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ABSTRAK 

 Di era yang kian pesat dengan teknologi canggih, telefon pintar menjadi 

keutamaan dan keperluan bagi semua orang. Gajet ini berkembang setiap hari kearah 

yang lebih maju dan sesuai dengan cara penggunaannya. Namun, keselamatan menjadi 

salah satu punca yang menjadi kerisauan ramai pengguna telefon pintar ini. Keselamatan 

adalah aspek penting yang dipandang tinggi dan diambil berat oleh sesetengah pihak, dan 

sekiranya isu keselamatan ini dipandang remeh dan tidak diambil peduli, ia akan 

menyebabkan masalah kepada orang sekeliling. Sama seperti isu keselamatan pengguna 

telefon pintar, yang kini semakin berleluasa dengan salah satu ancaman terbesar bagi 

semua gajet, iaitu isu perisian perosak. Kajian telah menunjukkan bahawa terdapat 

peningkatan dari tahun ke tahun mengenai perisian perosak yang lebih tertumpu kepada 

menyerang dan merosakkan telefon pintar mangsa terutamanya kepada pengguna 

Android. Ramai pengguna Android telah terjejas dengan masalah perisian perosak ini dan 

juga pelbagai solusi sudah dijalankan. Kajian ini bertujuan untuk mengkaji cara dan 

kaedah pengesanan perisian perosak yang telah menyerang system operasi Android, dan 

mencadangkan pengesanan system pengesanan perisian perosak dengan menggunakan 

teknik pembelajaran mesin. Keputusan menunjukkan bahawa pembelajaran mesin adalah 

pendekatan yang lebih menjanjikan ketepatan 90% dalam eksperimen yang telah 

dijalnkan bagi kaedah pembelajaran mesin untuk pengesanan perisian perosak yang lebih 

tinggi dan membuktikan bahawa sistem pengesanan perisian perosak ini dapat mengesan 

perisian perosak Android dengan lebih efisien. 
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ABSTRACT 

In an era that is increasingly fast with advanced technology, smartphones are a 

priority and a necessity for everyone. These gadgets are developing every day towards 

more advanced and appropriate ways of use. However, security is one of the causes of 

concern for many smartphone users. Safety is an important aspect that is highly regarded 

and taken seriously by some parties, and if this safety issue is taken for granted and not 

taken care of, it will cause problems to the people surrounding. Just like the security issue 

of smartphone users, which is now increasingly prevalent with one of the biggest threats 

to all gadgets, which is the malware issue. Studies have shown that there is an increase 

from year to year regarding malware that is more focused on attacking and damaging the 

victim's smartphone, especially for Android users. Many Android users have been 

affected by this malware problem and various solutions have been implemented. This 

study aims to examine the ways and methods of detecting malware that has attacked the 

Android operating system, and suggest the detection of a malware detection system by 

using machine learning techniques. The results show that machine learning is a more 

promising approach with 90% accuracy in experiments that have been conducted for 

machine learning methods for higher malware detection and prove that this malware 

detection system can detect Android malware more efficiently. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

Malware refers to any program designed to disrupt computer operations, steal 

data, or break into secure networks. Software that causes unintentional harm due to a 

deficiency is not considered malware since malware is defined by its malevolent purpose, 

which works against the requirements of the computer user. Aside from purposefully 

malicious software, the term "badware" is sometimes used to describe software that 

harms by accident. threaten the availability of the internet, the security of its hosts, and 

the privacy of its users by breaking into computer systems and network resources without 

the owner's permission, disrupting computer operations, and collecting personal 

information. Malware has had far-reaching effects, affecting everything from e-

governance and social media to digital automation and mobile networks.  

Each type of malware such as virus, worm, Trojan horse, rootkit, backdoor, 

botnet, spyware, or adware has its unique purpose and method of operation. Malware can 

exhibit traits from numerous categories at once since these categories are not exclusive 

to one another. Malware creators implement polymorphism into the harmful components 

as a means of evading detection. This implies that dangerous files within the same 

malware "family," exhibiting the same types of destructive behavior, are regularly 

updated and obfuscated using different techniques, making them appear to be a wide 

variety of distinct files.  

When it comes to Internet security, malware is one of the biggest and worst risks 

currently available. A study performed by Symantec in February 2019, the poll found 

that 47% of firms had encountered malware security incidents/network breaches in the 

previous year.[1] Malware is expanding in three dimensions: quantity (widening scope 

of threats), diversity (evolving techniques of harm), and speed (fluidity of threats). These 
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are developing, gaining sophistication, and deploying novel techniques to attack 

computers and mobile devices. Over 100,000 new malware samples are added to 

McAfee's database every day.[2] This equates to roughly 69 new threats per minute, or 

one threat every second. There has been a rise in both the availability and sophistication 

of cybercriminal tools, leading to a new generation of threats and assaults that are more 

complex, persistent, and mysterious. 

Since the number of Android devices and software applications known as apps 

(app stores) is continually growing, a large number of Android users have benefited from 

this. Concerns about safety and personal privacy are also gaining traction among a wide 

range of mobile users and stakeholders. For example, an increasing number of users are 

opting to keep their personal information on their mobile devices by using popular apps 

such as those for shopping, banking, and social networking. As a result, attackers have 

moved their emphasis to mobile applications during the last decade. As a result, malicious 

software for Android smartphones has emerged as one of the most serious security 

problems in the industry. That is, they believe the sources from which they obtain their 

programs are trustworthy and secure. Several approaches for detecting Android malware, 

including those based on signatures, behaviour, and data-flow analysis, have been 

developed.  

The machine learning-based strategy is one of the most promising ways to 

detect out as one of the most promising ways for detecting Android malware. Because of 

the availability of vast data and the progress of hardware over the preceding decade, 

machine learning has proved incredibly effective in various cutting-edge fields, including 

Android virus detection. In practise, all of the aforementioned security precautions are 

primarily applied in app store backends. However, not all app shops are able to respond 

quickly when a new family of Android malware is discovered. The analysis approach 

now consists of three independent steps: investigating dangerous behaviour within 

applications, building detection models with the generated characteristics, and lastly 

running a detection on the whole app. 
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1.2 Problem Statement 

With the rise of the new modern gadget era, people nowadays are having mobile 

phones for their daily use. According to Tech Crunch, mobility firm Ericsson predicts 

that by 2020, there will be more than six billion smartphone users worldwide, surpassing 

landlines.  Because smartphones and tablets are quickly becoming more powerful as 

companies embrace the idea of bring your own device (BYOD) policies and allow users 

to access corporate networks with personal technology. However, with increased use 

emerges an increase in mobile malware, which is malicious code designed to target 

smartphones and tablets. 

"Android malware is growing at an exponential rate, but I fear we won't see any 

major changes in user behaviour until a large and significant user base is affected by 

malware," Tim Armstrong, malware researcher for anti-virus firm Kaspersky Lab, told 

SecurityNewsDaily. Armstrong and Wisniewski were both commenting on a new Juniper 

Networks report showing that Android malware has increased 472 percent in the four 

months since July 2011. Despite this astounding increase in malicious, corrupt software, 

Android has captured 52.5 percent of the global smartphone market share, with more than 

440.5 million units sold in the third quarter (July through September) alone, according to 

technology research firm Gartner.[3] As a result, Android malware is clearly a problem. 

However, as with car theft, it is not a serious issue until your vehicle is stolen.  

In addition, UMP students keep browsing on their mobile phones to do simple 

research on what they learn in class. And the internet platform is the place where they 

may get android malware by clicking on a random advertisement and link. This may lead 

to downloading any files and leaking malicious android software on their mobile devices. 

Although, Zimperium Labs discovered earlier this year that 95 percent of Android 

devices could be hacked with a simple text message. Cyber criminals have come out with 

news-identified ways, methods, and tricks to launch an attack on android users. As 

opposed to classic malware, which was widespread, well-documented, and static, modern 

malware is targeted, unknown, stealthy, customized, and zero-day. After infiltrating a 

system, viruses and malware conceal, reproduce, and compromise security. This can put 

a risk for all android phone users. 
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1.3 Objectives 

The objectives of this research are: 

i. To study the current issue with the Android malware detection system. 

ii. To analyze the technique for Machine Learning that will be used to construct an 

Android malware detection system. 

iii. To assess the effectiveness of the Android malware detection system in terms of 

its ability to identify malicious software. 

 

1.4 Scope 

The scope of this research: 

i. Platform: 

• This system is for Android packages only. 

ii. Development / Functionality: 

• The system is only able to identify malicious software and cannot 

completely remove it from infected devices. 

• The detection method is only effective on a mobile device that is 

powered by the Android operating system. 

iii. User: 

• Users of Android-based smartphones only. 
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1.5 Thesis Organization 

 

 

                 

Figure 1.1: Overall Chapter 
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In chapter 1, there are an introduction, problem statement, objectives, scope, and 

thesis organization. Furthermore, chapter 2 discusses more literature reviews of the 

research topic such as what is the definition of malware, the background of android 

malware detection, and the current approach solution comparisons to earlier research on 

the research topic. Besides, chapter 3 highlights the methodology that is utilized 

throughout this study on the approach that was used. The gathering of data, the 

standardization of such data, and the software that was utilized in this experiment are all 

topics that are covered in this section of the study. Furthermore, Chapter 4 provides a 

detailed exploration for Training and Testing of the machine learning approach for 

malware detection in Android to achieve a highest results accuracy. It presents the 

dataset, discusses the chosen algorithms, evaluates their performance using various 

metrics, and visualizes the results through the confusion matrix and ROC curve. Lastly, 

Chapter 5 of the project serves as a reflective and conclusive section. It reviews the 

research objective, evaluates the achievement of the study, examines its limitations, 

recommends future improvements, and wraps up the project. The results of the study are 

thoroughly summarised in this chapter, which also paves the way for future developments 

in machine learning-based malware detection for Android. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter will be more focusing on the literature review which can describe 

more about malware detection, especially android malware. Otherwise, the malware 

detection approaches, techniques, and features. This chapter also determines how 

malware can be found in infected devices. Furthermore, will be studying the previous 

research’s comparison with the related review on related research that suggested different 

techniques to detect the malware in order to further enhance the current work.  

 

2.2 Malware  

Malware is a catch-all term for computer viruses, trojan horses, and other 

destructive computer programs that threat actors use to infect systems and networks in 

order to gain access to sensitive information. Malware is defined as software that is 

designed to interfere with the normal functioning of a computer. Malware is an 

abbreviation for "malicious software," which refers to a file or piece of code that, when 

transmitted typically across a network, can infect, investigate, steal, or conduct nearly 

any other behaviour that an attacker desire.[3] 

Hostile, intrusive, and intentionally nasty, malware seeks to invade, damage, or 

disable computers, computer systems, networks, tablets, and mobile devices, often by 

taking partial control over a device’s operations. Because malware comes in so many 

varieties, there are countless ways to infect computers. Malware, while varying in type 

and capability, typically has a goal such as providing a remote control for an attacker to 

use an infected machine, sending spam from the infected machine to unsuspecting targets, 
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investigating the infected user's local network, and, most importantly, stealing sensitive 

data. 

Android malware is malicious software that targets Android-powered smartphone 

devices. It functions similarly to other malware variants that run on desktop or laptop 

PCs. Android malware, often known as mobile malware, is any malicious software 

designed to harm a mobile device by doing unauthorized activities such as installing 

infected apps from unofficial app stores, visiting hacked websites, or receiving infected 

email attachments. Malware is categorized into several types, including adware, 

backdoors, file infectors, potentially unwanted applications (PUA), ransomware, 

riskware, scareware, spyware, and trojans. Each malware type has some distinguishing 

traits that set it apart from the others. Android malware develops in the same way that 

humans do. 

Users have access to high-performance platforms thanks to Android, which is the 

industry-leading operating system. Android is expected to maintain its dominant position 

in the industry with an 85 percent share of the global market in the final quarter of 2020, 

as stated in a report that was issued by the International Data Corporation (IDC). In 

addition, it is anticipated that the yearly shipment rate of Android would expand by 150 

million units in the year 2021. In conjunction with the skyrocketing demand for Android 

in the global market, the difficulties that are related to malicious software for Android are 

also increasing at a breakneck speed. Its solutions identified over 3,5 million malicious 

installation packages in 2021, which is roughly the same amount as in 2019, but 2.2 

million fewer than in 2020. In 2021, the number of malicious installation packages was 

about the same as in 2019.  

 

Figure 2.1: Total of Malware detected between years 
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The number of attacks that were identified continued to fall throughout 2021, 

going from 5.5 million in January 2021 to 2.2 million by the end of the year. However, 

according to Kaspersky, attacks on mobile have become more complex in terms of both 

the functionality of the virus and the vectors that are being used. Adware and potentially 

unwanted applications (PUA) typically use business models that facilitate spreading at a 

large scale on as many devices as possible. These findings should not come as a surprise 

given that adware and PUA tend to use business models that facilitate spreading at a large 

scale on as many devices as possible with adware representing as much as 42% of all 

detected mobile malware and PUA representing 35% of all detections.  

 

Figure 2.2: Malware detected by categories 

The Trojan malware category is the third most common one to be found, and 

despite the fact that it only accounts for 8.86% of all detections, it is regarded as being 

far more dangerous than the first two categories. It is also important to note that the 

number of detected Trojans nearly doubled between the years 2020 and 2021. 

 



 

 23 

2.3 Types of malware attack 

Researchers and cybersecurity professionals are faced with an open challenge as 

a result of the unrivalled hazards provided by malicious Android software. This software 

is the root cause of a wide array of security vulnerabilities that are currently plaguing the 

internet. The speed with which malware samples may be identified and fixed is a critical 

factor in determining whether or not this threat can be eradicated. It is impossible to do 

anything else. Having a solid understanding of the many different families and types of 

Android malware is essential to accomplishing this goal. Adware, backdoors, file 

infectors, potentially unwanted applications (PUAs), ransomware, riskware, scareware, 

spyware, trojans, trojan-sms, trojan-spies, trojan-bankers, and trojan-droppers are some 

of the most frequent forms of harmful software for Android devices. [4] 

  

Android Malware 

Category 

General Description of 

Behaviour 

Common Malware 

Families 

Adware Displays adverts in an unpleasant 

pop-up window to the user. 

gexin, batmobi, ewind, 

shedun, and adcolony 

Backdoor Stealthily utilizes the device by 

remaining in the background. 

mobby, kapuser, hiddad, 

dendroid, and droidkungfu 

File Infector Files are contaminated particularly 

executable (APK) files. 

leech, tachi, commplat, 

gudex, and aqplay 

PUA Acts as an annoying thing that 

stops the device from doing what 

it should be doing. 

apptrack, secapk, wiyun, 

youmi, scamapp, utchi, 

cauly, and umpay 

Ransomware Performs the function of a crypto 

locker, which encrypts the user's 

files and directories and then 

requests a ransom payment from 

congur, masnu, fusob, 

jisut, koler, lockscreen, 

slocker, and smsspy 
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the user in order to decrypt his or 

her own data. 

Riskware Potentially endangers the 

smartphone's weak spots that 

could be exploited by attackers. 

badpac, mobilepay, 

wificrack, and tordow 

Scareware Performs the function of a fear 

coaxer, which causes the user to 

experience dread and drives them 

to download malicious 

applications. 

avpass, mobwin, and 

fakeapp 

Spyware Spy activities are used to get 

useful information from the device 

and send it to a server that is 

controlled from afar. 

spynote, qqspy, spydealer, 

smsthief, spyagent, spyoo, 

smszombie, and smforw 

Trojan Performs actions in the 

background similar to those of an 

imposter, which continually steals 

information from the device. It can 

appear in a variety of myriad 

forms, such as the trojan-banker, 

trojan-dropper, trojan-sms, and 

trojan-spy. 

gluper, lotoor, rootnik, 

guerrilla, gugi, hqwar, 

obtes, and hypay 

Table 2.1: Type of Malware 
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2.3.1 Adware and Backdoor 

Adware is short for the term "advertising malware”. It's a malicious application 

that floods the user's screen with unwanted ads, usually when they're trying to use online 

services. Adware is software that displays intrusive advertisements, often with enticing 

offers, in the hopes that the user will click on them. The maker of this obnoxious app 

makes money whenever a user interacts with the in-app advertising. [5] 

Typical forms of adware include software that claims to assist users in avoiding 

screen warnings about phony infections, losing weight, or making more money in less 

time. Many forms of adware can be downloaded onto a smartphone after any program or 

application is installed. Information such as phone number, email address, application 

accounts, IMEI number of the device, device ID, and device status may be gathered by 

the adware. The adware that gains access to a device's camera can steal personal data. On 

occasion, the adware will try to encrypt data on infected devices and install further 

malicious software, code, or files. 

Backdoors are essentially secret entrances into a mobile device. Simply said, 

backdoors are a method through which an attacker can bypass a smartphone's 

authentication measures and get root access to the device. The term "trap door" is 

commonly used to describe a back entrance. The use of backdoors enables attackers to 

start attacks from a distance without physically possessing the target system. They might 

be completely new programs, or they could be a part of an existing program. 

For example, attackers carefully conceal malicious code within legal programs, 

ensuring that it is only activated in specific circumstances. It has been noticed that in 

some cases, malicious code can be injected into a device and used to take control of it 

remotely if the user has not changed the default passwords of any accounts they create 

on the device. Malware that gains access to a device through a backdoor can steal 

sensitive data, send and receive messages, make and receive phone calls, record call 

history, compile a list of installed and running applications, and allocate memory.  
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2.3.2 File infector and PUA 

Malware that adds itself as an attachment to APK files is referred to as a file 

infector. The Android Package Kit, or APK, is a file that contains all of the information 

about an Android app. The APK files are used to install the file infector. Malicious code 

is then executed anytime an APK file is installed. APK files can represent any type of 

Android program, from games to word processors to GPS applications. 

As a result of recent events, Google has removed a number of apps from the Play 

Store after discovering they may contain malware. When executed, file infectors slow 

down the device and drain the battery significantly. These capture information regarding 

the device ID, IMEI number, and the status of the phone. They might disable, damage, or 

utilize the programs on your phone. They have the capacity to access, modify, and collect 

data from the settings and files of the device. In the worst-case scenario, malicious files 

infect the device's system files and take control of it. 

PUAs are possibly undesirable apps that are packaged with genuine software that 

is supplied for free. PUAs spread alongside legitimate programs because they travel in 

the same channels. Potentially Unwanted Programs (PUPs) are another name for them[6]. 

Despite common belief, there are some situations in which a PUA would be beneficial. 

It is contingent on how they are put to use. 

When an application is installed that includes a PUA, the PUA is also installed 

automatically. This risk can take several forms, including adware, malware, and browser 

hijackers. Memory-hogging PUAs slow down the device. Spyware applications are 

designed to acquire sensitive data from the device that is the target of the attack and pass 

it to the attacker, and PUPs might lead to more of the same. Using GPS, they are able to 

track the user's location, display unwanted advertisements, alerts, and links, and create 

shortcuts on the user's home screen. 
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2.3.3 Ransomware and Riskware 

Ransomware is a form of malicious software that encrypts files and directories on 

a computer system, making those files and directories inaccessible to users of the system. 

For the purpose of delivering the decryption key that may be used to gain access to the 

data, it asks a significant sum of money to be paid as a type of ransom. Bitcoins are 

regularly utilized as a form of payment for ransomware demands. 

However, some incidents have shown that some consumers have been unable to 

regain access to their data even after paying the necessary quantity of money. Incomplete 

files were reportedly received by some of them. At times, data would mysteriously 

vanish. The evolution of Android ransomware has been dramatic, and new strains are 

constantly being created.[7] Some ransomware strains pose as popular apps and manage 

to avoid detection. The sending and receiving of SMS messages, the locking of SIM cards 

and cell phones, the theft of network information such as Wi-Fi connection details, and 

communication with the remote server that controls the ransomware attack are all 

activities that are carried out by ransomware. 

A program is considered to be riskware if it is completely legal but nevertheless 

has the ability to compromise the system's security in some way. To steal information 

from users' devices and direct them to malicious websites, hackers are exploiting a 

genuine piece of software. 

It may also be called malicious software if it compromised the security of the 

device while performing its intended tasks. Riskware has the ability to snoop on users' 

data, including phone numbers and contact lists, send and receive text messages, steal 

network data, direct users to malicious websites, download, and install malicious 

software, display malicious advertisements, and alter the device's settings and files. 
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2.3.4 Scareware, Spyware, and Trojan 

Scareware is software that produces fear in computer users in the hopes that they 

would download or purchase apps that contain malicious code. Convincing consumers to 

install a false application that promises to protect the device. Scareware is software that, 

in addition to installing dangerous programs on a device, attempts to gather information 

about the device, including its GPS location. 

When installed on a computer, spyware can monitor user activity and steal 

sensitive data. Spyware collects data and sends it to a variety of commercial and non-

profit entities. In the future, this data is put to use in the commission of criminal activities. 

Android users are requested to grant permission before any spyware is installed, but 

spyware can still access the phone's location, camera, and settings without the user's 

awareness or approval. Spyware can send and receive text messages, track a device's 

location and phone number, steal data about the networks to which a device is connected 

(including the Wi-Fi networks to which it is connected), modify system files and settings, 

and steal personally identifiable information. 

When they are executed, Trojan’s masquerade as legitimate software so that they 

can steal information and do damage. They are able to obtain sensitive data from the 

device while remaining undetected in the background[8]. It is the most widespread form 

of malicious software, and it incorporates a number of subtypes of malware as well, such 

as trojan-banker, trojan-dropper, trojan-sms, and trojan-spy. It is also the most dangerous. 

Trojans will typically engage in activities such as deleting, modifying, blocking, or 

copying data in an effort to disrupt the operations that are carried out by the operating 

system. 
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2.4 Android Malware Detection Approaches 

Over the span of the last several years, there has been a significant rise in the 

number of academic research focused on the detection of android malware. In the 

beginning, the approach of signature-based detection was implemented quite frequently. 

This approach is quick and effective when used to counter previously discovered 

malware, however it is not as effective when used to resist zero-day malware[9]. Over 

the course of time, researchers have started employing methods such as anomaly-based, 

specification-based, and model-checking-based detection. Also, completely new methods 

of detection such as those based on deep learning, the cloud, mobile devices, and the 

internet of things. 

 

 

Figure 2.3: Malware Detection Approach 
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2.4.1 Signature-based Detection Approaches 

A signature is a feature of malware that encapsulates the program structure and 

identifies each piece of malware in a way that is unique to that virus. Signature-based 

detection is a common method utilized by commercially available antivirus software. 

This method is quick and effective for identifying known forms of malware, however it 

is insufficient for identifying unknown forms of malware. In addition, malicious software 

that comes from the same family has a much better chance of evading signature-based 

detection if it makes use of obfuscation techniques. 

When a sample of a program needs to be determined whether it is malicious or 

not, the signature of the sample in question is extracted in the same approach as it was 

before, and then it is compared with signatures that are stored in the database. The sample 

program is classified as either malware or benign, depending on the results of the 

comparison. Creating a signature can be accomplished using a wide variety of methods, 

including string scanning, top-and-tail scanning, entry-point scanning, and integrity 

verification, among others. 

Signature-based detection schema has been used for many years by antivirus 

manufacturers since it is a very efficient method for detecting known malware, and it has 

been utilized for those years.[10] In most cases, this method is utilized to identify 

malicious software that is a member of the same family. On the other hand, it is unable 

to detect malware of a newer generation since it employs strategies like obfuscation and 

polymorphism. The signature should be as short as possible and can represent many 

different types of malwares with a single signature, an effective automatic signature 

generation mechanism must be built, data mining and machine learning techniques 

should be used more frequently during the generation of the signature, and the signature 

should be resistant to packing and obfuscation techniques. These requirements must be 

met for a signature to be considered effective. 
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2.4.2 Anomaly-based Detection Approaches 

Anomaly-based detection is one type of intrusion detection system, and it works 

by keeping tabs on system activity and labelling it as normal or abnormal. This enables 

the system to identify malicious activity on a network or computer and prevent further 

abuse of the system. Instead of looking for patterns or signs, the classification, which is 

based on heuristics or rules, makes an effort to identify any kind of improper use that 

deviates from the typical functioning of the system. Signature-based systems, on the other 

hand, are limited in their ability to detect assaults because they can only identify those 

for which a signature has already been developed. 

In addition, it is also able to recognize unknown attacks by basing its analysis on 

the behaviour of past intrusions that are similar. The strategy of anomaly-based detection 

is one that seeks to find incidences of malware by modelling what is considered normal. 

Therefore, everything that is not consistent with this model is regarded as unusual. This 

method is useful for identifying previously unknown forms of malware. In order to 

construct the model using anomaly-based detection, many characteristics had to be 

extracted from the Manifest file of Android applications. These features included uses-

permission and uses-features. These features were utilized to develop the usual model of 

multiple legitimate applications, which was then used to identify malicious programs.  

Other efforts, such as the model that was developed, made use of entropy-based 

anomaly detection to identify distinct abnormalities in the manner in which Android 

applications behaved on the system. To detect malicious software on Android devices, 

they made use of two popular entropy measures: sample entropy and changed sample 

entropy. Researchers interested in computing systems and network traffic have begun to 

focus on anomaly-based malware detection. Various technologies, such as those based 

on data mining and machine learning, have been utilized in the process of detecting 

mobile malware. These include statistically-based strategies, methods, and approaches. 

The researchers merged permissions and API calls in a machine-learning approach to 

malware, which allowed machine-learning methods to be applied in anomaly-based 

malware detection. 
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2.4.3 Specification-based Detection Approaches 

Specification-based detection approaches monitor applications for normal and 

inappropriate behaviour. Heuristic-based detection uses machine learning and AI to 

recognize legitimate software's valid and invalid activities, while specification-based 

detection analyses the system specification's behaviour. 

Otherwise, the specification-based detection determines whether or not a program 

is malicious based on the possibility that it violates a specified set of rules by referring to 

a rule set that specifies what kinds of behaviours are recognized to be normal. Malicious 

software is defined as any application that operates in violation of a predefined set of 

rules. In specification-based malware detection, a detection method that addresses the 

limitation of pattern-matching was developed. This was implemented so that malware 

might be detected more effectively. This technique takes advantage of instruction 

semantics in order to identify instances of malware. The method has a high degree of 

resistance to conventional methods of obfuscation. 

This approach does not permit the proper specification of an attribute of a 

program, which is one of its limitations. The concept of anomaly-based detection 

provided rise to the concept of specification-based detection. When using specification-

based detection, an approximation of the system's or application's requirements is created 

rather than an estimation of the system's or application's implementation. A training phase 

is present in a specification-based approach. During this phase, an attempt is made to 

learn all of the valid behaviour of a program or system that has to be inspected. The 

primary drawback of a system that is based on specifications is that it is extremely 

challenging to provide an accurate description of the operation of the system or the 

software. 
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2.4.4 Comparison of Android Malware Detection Approaches 

Many different kinds of malware detection have been developed, each of which 

has seen its own set of capabilities becoming more sophisticated.[11] The following table 

compares and contrasts the advantages and disadvantages of three different approaches 

of detection: signature-based, anomaly-based, and specification-based detection 

approaches. 

 

Android Malware 

Detection 

Advantages Disadvantages 

Signature-based - Can detect known 

attacks accurately. 

- Less amount of system 

resource is required to 

detect intrusion, 

- Focus on attack 

behaviour. 

- It cannot detect new, and unknown 

intrusion methods. 

- Ineffective against previously 

unseen attacks, as no signatures are 

available for such attacks. 

Anomaly-based - It can detect new 

intrusion methods and 

novel attacks. 

- Focus on normal 

behaviour to overcome 

undetected unknown 

attacks. 

- It needs to update the data 

describing the user’s behavior and the 

statistics in normal usage and tends to 

be large. 

- Problem to select the appropriate set 

of features to be able to detect 

potential attacks. 

- Need more resources like CPU time, 

memory, and disk space. 

Specification-

based 

- Attacks can be detected 

even though they may not 

previously encounter  

- It is not as effective in detecting 

novel attacks, especially in network 

probing and DOS attacks. 

- Development of detailed 

specifications is time-consuming. 

Table 2.2: Comparison of malware detection approaches 
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2.5 Analysis Technique 

Analysis of malware is the first step in identifying malicious software. In order to 

detect malware, we must first investigate how malware possesses its function and what 

the motivation is behind the development of malware. Having this level of understanding 

about malware makes it much simpler for the developers of malware detectors to put 

defensive features into their products. The processes involved in analyzing malware can 

be categorized into three distinct groups according to the amount of time and effort 

required to complete the analysis.[12] 

These techniques can be divided into three different categories: static features, 

dynamic features, and hybrid features, depending on whether they are generated by 

running an Android application. 

 

2.5.1 Static Analysis 

The technique of static analysis for the identification of malware does not execute 

or run the code of the malware, but it relies exclusively on the properties of the malicious 

abstraction. When utilizing this method to detect malware, the most reliable features for 

detection come from the application's byte code or its manifest file. 

Applications for Android are stored in an archive format known as APK. This 

comes in a zipped-up package the majority of the time. Included in this package are each 

and every one of Android's files, directories, and other resources. Most of the time, the 

process of reverse engineering is applied to the apk files in order to do feature mining. 

When searching for the extraction of key features, the manifest file known as 

"AndroidManifest.xml" is the first thing that should be examined. This manifest file 

includes permission vector features for access to the installation, locations, battery 

optimization, and phone state permissions. These features may be found in this manifest 

file. 
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Ankita used 103 malware datasets and 97 benign application datasets 

correspondingly, and it was able to detect malware on a Nexus 5 device with API level 

19. It also found that the malware was performing high-level unauthorized permission 

assaults. The XML parser extracted the permission request, which then generated binary 

features of the malware. These features were stored in Attribute Relation File Format 

(ARFF). The results showed a detection rate of 96.6% when the random forest algorithm 

was implemented, with just a minimal difference of 0.069% from the algorithm with the 

worst detection rate.[13] 

Once the code that is operating the malicious program has been thoroughly 

reviewed by trained systems, the appearance of the malicious application will be much 

easier to spot. The power of DSA was characterized when it was applied at the input and 

extraction layer of the model, and it was characterized by the different detections that 

were achieved by the trained algorithms. The detection accuracy of the random forest 

method was found to be 97% better compared to the other algorithms. 

 

2.5.2 Dynamic Analysis 

System calls to make it possible for applications that are based on Android to 

communicate with the operating system of the device, which in turn makes it possible to 

view the events that take place between the two parties. Android malware is monitored 

in a controlled environment during runtime by the dynamic detection analysis. This is 

accomplished by making a record of the malware pointers and deciding which detection 

signatures may be modelled using them. In order to accomplish this, it is necessary to 

take into consideration the dynamic behaviour of the malware. It investigates the ways in 

which malicious software interacts with mobile resources and services, including 

location, networks, packages, and actions carried out by the operating system. 
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The research demonstrated the effectiveness of this detection method on 4034 

malicious datasets and 10024 benign datasets, respectively. The malware was found on 

those applications by the random forest classification algorithm with a success rate of 

96% when the ServiceMonitor methodology was applied. The accuracy of the 

information that the malware collected, such as the phone's IMEI, was determined to be 

67%. 17% of the malicious applications that were found to be running on the device were 

found to have attached their payload there in exchange for a premium service rating. The 

overhead device performance of the mobile utilities such as CPU and Memory was 

detected to be infected with a value of 0.8 percent and 2 percent, correspondingly. 

After being downloaded and installed, certain malicious software will remain 

hidden on the device until it is prompted to perform an action. While some execute their 

payload in this approach, others do so neither during download nor during installation 

or runtime. Even if the default permissions are constantly encountered throughout the 

application download and installation process on Android devices, access authorization 

that is routinely authorized by users provides a vast area in the attack vector for the 

device. During those tests, malicious code is attached to programs that aren't malicious 

at all. It is necessary to do critical monitoring at each of these stages in order to improve 

the mobile platforms' level of security. 

 

 

 

 

 

 

 



 

 37 

2.5.3 Hybrid Analysis 

This analysis combines both the features of dynamic and static analysis to provide 

a more robust detection result when analyzing malware. The basic aspects of training and 

detection, which can be carried out by dynamic and static analysis, are included in the 

hybrid detection approach to the detection of malicious software. Because the benefits of 

both approaches are combined, this seems to result in a higher detection rate than either 

the dynamic or the static procedures individually. The hybrid analysis gathered a total of 

192 examples for training, including both malicious and benign android software. The 

model produced detection results with an accuracy of 96.60%, with only a 0.0021% 

difference in accuracy amongst the various techniques that were utilized. 

A comparison of the accuracy of the static and dynamic detection rates can be 

made with the assistance of the hybrid technique. As an analyzer, Android Buster 

Sandbox was employed, which allowed for the definition and establishment of the 

maliciousness and benignness of an application. However, Android malware detection 

using API call sequence was unable to circumvent the issue of malware obfuscation. This 

approach is unable to build the first malware distribution state in the call graph and 

sequence respectively because the observational sequence of the malware features does 

not produce a relational correlation to the HMM's distinct states. Even though this 

strategy was successful in preventing evasion assaults in Android malware, machine 

learning was unable to solve the problem of Android malware being poisoned. 
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2.5.4 Comparison of Analysis Techniques 

There is a comparison between static, dynamic, and hybrid analysis techniques in 

analyzing and detecting android malware. These are the advantages of three analysis 

techniques: 

Table 2.3: Comparison between analysis techniques 

2.6 Machine Learning 

In machine learning, data and algorithms are used to model the way humans learn, 

with the ultimate goal of improving the realism of the model over time. This area of AI 

and computer science is rapidly growing in popularity. Early AI researcher Arthur 

Samuel coined the phrase "the branch of research that provides computers with the ability 

to learn without explicitly being programmed" in the 1950s. 

 

Approach Advantages Disadvantages 

Static 

Analysis 

- Fast, safe, and low resource consumption. 

- Multipath malware analysis and more secure 

than dynamic analysis. 

- Can’t analyze obfuscated and encryption 

malware. 

- Can’t detect unknown malware. 

Dynamic 

Analysis 

- Can analyze obfuscated and encryption 

malware. 

- Can detect both known and unknown 

malware. 

- Slow, unsafe, and high resource 

consumption. 

- Time-consuming and vulnerable. 

Hybrid 

Analysis 

- Better than static and dynamic analysis. 

- Have the highest accuracy among the three 

analyses. 

- More time and resources consuming. 

- Highest complexity. 
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Storage and processing capacity improvements over the past few decades have 

paved the way for a plethora of innovative machine learning-based solutions. Such items 

include driverless vehicles and Netflix's recommendation engine, to name a few 

examples. 

A key topic of data science is machine learning, which is expanding rapidly. 

Algorithms are frequently trained in data mining projects to produce classifications or 

predictions and to discover key insights by making use of statistical methods. These 

discoveries inform the ensuing application and enterprise decision-making process and, 

ideally, influence key growth KPIs.[14]. As the big data industry continues to develop 

and thrive, it is reasonable to anticipate that there will be an increased demand for data 

scientists in the market. They will be expected to lend a hand in deciding the most 

pertinent business questions, as well as the data that is necessary to answer those 

questions, which will be one of the responsibilities placed on them. 

There are many different ways in which machine learning algorithms can be 

trained, and each of these ways has both advantages and disadvantages. Machine learning 

may be roughly broken down into four distinct subfields, each of which is characterized 

by a distinct set of learning strategies and techniques. 

 

2.6.1 Supervised machine learning 

Supervised learning, or supervised machine learning, is the practice of teaching 

an algorithm how to accurately classify data or make predictions using only examples 

from labelled datasets. No matter what information is fed into it, the model will keep 

adjusting its weights until it is properly matched. In order to ensure that the model is not 

overfitting or underfitting, this procedure is performed as part of the cross-validation 

process. Supervised learning allows businesses to expand their efforts to solve a wide 

range of real-world problems, such as identifying and deleting spam emails. Supervised 

learning allows for the implementation of a wide variety of methods, including neural 

networks, naïve bayes, linear regression, logistic regression, random forest, and support 

vector machines (SVM). 



 

 40 

2.6.2 Unsupervised machine learning 

Unsupervised machine learning, or unsupervised learning, is the application of 

machine learning algorithms to data without the benefit of a labelled training set. This 

kind of learning is employed to rank and classify data that has not been labelled. Unlike 

human researchers, these algorithms can find new patterns and clusters in data on their 

own. This strategy excels in applications where similarities and differences need to be 

uncovered, such as exploratory data analysis, cross-selling strategies, consumer 

segmentation, and picture and pattern recognition. As a by-product, it can be used to 

reduce the number of features in a model through a technique called dimensionality 

reduction. Principal component analysis (PCA) and singular value decomposition are two 

methods that are commonly employed for this purpose (SVD). Unsupervised learning 

can also make use of other kinds of algorithms, such as neural networks, k-means 

clustering, and probabilistic clustering techniques. 

 

2.6.3 Semi-supervised learning 

The benefits of both supervised and uncontrolled learning can be seen in a semi-

supervised setting. During the training phase, it employs a smaller labelled data set to 

guide the analysis of a larger unlabelled data set and the extraction of relevant features. 

Semi-supervised learning can be used to address situations where a supervised learning 

system does not have access to enough labelled data. It's also helpful when it would cost 

too much to classify a large amount of data manually. 

 

2.6.4 Reinforcement learning 

The supervised learning model and the machine learning paradigm known as 

reinforcement learning are quite similar. In contrast, the algorithm in reinforcement 

learning is not learned through the use of examples. This model learns as it goes by 

making mistakes. As a problem's solution, counsel, or policy is developed, it will be built 

upon and supported by a series of successes. 
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2.7 Previous Research Works 

My research project and study on "MALWARE DETECTION IN ANDROID 

USING MACHINE LEARNING," must begin with a review of prior research articles. 

Engaging with earlier works has several benefits and can be essential for determining the 

purpose and contributions of the research.  

First of all, reading through earlier research papers enables to develop a thorough 

awareness of the state of current knowledge and developments in the field of Android 

malware detection. Able to recognise gaps, restrictions, and areas that need more research 

by looking at the approaches, procedures, and experimental designs used in previous 

research. 

Additionally, reviewing previous research articles assists in clarifying and 

identifying the research objectives and hypotheses of the study. It enables to recognise 

the gaps in the corpus of knowledge and create research questions that add to it. By 

evaluating the strengths and weaknesses of prior research, we can design an improved 

experimental setup and choose appropriate methodologies and techniques to achieve 

higher accuracy and reliability in the testing results.  

Moreover, reviewing earlier research publications gives a platform for comparing 

and validating the individual findings. We can compare the results to previously 

published research to acquire a greater understanding of the merits and drawbacks of the 

suggested method that can be apply in my research. This comparative analysis contributes 

to the overall credibility and impact of the research, as it demonstrates the novelty and 

advancements in study brings to the field of Android malware detection. 
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2.7.1 Comparison and description of previous research paper 

Research 

Paper 
Summary 

Technique 

Used 
Dataset Advantages Disadvantages 

"A 

Comparative 

Study of 

Machine 

Learning 

Techniques for 

Android 

Malware 

Detection" 

This paper 

compares 

different 

machine 

learning 

techniques 

for Android 

malware 

detection. It 

evaluates 

classifiers 

using a large 

dataset. 

Decision 

trees, SVM, 

NN 

A dataset of 

over 

100,000 

Android 

applications 

Provides 

insights into 

the 

effectiveness 

of various 

techniques 

Limited 

discussion on 

feature 

selection and 

model 

evaluation 

methods 

"Deep 

Learning-

Based Android 

Malware 

Detection 

Using 

Recurrent 

Neural 

Networks" 

The research 

focuses on 

using 

recurrent 

neural 

networks 

(RNNs) for 

Android 

malware 

detection. It 

explores 

LSTM and 

Recurrent 

Neural 

Networks 

A dataset of 

over 10,000 

Android 

applications 

Captures 

temporal 

dependencies 

in app 

behavior 

Limited 

discussion on 

dataset 

characteristics 

and 

preprocessing 

techniques 
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GRU 

architectures. 

"Feature 

Selection 

Techniques for 

Android 

Malware 

Detection using 

Machine 

Learning" 

This paper 

investigates 

feature 

selection 

techniques 

for Android 

malware 

detection. It 

compares 

mutual 

information, 

chi-squared, 

and RFE. 

Mutual 

information, 

Chi-

squared, 

RFE 

A dataset of 

over 10,000 

Android 

applications 

Identifies 

informative 

features for 

accurate 

detection 

Limited 

exploration of 

other feature 

selection 

algorithms 

"Ensemble 

Learning 

Approaches for 

Android 

Malware 

Detection" 

The research 

explores 

ensemble 

learning 

approaches 

for Android 

malware 

detection. It 

investigates 

bagging, 

boosting, 

and stacking 

methods. 

 

Bagging, 

Boosting, 

Stacking 

A dataset of 

over 

100,000 

Android 

applications 

Improves 

detection 

accuracy 

through 

ensemble 

methods 

Limited 

discussion on 

the specific 

ensemble 

configurations 

and their impact 

on performance 
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"Android 

Malware 

Detection using 

Hybrid 

Machine 

Learning 

Models" 

The paper 

proposes a 

hybrid 

machine 

learning 

approach for 

Android 

malware 

detection, 

combining 

decision 

trees, 

random 

forests, and 

SVM. 

Decision 

trees, 

Random 

forests, 

SVM 

A dataset of 

over 

100,000 

Android 

applications 

Leverages 

strengths of 

multiple 

models for 

improved 

accuracy 

Limited 

discussion on 

the hybrid 

model 

architecture and 

training process 

 

2.8 Conclusion 

This chapter makes various comparisons between past solutions that have been 

suggested by another researcher and the current solution, which is Machine Learning. In 

addition to that, this chapter demonstrates the many methods that the researchers utilized 

to accomplish their goal of developing an analysis method that can detect malware. Over 

the course of recent years, a great number of different approaches have been suggested. 

And finally, we get an overview of the many methods used by android malware detection 

to combat previously known malware. However, those methods required further 

development to achieve more satisfactory outcomes in the future. The current solution, 

which was described in Chapter 3, is intended to assist Android users in identifying 

malware that may be present in their respective devices
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

The definition of malware as well as the tools that it possesses to confine itself 

was covered in the chapter before this one. In Chapter 2, we've previously talked about a 

few of the existing research projects that have been suggested as ways to detect malware. 

As a result, the particulars regarding the strategy, method, and characteristics that will be 

utilized in the course of this research will be explained in this chapter, along with the 

methodology that will be utilized in the course of the experiment that will be carried out. 

 

3.2 Research-Based 

The research-based method comprises four main phases, which are the study of 

existing literature, the development of new architecture, the design of the system, its 

implementation, and finally, testing and evaluation. The adoption of this methodology in 

this research is effective since the phases may be continuously examined to ensure high-

quality outcomes. This research-based system development life cycle is distinct from 

other life cycles for system development that have already been proposed. It is for this 

reason that this strategy will concentrate on managing and observing each and every 

detail of the research conducted on this research title. 

The review of previous research is the initial step in this research-based process. 

During this stage, the prior studies that have been done on the topic of the research will 

be examined and reviewed in detail. Following that, the problem statement and the aims 

of this research are characterized as the definition of this research. The subsequent stage 

will involve the creation of new design requirements. During this development, a critical 

study of past studies will be examined as an appropriate algorithm and method to be used 
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in this research. This will be done in order to ensure that this research has the most 

accurate results possible. 

 After the concept for the research has been formed, the next steps in the research 

process will be to design and carry out the research. Therefore, the program, hardware, 

and language are the technical requirements that are needed for this research. When all 

of the needs have been planned for and are available, the research will then incorporate 

the design model and the detection model. As soon as the implementation has been 

finished, the research experiment will go through a process of testing and evaluation to 

determine the limitations of the research and the ways in which it may be improved in 

the future. 

 

Figure 3.1: Main Phases of Research-Based 

The research base is modified in this research because it is possible to revert to 

earlier stages with small amounts of data loss when implementing the new and improved 

research[15]. And beyond that, research-based approaches can be adjusted as needed to 

address pressing issues at hand. In conclusion, research-based also allows researchers to 

readily modify their methods to suit the specifics of any given project's investigation. 
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3.3 Planning and Reviewing Literature 

The first step in this research-based approach is a complete review of relevant 

previous projects. The conceptualization is finished to find the appropriate kind of 

research question before the previous studies are analyzed. When a topic is settled for 

investigation, a collection of relevant literature is compiled. Existing research can be 

understood by analyzing the data already collected on the topic. In light of this, we are 

able to refine the problem description, the study goal, and the research scope. It has been 

recommended that the n-gram opcode be used to locate data regarding malicious code 

detection and the existing methods for detecting it. 

For my study, I consulted a variety of online journals and articles as well as 

student references from the past. There is also a thorough examination and filtering of the 

current project studies to ensure they are relevant to the research question. What's more, 

the data collected should be used for further study and applied to the advancement of the 

research. 

Studies of various approaches and techniques have the objective of determining 

which type of approach and technique is most suited to the task of resolving the issue that 

occurred on Android devices, particularly the issue that was associated with the malware. 

Malware detection on smartphones has to be the primary focus of this research given that 

Android's security flaws cause the most concern overall. 

 The existing research projects that are relevant to the detection of malware are 

evaluated critically and categorized according to the location where the malware code 

structure was carried out. Each of the different methods that have been suggested for 

detecting malware is investigated in order to determine its strengths and weaknesses. 

Consequently, it is necessary to have this kind of information to determine the approach 

that the researchers employed for the experiment testing. As a result, the limitations of 

previous research will not be replicated in this study. 
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3.4 Developing the Architecture 

Based on the research done, it was determined to employ Machine Learning to 

advance malware detection. The Android malware detection system may be separated 

into five different phases. They consist of raw data collection, data analysis, feature 

selection and transformation, classification algorithm, and malware detection system[16].  

The malware detection system's architecture is depicted in the figure below. 

 

Figure 3.2: Malware Detection System Architecture 

1) Raw data collection: This is the first phase of the Android malware detection 

system. During this phase, raw data is collected from a variety of sources, 

including the logs of Android devices, network traffic, and APK files. The 

data can be collected through various methods such as a device's APIs, 

network sniffing, or by scanning file systems. The data can also be collected 

by monitoring the device's behavior and activities, such as the installed apps, 

usage patterns, and network connections.  
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2) Data Analysis: During this phase, the collected raw data is analyzed in order 

to recognize patterns and features that can be utilized to differentiate between 

malicious and benign software. Techniques such as static analysis, dynamic 

analysis, and machine learning can all be utilized during this part of the 

process. The goal of this phase is to extract relevant information and features 

from the raw data that can be used to train a classification algorithm. 

3) Feature selection and transformation: In this phase, the most relevant features 

are selected from the data obtained in the previous phase, and then they are 

transformed into a format that the classification algorithm can utilize which is 

the Training Set and Testing Set. This phase occurs after the data has been 

collected. In this stage, there is also a reduction in the dimensionality of the 

data, which is conducted in order to improve the classification algorithm's 

overall performance.  

4) Classification algorithm: At this stage, a classification algorithm is trained 

using the features that have been identified and changed in the previous phase. 

The attributes that the algorithm has been trained on are utilized to determine 

if the software is malicious or benign. Different classification algorithms can 

be used such as decision trees, Naïve Bayes, Random Forest, and Artificial 

Neural Networks. 

5) Malware Detection System: This is the final phase of the Android malware 

detection system, and it involves integrating the trained classification 

algorithm into a system that is capable of detecting malware on a real-time 

basis. It is possible for this system to have a user interface, reporting, and 

alerting capabilities, and it is also possible for it to be connected with other 

security systems such as firewalls and intrusion detection systems. 

It is essential to keep in mind that this is but one of many conceivable 

architectures, and the manner in which these phases are actually implemented can change 

considerably depending on the kind of malware detection system that is being designed. 



 

 50 

3.4.1 Procedure Description 

During the process of developing the architecture for the Android malware 

detection system, a machine-learning technique was developed. This technique can train 

a dataset sample to learn the behaviour of both benign and malicious applications. The 

purpose of the implementation of this architecture is to identify whether or not new 

applications contain malware or are completely benign. In addition, this design is 

comprised of three components which are a data connection, machine learning, and a 

database. Each of these components is equally important.  

The gathering of data began with the acquisition of all the permissions, which 

included both malicious and innocuous software applications. The decompilation of an 

APK file and its subsequent extraction for use in a data cleansing process that can filter 

permissions are both part of this data Pre-processing step. Before loading it, the next step 

in the data labelling process involves storing all of the permissions that have been 

constructed in a format that is legible and then saving the file as an Attribute-Relation 

File Format (x.arff) file. This arff file is where the feature attributes that are being utilized 

for the purpose of the approach to feature optimization can be accessed. 

During this step, the information gain and bio-inspired algorithms that are 

employed for feature selection are utilized in order to locate and pick the characteristics 

that are of the highest quality. One of the most important functions of this technique for 

optimizing feature sets is determining the differences between a non-bio-inspired 

algorithm and a bio-inspired algorithm. 

The gathering of data and the process of optimizing features are also essential 

components of the malware detection process. This is due to the fact that the procedure 

of collecting data obtained the malware characteristics and benign from the process of 

data cleansing. After that, this operation will notify the database of the change by sending 

an alert. At this rate, the data filtering will depend on the authorization and its package 

names in order to ensure that the same apps and features are separated from the database. 

After that, the filtered features are transferred to the Machine Learning process so that 

they can be used to optimize the features. 
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3.4.2 Data Collection Phase 

Dataset Source Total Use in Experiment 

Malware 

AndroZoo 

10,000 

Benign 10.000 

TOTAL 20,000 

Table 3.1: Dataset Summary 

During this stage, the process of data collection was used to assemble the malware 

applications and the benign datasets. In this stage of the process, the random samples 

originate from AndroZoo[17], which is split into two datasets, Benign and Malware. The 

data can be studied to discover patterns and characteristics that can be utilized to 

differentiate between malicious and benign software. The data that was obtained may be 

put to use for a variety of reasons, including reverse engineering, behavioural analysis, 

or code analysis. 

It is essential to keep in mind that the type of malware detection system that is 

being developed as well as the particular dangers that it is intended to identify will 

determine the precise data that is collected as well as the methods that are utilized to 

collect it. 

 

3.4.3 Decompiling the APK File 

Android Application Package is what is meant by the abbreviation APK. It is the 

extension of a file that is compatible with Android devices and can be installed on those 

devices. After compiling a large number of files in Android Studio, an APK is an 

executable file that is produced for use on an Android device[18]. This file is part of the 

overall project. The process of creating source files from their compiled form is a highly 

difficult and time-consuming procedure. Android Studio creates the APK file by 

compiling several different types of files, including AndroidManifest.xml.java, or.kt 
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files, layout files, various media files, and many more types of files. The act of turning 

the code of an Android application's compiled version back into the application's original 

source code is referred to as decompiling an APK file. 

The collection of benign and malicious applications is the initial stage of this 

procedure. A total of 20,000 samples of the dataset are collected, with 10,000 examples 

of benign software and 10,000 examples of malware applications. The Benign dataset is 

downloaded from AndroZoo, which is part of the Google Play store. The Malware dataset 

is acquired from a variety of different markets. The procedures involved in the collection 

of data are depicted in the figure that may be found below. 

 

Figure 3.3: Data collection phase 

An Android application's AndroidManifest.xml file is an important file that 

provides important information about the app's components, permissions, and other 

configurations. The file may be found in the app's root directory. The Android operating 

system looks to it to figure out the app's capabilities, requirements, and overall structure. 

It may be found at the very top of the application's project hierarchy. 
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The AndroidManifest.xml file contains a variety of elements that explain the app's 

components, such as activities, services, broadcast receivers, and content providers. It 

also contains information about the rights that the app has been granted, such as the 

permissions that are required for the app to access specific capabilities of the device, such 

as the camera, microphone, or internet access. 

The AndroidManifest.xml file is used to retrieve important information such as 

the permissions and activities of an application. Before the permission can be saved in 

the database as an x.arff file, it is necessary for all of the permission that has been 

extracted to be labelled.  

Table 3.2: Top ten permission in Benign and Malware Applications 

Benign Applications Malware Applications 

Permission Frequency Permission Frequency 

INTERNET 1121 INTERNET 1199 

ACCESS_NETWORK_STATE 663 ACCESS_COARSE_LOCATION 1146 

READ_PHONE_STATE 391 VIBRATE 994 

WRITE_EXTERNAL_STORAGE 362 WRITE_EXTERNAL_STORAGE 823 

ACCESS_COARSE_LOCATION 236 READ_SMS 779 

VIBRATE 210 WRITE_SMS 762 

WAKE_LOCK 188 READ_CONTACTS 680 

ACCESS_FINE_LOCATION 162 BLUETOOTH 633 

GET_TASK 125 WRITE_CONTACTS 542 

SET_WALLPAPER 102 DISABLE_KEYGUARD 491 
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After comparing the top ten permission for benign and malicious applications (as 

mentioned in Table 1), I discovered that Malware applications sought a total of 8,049 

permissions, which was much greater than Benign applications (3,560 permissions)[19]. 

The following four most often requested permissions by both clean and malicious 

applications are the INTERNET, ACCESS_COARSE_LOCATION, 

WRITE_EXTERNAL_STORAGE, and VIBRATE. 

The top five permission for the Benign Application the INTERNET, 

ACCESS_NETWORK_STATE, READ_PHONE_STATE, 

WRITE_EXTERNAL_STORAGE, and ACCESS_COARSE_LOCATION. While for 

the Malware Applications, the INTERNET, ACCESS_COARSE_LOCATION, 

VIBRATE, WRITE_EXTERNAL_STORAGE, and READ_SMS. The figure below 

shows the number of requesting permission for benign and malware applications. 

 

Figure 3.4: Number of applications requesting Benign and Malware 

According to the graph above, benign applications are issued fewer permissions 

than malicious applications. The INTERNET, READ_PHONE_STATE, and 

WRITE_EXTERNAL_STORAGE proved that it has the greatest number of permissions 

for Malware Applications. This demonstrates that the attacker used permissions to 

propagate the malware among Android devices. 
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3.4.4 Features Selection 

A key phase in machine learning is feature selection, which aims to find and 

choose the dataset's most pertinent and instructive features. The objective of the features 

selection is to keep the features that are most helpful for the prediction task while 

reducing the dimensionality of the data. It is necessary to think over and evaluate which 

qualities are most crucial before making a decision for the dataset. 

Wrapper methods in feature selection involve training and evaluating a machine 

learning model with different subsets of features. It treats the feature selection process as 

a search problem, where different combinations of features are evaluated based on their 

impact on the model's performance. The algorithm evaluates the performance of different 

subsets of features by repeatedly training and testing the model. The key advantage of 

wrapper methods is that they consider the interaction and dependency between features. 

By evaluating feature subsets based on the performance of the model, wrapper methods 

can potentially identify relevant features that work well together, leading to improved 

predictive accuracy. The feature selection process is integrated into embedded 

approaches, such as decision tree-based feature importance or regularisation methods like 

L1 regularisation (Lasso)[20]. 

To achieve the highest level of testing accuracy, it is crucial to take certain factors 

into account while choosing features. I will ensure all of this steps to achieve high 

accuracy results during testing. First, there should be a significant correlation between 

the attributes and the target variable. Features that have a strong correlation to the target 

have a higher likelihood of making a substantial contribution to the prediction challenge. 

Secondly, in order to prevent multicollinearity, characteristics should demonstrate low 

redundancy among one another. Overfitting can result from redundant features, which 

increase the model's needless complexity. Third, take into account the features' 

interpretability and domain relevance. Better generalisation and simpler interpretation of 

the model's predictions are frequently brought on by intuitively significant features. 

To find the best feature subset, a thorough investigation of the effects of the 

chosen features on the model's performance through experimentation and validation can 

be test repeatedly.  
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3.4.5 Machine Learning Classifiers 

Machine learning is a rapidly growing field that has the potential to revolutionize 

many industries, including cybersecurity. One area where machine learning has shown 

promise is in the detection of malware. Malware, or malicious software, is a major threat 

to computer systems and networks, and traditional methods of detection are often not 

enough to keep up with the constantly evolving nature of malware. 

Traditionally, malware detection has relied on signature-based detection, which 

looks for specific patterns or characteristics that are known to be associated with 

malware. This method is limited by the fact that it can only detect malware that is already 

known and that it can't detect new or unknown malware. Machine learning algorithms, 

on the other hand, can be trained to detect malware based on patterns or characteristics 

that are not known in advance. This is done by analyzing large sets of benign and malware 

samples and using this data to train the algorithm to identify patterns or features that are 

unique to malware. Once the algorithm is trained, it can be used to detect new or unknown 

malware in real-time.[21] 

One of the key advantages of machine learning for malware detection is that it 

can adapt to changing malware threats. As new malware is discovered, the algorithm can 

be retrained on new data, which allows it to continue detecting new and unknown 

malware. Another advantage of machine learning for malware detection is that it can be 

used to detect malware that is designed to evade traditional detection methods. For 

example, machine learning can be used to detect malware that uses obfuscation 

techniques to hide its code or that uses legitimate system calls to avoid detection. 

In this study, five different classifiers were used so that the researchers could 

compare and contrast the results obtained from the various machine learning classifiers. 

The names of the five classifiers are as follows: Naive Bayes, DecisionTable, J48, 

Random Forest (RF), and Multi-Layer Perceptron (MLP). 
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3.4.5.1 Random Forest Classifier 

Random Forest is an ensemble learning method that uses multiple decision trees 

to make predictions. In this method, a large number of decision trees are created and their 

outputs are combined to make a final prediction. Each tree is built using a random subset 

of the data and a random subset of the features, which helps to reduce overfitting and 

improve the generalization of the model. The final prediction is based on the majority 

vote of the trees, or by averaging the predictions of the individual trees. Random Forest 

is known for its high accuracy, robustness to overfitting, and ability to handle high-

dimensional data. It's also known for its ability to handle missing data and categorical 

variables.  

3.4.5.2 J48 Classifier 

J48 is an implementation of the C4.5 algorithm, which is a decision tree 

algorithm. J48 creates a decision tree by recursively partitioning the data into smaller 

subsets based on the values of the input features. At each partition, J48 selects the feature 

that maximizes the information gain, which is a measure of how much the data is reduced 

in uncertainty by the partition. J48 is known for its simplicity, interpretability, and ability 

to handle both categorical and continuous input features. 

3.4.5.3 Multi-Layer Perceptron Classifier 

Multi-Layer Perceptron (MLP) is a type of artificial neural network that is used 

for supervised learning. An MLP consists of one or more layers of artificial neurons and 

is trained using backpropagation. Each neuron in an MLP takes the input, applies a set of 

weights and biases, and then applies an activation function to produce an output. The 

output of one layer becomes the input for the next layer, and this process continues until 

the final output is produced. MLPs are known for their ability to model non-linear 

relationships and their ability to learn complex patterns in the data. However, MLPs can 

be sensitive to the choice of the activation function, the number of hidden layers, and the 

number of neurons per layer. They also require a large amount of labeled data to train, 

and they can be computationally expensive. 
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3.4.5.4 Decision Table Classifier 

A Decision Table is a rule-based classifier that generates a set of if-then rules by 

analyzing the data. Each rule represents a decision made based on the input features and 

the corresponding output class. The decision Table is known for its interpretability, as the 

rules generated by the algorithm can be easily understood by humans. It's also able to 

handle missing data, but it's limited by the fact that it can only produce simple linear 

decision rules. It's also computationally efficient. 

3.4.5.5 Naïve Bayes Classifier 

Naïve Bayes is a probabilistic classifier that uses Bayes' theorem to make 

predictions. It is called "naive" because it makes the assumption that all input features are 

independent of each other, which is often not the case in practice. Despite this 

assumption, Naive Bayes is known for its simplicity, speed, and ability to handle large 

amounts of data. It's also able to handle missing data and categorical variables. It's 

commonly used for text classification, spam detection, and sentiment analysis. 

3.4.6 Machine Learning Tool 

The functionality of machine learning tools is for the analysis of data, which 

automates the model construction process. When judgments or predictions are made 

throughout the learning process, this model enables the system to gain knowledge from 

either historical or current data sets. The analytical processes can be simplified and sped 

up when a system is equipped with tools that are capable of machine learning. It is also 

able to automatically apply sophisticated mathematical calculations in order to answer 

problems, and this ability does not require any machine learning techniques or experience 

on the part of the user. Jupyter Notebook was the tool for machine learning that was 

implemented in this research. 
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3.4.6.1 Jupyter Notebook 

 

Figure 3.5: Jupyter Notebook Tools 

Data scientists can use the open-source web tool Jupyter Notebook to create and 

share documents that incorporate live code, equations, computational output, 

visualizations, and other multimedia elements alongside descriptive writing. Jupyter 

Notebook's ability to incorporate all of these components into a single file makes this 

possible. Jupyter Notebooks are flexible and may be used for a wide range of data science 

tasks, from preparing and manipulating data through numerical simulation, exploratory 

data analysis, data visualization, statistical modelling, machine learning, deep learning, 

and beyond. 

Originally known as the IPython Notebook, the Jupyter Notebook was renamed 

to reflect its expanded language support beyond Python to include R, Julia, and others. 

It's a handy tool for data exploration and experimentation because users can combine 

code, output, and markdown text on a single page. The notebook interface allows users 

to run code blocks, visualize data, and display results all in the same document, making 

it easy to keep track of the development process and share the results with others. Jupyter 

Notebook also supports the use of interactive widgets, which allows users to interact with 

the data and the code in a more intuitive way. 
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Jupyter Notebook is widely used in the data science and machine learning 

communities and it's supported by a large number of libraries and frameworks. It can be 

run locally or on cloud-based platforms, and it's also supported by many popular machine 

learning frameworks such as Tensorflow, PyTorch, and scikit-learn. Jupyter Notebook 

has become a popular tool for data analysis, visualization, and machine learning, it's 

widely adopted in the industry, research, and education. Here are some steps that can be 

taken to use Jupyter Notebook for malware detection: 

1) Install the necessary libraries: Jupyter Notebook runs on Python, so the first 

step is to install the necessary libraries for machine learning and malware 

detection. Some commonly used libraries include pandas for data 

manipulation, scikit-learn for machine learning, and pefile for analyzing 

Portable Executable (PE) files. 

2) Prepare the dataset: The next step is to prepare the dataset for training and 

testing the model. This may involve collecting benign and malware samples, 

pre-processing the data and splitting the data into a training set and a test set. 

3) Train and test the model: Once the dataset is prepared, it can be used to train 

and test a machine-learning model. This can be done using Jupyter Notebook 

by creating a new notebook, importing the necessary libraries, and writing 

code to train and test the model. 

4) Evaluate the model: After the model is trained and tested, it's important to 

evaluate its performance. This can be done by using metrics such as accuracy, 

precision, recall, and F1-score. It's also recommended to use a confusion 

matrix to understand the model's performance. 

5) Fine-tune the model: If the model's performance is not satisfactory, it can be 

fine-tuned by adjusting the parameters or by using a different algorithm. 

6) Deploy the model: Once the model is fine-tuned, it can be deployed to detect 

malware in real time. Jupyter Notebook can be used to create a script that 

takes the input files and returns the prediction made by the model. 
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3.4.6.2 Jupyter Notebook Interface 

 

Figure 3.6: The main interface of the Jupyter Notebook 

 This is the interface for the Jupyter Notebook, and we can view all of the 

files in the directory that is currently active. The notebook icon that is located next to the 

name of each Jupyter Notebook makes it easy to recognize that notebook. If we already 

have a Jupyter Notebook in this directory that we would want to view, we can locate it in 

the list of files and then click on it to open the notebook. 
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Figure 3.7: Option to start a new notebook 

To start a new notebook, pick New and then Notebook - Python 2 from the drop-

down menu. If there are any other Jupyter Notebooks on the system that we would want 

to use, all we need to do is click the Upload button and then navigate to the specific file 

that we would like to use. 

 

Figure 3.8: Running terminal in Jupyter Notebook 

The icon for notebooks that are actively running will be green, while the icon for 

notebooks that are not currently running will be grey. Simply select the Running tab to 

bring up a list of all of the notebooks that are presently being used. 
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Figure 3.9: Jupyter Notebook cell 

 When we open a brand-new Jupyter notebook, we are going to see that it 

already has a cell in it. Notebooks are organized using cells, which also serve as the spaces 

in which we compose the code for our projects. To execute some code, first select the 

cell by clicking on it to make it active, then either hit the SHIFT+ENTER key 

combination or click the play button in the toolbar that is located above the worksheet.  

 

3.5 Design and Implementation 

After the framework has been designed, it will be necessary to demonstrate that 

the proposed framework is acceptable. Before the execution of the system, the generated 

is drafted in order to verify the accuracy of the anomaly detection. The proposed 

technique is developed to test the idea before proceeding to the malware detection system 

for Android mobile devices, as can be seen in the figure below. 

The process of collecting raw datasets, defining the database, developing a 

system, testing the system, and, as the final step, comparing the results obtained are the 

five components that make up the design model. 
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Figure 3.10: Flowchart of the procedure for improving detection method testing 

The design and implementation phase in a malware detection system is a critical 

step in the development process, as it involves creating and implementing the solution 

that will be used to detect malware. The first step in the design and implementation phase 

is to clearly define the problem that the malware detection system is intended to solve. 

This may involve identifying the types of malwares that the system should be able to 

detect, the platforms and devices that it should run on, and the specific requirements of 

the users.[22]  
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Once the problem is defined, the next step is to select a machine-learning 

algorithm that will be used to detect malware. This may involve evaluating different 

algorithms, such as Random Forest, J48, Multi-Layer Perceptron, Decision Table, and 

Naive Bayes, to determine which one is the most suitable for the problem at hand. 

 The next step is to prepare the dataset that will be used to train and test the model. 

This may involve collecting benign and malware samples, pre-processing the data and 

splitting the data into a training set and a test set. Once the dataset is prepared, the model 

can be trained and tested. This may involve writing code to train the model on the training 

set, evaluating the model's performance on the test set, and making adjustments to the 

model as necessary. This step can be done using Jupyter Notebook or other programming 

environments.  

 After the model is trained and tested, it's important to evaluate its performance. 

This can be done by using metrics such as accuracy, precision, recall, and F1-score. It's 

also recommended to use a confusion matrix to understand the model's performance. If 

the model's performance is not satisfactory, it can be fine-tuned by adjusting the 

parameters or by using a different algorithm. Once the model is fine-tuned, it needs to be 

integrated into the malware detection system. This may involve writing code to take the 

input files, run the model, and return the predictions. 

 Finally, the malware detection system should be thoroughly tested and evaluated 

to ensure that it is working correctly and that it meets the requirements identified in the 

first step.  
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3.6 Hardware and Software 

During the process of developing the project, it is required to compile a list of the 

necessary specifications. In order to carry out this research, the requirements for the 

experiment's hardware and software must first be determined. These requirements need 

to be met before the experiment can be set up. Due to the fact that both hardware and 

software are utilized in the process of carrying out this research as well as testing and 

assessing the experiment in preparation for the subsequent phase, this stage is essential. 

 

3.6.1 Hardware Requirement 

 

HARDWARE DESCRIPTION 

Processor: Intel® Core ™ i5-

5200U CPU @ 2.20GHz  

- RAM: 8.0 GB  

- System type: 64-bit Operating 

System, x64-based processor 

Utilized for the purpose of 

carrying out the resource finding, 

implementation, testing, and 

documentation for the complete research 

study. 

Table 3.3: Hardware requirement and description for this research 
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3.6.2 Software Requirement 

 

SOFTWARE DESCRIPTION 

Windows 10 
An operating system used to complete 

this research 

Jupyter Notebook To analyze, train, and test the dataset 

Microsoft Word 2021 
To write documentation for this report 

follow the guidelines and format 

Microsoft Excel 2021 
To review the dataset for Benign and 

Malware applications 

Microsoft Edge 
To discover and collect the information 

related to the topic of research 

Draw.io 
To create a related diagram and flowchart 

for the android malware detection system 

Table 3.4: Software requirement and description for this research 
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3.7 Testing and Evaluation 

The phase of testing and analyzing the results of this investigation is the final step. 

At this point, the experiment will be evaluated after all of its parts have been brought 

together. This testing and assessment process is carried out so that the problem statement 

can be resolved, and it can be determined whether or not the limitation posed by 

previously published journals can be circumvented. 

The first step in the testing and evaluation phase is to thoroughly test the system 

using a variety of test cases. This may include testing the system with known benign and 

malware samples, as well as new or unknown malware. It's important to use a diverse set 

of test cases to ensure that the system is able to detect a wide range of malware. Once the 

system has been tested, the next step is to evaluate its performance. This can be done by 

using metrics such as accuracy, precision, recall, and F1-score. It's also recommended to 

use a confusion matrix to understand the system's performance. 

After the system's performance has been evaluated, any issues that are identified 

need to be addressed. This may involve fine-tuning the model, adjusting the parameters, 

or making changes to the system's architecture. After the issues have been addressed, the 

system should be retested and re-evaluated to ensure that the changes have improved its 

performance. It's important to compare the performance of the developed malware 

detection system with other systems, this comparison should be done using the same 

dataset and the same evaluation metrics. 

Besides, collecting feedback from users and stakeholders who will be using the 

system, will help identify any additional issues or areas for improvement. And once the 

system has been thoroughly tested and evaluated, it can be deployed in a production 

environment. This may involve installing the system on the appropriate devices, training 

users on how to use the system, and monitoring the system's performance in the 

production environment. 
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The assertions that an accurate result may be obtained by using a detection system 

that uses a real-time process are one of the primary reasons for doing this test. Another 

reason is to prove the claimed optimum detection method. In addition, this stage gives 

researchers the opportunity to recognize the shortcomings and mistakes made during the 

research, which ultimately helps them achieve their goal of making additional 

advancements. 

In addition, after carrying out the system with the detection technique geared 

toward authorization, a thorough discussion is carried out based on the result acquired 

from the experiment. This discussion is based on the findings. After that, a conclusion 

will be drafted based on the results, and it will be decided whether or not the hypothesis 

that this study was testing may be accepted. 

The research that comprehensively details the entire procedure of carrying out 

this project has finally been finished. In order to demonstrate that the study objectives 

have been met, the outcome is analyzed and its significance is noted. In the following 

chapter, we will go over an additional description of the implementation step in full depth. 

 

3.8 Conclusion 

One of the conclusions that can be drawn from this chapter is that it was one of 

the subjects that assisted the researcher in deciding which model should be used in the 

investigation. In addition, the sort of methodology and the instruments that will be used 

have been discussed in this chapter so that the objectives of this thesis can be 

accomplished. Moreover, the full explanation of the method that will be utilized when 

conducting the research can be found in this chapter. In order for the researcher to 

accomplish what they set out to do with this investigation, they will need some essential 

components, such as computer hardware and software that can aid in the detection of 

malicious software. The next chapter will detail the implementation as well as the testing 

and evaluation that took place. 
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CHAPTER 4 

 

 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter will demonstrate how to put into action the methodology, planning, 

analysis, and design that were drafted in the previous chapter. The stage of 

implementation is the most important step throughout the entirety of the process of 

building the tools. This is due to the fact that we will now begin the process of identifying 

malicious software on Android devices by making use of the tools. 

 

4.2 Dataset Description 

4.2.1 Used Dataset 

The collection of raw datasets is the initial step in the execution of this solution. 

It is necessary to have the dataset in order to guarantee the accuracy of the results. The 

dataset will provide additional details, explanations, and comprehension regarding the 

operations of the malware. The dataset is going to be analyzed, and the results are going 

to be used to try to anticipate or guess what will happen in future instances.  

Labels Size 

Malware 10,000 

Benign 10,000 

  

Total 20,000 

Table 4.1: Total AndroZoo Dataset 

AndroZoo was the source of all of the data that was obtained. This chapter has 

compiled a total of 20,000 malicious features for android software, making it one of the 

largest collections of its kind. The information for this dataset came from a well-known 
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AndroZoo website as well as various Google search operators.[23] These category 

values, which are "Malware" and "Benign," have been converted to numerical values by 

substituting the values "1" and "0" for the values "Benign" and "Malware" 

correspondingly in the collected dataset. The categorical values are "Malware" and 

"Benign." 

 

 

Figure 4.1: Importing the Libraries in Jupyter Notebook 

 Accessing the datasets is accomplished with the help of panda's library, and 

graphs are produced with the use of visualization tools such as matplotlib and seaborn. 

The predictive modeling and other procedures that are connected to this will make use of 

the sklearn package. 

 

Figure 4.2: Reading the datasets 

 The Jupyter Notebook needs to read the dataset on permissions. The permissions data 

will show total of 20,000 row and 31 columns in ‘AndrooZooDataset.csv’. 
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Figure 4.3: Display the datasets 

 As the figure above, it showed that the dataset has been successfully read and can 

be displayed in a table using the Jupyter Notebook tool with a maximum 31 columns. 

4.2.2 Data Cleaning 

There shouldn't be any missing values in the data. If so, it is necessary to either 

delete the missing data or perform some kind of missing value imputation. In order to 

guarantee accurate and trustworthy findings during testing, data cleaning is a necessary 

phase in the machine learning process.  

 

Figure 4.4: Count the missing values in dataset 
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The process of finding and eliminating mistakes, inconsistencies, missing 

numbers, and outliers from the dataset is a part of it. Data quality and integrity 

significantly affect the effectiveness and validity of machine learning models, which 

highlights the need of data cleaning. 

‘df.isnull().’ is used to identify and count the number of missing values in each 

column of a DataFrame, ‘df’, is determined and counted using ‘sum()’. Each element in 

the DataFrame returned by the ‘isnull()’ method is a boolean value that indicates whether 

it is a missing value (True) or not (False), and it has the same shape as the original 

DataFrame. The total number of missing values in each column can be determined by 

using the ‘sum()’ function on the resulting DataFrame. 

This code is particularly useful in data analysis and pre-processing tasks because 

missing values can have a significant impact on the accuracy and reliability of the results. 

Understanding the presence and distribution of missing values is crucial for deciding how 

to handle them effectively.[24] 

 

Figure 4.5: Data cleaning for checking the missing values 

 Then, we need to re-check again the data cleaning process for the dataset. By 

applying the code, ‘print('The maximum number of missing values in any column is: 

{}'.format(df.isnull().sum().max()))’ that is used to determine the maximum number of 

missing values present in any column of a DataFrame, df, and display the result as a 

formatted string. 

The maximum number of missing values in any column of the DataFrame df will 

be shown by executing this code. This information can be used to assess the data's general 

completeness and spot columns that have a lot of missing data. It enables researchers and 

data analysts to weigh the potential effects of missing values on the analysis and choose 

the best course of action, such as imputation or removing specific columns from further 

analysis. 
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4.2.3 Splitting Dataset 

We separate the feature variables from the target variable through these processes, 

which is essential for supervised learning tasks like classification. In a typical machine 

learning scenario, the objectives are to create a model that can identify patterns and 

relationships between the features (X) and the target variable (y) in order to make 

predictions on new, unaltered data. 

 

Figure 4.6: Separated the dataset into X and y 

We establish the input and output elements necessary for training a machine 

learning model by putting the feature variables on X and the target variable on y. The 

remaining processes of model training and evaluation are made easier by this subsection 

of the model.  

Following the data's division into X and y, model fitting can be done using 

algorithms that need distinct input features and target variables. During the training 

phase, we are able to give the model X as input and y as the desired outcome. 

Additionally, by contrasting the projected outputs of the model with the actual target 

values (y), this separation enables us to assess the model's effectiveness. 

 

Figure 4.7: Splitting the dataset into Training and Testing 

 This code plays an essential part in the process of machine learning by 

partitioning the dataset into training and testing groups. By dividing the dataset into 

subgroups for training and testing, we can use the ‘X_train’ and ‘y_train’ datasets, train 

the machine learning model so that it can discover patterns and connections between the 

input features and the target variable. And contrasting the model's projected outputs with 

the actual target values (y_test), we can evaluate the model's effectiveness and 

generalizability using the X_test dataset.[25] 
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‘X_train, X_test, y_train, y_test’ This line of code assigns the split datasets to 

separate variables for further use: 

• ‘X_train’: This variable contains the training set of feature variables. It 

represents the input data used to train the machine learning model. 

• ‘X_test’: This variable contains the testing set of feature variables. It 

represents the unseen input data used to evaluate the trained model's 

performance. 

• ‘y_train’: This variable contains the corresponding target variable for the 

training set. It represents the expected output values associated with the 

training set. 

• ‘y_test’: This variable contains the corresponding target variable for the 

testing set. It represents the ground truth output values against which the 

model's predictions on the testing set will be compared. 

Furthermore, the ‘X’ is the feature variables or the input data and ‘y’ is the target 

variable or the class labels associated with the feature variables. The ‘test_size=0.3’ 

specifies the proportion of the data that should be allocated to the testing dataset. In this 

research, I have separated 30% of the data will be used for testing, while the remaining 

70% will be used for training. And the ‘random_state=42’ is a parameter that sets a 

random seed value to ensure reproducibility. By using the same random seed, we obtain 

the same random split each time we run the code. And this helps to achieve and produce 

a new results accuracy each time of testing. 

4.3 Machine Learning Approach 

To ensure that Android users are able to optimize the malware through the usage 

of the malware permission features method, a strategy based on machine learning is 

utilized. This strategy reduces the amount of time required for training and testing in 

order to identify malware. 
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First, the permission features of the malware detection were trained, and then, 

utilizing key features, they were categorized. In this study, the features selection method 

is utilized so that the significant features that are necessary for efficient malware detection 

can be chosen. Methods of feature selection are utilized to recognize and eliminate 

unnecessary and duplicated attribute data, both of which do not contribute in any way, 

shape, or form to the accuracy of a predictive model. As a direct result of this, the number 

of malicious software features has been cut down from the 107 permissions to just the 

Top 30 permission.[26] This is done in order to confirm that there is a distinct pattern 

emerging between the benign and the malicious. The list of authorization features that 

were employed in the study may be seen in the Table below. 

Permission Description 

INTERNET To allow an application to access a 

network socket 

ACCESS_WIFI_STATE To allow an application access to data 

stored in Wi-Fi networks 

READ_PHONE_STATE To allow read-only permission to the 

current phone state 

WRITE_EXTERNAL_STORAGE To allow all application access to writing 

on the external storage  

GET_ACCOUNTS To allow an access to the account list in 

the Account Service 

GET_TASKS To allow the application about the 

currently running and recently completed 

task 

SEND_SMS To allow an application to send Short 

Message Service (SMS) 
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RECEIVE_SMS To allow an application to receive SMS 

messages 

READ_SMS To allow an application to read SMS 

messages 

MEDIA_CONTENT_CONTROL To allow an application to see what is 

currently being played 

CHANGE_WIFI_STATE To allow an application to toggle Wi-Fi 

on and off 

SET_ALARM To allow an application to set an alarm 

for the user 

ACCESS_FINE_LOCATION To allow an application to access the 

specific location 

WAKE_LOCK To allow the use of PowerManager 

WakeLocks to control hibernating 

processor or dimming screen 

INSTALL_SHORTCUT To allow an application to install a 

shortcut in the Launcher 

ACCESS_NETWORK_STATE To allow an application to access 

information about networks 

BLUETOOTH To allow an application connect to paired 

Bluetooth devices 

BLUETOOTH_ADMIN To allow applications to discover and pair 

Bluetooth devices and to make the device 

discoverable to other Bluetooth devices. 
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BROADCAST_STICKY To allow an application to broadcast 

sticky intents 

CALL_PHONE To allow an application to initiate a phone 

call without going through the Dialer user 

interface for the user to confirm the call. 

CAMERA Required to access the camera device 

ACCESS_COARSE_LOCATION To allow an application to access 

approximate location derived from 

network location sources such as cell 

towers and Wi-Fi 

READ_CALENDAR To allow an application to read the user's 

calendar data 

READ_CALL_LOG To allow an application to read the user's 

call log 

READ_CONTACTS To allow an application read the user's 

contacts data 

READ_EXTERNAL_STORAGE To allow grants read access to external 

storage 

 

RECORD_AUDIO To allow an application to record audio 

VIBRATE To allow an access to the vibrator 

WRITE_CALENDAR To allow an application to write the user's 

calendar data 
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WRITE_CALL_LOG To allow an application to write (but not 

read) the user's call log data 

Table 4.2: Top 30 of permission features 

4.4 Evaluation and Results 

The initial results display the outcomes that were produced by three different 

machine learning classifiers. These classifiers are Naïve Bayes, DecisionTable, J48, 

Random Forest, and Multi-Layer Perceptron. In addition, this research utilized the 

metrics of accuracy, FPR, precision, recall, and f-measure to investigate the various 

measurements that each classifier possessed. The results obtained from the 15 permission 

features of the testing set that made use of the three specified classifiers are presented in 

the table below. 

Classifiers Accuracy (%) FPR Precision Recall F-measure 

Naïve Bayes 81.06% 0.323 0.746 0.943 0.833 

DecisionTable 89.20% 0.100 0.899 0.884 0.891 

J48 89.33% 0.098 0.900 0.885 0.893 

Random Forest 90.45 % 0.095 0.905 0.901 0.903 

Multi-Layer 

Perceptron 

90.25 % 0.084 0.913 0.889 0.901 

Table 4.3: Results for each machine learning classifier 

The table presents the performance metrics of different classifiers, including 

Naïve Bayes, DecisionTable, J48, Random Forest, and Multi-Layer Perceptron, for 

malware detection in Android devices. Each classifier is evaluated based on its accuracy, 

false positive rate (FPR), precision, recall, and F-measure. 
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Figure 4.8: Accuracy testing for Naïve Bayes 

Naïve Bayes achieved an accuracy of 81.06%, with a relatively high false positive 

rate of 0.323. It exhibited good precision (0.746) and recall (0.943), indicating that it can 

effectively classify malicious samples while having a relatively higher rate of false 

positives. A probabilistic classifier called Naive Bayes operates under the presumption 

of feature independence. It functions effectively in settings with a lot of features and uses 

computational resources effectively. However, it could have trouble capturing intricate 

connections and interactions between characteristics, increasing the potential of false 

positives. 

 

Figure 4.9: Accuracy testing for DecisionTable 

DecisionTable demonstrated an accuracy of 89.20%, with a lower false positive 

rate of 0.100. It achieved a balanced precision of 0.899 and recall of 0.884, resulting in 

an F-measure of 0.891. DecisionTable, sometimes referred to as decision rules or decision 

lists, classifies instances using a collection of if-then rules. It functions well in scenarios 

with discrete and categorical features and is interpreted and easily understood. Its great 

precision and recall are a result of the decision rules' direct feature interpretation 

capability. 
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Figure 4.10: Accuracy testing for J48 

J48, a decision tree algorithm, achieved an accuracy of 89.33% with a low false 

positive rate of 0.098. It demonstrated good precision (0.900) and recall (0.885), resulting 

in an F-measure of 0.893. J48 builds a model that resembles a tree to make choices based 

on feature values. Both cases with categorical and numerical characteristics work well, 

and it can manage intricate feature interactions. The algorithm's excellent accuracy, 

balanced precision and recall, and capacity to capture complex decision boundaries are 

all benefits. 

 

Figure 4.11: Accuracy testing for Random Forest 

Random Forest achieved the highest accuracy among the classifiers, at 90.45%, 

with a low false positive rate of 0.095. It exhibited a precision of 0.905, recall of 0.901, 

and an F-measure of 0.903. Multiple decision trees are combined in the ensemble learning 

technique known as Random Forest. It makes use of decision trees' advantages while 

minimising their specific drawbacks, such as overfitting. It achieves excellent accuracy 

and a balanced trade-off between precision and recall by combining predictions from 

various trees. 
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Figure 4.12: Accuracy testing for Multi-Layer Perceptron 

Multi-Layer Perceptron attained an accuracy of 90.25%, with a relatively low 

false positive rate of 0.084. It demonstrated the highest precision among the classifiers, 

at 0.913, and a recall of 0.889, resulting in an F-measure of 0.901. An artificial neural 

network called a multi-layer perceptron has numerous layers of interconnected neurons. 

It can recognise nonlinear correlations between features and learn complex patterns. The 

model's excellent precision and comparatively low false positive rate are both a result of 

its capacity to extract complex feature representations. 

Based on the results, Random Forest achieved the highest accuracy (90.45%), 

making it the top-performing classifier in terms of overall classification performance. It 

balances precision, recall, and false positive rate effectively. Naïve Bayes, on the other 

hand, achieved the lowest accuracy (81.06%) due to its higher false positive rate. Despite 

its lower accuracy, Naïve Bayes demonstrated a higher recall, indicating its effectiveness 

in detecting true positive instances. However, for malware detection purposes, a higher 

false positive rate can be undesirable, making Random Forest the preferred choice due to 

its superior overall performance and lower false positive rate. 
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Figure 4.13: Level of accuracy for each classifier 

According to the figure above, Random Forest classifiers produced the best 

accuracy result, which was 90.45 percent, in comparison to MLP, which achieved 90.25 

percent, J48 get 89.33 percent, DecisionTable achieved 89.20 percent, and Naïve Bayes, 

which achieved the lowest accuracy result, which was 81.06 percent. 

 

4.4.1 Confusion matrix 

A method for analysing and summarising the performance of a classification 

model is known as a confusion matrix. The table that follows outlines two categories of 

probable predictions: benign and malicious software. The confusion matrix consists of 

four categories based on the predictions made by the classifier and the actual labels of the 

test dataset: 

• True Positives (TP): The classifier correctly predicted that an app is malicious. 

• True Negatives (TN): The classifier correctly predicted that an app is benign. 
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• False Positives (FP): The classifier incorrectly predicted that an app is 

malicious, when it is actually benign. This is also known as a Type I error or a 

false positive. 

• False Negatives (FN): The classifier incorrectly predicted that an app is benign, 

when it is actually malicious. This is also known as a Type II error or a false 

negative. 

The information in the confusion matrix can be used to calculate various 

performance metrics for the classifier, such as accuracy, precision, recall, and F1-score. 

These metrics can help to determine whether the classifier is performing well or not, and 

can be used to improve the performance of the model.[27] For instance, if a model 

predicts the presence of malware activity, the result will display "malware" and “benign”. 

The results of the five different classifiers are presented. 

 

Classifiers Actual Prediction 

Malware Benign 

Naïve Bayes Actual Malware 8326 1674 

Actual Benign 1406 8594 

DecisionTable Actual Malware 8873 1127 

Actual Benign 969 9031 

J48 Actual Malware 9088 912 

Actual Benign 852 9148 

Random Forest Actual Malware 9328 672 

Actual Benign 696 9304 
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Multi-Layer 

Perceptron 

Actual Malware 9173 827 

Actual Benign 815 9185 

Table 4.4: Confusion matrix of classifiers 

Looking at the confusion matrix classifiers table, we can see that each row 

represents the instances in the actual class, while each column represents the instances in 

the predicted class. The cells of the matrix represent the count of true positives, false 

positives, false negatives, and true negatives. 

For the actual malware, all the classifiers correctly identified a large number of 

malware instances, as shown by the high true positive counts. However, there are also 

some false negatives, indicating that some malware instances were incorrectly classified 

as benign. Naïve Bayes had the highest false negative count with total of 1674, while 

DecisionTable get 1127, J48 get 912, Random Forest with 672, and Multi-Layer 

Perceptron get 827 number of false negatives. 

Besides, for the actual benign instances, all of the classifiers correctly identified 

a significant number of benign instances, as shown by the high true negative counts. 

However, there are also some false positives, indicating that some benign instances were 

incorrectly classified as malware. Random Forest had the highest false positive count 

with total of 9304, while Multi-Layer Perceptron get 9185, J48 get 9148, DecisionTable 

with 9031, and Naïve Bayes get the lowest with 8594 number of false positives. 

All of the classifiers perform fairly well when identifying occurrences as malware 

or benign. However, among the classifiers, Random Forest and Multi-Layer Perceptron 

show the highest accuracy. In comparison to the other classifiers, Random Forest has the 

best accuracy (90.4%) and the lowest false positive rate. This shows that it can correctly 

identify a greater variety of cases as malware or benign. The Random Forest model 

performs well in properly forecasting both positive and negative instances, as seen by its 

excellent precision, recall, and F1-score values. 
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Naïve Bayes, on the other hand, has a larger false positive rate and a lower 

accuracy of 81.06%. This implies that it might mistakenly label some innocent 

occurrences as malware. The fact that it still exhibits a respectable level of precision, 

recall, and F1-score values, demonstrating its capacity to accurately identify a sizable 

number of cases, says a lot about its accuracy. 

 

4.4.2 Receiver operating characteristics curve (ROC)     

In this particular investigation, the processes were separated into two categories: 

benign and malware based on the authorization features. Along with the performance 

matrix, we are also calculating the receiver operating characteristics (ROC) curve for 

each of the machine learning classifiers. During this stage of the process, the TPR is 

considered to be the detection rate that accurately predicted the malware process, whereas 

the FPR was chosen as the detection rate that incorrectly predicted normal as malware. 

The curves of five different machine learning classifiers were displayed in Figure 4.1. 

The ROC curve helps to evaluate the trade-off between the sensitivity (TPR) and 

specificity (1 - FPR) of a classifier system. A perfect classifier would have a ROC curve 

that passes through the point (0,1), indicating that it has a TPR of 1 and an FPR of 0, 

regardless of the threshold setting. A random classifier, on the other hand, would have a 

ROC curve that is a straight line passing through the point (0,0) and (1,1).[28] The AUC 

results determined that it was possible to measure whether the detection strategy was 

effective or ineffective. A score of 1 represented an absolutely accurate prediction, 

whereas a score 0.5 suggested an inaccurate prediction. The results are summarised in 

Table 4.5. 
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Classifiers AUC Prediction 

Naïve Bayes 0.918 Accurate Prediction 

DecisionTable 0.949 Accurate Prediction 

J48 0.954 Accurate Prediction 

Random Forest 0.979 Accurate Prediction 

Multi-Layer Perceptron 0.961 Accurate Prediction 

Table 4.5: AUC Classifiers Result 

 

4.4.2.1 Naïve Bayes (ROC)     

 
Figure 4.14: Naïve Bayes ROC Curves 

The Naive Bayes classifier has an AUC value of 0.918, which indicates that it 

performs better than random but is not a perfect classifier. This means that it can correctly 

classify a relatively high percentage of instances, but it may still make some errors. 
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4.4.2.2 DecisionTable (ROC)     

 
Figure 4.15: DecisionTable ROC Curves 

The DecisionTable classifier has an AUC value of 0.949, which is higher than the 

Naive Bayes classifier. This indicates that it performs better than the Naive Bayes 

classifier and is closer to being a perfect classifier. 

4.4.2.3 J48 (ROC)     

 
Figure 4.16: J48 ROC Curves 

 The J48 classifier has an AUC value of 0.954, which is lower than the 

DecisionTable classifier. This suggests that it performs worse than the DecisionTable 

classifier, but it is still better than a random classifier. 
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4.4.2.4 Random Forest (ROC)     

 
Figure 4.17: Random Forest ROC Curves 

The Random Forest classifier has an AUC value of 0.979, which is similar to the 

DecisionTable classifier. This indicates that it performs well and is closer to being a 

perfect classifier. 

4.4.2.5 Multi-Layer Perceptron (ROC)     

 
Figure 4.18: Multi-Layer Perceptron ROC Curves 

The Multi-Layer Perceptron classifier also has an AUC value of 0.961, which is 

similar to the Random Forest classifier. This suggests that it also performs well and is 

closer to being a perfect classifier. 
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In general, we can see that the DecisionTable, Random Forest, and Multi-Layer 

Perceptron classifiers have higher AUC values than the Naive Bayes and J48 classifiers, 

which indicates that they perform better in general when applied to this particular 

problem. 

 

4.4.3 Performance of Classifiers Build model   

During the training phase, the performance of the classifiers is evaluated on a 

training dataset to ensure that they are learning and improving over time. This is typically 

done by measuring metrics such as accuracy, precision, recall, F-measure, and AUC. 

These metrics help to assess the quality of the classifiers and identify any areas for 

improvement.  

And for the testing phase, the performance of the classifiers is evaluated on a 

separate testing dataset to ensure that they can generalize to new, unseen data. This is 

important because classifiers that perform well on the training dataset may not necessarily 

perform well on new data.  

Table 4.6: Time taken to produce model (seconds) 

 

Classifiers Time Taken to Build Model 

Naïve Bayes 0.13 seconds 

DecisionTable 4.36 seconds 

J48 2.45 seconds 

Random Forest 9.98 seconds 

Multi-Layer Perceptron 67.23 seconds 
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In the table provided, we can see that the Naïve Bayes classifier has the shortest 

build time of 0.13 seconds, while the Multi-Layer Perceptron classifier has the longest 

build time of 67.23 seconds. This suggests that Naïve Bayes may be more efficient and 

scalable for smaller datasets or less complex models, while Multi-Layer Perceptron may 

be more suitable for larger datasets or more complex models. However, the specific trade-

offs between build time and performance will depend on the specific requirements and 

constraints of the application. 

Table 4.7: Time taken to test model (seconds) 

The time taken to test the model is also an important factor to consider in machine 

learning. It indicates how quickly the model can make predictions on new data. In 

practical applications, the time taken to make predictions can be a critical factor, 

especially in real-time systems where predictions need to be made quickly. 

By looking at the table above, we can see that the J48 classifier has the shortest 

time taken to test the model, followed by DecisionTable and Multi-Layer Perceptron. The 

Naive Bayes and Random Forest classifiers have slightly longer times to test the model, 

but they are still relatively fast. 

 

 

 

Classifiers Time Taken to Test Model 

Naïve Bayes 0.32 seconds 

DecisionTable 0.17seconds 

J48 0.14 seconds 

Random Forest 2.02 seconds 

Multi-Layer Perceptron 0.15 seconds 
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CHAPTER 5 

CONCLUSION 

5.1 Introduction 

Smartphones powered by Google's Android operating system are now practically 

indispensable in the highly sophisticated world of today.[29] The way in which we 

engage with technology is being fundamentally altered as a result of the diversity of 

capabilities and pursuits offered by these gadgets. Smartphones have become vital tools 

for personal and professional convenience, being used for everything from socialising 

and online shopping to accessing the internet for information, downloading files and 

games, providing financial services, and entertaining oneself.  

Our day-to-day lives have been completely transformed by the simplicity and 

convenience that our cell phones and the internet. Effortless and speedy completion of 

tasks that, in the past, demanded a large investment of both time and energy is now 

possible. The capabilities of smartphones seem to have almost no ceiling, whether we're 

talking about the ability to interact with friends and family through social media, stream 

our favourite films and television shows, or complete financial transactions online. 

However, despite the fact that smartphones provide users with an extensive range 

of advantages and benefits, there is also an inherent security risk associated with their use 

that the majority of users frequently fail to recognise. Malicious software, more 

frequently referred to as malware, poses a substantial risk to the safety and privacy of 

those who use smartphones. Malware refers to a broad category of malicious software 

that can take many different forms, including viruses, worms, Trojan horses, adware, 

spyware, and ransomware. These dangerous programmes are able to penetrate cell phones 

through applications that are infected, websites that have been compromised, or other 

means. Once inside, they can compromise important information, interrupt device 

performance, and even cause financial losses. 
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5.2 Research Objective Revisited 

It is absolutely necessary, in order to guarantee the safety of Android devices, to 

have an understanding of the nature of malware and to create efficient solutions for the 

detection and prevention of it. The overarching goal of this project is to make a 

contribution to the field of cybersecurity by concentrating on the particular challenge of 

"Malware Detection in Android Using Machine Learning." 

In order to find a solution to this problem, the research will compile a complete 

dataset of malware. Permissions are the privileges provided to programmes on a 

smartphone in order for them to access particular resources or carry out particular 

operations on the device. By analysing these permissions, it is possible to uncover 

patterns and characteristics that can differentiate between benign and malicious software. 

This is an important step in preventing security breaches. 

Objective 1: To study the current issue with the Android malware detection system. 

The first objective of my research is to investigate the current issues and 

challenges in the Android malware detection system. Through an in-depth study, I aimed 

to gain a comprehensive understanding of the existing problems and explore potential 

solutions to enhance the effectiveness of malware detection on Android devices. To 

achieve this objective, I extensively studied and analyzed the works published in online 

scholarly journals and some research paper. 

Chapter 2 of my research served as a critical component in accomplishing this 

objective. Within this chapter, I presented a detailed overview of the malware detection 

system, covering various aspects such as the classification of malware detection 

techniques and the utilization of machine learning approaches. Additionally, I delved into 

the different algorithms employed in the field. 

By conducting this thorough review, my research aimed to gather valuable 

insights and knowledge about the current state of the Android malware detection system. 

This served as the foundation for further investigation and analysis in subsequent chapters 

of the study. 
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In essence, Chapter 2 played a crucial role in achieving the objective of reviewing 

the issues surrounding the Android malware detection system. It served as a 

comprehensive resource, presenting key information and insights regarding the 

classification of malware detection techniques, the utilization of machine learning 

approaches, and the algorithms employed in the field. This comprehensive review laid 

the groundwork for the subsequent phases of my research and contributed to a deeper 

understanding of the challenges and opportunities in Android malware detection. 

Objective 2: To analyze the technique for Machine Learning that will be used to 

construct an Android malware detection system. 

The second objective of my research was to analyze the technique for Machine 

Learning that will be used to construct an Android malware detection system. I aimed to 

explore and evaluate various machine learning approaches and algorithms to identify the 

most suitable ones for detecting and classifying malware on Android devices. To 

accomplish this objective, I utilized the Jupyter Notebook software to conduct an 

experiment and testing thorough the evaluation of the system. 

Chapter 4 of my research was crucial for accomplishing this objective. In this 

chapter, I conducted a step-by-step experiment in Jupyter Notebook to evaluate the 

usefulness of the Android malware detection system. Accuracy, False Positive Rate 

(FPR), True Positive Rate (TPR), precision (ability to correctly classify malware 

instances), recall (ability to identify all malware instances), and f-measure (a combined 

measure of precision and recall) were used to gain a solid experiment result. 

The findings of my research, presented in Chapter 4, offered a spotlight on its 

effectiveness of the Android malware detection system. By analyzing the results obtained 

from the evaluation measures, I was able to determine the system's accuracy, its ability 

to minimize false positives, and its capability to correctly identify malware instances. 

This evaluation process provided a quantitative assessment of the system's performance 

and served as a basis for further improvements and enhancements. 
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I conducted experiments and evaluations to assess the performance and accuracy 

of these machine learning algorithms in detecting Android malware. By utilizing a 

carefully curated dataset of malware permissions, I trained and tested the algorithms to 

measure their effectiveness in accurately identifying malicious software. 

Objective 3: To assess the effectiveness of the Android malware detection system in 

terms of its ability to identify malicious software. 

The third objective of my research was to assess the effectiveness of the Android 

malware detection system in terms of its ability to identify malicious software. This 

evaluation involved assessing the performance of five different classifiers. Based on the 

results obtained, it was found that the random forest classifier achieved the highest 

accuracy percentage in detecting Android malware. 

During my research, I conducted a thorough evaluation of the performance in 

terms of its ability to accurately detect malware. This evaluation process involved 

comparing the performance of multiple classifiers to identify the most effective one. 

By analyzing the results obtained from the evaluation, it was determined that the 

random forest classifier demonstrated the highest level of accuracy in detecting Android 

malware. This precision and recall allowed me to evaluate the system's performance in 

terms of minimizing false positives (identifying benign apps as malware) and false 

negatives (failing to detect actual malware), respectively. These metrics provided insights 

into the system's ability to strike a balance between accurate malware detection and 

avoiding false alarms. This finding highlights the efficacy of the random forest algorithm 

in accurately identifying malicious software on Android devices. 

Furthermore, I explored the receiver operating characteristic (ROC) curve and 

calculated the area under the curve (AUC) to assess the system's performance across 

different thresholds. The ROC curve provided a visual representation of the system's 

ability to trade-off between true positive rate and false positive rate, allowing for a more 

comprehensive understanding of its performance characteristics. 
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Through my research, I obtained valuable findings regarding the effectiveness of 

the Android malware detection system. I observed that the system demonstrated 

promising performance in accurately identifying malicious software, with high accuracy 

rates and satisfactory precision and recall scores. The AUC analysis also indicated that 

the system had a favourable trade-off between true positive rate and false positive rate, 

indicating its capability to effectively distinguish between malware and benign 

applications. 

 

5.3 Achievement of the study 

Throughout the course of my research, I have achieved several significant 

milestones and made noteworthy contributions in the field of Android malware detection 

using machine learning. I’ve been conducted an extensive review of the existing literature 

and scholarly works related to Android malware detection. This review provided a solid 

foundation of knowledge and helped identify the key issues and challenges in the field. 

And help me gained a deep understanding of the various techniques and methodologies 

employed in malware detection, particularly in the context of Android devices. This 

understanding allowed me to identify the limitations of current approaches and explore 

potential solutions. These are some of the achievements during my research: 

 

5.3.1 Choosing a relevant dataset to be used 

Using a relevant dataset allows for accurate evaluation of the performance of the 

malware detection system. By employing a dataset that closely resembles the distribution 

of malware in the wild, researchers can assess the system's accuracy, precision, recall, 

and other performance metrics with greater confidence. 

This study teaches me to get a relevant dataset that reflects real-world scenarios 

and encompasses a wide range of Android applications, including both legitimate and 

malicious ones. By using a dataset that accurately represents the diversity of applications 

encountered by users, the research findings can be more applicable and reliable. 
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5.3.2 Understand the detection approaches and techniques 

Understanding detection approaches and techniques enables me to properly 

evaluate the performance of my models. By comparing different algorithms and 

methodologies, I can successfully assess the strengths and weaknesses of each approach 

and make informed decisions about which techniques are most effective on the specific 

testing and experiments. 

The field of machine learning is constantly evolving, with new algorithms and 

techniques being developed regularly. Having a deep understanding of detection 

approaches and techniques allows me to stay abreast of the latest advancements and adapt 

the detection systems accordingly. This adaptability ensures that the system remains 

effective and relevant as new types of malware and attack techniques emerge. 

 

5.3.3 Find the best machine learning classifiers 

Start by defining the evaluation metrics that will be used to assess the performance 

of the classifiers. This selection needs to be based on prior research, expert knowledge, 

or commonly used classifiers in the field. The dataset will be divided into training, 

validation, and testing sets. The training set is used to train the classifiers, the validation 

set is used to fine-tune hyperparameters and optimize the model, and the testing set is 

used to evaluate the final performance. 

Different classifiers have varying performance characteristics. By identifying the 

best classifiers, I can definitely improve the overall performance of my machine learning 

models. The best classifiers are those that demonstrate higher accuracy, precision, recall, 

or other relevant metrics, leading to more reliable and effective predictions or 

classifications.[30] This helps in advancing the field of machine learning by establishing 

standards and best practices, enabling researchers and practitioners to build upon 

previous work and make informed decisions about the most effective techniques. 
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5.4 Limitations 

Limitations are important to acknowledge as they can impact the validity, 

reliability, generalizability, and applicability of the research findings. During the progress 

of my research on Android malware detection using machine learning, there are several 

limitations that have been often face: 

5.4.1 Availability and Quality of Datasets 

Obtaining high-quality and diverse datasets for malware detection can be 

challenging. Limited access to comprehensive and up-to-date datasets may restrict the 

generalizability and effectiveness of your research. Additionally, ensuring the accuracy 

and reliability of labelled malware samples can be difficult, as manual labelling may be 

subjective and prone to errors. 

5.4.2 Imbalanced Sample Size 

Imbalance between the number of malware samples and benign samples that 

created a total of 10,000 in the dataset is a common issue in malware detection research. 

Imbalanced datasets can lead to biased model performance, where the classifier may 

favor the majority class (benign) and struggle to accurately detect the minority class 

(malware).  

5.4.3 Interpretability and Explain ability of Machine Learning 

Machine learning models, particularly complex ones, often lack interpretability 

and explain ability. Understanding the decision-making process of these models and 

providing insights into why a certain classification is made can be difficult. Interpretable 

models may sacrifice some accuracy, while highly accurate models may lack 

transparency, making it challenging to gain user trust and acceptance. 
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5.5 Future Works 

Future works are crucial as they contribute to the advancement of knowledge, 

address existing gaps, and pave the way for further research and development. These are 

the areas to identify further investigation, improvement, or expansion of the existing work 

as follow: 

5.5.1 Incorporating New Malware Techniques 

As malware techniques continue to evolve, it is essential to stay updated and adapt 

the detection system accordingly. Investigate emerging malware trends and explore 

innovative approaches to effectively detect and mitigate new malware threats. 

5.5.2 Deep Learning Approaches 

Explore the application of deep learning techniques, such as convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs), for Android malware detection. 

Deep learning models have shown promising results in various domains and can 

potentially capture intricate patterns and representations within malware samples. 

5.5.3 Real-Time Detection on Mobile Devices 

Develop efficient and lightweight models suitable for real-time detection on 

resource-constrained mobile devices. Consider optimizing the models for low power 

consumption and minimal computational requirements without compromising the 

detection accuracy. 

5.5.4 Adversarial Attack Detection 

Investigate the robustness of the malware detection system against adversarial 

attacks. Adversarial attacks involve manipulating or crafting malicious inputs specifically 

designed to evade detection. Develop techniques to detect and defend against such attacks 

to ensure the reliability and effectiveness of the system. 
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5.6 Conclusion 

The elimination of malicious software often depends on the application of 

machine learning methods. This research makes use of a number of well-known 

classifiers, such as Naïve Bayes, DecisionTable, J48, Random Forest, and Multi-Layer 

Perceptron. These classifiers are successfully able to recognise and categorise dangerous 

software because they are trained with the optimised dataset and take into account a 

variety of characteristics.  

The results of this study have the potential to make important contributions to the 

field of cybersecurity when taken together with its other findings. We can better 

safeguard Android users from the ever-evolving threats posed by malicious software if 

we improve our understanding of malware and enhance the capabilities of detection 

systems that are based on machine learning. Not only will the development of more 

efficient detection methods protect personal data and privacy, but it will also ensure the 

smooth and secure operation of Android smartphones in our day-to-day life. 

Moreover, the broad adoption of Android smartphones has offered an incredible 

amount of ease and completely revolutionised the way in which we live our lives and 

engage with technology. Having said that, this ease does come with security dangers, 

most notably those posed by malware. The objective of the research project titled 

"Malware Detection in Android Using Machine Learning" is to find a solution to this 

problem by making use of machine learning algorithms and improving the quality of 

datasets in order to increase the reliability and efficiency of malware detection. This 

project aims to make a contribution to the field of cybersecurity and provide users with a 

safer and more secure experience when using their smartphones by concentrating on the 

detection and prevention of dangers posed by malware on Android devices. 

By continuously refining detection techniques, incorporating new malware 

trends, and considering real-world deployment scenarios, the development of more 

effective and reliable malware detection systems becomes possible, ultimately ensuring 

the security and integrity of Android users' devices and data. 
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