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 This paper presents an elitism-crossover barnacle mating optimization 

(ECBMO). It is an improvement of barnacle mating optimization (BMO). 

The original BMO suffers from local optima problem leading to a low 

accurate solution. A new method of offspring generation is adopted into the 

original BMO structure. Some features of the best-so-far solution are 

incorporated into the generated offspring. The accuracy performance of the 

proposed algorithm is tested on several IEEE functions. A statistical analysis 

is conducted to compare its performance over the original BMO. It is also 

applied to optimize proportional integral derivative (PID) parameters for 

controlling output voltage of a buck converter. Result of benchmark 

functions test shows the proposed algorithm has attained higher accuracy for 

all functions compared to BMO algorithm. Application on the real problem 

shows both algorithms control the converter voltage satisfactorily. However, 

the ECBMO has achieved more optimal PID parameters and leading to a 

better output voltage response. 
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1. INTRODUCTION 

Barnacle mating optimization (BMO) is a bio-inspired optimization algorithm formulated based on a 

mating strategy of barnacle population [1]. There are two main phases of the BMO algorithm. The first phase 

is the mating technique between male and female barnacles. The mating process is possibly occurred on any 

female barnacle within the range that can be reached by the male barnacle. The range depends on the size of 

male barnacle penis. This is the unique feature of barnacle mating. If any female barnacle location is beyond 

the range, self-mating is then occurred. BMO is a promising optimization tool to solve complex real-world 

problems. In literature, BMO has been applied to solve economic dispatch problem in power system 

engineering [1], parameter estimation of proton exchange membrane fuel cell [2], microarray cancer 

classification [3] and control problem for an inverted pendulum system [4], [5]. It also was applied to predict 

covid-19 cases in China [6], energy optimization in 5G networks [7], and stock price prediction in financial 

stock market [8]. 

Buck converter is another real-world problem in power electronics engineering. Buck converter is 

an important component in many electrical and electronics circuits or devices. It has been used to step-down 

a voltage to a specified value. However, applying a certain load such as electromechanical devices and DC 

motor can cause the instability to the output voltage of the converter. The problem leads to unstable 

performance of the system [9], [10]. Moreover, if a certain set of time-domain performance criteria is needed 

https://creativecommons.org/licenses/by-sa/4.0/
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on the output voltage in the presence of load, a good controller might be required. It may optimally improve 

the transient response of the output voltage. Some of the possible controllers for the buck converter include 

fuzzy logic controller [11], sliding mode controller [12], proportional integral derivative (PID) [13] 

controllers. They are in common such a way that the response of a controlled variable i.e voltage signal is 

feedback and compared with the desired setting point. Fuzzy logic is more challenging where an expert 

knowledge is required to design the fuzzy rules, determining the associated antecedents and consequents. 

Other recent and more advanced control scheme applied on buck converter include adaptive neural network 

[14], state-space robust control [15], robust 𝜇-synthesis [16], and H-∞ controllers [17]. These control 

schemes offer a good stability in case of parameter uncertainty and external disturbance are presence in the 

system. Among these controllers, PID is commonly used in industry due to simplicity of its structure and 

design [18]. Combination of PID and other controllers are also commonly found in literature [19], [20]. In 

literature, applications of buck converter are found in solar photovoltaic system [21], electric vehicle and 

hybrid electric vehicle [22], lead-acis battery charger system [23], and electromagnetic actuator array [24]. 

As the global trend is moving towards a sustainable future, thus a sustainable technology is demanding and 

these applications proven the importance of research to tackle the problem arises in DC-DC converter. 

This paper proposes an elitism-crossover barnacle mating optimization (ECBMO). Some good 

features of the best barnacle in the population are crossover and combined with other barnacles. The resultant 

barnacle is a generated barnacle offspring. It comprises of some good features of parent barnacles and the 

best barnacle in the population. The proposed algorithm is tested on IEEE competition of evolutionary 

computation (CEC) 2014 benchmark functions to analyze its accuracy performance in comparison to BMO. 

It is also applied to optimize PID controller parameters for a buck converter. The controller stabilizes the 

output voltage of the buck converter. The paper is organized as follows. Section 2 describes the proposed 

elitism-crossover barnacle mating optimization. Section 3 explains about benchmark functions used to test 

the performance of the proposed ECBMO, experimental setup and result. Section 4 presents the application 

of the proposed ECBMO to optimization of PID controller for a buck converter, experimental setup and 

corresponding result. Section 5 presents conclusion of the paper.  

 

 

2. ELITISM-CROSSOVER BARNACLE MATING OPTIMIZATION 

ECBMO is an improvement of BMO algorithm. The elitism refers to the selection of elite 

individuals or the best agent from the memory pool [25]. It guides the other agents towards the current best 

optimal location. The major structure of ECBMO is almost similar to the original BMO. However, in the 

proposed algorithm, steps 4, 6, and 7 are accordingly modified to suit the new barnacle offspring generation 

method. The pseudocode of the proposed ECBMO is shown as follows: 

Step 0: randomly initialize barnacles position in the population 𝑥𝑖
𝑁 on a feasible search space. Set total 

number of barnacles in the population, 𝑁 = 50. 𝑥𝑖
𝑁 is the location of 𝑖𝑡ℎ barnacle in the 𝑁 population. Set 

male barnacle penis as a constant, 𝑏 = 7. 
Step 1: calculate fitness value of 𝑖𝑡ℎ barnacle, 𝑓𝑖. Barnacle with the minimum fitness value is the fittest 

barnacle, 𝑥𝑏𝑒𝑠𝑡 . 

Step 2: apply a random selection operator for parent barnacle. Define the male and female barnacles as 

𝑏𝑎𝑟𝑛𝑚 and 𝑏𝑎𝑟𝑛𝑓 respectively. 𝑥𝑏𝑎𝑟𝑛𝑚 
𝑁 =random permutation (1, 𝑁). Apply a random number in the range 

[1, 𝑁] to the male barnacles. 𝑥𝑏𝑎𝑟𝑛𝑓 
𝑁 =random permutation (1, 𝑁). Apply a random number in the range [1, 𝑁] to 

the female barnacles. 

Step 3: if selection of parent barnacle <  𝑏, then, produce first group of barnacle offspring, 𝑥𝑖,𝑂𝑆 
𝑁 . 𝑝 = 𝑟𝑎𝑛𝑑, 

𝑞 = 1 − 𝑝. 𝑟𝑎𝑛𝑑 is a random operator to generate random number in the range [0, 1].  
 

𝑥𝑖,𝑂𝑆 
𝑁 = 𝑝. 𝑥𝑏𝑎𝑟𝑛𝑚

𝑁 − 𝑞. 𝑥𝑏𝑎𝑟𝑛
𝑁

𝑓
 (1) 

 

Step 4: inherit features from the best ancestor to descendants. This produces second group of offspring, 

𝑥𝑖,𝐸𝑙𝑖𝑡𝑒 
𝑁 . 

 

𝑥𝑖,𝐸𝑙𝑖𝑡𝑒 
𝑁 = 𝑥𝑏𝑒𝑠𝑡(𝑟𝑎𝑛𝑑𝑜𝑚(2)) + 𝑥𝑖

𝑂𝑆 (2) 
 

𝑥𝑏𝑒𝑠𝑡(𝑟𝑎𝑛𝑑𝑜𝑚(2)) is used to generate random permutation of features in best-so-far barnacle. The selected 

features of the best-so-far barnacle are incorporated into the generated offspring. 

Step 5: if selection of parent barnacle >  𝑏, then, produce the third group of barnacle offspring 𝑥𝑖
𝑆𝐶 through 

sperm-casting.  
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𝑥𝑖 
𝑆𝐶 = 𝑟𝑎𝑛𝑑 + 𝑥𝑏𝑎𝑟𝑛

𝑁
𝑓
 (3) 

 

Step 6: calculate fitness cost of the newly generated barnacle offspring, 𝑥𝑖,𝑂𝑆 
𝑁 , 𝑥𝑖,𝐸𝑙𝑖𝑡𝑒 

𝑁 , 𝑥𝑖,𝑆𝐶 
𝑁 . The lowest 

fitness cost is the fittest barnacle, 𝑥𝑏𝑒𝑠𝑡 . 

Step 7: sort the barnacle off-springs 𝑥𝑖,𝑂𝑆 
𝑁 , 𝑥𝑖,𝐸𝑙𝑖𝑡𝑒 

𝑁 , 𝑥𝑖,𝑆𝐶 
𝑁  and barnacle 𝑥𝑖 

𝑁 based on their fitness cost. The first 

50 barnacles with the lowest cost 𝑓𝑖,𝑛𝑒𝑤
𝑁  are considered as the new barnacles 𝑥𝑖,𝑛𝑒𝑤 

𝑁 . 

Step 8: repeat step 2 to step 7 until termination condition is satisfied.  

 

 

3. BENCHMARK FUNCTIONS TEST 

Benchmark functions adopted from IEEE CEC 2014 are used as various platforms to test the 

accuracy performance of the proposed ECBMO algorithm. In the work, 4 functions known as shifted and 

rotated weierstrass, shifted rastrigin, shifted, and rotated rastrigin and shifted schwefel are considered [26]. 

Details of the functions, names, features of their landscape and corresponding theoretical optimal solution are 

presented in Table 1. It is noted from Table 1 that all functions are multimodal types and are upgraded from 

their basic functions. The number of local optima locations present in their landscape is huge and comprises 

of combination separable and non-separable features. Theoretically, the optimal solution for functions 1, 2, 3, 

and 4 is defined as 600, 800, 900, and 1000 respectively. 
 

 

Table 1. Details of the CEC 2014 benchmark functions 
No Function name Features Optimal solution 

1 Shifted and rotated weierstrass Multimodal, separable, continuous, differentiable 600 
2 Shifted rastrigin Multimodal, separable, huge local optima 800 

3 Shifted and rotated rastrigin Multimodal, non-separable, huge local optima 900 
4 Shifted schwefel Multimodal, separable, huge local optima 1000 

 

 

The benchmark functions test was setup such that an average fitness cost and convergence plot can 

be recorded for each function. It allows a more accurate analysis can be conducted. In the experimental setup, 

25 independent runs were conducted, the population of the barnacle, N was defined as 50 and maximum 

iteration was set as 1000. Maximum and minimum values of feasible search region were set as [-100, 100] 

while the dimension of the functions was assigned as 10. Table 2 shows the result of the average value of 

fitness cost generated from 25 independent runs for each function comparing both ECBMO and BMO 

algorithms. The result of the best fitness cost between those 2 algorithms is italicized. The smaller value of 

fitness cost indicates that the algorithm has achieved a better accuracy performance as compared to its 

counterpart. The table shows ECBMO has achieved cost function 601.9223, 811.3533, 938.0869, 

1.2819E+03 while BMO has attained cost function 604.6571, 831.3212, 946.9221, 2.021E+03 for functions 

1-4 respectively. Noted from the table that ECBMO has achieved better average fitness cost for all functions.  
 
 

Table 2. The acquired average fitness cost tested on CEC 2014 functions 
No BMO ECBMO 

1 604.6571 601.9223 

2 831.3212 811.3553 

3 946.9221 938.0869 

4 2.0218E+03 1.2819E+03 

 
 

Table 3 shows the result of statistical analysis using nonparametric wilcoxon-sign-rank-test. The 

result is generated based on the fitness cost recorded from 25 independent runs of both ECBMO and BMO. 

Noted from the table that ECBMO has achieved two-tail, 𝜌 result less than 5% indicating the improvement 

made by the ECBMO over the BMO is significant [27], [28]. Other parameters associated with the test are 

also presented in the table. The positive value of zval and larger value of R+ as compared to R-indicate that 

the ECBMO has achieved better result over the BMO [29]. 
 
 

Table 3. Wilcoxon sign rank test result 
Function no. 𝜌 Zval 𝑅+ 𝑅− 

Function 1 8.0851e-05 3.9419 309 16 

Function 2 1.7735e-05 4.2917 322 3 

Function 3 0.0016 3.1616 280 45 

Function 4 1.2290e-05 4.3724 325 0 

 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 13, No. 2, April 2024: 845-852 

848 

The performance difference between those 2 algorithms is clearly portrayed from the convergence 

plots shown in Figures 1(a)-(d). The convergence plots of the ECBMO are shown as the blue smoothed-line 

while the convergence plots of the BMO are shown as the red dashed-line. The plots show the result of the 

cost function versus the number of iterations. The figures show all the plots generated from ECBMO have 

achieved fitness cost closer to the theoretical value that the BMO. The plots show both ECBMO and BMO 

have presented almost similar convergence patterns. However, the BMO agents were trapped at the local 

optima solution and thus resulting in lower accuracy for all functions. On the contrary, the graphs show 

ECBMO convergence plots have converged sharply in the beginning until a certain iteration and have slowly 

converged as the iteration moves towards the end. Observation from the naked eye has shown that the 

searching operation for the ECBMO has settled down at almost 200 iterations for all functions. BMO has 

shown the slowest convergence for function 1 followed by functions 2, 3, and 4. The BMO graphs failed to 

converge to the optimal fitness value as shown by the ECBMO cost. The presented graphical results have 

confirmed the performance of the ECBMO is better than its BMO counterpart.  
 
 

  
(a) (b) 

  

  
(c) (d) 

 

Figure 1. Convergence curve for; (a) shifted and rotated weierstrass, (b) shifted rastrigin, (c) shifted and 

rotated rastrigin, and (d) shifted schwefel 

 

 

4. OPTIMIZATION OF PID CONTROLLER FOR A BUCK CONVERTER 

The proposed ECBMO is applied as an optimization tool to acquire optimal 𝐾𝑝, 𝐾𝑖 , and 𝐾𝑑 

parameters for a PID controller for a buck converter and compared with the BMO. In the first part of  

section 4, schematic diagram and derivation of dynamic model of the buck converter are presented. A DC 

motor is considered as a load connected to the buck converter. Its associated parameters are also presented. 

The second part of the section presents a closed-loop control strategy for controlling output voltage, 𝑈𝐶  of the 

buck converter. It depicts a schematic diagram of the feedback control strategy showing the structure of PID 

control scheme and the buck converter. An explanation of application of ECBMO to optimize the PID 

control parameters and objective function showing the relationship between the ECBMO and PID control 

scheme are also presented. The section ends with the discussion of the result for both ECBMO, BMO 

algorithms as well as the PID control performances. 
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4.1.  Buck converter  

A schematic diagram of a buck converter is shown in Figure 2. It consists of a voltage source, 
𝑉𝑑 = 10 𝑉, a switching device to generate pulse-width-modulator (PWM) in series with a resistor  
𝑅𝑆 = 0.025 Ω and an inductor, 𝐿 = 0.0001 𝐻 in series with a resistor 𝑅𝐿 = 0.02 Ω and a capacitor,  
𝐶 = 0.003 𝐹 in series with a resistor 𝑅𝐶 = 0.15 Ω. A DC motor is considered as a load and is arranged in parallel 

with the capacitor, 𝐶 and resistor 𝑅𝐶. The DC motor load comprises of armature resistance, 𝑅𝑎 = 3 Ω, armature 

inductance, 𝐿𝑎 = 0.005 𝐻 and back emf, 𝐸𝑎 = 10 𝑉. Based on the schematic diagram shown in Figure 2, the 

differential equations representing the buck converter are derived and stated as (4)-(6) [30]: 
 
𝑑𝑢𝑐

𝑑𝑡
=

1

𝐶
(𝑖𝐿 − 𝑖𝑎) (4) 

 
𝑑𝑖𝐿 

𝑑𝑡
=

1

𝐿
(−𝑢𝐶 − (𝑟𝐿 − 𝑟𝐶)𝑖𝐿 + 𝑟𝐶𝑖𝑎 − 𝑟𝑆𝑖𝐿 + 𝑉𝑑) (5) 

 
𝑑𝑖𝑎

𝑑𝑡
=

1

𝐿𝑎
(𝑢𝐶 + 𝑟𝐶𝑖𝐿 − (𝑟𝑎 + 𝑟𝐶)𝑖𝑎 − 𝐸𝑎) (6) 

 

 

4.2.  Optimization of ECBMO-based PID controller 

Figure 3 shows the block diagram of a PID controller optimization strategy for a buck converter. It 

starts with setting up the desired voltage required by the load as 30 volts. The actual output voltage from the 

buck converter is then feedback and compared with the desired voltage. The difference between the two 

responses is considered as an error of the system, 𝑒 (𝑡) which is then injected as an input to the ECBMO. The 

PID parameters which are defined in the ECBMO algorithm are iteratively varied and optimized. The PID 

parameters are considered as optimal if the error is at the minimum value. Equation of the PID controller is 

shown as (7) where 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 are the proportional, integral, and derivative constants respectively. The 

cost function, 𝑓(𝑡) of ECBMO algorithm is defined with respect to the error, 𝑒 (𝑡) of the system and it is 

shown as (8) where N represents total number of sampled data. 
 

𝑃𝐷(𝑡) = 𝑒(𝑡) × 𝐾𝑝 + 𝐾𝑖 ∫ 𝑒(𝑡) +
𝑑𝑒(𝑡)

𝑑𝑡
𝐾𝑑 (7) 

 

𝑓(𝑡) =
1

𝑁
∑ 𝑒(𝑡)𝑁

𝑡=1  (8) 

 

 

  
  

Figure 2. Schematic diagram of a buck converter Figure 3. Schematic diagram of closed-loop control 

scheme for a buck converter 
 

 

In the experiment, the search agent, iteration, and search range were defined as 10, 50 and [-100, 

100] for both algorithms respectively. Figure 4 shows convergence plots of the ECBMO and BMO in 

obtaining the optimal PID parameters. BMO result is shown as the red-smooth line while the proposed 

ECBMO result is shown as the blue-dotted line. The plot shows BMO and EBMO graphs have converged to 

fitness cost 2.5873 and 1.9823 respectively. The ECBMO has attained a significantly better fitness cost. The 

BMO graph has sharply converged until iteration 5. However, it has hardly converged to a better significant 

cost beginning from iteration 6 until the end of iteration. The ECBMO graph has slowly converged from the 

beginning until iteration 22. It has sharply converged to a better significant cost at 2.28 and 1.98 between 

iterations [22, 28] and [41, 43] respectively. Beginning from iteration 45 until the end of iteration, it unable to 

converge to a further better cost. The optimized BMO-based PID parameters Kp, Ki and Kd were obtained as 

[100, 100, 94.0536] respectively while ECBMO-based PID parameters Kp, Ki and Kd were optimized as 

[0.4449, 3.1167, 0.0389] respectively. Figure 5 shows PID-controlled output voltages of the buck converter 

optimized by the ECBMO and BMO algorithms. BMO result is shown as the red-smooth line while the 

proposed ECBMO result is shown as the blue-dotted line. The desired voltage was set as 30 volts as shown 
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by the black-dotted line. Both voltage graphs portray almost the same pattern. However, the output voltage 

optimized by the ECBMO shows a significantly smaller steady state-error as compared to the BMO output 

voltage. BMO has acquired steady state error about 1.3869 resulting in error percentage of 4.6%. The 

ECBMO has attained the steady state error about 0.5258 resulting in error percentage of 1.75%. The ECBMO 

has achieved 2.85% smaller error percentage than the BMO. On the maximum overshoot result, the BMO 

graph has reached the maximum voltage at 46.33 volts while the ECBMO graph has reached the maximum 

voltage at 46.21. It indicates that ECBMO has obtained a better overshoot performance which is 0.26% better 

than the BMO. On the voltage stability, ECBMO has shown a smaller ripple as compared to the BMO. 

Considering time for the graph to rise from 10% to 90% of its final value as the rise time performance, both 

ECBMO and BMO have shown a similar performance at 1.7 msec. 
 

 

 
 

Figure 4. ECBMO and BMO convergence plots comparison 
 

 

 
 

Figure 5. Comparison of output voltage of buck converter 
 
 

Table 4 shows a summary of time-domain performance for both ECBMO-based PID and  

BMO-based PID. Three performance criteria are evaluated which include steady-state error (𝑒𝑠𝑠) percentage 

overshoot (% 𝑜𝑠) and rise time (𝑡𝑟). The result of the best performance between those two algorithms is 

italicized. The table shows that ECBMO-based PID dominates the time-domain performance and thus 

outperforms the BMO-based PID. 
 

 

Table 4. Time domain performance of the ECBMO-based PID and BMO-based PID 
Criteria BMO ECBMO 

Steady-state error (𝑒𝑠𝑠) 1.3869 0.5258 

Percentage overshoot (% 𝑜𝑠) 46.33 46.21 

Rise time (𝑡𝑟) (msec) 1.7 1.7 
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5. CONCLUSION  

ECBMO has been presented in the paper. It is an improved version of original BMO algorithm. An 

elitism-crossover strategy has been incorporated into the mating strategy of BMO. Some good features of the 

best-so-far agent are inherited into new offspring of the barnacle. It also has improved communication 

between the best-so-far agent and all other agents. The proposed algorithm has been tested on four CEC 2014 

benchmark functions. Its accuracy performance in obtaining theoretical optima solution of the benchmark 

function is compared with BMO. Moreover, the algorithm has been applied to optimize the parameters of 

PID for the buck converter system. Both numerical and graphical results have been included comparing the 

performance of ECBMO and BMO. The result of the experiment has shown that ECBMO has attained better 

accuracy when tested on benchmark functions. On the PID control design problem, both algorithms have 

satisfactorily optimized the PID parameters. However, the response of output voltage of the buck converter 

optimized by ECBMO has shown a smaller steady-state error and overshoot than the BMO. The proposed 

algorithm will be further tested on more challenging platforms such as nonlinear fuzzy logic and neural 

network models in the future. 
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