

the areas to identify further investigation, improvement, or expansion of the existing work

as follow:

5.5.1 Incorporating New Malware Techniques

As malware techniques continue to evolve, it is essential to stay updated and adapt

the detection system accordingly. Investigate emerging malware trends and explore

innovative approaches to effectively detect and mitigate new malware threats.

5.5.2 Deep Learning Approaches

Explore the application of deep learning techniques, such as convolutional neural

networks (CNNs) or recurrent neural networks (RNNs), for Android malware detection.

Deep learning models have shown promising results in various domains and can

potentially capture intricate patterns and representations within malware samples.

5.5.3 Real-Time Detection on Mobile Devices

Develop efficient and lightweight models suitable for real-time detection on

resource-constrained mobile devices. Consider optimizing the models for low power

consumption and minimal computational requirements without compromising the

detection accuracy.

5.5.4 Adversarial Attack Detection

Investigate the robustness of the malware detection system against adversarial

attacks. Adversarial attacks involve manipulating or crafting malicious inputs specifically

designed to evade detection. Develop techniques to detect and defend against such attacks

to ensure the reliability and effectiveness of the system.

 100

5.6 Conclusion

The elimination of malicious software often depends on the application of

machine learning methods. This research makes use of a number of well-known

classifiers, such as Naïve Bayes, DecisionTable, J48, Random Forest, and Multi-Layer

Perceptron. These classifiers are successfully able to recognise and categorise dangerous

software because they are trained with the optimised dataset and take into account a

variety of characteristics.

The results of this study have the potential to make important contributions to the

field of cybersecurity when taken together with its other findings. We can better

safeguard Android users from the ever-evolving threats posed by malicious software if

we improve our understanding of malware and enhance the capabilities of detection

systems that are based on machine learning. Not only will the development of more

efficient detection methods protect personal data and privacy, but it will also ensure the

smooth and secure operation of Android smartphones in our day-to-day life.

Moreover, the broad adoption of Android smartphones has offered an incredible

amount of ease and completely revolutionised the way in which we live our lives and

engage with technology. Having said that, this ease does come with security dangers,

most notably those posed by malware. The objective of the research project titled

"Malware Detection in Android Using Machine Learning" is to find a solution to this

problem by making use of machine learning algorithms and improving the quality of

datasets in order to increase the reliability and efficiency of malware detection. This

project aims to make a contribution to the field of cybersecurity and provide users with a

safer and more secure experience when using their smartphones by concentrating on the

detection and prevention of dangers posed by malware on Android devices.

By continuously refining detection techniques, incorporating new malware

trends, and considering real-world deployment scenarios, the development of more

effective and reliable malware detection systems becomes possible, ultimately ensuring

the security and integrity of Android users' devices and data.

 101

REFERENCES

[1] S. Talukder and Z. Talukder, “A Survey on Malware Detection and Analysis Tools,”

International Journal of Network Security & Its Applications, vol. 12, no. 2, pp. 37–57, Mar.

2020, doi: 10.5121/IJNSA.2020.12203.

[2] “What is malware and how cybercriminals use it | McAfee.” https://www.mcafee.com/en-

my/antivirus/malware.html (accessed Jan. 22, 2023).

[3] “What is malware? Definition and how to tell if you’re infected | Malwarebytes.”

https://www.malwarebytes.com/malware (accessed Jan. 22, 2023).

[4] J. Senanayake, H. Kalutarage, and M. O. Al-Kadri, “Android Mobile Malware Detection Using

Machine Learning: A Systematic Review,” Electronics 2021, Vol. 10, Page 1606, vol. 10, no.

13, p. 1606, Jul. 2021, doi: 10.3390/ELECTRONICS10131606.

[5] “Understanding Android Malware Families: Adware and Backdoor (Article 5) - IT World

Canada.” https://www.itworldcanada.com/blog/understanding-android-malware-families-part-5-

adware-backdoor/447798 (accessed Jan. 22, 2023).

[6] “PUP: Potentially unwanted program / PUA: potentially unwanted application – How you can

protect yourself.” https://www.kaspersky.com/resource-center/definitions/what-is-pup-pua

(accessed Jan. 22, 2023).

[7] “Ransomware explained: How it works and how to remove it | CSO Online.”

https://www.csoonline.com/article/3236183/what-is-ransomware-how-it-works-and-how-to-

remove-it.html (accessed Jan. 22, 2023).

[8] “What Is a Trojan Horse? Trojan Virus and Malware Explained | Fortinet.”

https://www.fortinet.com/resources/cyberglossary/trojan-horse-virus (accessed Jan. 22, 2023).

[9] O. Aslan and R. Samet, “A Comprehensive Review on Malware Detection Approaches,” IEEE

Access, vol. 8, pp. 6249–6271, 2020, doi: 10.1109/ACCESS.2019.2963724.

[10] “What is Signature-Based Detection? — Techslang.”

https://www.techslang.com/definition/what-is-signature-based-detection/ (accessed Jan. 22,

2023).

 102

[11] M. Norouzi, A. Souri, and M. Samad Zamini, “A Data Mining Classification Approach for

Behavioral Malware Detection,” Journal of Computer Networks and Communications, vol.

2016, 2016, doi: 10.1155/2016/8069672.

[12] M. Alhebsi, “Android Malware Detection using Machine Learning Techniques,” Theses, Apr.

2022, Accessed: Jan. 22, 2023. [Online]. Available: https://scholarworks.rit.edu/theses/11178

[13] J. Mohamad Arif, M. F. Ab Razak, S. Awang, S. R. Tuan Mat, N. S. N. Ismail, and A. Firdaus,

“A static analysis approach for Android permission-based malware detection systems,” PLoS

One, vol. 16, no. 9, p. e0257968, 2021, doi: 10.1371/JOURNAL.PONE.0257968.

[14] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review of Android Malware Detection

Approaches Based on Machine Learning,” IEEE Access, vol. 8, pp. 124579–124607, 2020, doi:

10.1109/ACCESS.2020.3006143.

[15] “(PDF) Android Malware Detection System using Machine Learning.”

https://www.researchgate.net/publication/348150130_Android_Malware_Detection_System_us

ing_Machine_Learning?enrichId=rgreq-7ae277dd6fb411bdcf2e219bf47305df-

XXX&enrichSource=Y292ZXJQYWdlOzM0ODE1MDEzMDtBUzo5NzU0NDQyMzcxMTUz

OTRAMTYwOTU3NTQzNzYyNg%3D%3D&el=1_x_3&_esc=publicationCoverPdf (accessed

Jan. 22, 2023).

[16] Y. Lin et al., “Dataset Bias in Android Malware Detection,” May 2022, doi:

10.48550/arxiv.2205.15532.

[17] “AndroZoo: Collecting Millions of Android Apps for the Research Community | IEEE

Conference Publication | IEEE Xplore.” https://ieeexplore.ieee.org/document/7832927

(accessed Jan. 22, 2023).

[18] A. Mahindru and A. L. Sangal, “MLDroid—framework for Android malware detection using

machine learning techniques,” Neural Comput Appl, vol. 33, no. 10, pp. 5183–5240, May 2021,

doi: 10.1007/S00521-020-05309-4/TABLES/37.

[19] Q. E. Alahy, M. N. U. R. Chowdhury, H. Soliman, M. S. Chaity, and A. Haque, “Android

Malware Detection in Large Dataset: Smart Approach,” Advances in Intelligent Systems and

Computing, vol. 1129 AISC, pp. 800–814, 2020, doi: 10.1007/978-3-030-39445-5_58.

 103

[20] S. Ledesma, M. A. Ibarra-Manzano, E. Cabal-Yepez, D. L. Almanza-Ojeda, and J. G. Avina-

Cervantes, “Analysis of Data Sets With Learning Conflicts for Machine Learning,” IEEE

Access, vol. 6, pp. 45062–45070, Aug. 2018, doi: 10.1109/ACCESS.2018.2865135.

[21] M. R. Keyvanpour, M. Barani Shirzad, and F. Heydarian, “Android malware detection applying

feature selection techniques and machine learning,” Multimed Tools Appl, vol. 82, no. 6, pp.

9517–9531, Mar. 2023, doi: 10.1007/S11042-022-13767-2.

[22] M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, “The rise of ‘malware’: Bibliometric

analysis of malware study,” Journal of Network and Computer Applications, vol. 75, pp. 58–76,

Nov. 2016, doi: 10.1016/J.JNCA.2016.08.022.

[23] Y. N. Maddineni, C. Nagesh, B. Prasad, C. L. Reddy, and M. Tech Scholar, “A GENETIC

ALGORITHM FOR ANDROID MALWARE DETECTION WITH OPTIMIZED FEATURE

SELECTION USING MACHINE LEARNING APPROACH,” vol. 12, 2021, Accessed: Jun.

12, 2023. [Online]. Available: www.jespublication.com

[24] J. Li et al., “Feature selection: A data perspective,” ACM Comput Surv, vol. 50, no. 6, Dec.

2017, doi: 10.1145/3136625.

[25] F. Yang, Y. Zhuang, and J. Wang, “Android malware detection using hybrid analysis and

machine learning technique,” Lecture Notes in Computer Science (including subseries Lecture

Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10603 LNCS, pp.

565–575, 2017, doi: 10.1007/978-3-319-68542-7_48.

[26] O. Yildiz and I. A. Doǧru, “Permission-based Android Malware Detection System Using

Feature Selection with Genetic Algorithm,” International Journal of Software Engineering and

Knowledge Engineering, vol. 29, no. 2, pp. 245–262, Feb. 2019, doi:

10.1142/S0218194019500116.

[27] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,”

Science (1979), vol. 349, no. 6245, pp. 255–260, Jul. 2015, doi: 10.1126/SCIENCE.AAA8415.

[28] B. Amro, “Malware Detection Techniques for Mobile Devices,” International Journal of

Mobile Network Communications & Telematics, vol. 7, no. 4/5/6, pp. 01–10, Dec. 2017, doi:

10.5121/IJMNCT.2017.7601.

[29] K. H. Tae, Y. Roh, Y. H. Oh, H. Kim, and S. E. Whang, “Data Cleaning for Accurate, Fair, and

Robust Models: A Big Data - AI Integration Approach,” Proceedings of the 3rd International

 104

Workshop on Data Management for End-to-End Machine Learning, Jun. 2019, doi:

10.1145/3329486.3329493.

[30] J. Qiu, J. Zhang, W. Luo, L. Pan, S. Nepal, and Y. Xiang, “A Survey of Android Malware

Detection with Deep Neural Models,” ACM Comput Surv, vol. 53, no. 6, Feb. 2021, doi:

10.1145/3417978.

