
INTELLIGENT

DRYING RACK CONTROL SYSTEM WITH

WEATHER CONDITION PREDICTION

USING FUZZY LOGIC

NUR DARWISYAH FAQIHAH BINTI LUTFI

Bachelor Of Computer Science

(Software Engineering) With Honours

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : Nur Darwisyah Faqihah Binti Lutfi

Date of Birth

Title : Intelligent Drying Rack Control System with weather

condition prediction using Fuzzy Logic

Academic Session : Semester II Academic Session 2022/2023

I declare that this thesis is classified as:

CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

OPEN ACCESS I agree that my thesis to be published as online open

access (Ful Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of

the thesis for the purpose of research only.

3. The Library has the right to make copies of the thesis for academic

exchange.

Certified by:

(Student’s Signature) (Supervisor’s Signature)

New IC/Passport Number

Date: 2nd July 2023

Name of Supervisor

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

(Supervisor’s Signature)

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Author’s Name

Thesis Title

Reasons (i)

(ii)

(iii)

Thank you.

Yours faithfully,

Date: 25 July 2023

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Bachelor of Computer Science

(Software Engineering) with Honours.

(Supervisor’s Signature)

Full Name : TS. DR. MOHD IZHAM BIN MOHD JAYA

Position : HEAD OF PROGRAM (SOFTWARE ENGINEERING)

Date : 25 July 2023

(Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

(Student’s Signature)

Full Name : NUR DARWISYAH FAQIHAH BINTI LUTFI

ID Number : CB20080

Date : 2nd July 2023

2

INTELLIGENT DRYING RACK CONTROL SYSTEM WITH WEATHER

CONDITION PREDICTION USING FUZZY LOGIC

NUR DARWISYAH FAQIHAH BINTI LUTFI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor Of Computer Science (Software Engineering) With Honours

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JULY 2023

3

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude and appreciation to the following individuals

and organizations who have contributed to the completion of this thesis titled "Intelligent

Drying Rack Control System with Weather Condition Prediction using Fuzzy Logic".

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr Ts.

Mohd Izham bin Mohd Jaya, for their invaluable guidance, support, and expertise

throughout the entire research process. Their patience, encouragement, and constructive

feedback have been instrumental in shaping this thesis.

I would like to acknowledge the assistance and cooperation received from the participants

who took part in the data collection phase of this study. Their willingness to provide

information and insights has significantly contributed to the validity and reliability of the

research findings.

Furthermore, I am grateful to my family and friends for their unwavering support,

understanding, and encouragement throughout this academic journey. Their love and

encouragement have been a constant source of motivation and inspiration.

Lastly, I would like to express my gratitude to all the researchers, scholars, and authors

whose works and studies have provided valuable references and insights for this thesis.

Their contributions have enriched the theoretical framework and helped shape the

methodology and analysis of this research.

4

ABSTRAK

Kebanyakan orang mengikut rutin harian termasuk mencuci dan mengeringkan pakaian.

Namun, kebanyakan orang mengatakan bahawa proses mengeringkan pakaian adalah

bahagian yang paling mencabar disebabkan cuaca yang tidak menentu di Malaysia.

Projek ini memperkenalkan Sistem Kawalan Rak Pengering Pintar dengan ramalan

keadaan cuaca menggunakan logik Kabur yang boleh mengesan secara automatik

kehadiran hujan, cahaya matahari, suhu dan kelembapan. Sistem rak pengering ini akan

ditarik masuk dan dikeluarkan apabila sistem mengesan perubahan cuaca sekeliling.

Projek ini dibangunkan untuk membantu orang menjalankan tugas harian di luar dan

mencegah pakaian mereka daripada menjadi lembap akibat hujan. Tujuan projek ini

adalah untuk membantu orang menguruskan pakaian mereka ketika mereka jauh dari

rumah, mengurangkan tekanan mereka dan membebaskan perhatian mereka untuk tugas

harian yang lain. Prototaip model ini menggunakan peranti keras seperti Arduino Uno,

sensor hujan, sensor cahaya, sensor DHT11, dan motor servo sebagai penggerak. Dengan

menggunakan logik Kabur, apabila cuaca mendung, sensor akan menurunkan rak

pengering ke bumbung, dan apabila cuaca cerah, rak akan dipindahkan semula. Inisiatif

ini membantu orang menguruskan pakaian mereka ketika mereka jauh dari rumah,

mengurangkan tekanan mereka dan membebaskan perhatian mereka untuk tugas harian

yang lain.

5

ABSTRACT

Most people's daily routines include washing and drying clothes. However, most of the

people claimed that the process of drying up the clothes is the most challenging part due

to the unpredictable weather in Malaysia. This project introduces an Intelligent Drying

Rack Control System with weather condition prediction using Fuzzy logic that can

automatically detect the presence of rain, sunlight and temperature, humidity. This

drying rack system will be retrieved and pulled out when the system detects a change in

surrounding weather. This project was developed to help people stay busy and focus on

daily tasks outside and prevent their clothes from getting damp from the rain. The

prototype model used hardware such as Arduino Uno, rain sensor, light sensor, DHT11

sensor and servo motor as actuator. Using Fuzzy logic showed that when it is cloudy, the

sensor will pull the drying rack down to the roof, and when it gets sunny, it will be moved

again. This initiative helps people manage their clothes when they are away from home,

which reduces their stress and frees up their attention for other everyday duties.

6

TABLE OF CONTENT

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 3

1.3 Objective 4

1.4 Scope 5

1.5 Thesis Organization 6

CHAPTER 2 7

LITERATURE REVIEW 7

2.1 Introduction 7

2.2 Existing Systems/Works 7

2.2.1 Intelligent Drying Rack System based on Internet of Things 8

2.2.2 Propose design of smart clothesline with the tree diagram approach analysis and

quality function deployment method for Indonesia weather 9

2.2.3 Simulation and design of smart clothesline using fuzzy for weather forecast 10

2.3 Analysis/ Comparison of Existing System 11

2.3.1 Analysis of comparison on existing systems 11

2.3.2 Relevance of comparison with project title 12

2.4 Summary 13

CHAPTER 3 14

METHODOLOGY 14

3.1 Introduction 14

3.2 Project Management Framework : Rapid Application Development 16

3.2.1 PHASE 1 : Analysis and Quick Design 17

3.2.2 PHASE 2 : Prototype Cycling 17

3.2.3 PHASE 3 : Testing 18

3.2.4 PHASE 4 : Implementation 18

3.3 Project Requirements 19

3.3.1 Functional & Non-Functional Requirements 19

3.3.2 Software Requirements 21

3.3.3 Hardware Specifications 22

3.4 Proposed Design 24

3.5 Architecture Design 26

3.6 Data Collection 30

7

3.7 Dashboard Design 32

3.8 Analytic Feature Design 33

3.9 Potential Use of Proposed Solution 36

CHAPTER 4 37

RESULTS AND DISCUSSION 37

4.1 Introduction 37

4.2 Dashboard Results and Discussion 38

4.3 Fuzzy Results and Discussion 40

CHAPTER 5 43

RESULTS AND DISCUSSION 43

5.1 Introduction 43

5.2 Conclusion of the project 43

REFERENCES 45

APPENDIX 47

VNC viewer 47

Arduino IDE 48

Visual Studio Code 51

Spyder 84

8

LIST OF TABLES

Table 2.3.1 - analysis comparison on existing system 11

Table 2.3.2 – Advantages and Disadvantages comparison between 3 existing system 12

Table 3.3.1 – List functional and non-functional requirements 20

Table 3.3.2 – List and description of required software 21

9

LIST OF FIGURES

Figure 2.2.1 - System overall 8

Figure 2.2.2 - Clothesline tree diagram analysis 9

Figure 2.2.3 - Process fuzzy logic algorithm 10

Figure 3.2 – Rapid Application Development SDLC 16

Figure 3.4 - Flowchart Architecture 24

Figure 3.5 - IoT Architecture 27

Figure 3.6.1 - member function graphic of temperature 30

Figure 3.6.2 - member function graphic of humidity 31

Figure 3.6.3 - member function graphic of light intensity 31

Figure 3.6.4 - member function graphic of out 31

Figure 3.7 - Wireframe Dashboard 32

Figure 4.2.1 - Dashboard of the system 38

Figure 4.3.1 - Membership for temperature, rain and light 41

Figure 4.3.2 - Output / Condition of fuzzy 41

10

LIST OF ABBREVIATIONS

MQTT Message Queuing Telemetry Transport

IoT Internet of Thing

AI Artificial Intelligent

MySQL My Structured Query Language

LED Light-Emitting Diode

DHT Digital Humidity and Temperature

API Application Programming Interface

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

An increase in interest in smart home technology that makes our lives simpler and

more effective has been seen in recent years. The ‘intelligent drying rack control system

with weather condition prediction using fuzzy logic’ which is intended to automate and

optimize the process of drying clothing indoors, is one example of such an innovation.

More individuals are resorting to indoor drying options as urban living becomes more

prevalent and outside space becomes increasingly scarce (S.Chaihang, 2021). Traditional

drying racks, on the other hand, might be ineffective, occupying valuable space and using

a lot of energy (Kharisma, 2019).

This project background part examines the literature on automated drying rack

provides an IoT architecture. It will have four layers which are sensing layer, network

layer, data processing layer and application layer. For the sensing layer it uses four

sensors which are DHT11 humidity and temperature sensor, photocell sensor and rain

sensor. It will give the movement to actuators which are servo motors and give the output

LED will bright. For the microcontroller devices, there are WIFI Uno ESP32 and

Raspberry Pi 3B+. Then, for the network layer, the gateway which connects with

raspberry pi via Wi-Fi connection to the server by using MQTT server. In the data

processing layer, data will be stored in MySQL. WebSocket server, AI server, and fuzzy

logic has been implemented in this system. ‘Intelligent Drying Rack Control System with

weather condition prediction using fuzzy logic’ addresses this issue by incorporating

features such as servo motors move the suspension in and out from the side of the home,

remote monitoring, and control via web dashboard. By using sensors and timers,

intelligent drying racks can optimize the dying process and reduce energy consumption

compared to traditional drying methods. The three variables used in this study's fuzzy

2

system are temperature, rain, and light intensity. The input value will be transformed into

a linguistic value for fuzzy input (Tatyantoro, 2022). In the application layer, there is a

web application which is Laravel. It will display data visualization such as real time

graphs and real time sensors data. In addition, the dashboard allows telegrams to inform

the user about the system and provides control buttons to operate the actuators.

This project explores the concept of an intelligent drying rack system using fuzzy

classification in depth. It will review the current state of the technology, identify the

benefits and limitations of using intelligent drying rack systems, and provide

recommendations for practical and efficient system design and implementation.

Additionally, the project will consider the environmental impact and economic viability

of using intelligent drying racks, as well as the potential for future development and

innovation in this area.

3

1.2 Problem Statement

1.2.1 Unpredictable weather conditions

Unpredictable weather circumstances might make it more difficult for items to

dry, such as rain or too much sun. Rain can soak the clothing and make it difficult to

adequately remove the moisture, resulting in lengthy drying times. Furthermore, clothes

left outside in a rainfall may end up dirty or even have their colour fade. On the other

side, too much sunshine can cause clothing to dry too rapidly, which could lead to fabric

that is stiff or wrinkled. In addition, extended exposure to direct sunlight can weaken the

fabric's fibres and fade colours, shortening the life of the garments. Why it happens?

Photodegradation is the cause, according to the librarian of Congress (2010). How does

that work? Because of the chromophores in the dyes, some chemical linkages can be

found in our clothing. The UV rays from too much sunshine can damage the

chromophores' chemical linkages, causing the clothing to fade as though a bleaching

treatment had been used.

Therefore, the unpredictable nature of weather conditions poses challenges for

drying clothes efficiently, necessitating adaptability in drying methods and consideration

of protective measures like using drying racks indoors or monitoring weather forecasts

to minimize potential damage or delays.

1.2.2 Inefficiency and inconvenience of traditional drying methods

Due to the inefficiency and inconvenience of traditional drying techniques,

consumers typically forget about their drying clothes. The weather is a major factor when

hanging clothing outside on a clothesline. Unpredictable rain or high gusts might hinder

or even harm the drying process and the garments. Similar to outside drying racks,

interior drying racks and clotheslines occupy space and might restrict movement inside

the living space. Additionally, it takes time and energy to physically flip or rotate the

garments to guarantee even drying. These elements add to the annoyance and

ineffectiveness of conventional drying techniques, leading users to frequently forget

4

about their clothing, leaving it moist for prolonged periods of time, and sometimes

resulting in unpleasant odours or mildew. Thus, if no one was home to retain the clothing,

there is a good probability that they were still wet when the owner returned. In that case,

they would need to wash the clothes again or spin the water out of the clothing once more.

As a result, there is a need for more practical and automated drying solutions that can

resolve these problems, offer people a hassle-free experience, and guarantee that their

clothing will dry quickly and effectively.

1.3 Objective

There are 3 objectives which aim to be achieved at the end of the project:

1. To study the requirement for IoT architecture that provides real-time data

and provides insightful information about weather.

2. To develop an intelligent drying rack system that uses rain sensors, light

sensors, temperature, and humidity sensors with fuzzy logic.

3. To evaluate the effectiveness of an intelligent drying rack system based

on fuzzy.

5

1.4 Scope

The scope of the project consists of user, system, and development. The scopes

are specified as below:

User Scope:

I. House owner or household usage.

System Scope:

I. Use sensors to collect the data which are the temperature and humidity of

weather, rain detection and light presence.

II. Provide alerts to users when the rain sensors detect the water rain.

III. Provide precise classification skills, improving the drying rack using fuzzy logic.

IV. Communication protocols using MQTT and WebSocket

Development Scope:

I. The system will be developed using Visual Studio Code, Laravel framework and

MySQL as database server.

II. This system uses MQTT server, web server and WebSocket server.

6

1.5 Thesis Organization

This thesis consists of five chapters, starting from introduction, literature review,

methodology, implementation and results, and conclusion.

Chapter 1 mostly discusses the general information regarding the Intelligent

Drying Rack Control System such as the introduction to the project, problem statement,

main objectives, scope and the thesis organization.

The goal of chapter 2, which is the literature review section, is to examine the

specifics of current market-available system solutions that are relevant to this project and

to compare them in order to learn more about each of their advantages and disadvantages

that should be taken into account when this project is being developed.

The methodology component of the project is covered in chapter 3. Here, the

project's selected method of development is described in detail, and the system's flow is

elaborated upon using flowcharts, IoT architecture and wireframe dashboard. Any

specialised software and hardware that will be employed in the system's development

would also fall under this category.

Once the system has been created and is prepared for deployment, the report

moves on to chapter 4, where it is shown dashboard and fuzzy for results and discussion

for the project.

Finally, chapter 5 will bring this thesis to a close. This section contains a summary

of the development project and conclusion of the project.

7

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Before creating the system, it is necessary to do comparisons between relevant

current systems in order to comprehend each of its capabilities as well as other defining

characteristics like the processes and technologies employed that can be incorporated into

the project. The ‘Intelligent Drying Rack Control System with Weather Condition

Prediction Using Fuzzy Logic’ can then be developed by evaluating the concrete

strengths and weaknesses of each of the systems.

2.2 Existing Systems/Works

This section will analyze various past systems and techniques for intelligent

drying rack control systems. The main focus of the review will be on comprehending the

design, implementation, and performance of these systems. The analysis will take into

account data collection techniques, monitoring tactics, data processing algorithms, and

decision-making procedures. By examining the benefits and drawbacks of various

systems, substantial insights will be gained to improve the suggested solution.

8

2.2.1 Intelligent Drying Rack System based on Internet of Things

The traditional outdoor drying racks for clothes face inconveniences due to

weather changes, making it difficult to collect and dry clothes. To address this issue, a

smart drying rack based on the Internet of Things (IoT) is designed (X.Xing, 2021). It is

suitable for various settings such as homes, hotels, hospitals, and laundry shops where

large amounts of clothing require frequent washing and outdoor drying. The smart drying

rack offers features like automatic drying, recycling, drying, and disinfection of clothing.

It addresses the limitations of traditional drying methods by incorporating remote one-

button drying, automatic induction recycling, one-button undressing, and remote

sterilization. The system utilizes an STM32F103C8T6 microcontroller as the main

control chip and the OneNET cloud platform as the information port. Data from

temperature and humidity sensors in the drying rack sensor module enable intelligent

perception of the environment and clothing recycling. The system can be controlled

manually through a touch screen interface or remotely monitored and controlled via a

mobile phone app. This user-friendly operation enhances the convenience and portability

of smart homes.

Figure 2.2.1 - System overall

9

2.2.2 Propose design of smart clothesline with the tree diagram approach

analysis and quality function deployment method for Indonesia weather

In tropical countries like Indonesia, the unpredictable rainy season causes anxiety

for people when hanging clothes outdoors. Electric clotheslines are an option, but they

require more power and are costly to operate, impacting household budgets. To address

this issue, a new design of an automatic clothes dryer is proposed, considering the seasons

in Indonesia, particularly in the Pekanbaru area (Kharisma, 2019). Previous research has

been conducted on clothes dryers using light sensors (LDR) and rain sensors to protect

clothes from rain. The proposed design aims to be more ergonomic and energy-efficient

by utilizing the Quality Function Deployment (QFD) method to align consumer needs

with the product design. The QFD method ensures that the new design meets customer

wants and needs. The research aims to provide innovative solutions in developing

clothing dryer products and reduce reliance on electric power. The proposed design will

offer convenience and effectiveness in drying clothes while considering the unpredictable

weather conditions in Indonesia.

Figure 2.2.2 - Clothesline tree diagram analysis

10

2.2.3 Simulation and design of smart clothesline using fuzzy for weather forecast

Weather conditions strongly influence human activities in various sectors such as

agriculture, tourism, and aviation. Having accurate weather information is crucial for

decision-making and anticipating the impact of weather changes. However, predicting

climate change is challenging. Fuzzy logic systems provide an effective and accurate

solution for weather prediction by considering imprecise or vague linguistic variables

(Tatyantoro, 2022). Fuzzy logic has been successfully applied in various fields, including

industrial process control, medical instrumentation, and decision support systems. In

weather prediction, fuzzy logic has been used to estimate water levels, predict rain to

prevent flooding, and develop weather prediction applications using methods like ANFIS

(Adaptive Neural Fuzzy Inference System). The advantages of fuzzy logic lie in its ability

to handle complex and imprecise variables, making it suitable for modeling real-world

phenomena. This project aims to utilize fuzzy logic to develop a weather prediction

system that can assist in decision-making and improve the accuracy of weather forecasts.

Figure 2.2.3 - Process fuzzy logic algorithm

11

2.3 Analysis/ Comparison of Existing System

Only after completing the evaluation of the three current systems can comparisons

be made based on each system's description, development process, technologies used,

and advantages and disadvantages. There will be obvious distinctions made between

these systems based on their importance to the project's target objectives, and significant

components that could be incorporated into the design of the ‘Intelligent Drying Rack

Control System with Weather Condition Prediction Using Fuzzy Logic’ can be identified.

2.3.1 Analysis of comparison on existing systems

Title/Criteria Intelligent Drying

Rack System based

on Internet of Things

Propose design of

smart clothesline with

the tree diagram

approach analysis and

quality function

deployment method

for Indonesia weather

Simulation and

design of smart

clothesline using

fuzzy for weather

forecast

Description Design of a smart

clothes rack with a

focus on recycling and

automatic one-button

fall off of clothes.

Design of an automatic

clothes dryer that

protects clothes from

rain.

Simulation of a

weather prediction

system

Technique/Metho

d

Fuzzy logic Fuzzy logic Fuzzy logic

Tools/Technology -microcontroller:

STM32F103C8T6

-sensors: DHT11

sensor and light sensor

-stepping motors: 57-

type and 42-type

-microcontroller:

ATMEGA8525

-sensors: rain sensors

-microcontroller:

Arduino Mega

-sensors: DHT22

sensor and LDR

sensor

Table 2.3.1 - analysis comparison on existing system

12

2.3.2 Relevance of comparison with project title

System / Intelligent Drying Propose design of Simulation and

Comparison Rack System based smart clothesline design of smart

 on Internet of with the tree clothesline using

 Things diagram approach fuzzy for weather

 analysis and quality forecast

 function

 deployment method

 for Indonesia

 weather

Advantages Offers a telescopic Protects clothes from Utilizes fuzzy logic

mechanism for rain and provides an for more accurate

expanding the drying ergonomic design for weather predictions.

area based on consumers.

demand.

Provides real time Using QFD methods Real-time updates

weather updates for to meet consumer

users to choose demand and reduce

appropriate clothes energy consumption.

for drying.

Disadvantages specific technical requires additional relies on simulation

details or limitations sensors and rather than real-world

not mentioned. components for rain implementation for

 detection and testing.

 protection.

potential complexity need electric power limited information

and cost associated on the validation and

with the use of effectiveness of the

multiple components fuzzy logic system

and mechanism for weather

 prediction in

 practical

Table 2.3.2 – Advantages and Disadvantages comparison between 3 existing system

13

2.4 Summary

After reviewing the three existing systems, it was possible to clearly distinguish

the differences between the systems in terms of their many features, the way each one

employs IoT technologies and a host of other factors. After that, a comparison of these

three systems can be done in order to identify each one's advantages and disadvantages

in relation to the ‘Intelligent Drying Rack Control System with Weather Condition

Prediction Using Fuzzy Logic’ system that has been proposed.

14

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter discusses the overall approach or framework of ‘Intelligent Drying

Rack Control System with Weather Condition Prediction Using Fuzzy Logic’. It should

cover method/technique or approach to be used whereas the methodology in details to

accomplish the project. The content for this chapter can contain: Introduction,

architecture design, dashboard design, analytic feature design, potential use of proposed

solution and reference.

The architecture design section delves into the technical aspects of the automated

drying rack system. It outlines the overall structure and components involved in the

system, such as sensors, actuators, control units, and communication interfaces. The

section also discusses the integration of fuzzy logic into the architecture, explaining how

it enables intelligent decision-making and adaptive control based on real-time inputs.

Then, the dashboard design section focuses on the user interface aspect of the system. It

describes the design and layout of the graphical user interface (GUI) that allows users to

interact with the automated drying rack. This includes features such as displaying real-

time information on weather, monitoring drying rack and send the alarm trigger. The

section may also discuss the considerations taken into account for creating a user-friendly

and intuitive interface.

The analytic feature design section explores the analytical capabilities of the

system. It explains how data collected from sensors can be processed and analysed to

derive insights and optimize the drying process. This may involve techniques such as data

visualization, pattern recognition, and predictive modelling. The section highlights the

value of analytics in improving efficiency, identifying potential issues, and providing

actionable recommendations for further optimization. The potential use section discusses

the practical applications and benefits of the proposed ‘Intelligent Drying Rack Control

15

System with Weather Condition Prediction Using Fuzzy Logic’. It explores the various

real-time situations where the solution can be implemented, such as residential

households, commercial laundries, and the hospitality industry. The section emphasizes

how the system's adaptability, energy efficiency, and high-quality drying results make it

suitable for a wide range of users and contexts.

Overall, this chapter provides a comprehensive overview of the intelligent drying

rack with fuzzy logic system, covering the approach, methodology, and potential use

cases. It sets the foundation for understanding the subsequent chapters that delve into

more specific details, implementation techniques, and experimental results.

16

3.2 Project Management Framework : Rapid Application Development

Figure 3.2 – Rapid Application Development SDLC

Figure 3.2 clearly illustrates the phases conducted within the RAPID APPLICATION

DEVELOPMENT (RAD) methodology. This was determined to be the best SDLC method for

the ‘Intelligent Drying Rack Control System with Weather Condition Prediction Using

Fuzzy Logic’ system since it would allow for a system to be produced much more quickly and

with a higher level of product quality. This is because the RAD technique is highly flexible and

responsive to changes, making it ideal for the development of this system because of the many

requirements that would always call for minor system adjustments to be made quickly. It is also

an iterative process, allowing for simple revisiting of various development phases like the

refining, building, and demonstrating process, allowing for enhanced revisions throughout the

project's development until it is finished.

17

3.2.1 PHASE 1 : Analysis and Quick Design

Every required aspect of the system, such as the project's functional and non-functional

requirements, along with the software and hardware requirements, must be gathered and analysed

within this process. This process is called the ANALYSIS AND QUICK DESIGN process. It is

the first phase of the development of the 'Intelligent Drying Rack Control System with Weather

Condition Prediction Using Fuzzy Logic' system. Only then will it be possible to create a system

design that is specifically designed to address all the objectives and needs that have been put

forth.

As mentioned in earlier chapters, the 'Intelligent Drying Rack Control System with

Weather Condition Prediction Using Fuzzy Logic' system's reachable goals and scope have

already been determined. Additionally, we have examined currently available systems on the

market and have effectively pinpointed significant variations in regard to each of their strengths

and shortcomings that must be taken into account throughout the construction of this project.

Additional needs, such as the previously mentioned functional and non-functional

requirements as well as software and hardware specifications required to correctly construct this

specific system and listed in PROJECT needs Chapter 3.3, can be found here.

3.2.2 PHASE 2 : Prototype Cycling

To properly illustrate the inner workings of the ‘Intelligent Drying Rack Control System

with Weather Condition Prediction Using Fuzzy Logic’ system, additional elements are refined

in this phase and will be further discussed in the PROPOSED DESIGN Chapter 3.4. These

elements include the proposed system and data design as well as a defined IoT architecture.

Following that, the build process—which marks the official beginning of the system's

development—can be started. This phase involves all the labor-intensive tasks, such as setting up

the sensors, connecting the gear through networking, and creating the overall database. Only

when it is finished will it be possible to go on to the demonstration procedure, in which a system

prototype that has been produced is assessed before the actual testing of the finished product.

Here, any future updates to the system requirements that result in the addition of new modules.

18

This procedure can be repeated in order to improve the system's updates, monitor the

prototype, and plan swifter building until a working model is ultimately finished and prepared for

testing in real-world scenarios.

3.2.3 PHASE 3 : Testing

During the testing phase, the 'Intelligent Drying Rack Control System with Weather

Condition Prediction Using Fuzzy Logic' will be put through its paces to ensure that every feature

is working properly and any faults or glitches will be fixed. This phase may be repeated as

necessary to accommodate additions and modifications.

End users' comments on the user interface and functionality will be gathered in order to

further enhance the product overall. This is accomplished by allowing people to provide

thoughtful feedback during this phase, offering adjustments, revisions, or fresh concepts that

address issues as they arise. If the feedback is only positive, the last step can be carried out;

otherwise, the prototype cycling process is resumed.

3.2.4 PHASE 4 : Implementation

The RAD methodology's last step involves resolving any technical difficulties that

cropped up during early prototype in order to optimize implementation for increased stability and

maintainability as we move closer to the launch of the finished product. The 'Intelligent Drying

Rack Control System with Weather Condition Prediction Using Fuzzy Logic' system's important

components are all transferred to a live production environment, where extensive testing is

conducted to find any remaining product flaws. Before finally providing the client a finished

product, thorough documentation and other essential maintenance chores must be carried out.

19

3.3 Project Requirements

The requirements for the 'Intelligent Drying Rack Control System with Weather

Condition Prediction Using Fuzzy Logic' system are further discussed in this section. These will

comprise explanations of the project's software and hardware needs as well as its functional and

non-functional requirements, which will act as guidelines for the system's design process.

3.3.1 Functional & Non-Functional Requirements

To guarantee that the 'Intelligent Drying Rack Control System with Weather Condition

Prediction Using Fuzzy Logic' system functions as intended, both the functional and non-

functional requirements must be clearly stated from the beginning of development. This

necessitates understanding the distinctions between those two types of needs as well as how to

define each.

While NON-FUNCTIONAL REQUIREMENTS describe how the system should

operate, primarily in terms of system usability to ensure a well performing system,

FUNCTIONAL REQUIREMENTS specify what the system must do in response to various

inputs and can be made up of both product features and user requirements.

These definitions state that the 'Intelligent Drying Rack Control System with Weather

Condition Prediction Using Fuzzy Logic' system must adhere to the functional and non-functional

requirements listed below:-

FUNCTIONAL

REQUIREMENTS

NON-FUNCTIONAL

REQUIREMENTS

1. Intelligent drying rack control system must

display all recorded values into simple

understandable data visualizations that are

integrated into a web-based dashboard

application.

2. Intelligent drying rack control system must

allow for both automated and control of

1.Intelligent drying rack control system

should be developed using a Laravel

framework for the web-based dashboard

application fit for Python language, HTML

and JavaScript for web page development and

microprocessor operation of the sensors and

actuators.

20

actuators such as servo motors and LED via

event triggers on dashboard.

3. Intelligent drying rack control system must

enable dashboard interface controls to be

used to operate the button.

2. A local MySQL database should be used by

the intelligent drying rack control system for

secure data storage and query activities.

3. Intelligent drying rack control system

should use the WebSocket connection

protocol for real-time alerts and important

event triggers and the MQTT connection

protocol for sensor readings.

4. Intelligent drying rack control system

should display on the dashboard for the

latest 1-minute update intervals.

Table 3.3.1 – List functional and non-functional requirements

21

3.3.2 Software Requirements

SOFTWARE PURPOSE OF UTILIZATION

Microsoft Visual Studio

Code

To allow coding for :-

• Building the PHP, HTML, and JavaScript pages

for the Intelligent drying rack control system web

application.

• A Raspberry Pi microprocessor's operating

instructions for reading and transmitting sensor

data values and operating actuators.

• Ensuring that the server and devices follow the

network connection instructions for data

transmission.

VNC viewer Enables Artificial Intelligence (AI) to send messages via

WebSocket to activate the actuators controller by the Python

code.

XAMPP - phpMyAdmin Enables database storing and query within local MySQL

environment.

Composer Manages library dependencies in PHP.

Laravel PHP framework Providing a framework structure for Intelligent drying rack

control system web application development.

Spyder IDE Platform for Artificial Intelligence (AI) development and

debugging.

Google Chrome Web browser for Intelligent drying rack control system web

application implementation.

Table 3.3.2 – List and description of required software

22

3.3.3 Hardware Specifications

NO. DEVICE TYPE

& PURPOSE

DEVICE

1. CLIENT/SERVER COMPUTER

• Server Computer : To host Intelligent

drying rack control system web

application for multiple users

simultaneously, local MySQL

database as well as AI fuzzy program

• Client Computer : To allow for display

and interaction of Intelligent drying

rack control system web application.

SERVER COMPUTER

CLIENT COMPUTER

2. MICROPROCESSOR

• To collect data from DHT11

temperature and humidity sensor to be

sent over MQTT and WebSocket

connection to be used by the system.

RASPBERRY PI 3B+

3. MICROPROCESSOR

• To collect data from photocell sensor

and rain sensor to be sent over MQTT

and WebSocket connection to be used

by the system.

ESPDUINO 32

23

4. SENSOR

• To measure the weather environmental

temperature and humidity.

DHT11 TEMPERATURE &

HUMIDITY

5. SENSOR

• To measure the light intensity of the

ambient light.

PHOTOCELL SENSOR

6. SENSOR

• To detects the rain drops.

RAIN SENSOR

7. ACTUATOR

• To pull in and out the drying rack

SERVO MOTOR

8. OUTPUT

• To act as alarm when the rain sensor

detects the rain drops.

LED

24

3.4 Proposed Design

The 'Intelligent Drying Rack Control System with Weather Condition Prediction Using

Fuzzy Logic' system's proposed design will be further developed in this chapter. Here, more

information will be provided on subjects like the general system sketch and operation.

Figure 3.4 - Flowchart Architecture

The intelligent drying rack architecture utilizes two microcontrollers, namely the

Raspberry Pi 3B+ and the ESPDuino 32, to create a comprehensive system. The flowchart

begins with the Raspberry Pi, which directly connects to a DHT11 sensor. This sensor is

responsible for measuring temperature and humidity levels. The ESP32, on the other

hand, connects to both the photocell and the rain sensor via Wi-Fi.

The photocell and rain sensor detect light levels and rainfall respectively. These

sensors provide readings of the sensed values, which are then transmitted to the respective

microcontrollers. The readings are then processed and displayed on a dashboard. This

25

dashboard serves as a user interface, allowing users to monitor and visualize the data

collected by the sensors.

Furthermore, in the case of the rain sensor, if the detected rain value exceeds 40

(presumably a predefined threshold), an alert notification is triggered. This notification

is sent to both the dashboard and the messaging platform Telegram, providing real-time

updates about the rain condition. This alert system ensures that users are promptly

informed of significant rainfall, allowing them to take appropriate actions to protect their

belongings on the drying rack.

26

3.5 Architecture Design

27

Figure 3.5 - IoT Architecture

The proposed design for the ‘Intelligent Drying Rack Control System with

Weather Condition Prediction Using Fuzzy Logic’ incorporates several components and

technologies to create an intelligent and connected drying system. Here's a breakdown of

the design elements. For the sensing layers, the sensors that use are DHT11 sensor,

photocell sensor and rain sensor and for the microcontrollers that use are raspberry pi

3B+ and WIFI Uno ESP32. The DHT11 sensor measures temperature and humidity levels

in the environment. It provides data about the ambient conditions that can be used to

optimize the drying process. The photocell sensor detects the intensity of light in the

surroundings. It helps determine whether the drying rack is exposed to direct sunlight or

if it's located in a shaded area, allowing the system to adjust the drying parameters

accordingly. The rain sensor detects the presence of rain. It ensures that the drying process

is paused or adjusted when rain is detected to prevent damage to the clothes.

In terms of connectivity, the photocell sensor and rain sensor are connected to

WIFI Uno ESP32 via a wired connection. On the other hand, the DHT11 sensor is directly

connected to the raspberry pi 3B+. The WIFI Uno ESP32 and raspberry pi takes on the

role of an MQTT publisher, sending data to the MQTT broker through a gateway. For

the actuator use is servo motor. The servo motor controls the movement of the drying

rack. It can be used to adjust the position of the rack or to rotate it for even drying. Then,

the output is LED. The LED serves as an output indicator, providing visual feedback to

the user about the status of the drying rack.

For the network layer, connection protocols that are used in this automated drying

rack are MQTT and WebSocket. The MQTT stands for Message Queuing Telemetry

Transport protocol used for efficient and reliable communication between the drying rack

and other devices or services. It enables real-time data exchange and control commands.

In this project, the gateway is connected via a Wi-Fi connection to create connectivity.

Data transmission from the microcontroller to the MQTT broker is handled by the

gateway. It will collect data and send it as JSON format to the web server by using MQTT

server. The MQTT broker serves as the network layer's main hub for data transport. A

subscriber receives the information from the gateway when it subscribes to a specific user

28

and subject. The data is kept by the MQTT broker, who makes sure the right subscribers

receive it. On the Internet of Things system, effective and dependable data transfer and

communication are provided by the gateway, the MQTT broker, and the network layer.

The gateway enables connection between the MQTT publisher and the broker, while the

MQTT broker stores and disperses data to subscribers in accordance with their

subscriptions to specific users and subjects.

While in the data processing layer, the MySQL database is used to store the

collected sensor data and other relevant information. It provides a structured and reliable

storage solution for historical data and enables data analysis and reporting. Besides that,

this layer consists of two servers which are AI server (Artificial Intelligence) and

WebSocket server. In the AI server, the fuzzy logic system has been implemented. The

three variables used in this study's fuzzy system are temperature, rain, and light intensity.

Cold, mild and hot are the three linguistic input variables for temperature. Dry, light rain

and heavy rain are the three linguistic variables that make up the input variable for rain.

Dark, moderate, and bright are the three language variations of light intensity. A

condition for the weather output variable with a sunny, cloudy and rainy. The values of

the fuzzy logic algorithm are derived from each variable. The module will transfer

numerical values to fuzzy sets by fuzzification. The input value will be transformed into

a linguistic value for fuzzy input.

For the Application layer, software that is used in dashboard and notifications

Laravel and telegram. Laravel is a PHP-based web application framework that can be

used to develop a user-friendly dashboard. It provides a robust and scalable platform for

managing and visualizing the drying rack's data, settings, and controls. Telegram is a

messaging platform that can be utilized to send notification alerts to the user. It can

deliver real-time updates about the drying process, completion status, or any issues that

require attention.

The overall architecture of this proposed design involves the sensors (DHT11,

photocell sensor, rain sensor) collecting data about the environment, which is processed

by the fuzzy logic system within the microcontroller. The fuzzy logic system uses the

sensor data to make intelligent decisions regarding the drying process. The actuator

29

(servo motor) controls the movement of the drying rack based on the decisions made by

the fuzzy logic system. The LED provides visual feedback to the user about the current

status of the drying rack. The MQTT and WebSocket protocols enable communication

between the drying rack and the dashboard/user interface, allowing for real-time data

exchange and control commands. The MySQL database stores the collected data for

further analysis and reporting. The Laravel-based dashboard provides a user-friendly

interface to monitor and control the drying rack, while Telegram serves as a platform for

sending notification alerts to the user, keeping them informed about the drying process.

This integrated design combines sensor data, fuzzy logic decision-making, actuator

control, connectivity protocols, database storage, and user interfaces to create an

intelligent and connected smart drying rack system.

30

3.6 Data Collection

The data will be collected depending on fuzzy logic classification. The data will

be collected from temperature value, light intensity and rain drop value. The sensors that

will be used to collect the data are DHT11 sensor, photocell sensor and rain sensor. To

facilitate the interaction with these sensors and gather the necessary data, a functional

model will be developed. This model serves the purpose of autonomously collecting the

data, removing the need for external interventions. Continuous data collection ensures

the acquisition of a comprehensive dataset that accurately represents the dynamic

behaviour of the drying rack variables over time. Specifically, the data being collected in

this thesis pertains to temperature value, light intensity and rain drop value, which serve

as input or membership functions for the fuzzy logic analysis of the drying rack

operations. Figure 3.6.1, 3.6.2, 3.6.3 below shows the fuzzy input membership function

of the temperature, humidity and light intensity from the previous journal (Tatyantoro,

2022).

Figure 3.6.1 - member function graphic of temperature

31

Figure 3.6.2 - member function graphic of humidity

Figure 3.6.3 - member function graphic of light intensity

In figure 3.6.4 is the membership function of the fuzzy output from defuzzification

from the existing system.

Figure 3.6.4 - member function graphic of out

In the inference module of a fuzzy logic system, simulated decision making takes

place based on fuzzy concepts using knowledge rules. These rules are determined by

combining linguistic variables and the system's knowledge. The output of the inference

process is a feasibility value, which represents the degree of certainty or confidence in a

particular decision or action (Tatyantoro, 2022).

After the inference process, the feasibility values can be further processed through the

defuzzification step to obtain a crisp output value or a set of crisp values that represent

the final decision or prediction based on the fuzzy logic system's rules and inputs. It's

important to note that the specific fuzzy rules, linguistic variables, and membership

functions used in a weather prediction system may vary depending on the system's design

and requirements.

32

3.7 Dashboard Design

Figure 3.7 - Wireframe Dashboard

The figure 3.7 shows wireframe dashboard for the Smart drying rack system. The

home dashboard for a smart drying rack with a fuzzy logic system offers a user-friendly

interface. The home dashboard serves as a centralized hub, providing real-time

information and control options. In the home section, users can quickly access real time

information about humidity, temperature, light intensity, and the presence of rain. This

display enables users to assess the current drying conditions at a glance, allowing them

to make informed decisions and adjustments as needed. The analytics section provides

deeper insights into the drying process. The control section empowers users to

personalize settings and preferences, enabling a customized and optimized drying

experience. Finally, the alarm status alerts the user if the rain sensor was detected.

33

3.8 Analytic Feature Design

The intelligent drying rack control system incorporates fuzzy logic to enhance its

efficiency and adaptability in response to changing environmental conditions. Fuzzy

logic is a computational approach that deals with uncertainty and imprecise data by

utilizing linguistic variables and rules. In this system, the inputs are temperature, rain,

and light levels, while the output is the weather condition classification.

The temperature input is divided into three linguistic variables: cold, mild, and

hot, with respective ranges of 0-16, 17-33, and 34-40. The rain input is classified into

dry, lightrain, and heavyrain, corresponding to the ranges of 2-30, 31-45, and 46-100.

Similarly, the light input is categorized as dark, moderate, and bright, spanning the

ranges of 0-30, 31-50, and 51-100. Using fuzzy logic, the control system processes these

inputs and assigns degrees of membership to each linguistic variable based on their

measured values. These memberships represent the degree of truth or relevance of each

input to a particular linguistic variable. The system then applies a set of predefined fuzzy

rules to determine the output, which is the weather condition classification.

The output linguistic variable is divided into three categories: sunny, cloudy, and

rainy. Each category has a defined range, with sunny ranging from 0 to 67.5, cloudy

from 68 to 80.0, and rainy from 81.0 to 100. The fuzzy logic system combines the degree

of membership of the input variables and applies fuzzy inference rules to determine the

appropriate weather condition classification based on the inputs. By employing fuzzy

logic, the intelligent drying rack control system can effectively handle imprecise and

uncertain data, allowing it to adjust its drying operation based on the inferred weather

conditions. This enables the system to optimize the drying process by making informed

decisions about the duration and intensity of drying, ensuring efficient energy usage and

protecting clothes from adverse weather conditions.

Based on the given information about the input and output variables, here are some fuzzy

rules that can be defined:

rule1 = temperature['cold'] & rain['dry'] & light['dark'], weather['cloudy']

34

rule2 = temperature['cold'] & rain['dry'] & light['moderate'], weather['sunny']

rule3 = temperature['cold'] & rain['dry'] & light['bright'], weather['sunny']

rule4 = temperature['cold'] & rain['lightrain'] & light['dark'], weather['rainy']

rule5= temperature['cold'] & rain['lightrain'] & light['moderate'], weather['rainy']

rule6 = temperature['cold'] & rain['lightrain'] & light['bright'], weather['rainy']

rule7 = temperature['cold'] & rain['heavyrain'] & light['dark'], weather['rainy']

rule8 = temperature['cold'] & rain['heavyrain'] & light['moderate'], weather['rainy']

rule9 = temperature['cold'] & rain['heavyrain'] & light['bright'], weather['rainy']

rule10 = temperature['mild'] & rain['dry'] & light['dark'], weather['cloudy']

rule11 = temperature['mild'] & rain['dry'] & light['moderate'], weather['sunny']

rule12 = temperature['mild'] & rain['dry'] & light['bright'], weather['sunny']

rule13 = temperature['mild'] & rain['lightrain'] & light['dark'], weather['rainy']

rule14 = temperature['mild'] & rain['lightrain'] & light['moderate'], weather['rainy']

rule15 = temperature['mild'] & rain['lightrain'] & light['bright'], weather['rainy']

rule16 = temperature['mild'] & rain['heavyrain'] & light['dark'], weather['rainy']

rule17 = temperature['mild'] & rain['heavyrain'] & light['moderate'], weather['rainy']

rule18 = temperature['mild'] & rain['heavyrain'] & light['bright'], weather['rainy']

rule19 = temperature['hot'] & rain['dry'] & light['dark'], weather['cloudy']

35

rule20 = temperature['hot'] & rain['dry'] & light['moderate'], weather['sunny']

rule21 = temperature['hot'] & rain['dry'] & light['bright'], weather['sunny']

rule22 = temperature['hot'] & rain['lightrain'] & light['dark'], weather['rainy']

rule23 = temperature['hot'] & rain['lightrain'] & light['moderate'], weather['rainy']

rule24 = temperature['hot'] & rain['lightrain'] & light['bright'], weather['rainy']

rule25 = temperature['hot'] & rain['heavyrain'] & light['dark'], weather['rainy']

rule26 = temperature['hot'] & rain['heavyrain'] & light['moderate'], weather['rainy']

rule27 = temperature['hot'] & rain['heavyrain'] & light['bright'], weather['rainy']

36

3.9 Potential Use of Proposed Solution

The proposed automatic drying rack solution with a fuzzy logic system has many

potential uses in real-time situations. It can be used at home to dry clothes efficiently,

adjusting the appropriate time and time for drying based on factors such as humidity,

temperature, light intensity and the presence of rain. In commercial laundries, this system

optimizes the drying process for large volumes of laundry, reducing energy consumption

and improving drying quality. The hospitality industry can benefit from this solution by

offering guests a reliable and convenient drying solution with customizable settings.

Garment manufacturers can integrate the system into their production process, ensuring

efficient and high-quality garment drying. In addition, the solution finds value in research

and development settings, enabling detailed analysis of drying characteristics. In short,

automatic drying racks with fuzzy logic enable efficient, safe and accurate drying across

a wide range of applications, from residential to commercial and industrial environments.

37

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

This chapter discusses the results and discusses the ‘Intelligent Drying Rack

Control System with weather condition prediction using fuzzy logic’. It should show

implementation and results of the project. The content for this chapter can contain

Introduction, dashboard results and discussion and fuzzy results and discussion. It also

provides a full study of the outcomes while delving into the particulars of the developed

dashboard and the fuzzy graphs that were generated. At the beginning of the chapter, the

characteristics and capabilities of the dashboard are discussed. It displays techniques for

data visualisation, user interface layout, and the utilisation of multiple sensors and data

gathering devices. Screenshots or other visual representations of the dashboard may be

provided to offer readers a thorough understanding of its design and usefulness.

38

4.2 Dashboard Results and Discussion

Figure 4.2.1 - Dashboard of the system

A variety of significant functions and functionalities are available on the

dashboard of the intelligent drying rack control system, ensuring a user-friendly and

secure experience. Users can register, log in, and log out of the system to gain access,

which ensures secure access and protects their personal data. The dashboard shows data

in several cards and gives consumers access to crucial weather-related information. The

values of temperature (in degrees Celsius), humidity (in percentage), light intensity (in

percentage), and precipitation (in percentage) are shown on these cards. Users may

quickly judge whether the climate is appropriate for drying their garments by keeping an

eye on these characteristics. The system's most important component is the rain sensor,

39

which activates an alert status and promptly notifies users of the unfavourable weather

conditions if the rain value surpasses 40 (classified as rainy). Users can utilise this to act

quickly and keep their clothes from getting wet.

Based on the data gathered, the "Powered by Fuzzy" card forecasts the weather.

However, it does not disclose the precise fuzzy rules or variables utilised in the

calculation; it merely shows the outcome status. As a result, the user interface is made

simpler and people aren't overloaded with technical information while still getting a good

grasp of the weather. Users can examine temperature, humidity, light intensity, and rain

presence trends over time by viewing real-time data in the graph card. This gives them

the information they need to assess the drying process and modify their plans as

necessary.

The dashboard has "Rack In" and "Rack Out" buttons for convenience and

control. Depending on the climate, users can easily adjust where the drying rack is placed.

When necessary, this feature makes sure that clothing is shielded from the rain or intense

sunshine. Last but not least, if rain is detected, the alert status card shows the date and

time that correlate to the alarm status. This function alerts consumers to any rain events

that can affect their drying process so they can react quickly.

Overall, the intelligent drying rack control system's dashboard offers a wide range

of capabilities and functionalities. It provides real-time data visualisation, fuzzy logic-

powered weather condition analysis, user-friendly controls, and alarms for unfavourable

weather. This guarantees the drying rack's effective and convenient operation while

keeping users informed and in charge of the drying process.

40

4.3 Fuzzy Results and Discussion

The intelligent drying rack control system integrates weather condition prediction

using fuzzy logic, allowing it to determine the prevailing weather conditions based on

inputs from sensors such as the DHT11 sensor, photocell sensor, and rain sensor. The

fuzzy logic system encompasses linguistic variables, membership functions, and a set of

rules, enabling accurate weather classification.

The linguistic variables, including temperature, light intensity, and rain intensity,

are defined within specific ranges and assigned membership functions that depict their

degrees of membership. These membership functions facilitate the assignment of

linguistic terms to the inputs, such as "cold," "mild," "hot," "dry," "lightrain,"

"heavyrain," "dark," "moderate," and "bright," based on their measured values. By

utilizing linguistic terms, the system can effectively capture and represent the imprecision

and uncertainty associated with real-world weather conditions. Shown as Figure 4.3.1

below.

41

Figure 4.3.1 - Membership for temperature, rain and light

The fuzzy logic system employs a set of predefined rules that establish the

relationships between the input variables and the output variable, which in this case are

the weather conditions, including "sunny," "cloudy," and "rainy." These rules define how

the system should respond to various combinations of temperature, light intensity, and

rain intensity, ultimately determining the condition of the weather. The condition shown

in Figure 4.3.2 below.

Figure 4.3.2 - Output / Condition of fuzzy

By applying fuzzy inference, which involves combining the membership values of the

linguistic terms and applying fuzzy logic operators, the system can make accurate predictions

about the weather conditions. This inference process takes into account the rules and the fuzzy

sets associated with the inputs to generate a crisp output, representing the most probable weather

condition.

42

The fuzzy logic-based weather condition prediction in the intelligent drying rack

control system provides a robust and adaptive approach to respond to changing

environmental factors. By incorporating linguistic variables, membership functions, and

a set of rules, the system can effectively handle imprecise and uncertain data, enabling

accurate weather classification. This, in turn, allows users to make informed decisions

regarding the operation of the drying rack and adjust their drying strategies accordingly,

ensuring optimal drying outcomes and protection of clothes based on the prevailing

weather conditions.

43

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

This chapter provides a complete summary of the intelligent drying rack system,

highlighting its achievements in meeting the project's objectives and scope. Throughout

the project, the primary goal was to develop a reliable and efficient system for assessing

their conditions.

5.2 Conclusion of the project

In conclusion, the proposed design for a smart drying rack with a fuzzy logic

system offers a comprehensive and intelligent solution for efficient and optimized drying

processes. By integrating various components and technologies, this system enhances the

user experience while providing protection for clothes and adapting to changing

environmental conditions.

The sensing layers of the drying rack utilize sensors such as the DHT11, photocell

sensor, and rain sensor. These sensors collect data on temperature, humidity, light

intensity, and rain presence. This information is crucial for the fuzzy logic system to make

informed decisions about the drying parameters and adapt to the prevailing weather

conditions. The actuator, in the form of a servo motor, controls the movement of the

drying rack, enabling position adjustments and rotation for even drying. The LED serves

as a visual indicator, providing real-time feedback to the user about the status of the

drying rack.

44

The network layer employs MQTT and websocket protocols for efficient and

reliable communication between the drying rack and other devices or services. This

allows for real-time data exchange and control commands, enabling seamless integration

with a web server or other connected devices. The data processing layer incorporates a

MySQL database to store the collected sensor data and relevant information. This

facilitates historical data storage, analysis, and reporting, enabling users to gain insights

and make informed decisions about the drying process.

The AI server in the data processing layer implements the fuzzy logic system,

which utilizes linguistic variables, membership functions, and a set of rules to accurately

predict weather conditions. By considering imprecise and uncertain data, the fuzzy logic

system adapts to changing environmental factors and optimizes the drying process

accordingly.

The application layer includes a user-friendly dashboard developed using Laravel,

which allows users to monitor and control the drying rack. Additionally, the Telegram

messaging platform sends real-time notification alerts to keep users informed about the

drying process and any issues requiring attention.

Overall, this intelligent drying rack control system provides a robust and adaptive

solution for efficient drying while considering the prevailing weather conditions. By

incorporating fuzzy logic, users can optimize their drying strategies, ensure optimal

drying outcomes, and protect clothes effectively. This project demonstrates the potential

of integrating smart technologies, fuzzy logic, and connectivity to create innovative and

intelligent solutions in everyday household appliances.

45

REFERENCES

[1] Chaihang, S., & Puengsungwan, S. (2021). Smart moving-spiral-clothesline for urban

society. ASEAN Journal of Science and Engineering, 2(3), 267-272.

[2] Kharisma, O. B., & Laumal, F. E. (2019, March). Propose design of smart clothesline with

the tree diagram approach analysis and quality function deployment method for

indonesia weather. In Journal of Physics: Conference Series (Vol. 1175, No. 1, p.

012125). IOP Publishing.

[3] Xing, X., Zhang, C., Gu, J., Zhang, Y., Lv, X., & Zhuo, Z. (2021, June). Intelligent drying

rack system based on internet of things. In Journal of Physics: Conference Series (Vol.

1887, No. 1, p. 012002). IOP Publishing.

[4] Andrasto, T., & Joko, T. (2022). Simulation and design of smart clothesline using fuzzy

for weather forecast. In IOP Conference Series: Earth and Environmental Science (Vol.

969, No. 1, p. 012058). IOP Publishing.

[5] Ma, Y., Chang, Y. C., Cui, Z., Rothwell, D., & Bykoriz, A. (2023, April). Blooming:

Changing Laundry Habits and Opening Windows to Brighter Cities. In Extended

Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (pp. 1-

8).

[6] Daund, S. R. V. (2022). INTERNET OF THINGS (IoT) BASED ROOFTOP FOR

CLOTHING STAND.

[7] Yusoff, Z. M., Muhammad, Z., Abidin, A. F. Z., Dalila, K. N., Razali, N. F., Majid, M. A., &

Hasan, K. K. (2018). Smart Clothline System Based on Internet of Thing (IoT). In MATEC

Web of Conferences (Vol. 248, p. 02002). EDP Sciences.

[8] Lin, Y. H., Lee, Y. C., & Chang, C. P. (2020, November). Establishing an intelligent

laundry drying rack using system innovation theory. In IOP Conference Series: Earth and

Environmental Science (Vol. 603, No. 1, p. 012047). IOP Publishing.

[9] Xiao, Q., Chen, J., Ouyang, S., Shao, P., & Qin, F. (2014, December). Design and

realization of the hardware for an intelligent solar drying system. In 2014 13th

international conference on Control Automation Robotics & Vision (ICARCV) (pp. 1234-

1238). IEEE.

46

[10] Leng, Y., Qi, J., Liu, Y., & Zhu, F. (2020). Design of dry-type transformer temperature

controller based on internet of things. International Journal of Embedded Systems, 12(3),

380-392.

47

import paho.mqtt.client as mqtt

from random import randrange, uniform

import Adafruit_DHT
import time

port = 1883

mqttBroker = "10.26.30.33"

client = mqtt.Client("ampaian")

client.username_pw_set("umpfk", "u4h%w1Tr12")

client.connect(mqttBroker,port)

Set the pin connected to the DHT11 sensor

gpio = 4

Set up the DHT11 sensor

sensor = Adafruit_DHT.DHT11

while True:

Read the temperature and humidity from the sensor

humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio)

print(temperature)

print("Just publish data to topic data to TEMPERATURE")

print(humidity)
print("Just publish data to topic data to HUMIDITY")

client.publish("dryingrack/temp",temperature)

client.publish("dryingrack/humid",humidity)

time.sleep(5)

import paho.mqtt.client as mqtt

from random import randrange, uniform

import Adafruit_DHT

import time

APPENDIX

VNC viewer

a. mqttsenderDHT11.py

b. controlButton.py

48

#include <WiFi.h>

#include <PubSubClient.h>

const char* ssid = "Chakepopo"; // Enter your WiFi name

const char* password = "mimiperi"; // Enter WiFi password

const char* mqttServer = "103.53.35.135"; // MQTT server IP

address

const int mqttPort = 1883;

const char* mqttUser = "umpfk";

const char* mqttPassword = "u4h%w1Tr12";

const char* topicPrefix = "dryingrack/"; // Prefix for MQTT

topics

Arduino IDE

projectM3esp32.ino

port = 1883

mqttBroker = "10.26.30.33"

client = mqtt.Client("ampaian")

client.username_pw_set("umpfk", "u4h%w1Tr12")

client.connect(mqttBroker,port)

Set the pin connected to the DHT11 sensor

gpio = 4

Set up the DHT11 sensor

sensor = Adafruit_DHT.DHT11

while True:

Read the temperature and humidity from the sensor

humidity, temperature = Adafruit_DHT.read_retry(sensor, gpio)

print(temperature)

print("Just publish data to topic data to TEMPERATURE")

print(humidity)

print("Just publish data to topic data to HUMIDITY")

client.publish("dryingrack/temp",temperature)

client.publish("dryingrack/humid",humidity)

time.sleep(5)

49

const int rainPin = 34; // Pin for rain sensor (analog input)

const int lightPin = 39; // Pin for light sensor (analog input)

WiFiClient espClient;

PubSubClient client(espClient);

void setup() {

Serial.begin(9600);

pinMode(rainPin, INPUT);

pinMode(lightPin, INPUT);

WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.println("Connecting to WiFi...");

}

Serial.println("Connected to the WiFi network");

client.setServer(mqttServer, mqttPort);

while (!client.connected()) {

Serial.println("Connecting to MQTT...");

if (client.connect("ESP8266Client", mqttUser, mqttPassword))

{

Serial.println("Connected to MQTT server");

} else {

Serial.print("Failed with state ");

Serial.print(client.state());

delay(1000);

}

}

}

void loop() {

int rainLevel = analogRead(rainPin);

rainLevel = 4095 - rainLevel; // Invert the rain sensor

reading

float rainPercentage = (rainLevel / 4095.0) * 100; // Convert

to percentage

50

int lightLevel = analogRead(lightPin);

float lightPercentage = (lightLevel / 4095.0) * 100; //

Convert to percentage

// Convert float values to strings

String rainData = String(rainPercentage);

String lightData = String(lightPercentage);

client.loop();

if (!client.connected()) {

reconnect();

}

char rainTopic[30];

char lightTopic[30];

snprintf(rainTopic, sizeof(rainTopic), "%s%s", topicPrefix,

"rain");

snprintf(lightTopic, sizeof(lightTopic), "%s%s", topicPrefix,

"light");

//Serial.print("Rain: ");

Serial.print(rainPercentage);

Serial.print(", ");

//Serial.print("Light: ");

Serial.println(lightPercentage);

//Serial.println("%");

// Publish data as strings

client.publish(rainTopic, rainData.c_str()); // Publish rain

data

client.publish(lightTopic, lightData.c_str()); // Publish

light data

delay(2000);

}

void reconnect() {

while (!client.connected()) {

Serial.println("Attempting MQTT connection...");

if (client.connect("ESP8266Client", mqttUser, mqttPassword))

{

51

#subscriber

import json

import mysql.connector

import paho.mqtt.client as mqtt

import requests

import pusher

pusher_client = pusher.Pusher(app_id='1', key=u'umpfkpusher',

secret=u'u%M15z2h%3A', cluster=u'mt1', ssl=False, host=u'10.26.30.32',

port=6001)

MQTT_Broker = "10.26.30.33"

MQTT_Port = 1883

Keep_Alive_Interval = 45

MQTT_Topic = "dryingrack/#"

Connect to MySQL database

mydb = mysql.connector.connect(

host="localhost",

user="root",

password="",

database="sensors"

)

Create cursor for executing SQL queries

mycursor = mydb.cursor()

Function to save distance data to DB

def save_temp(jsonData):

value = float(json.loads(jsonData))

Visual Studio Code

a. subMQTT.py (subscribe)

Serial.println("Connected to MQTT server");

} else {

Serial.print("Failed with state ");

Serial.print(client.state());

delay(2000);

}

}

}

52

sql = "INSERT INTO temp (value) VALUES (%s)"

val = (value,)

mycursor.execute(sql, val)

mydb.commit()

print("temp data stored")

Function to save number data to DB

def save_humid(jsonData):

value = float(json.loads(jsonData))

#tele

sql = "INSERT INTO humid (value) VALUES (%s)"

val = (value,)

mycursor.execute(sql, val)

mydb.commit()

print("humid data stored")

Function to save number data to DB

def save_light(jsonData):

value = float(json.loads(jsonData))

#tele

sql = "INSERT INTO light (value) VALUES (%s)"

val = (value,)

mycursor.execute(sql, val)

mydb.commit()

print("light data stored")

Function to save number data to DB

def save_rain(jsonData):

Value = float(json.loads(jsonData))

sql = "INSERT INTO rain (id,Value) VALUES (%s,%s)"

val = ('',Value)

mycursor.execute(sql, val)

mydb.commit()

print("Rain Data Stored")

Master function to handle incoming MQTT messages

def on_message(client, userdata, msg):

print("MQTT Data Received...")

print("MQTT Topic: " + msg.topic)

print("Data: " + str(msg.payload))

if msg.topic == "dryingrack/temp":

save_temp(msg.payload)

elif msg.topic == "dryingrack/humid":

save_humid(msg.payload)

elif msg.topic == "dryingrack/light":

save_light(msg.payload)

elif msg.topic == "dryingrack/rain":

53

#unntuk tele

import json

import mysql.connector

import paho.mqtt.client as mqtt

import requests

import pusher

pusher_client = pusher.Pusher(app_id='1', key=u'umpfkpusher',

secret=u'u%M15z2h%3A', cluster=u'mt1', ssl=False, host=u'10.26.30.32', port=6001)

MQTT_Broker = "10.26.30.33"

MQTT_Port = 1883

Keep_Alive_Interval = 45

MQTT_Topic = "dryingrack/#"

Connect to MySQL database

mydb = mysql.connector.connect(

host="localhost",

user="root",

password="",

database="sensors"

)

Create cursor for executing SQL queries

mycursor = mydb.cursor()

Function to save number data to DB

def save_rain(jsonData):

Value = float(json.loads(jsonData))

b. subAlarm.py (telegram)

save_rain(msg.payload)

Connect to MQTT broker

mqtt_client = mqtt.Client()

mqtt_client.username_pw_set("umpfk", "u4h%w1Tr12")

mqtt_client.on_message = on_message

mqtt_client.connect(MQTT_Broker, MQTT_Port, Keep_Alive_Interval)

Subscribe to MQTT topic

mqtt_client.subscribe(MQTT_Topic, qos=1)

Start the MQTT network loop

mqtt_client.loop_forever()

54

print(Value)

if (Value > 40.00):

if there is alarm trigger, data will go this flow

try:

pusher_client.trigger(u'DeviceAlarm', u'App\Events\AlarmStatus',

{u'DeviceID': 'Rain'})

except:

print("Rainy")

TOKEN = "5894384751:AAGoRxOIYRzyi9TwNDb8A-W_fzs8YJxCd6w"

chat_id = "-814857072"

message = "System Alert : Alert Rain"

url =

f"https://api.telegram.org/bot{TOKEN}/sendMessage?chat_id={chat_id}&text={mes

sage}"

requests.get(url).json()

sql = "INSERT INTO alarm (id,DeviceID) VALUES (%s,%s)"

val = ("",'Rain')

mycursor.execute(sql, val)

mydb.commit()

print('Alarm trigger')

else:

send the sensor value

sql = "INSERT INTO rain (id,Value) VALUES (%s,%s)"

val = ('',Value)

mycursor.execute(sql, val)

mydb.commit()

print("Rain Data Stored")

Master function to handle incoming MQTT messages

def on_message(client, userdata, msg):

print("MQTT Data Received...")

print("MQTT Topic: " + msg.topic)

print("Data: " + str(msg.payload))

if msg.topic == "dryingrack/rain":

save_rain(msg.payload)

Connect to MQTT broker

mqtt_client = mqtt.Client()

mqtt_client.username_pw_set("umpfk", "u4h%w1Tr12")

mqtt_client.on_message = on_message

mqtt_client.connect(MQTT_Broker, MQTT_Port, Keep_Alive_Interval)

Subscribe to MQTT topic

mqtt_client.subscribe(MQTT_Topic, qos=1)

Start the MQTT network loop

55

#untuk AI

import paho.mqtt.client as mqtt

import json

import mysql.connector

import numpy as np

from datetime import datetime

from skfuzzy import control as ctrl

import skfuzzy as fuzz

import pickle

import joblib

import time

import pusher

import requests

pusher_client = pusher.Pusher(app_id='1', key=u'umpfkpusher',

secret=u'u%M15z2h%3A', cluster=u'mt1', ssl=False, host=u'10.26.30.32', port=6001)

Function to save to DB Table

def goToAPI():

try:

api-endpoint

URLtemperature = "http://127.0.0.1:8000/api/myTemperatureLink"

rtemperature = requests.get(URLtemperature)

datatemperature = rtemperature.json()

myresult1 = datatemperature['blocks']

myresult1 = np.float32(myresult1)

URLrain = "http://127.0.0.1:8000/api/myRainLink"

rrain = requests.get(URLrain)

datarain = rrain.json()

myresult2 = datarain['blocks']

myresult2 = np.float32(myresult2)

URLlight = "http://127.0.0.1:8000/api/myLightLink"

rlight = requests.get(URLlight)

datalight = rlight.json()

myresult3 = datalight['blocks']

myresult3 = np.float32(myresult3)

objectRep = open("fuzzydar.picl", "rb") #nama kena sama (subfuzzy & temp)

c. subfuzzy.py

mqtt_client.loop_forever()

56

APP_NAME=Laravel

APP_ENV=local

APP_KEY=base64:ZOv5hkw1o2Jv9LyKP7VeZBbIEqlIVmoekkr22Upn2Po=

APP_DEBUG=true

APP_URL=http://localhost

LOG_CHANNEL=stack

LOG_DEPRECATIONS_CHANNEL=null

LOG_LEVEL=debug

DB_CONNECTION=mysql

d. env.

mynet = pickle.load(objectRep)

Pass inputs to the control system using Antecedent labels with Pythonic

API

Note: if you like passing many inputs all at once, use .inputs(dict_of_data)

mynet.input['temperature'] = myresult1 # / 500

mynet.input['rain'] = myresult2

mynet.input['light'] = myresult3

mynet.compute()

if str(myresult2[0]) != '0' :

Print the result in a human-friendly form

result = mynet.output['weather']

print (str(result[0]))

print (str(myresult1[0]))

print (str(myresult2[0]))

print (str(myresult3[0]))

pusher_client.trigger(u'ToControlDar', u"App\Events\FuzzyEventDar",

{u'Pred0': str(myresult1[0]), u'Pred1': str(myresult2[0]), u'Pred2': str(myresult3[0]),

u'Pred3': str(result[0])})

print('publish to socket')

except:

print('retry')

while 1:

goToAPI()

time.sleep(10)

http://localhost/

57

e. bootstrap.js

DB_HOST=127.0.0.1

DB_PORT=3306

DB_DATABASE=sensors

DB_USERNAME=root

DB_PASSWORD=

BROADCAST_DRIVER=pusher

CACHE_DRIVER=file

FILESYSTEM_DRIVER=local

QUEUE_CONNECTION=sync

SESSION_DRIVER=file

SESSION_LIFETIME=120

MEMCACHED_HOST=127.0.0.1

REDIS_HOST=127.0.0.1

REDIS_PASSWORD=null

REDIS_PORT=6379

MAIL_MAILER=smtp

MAIL_HOST=mailhog

MAIL_PORT=1025

MAIL_USERNAME=null

MAIL_PASSWORD=null

MAIL_ENCRYPTION=null

MAIL_FROM_ADDRESS=null

MAIL_FROM_NAME="${APP_NAME}"

AWS_ACCESS_KEY_ID=

AWS_SECRET_ACCESS_KEY=

AWS_DEFAULT_REGION=us-east-1

AWS_BUCKET=

AWS_USE_PATH_STYLE_ENDPOINT=false

PUSHER_APP_ID=1

PUSHER_APP_KEY=umpfkpusher

PUSHER_APP_SECRET=u%M15z2h%3A

PUSHER_APP_CLUSTER=mt1

MIX_PUSHER_APP_KEY="${PUSHER_APP_KEY}"

MIX_PUSHER_APP_CLUSTER="${PUSHER_APP_CLUSTER}"

58

window._ = require('lodash');

try {

require('bootstrap');

} catch (e) {}

/**

* We'll load the axios HTTP library which allows us to easily issue requests

* to our Laravel back-end. This library automatically handles sending the

* CSRF token as a header based on the value of the "XSRF" token cookie.

*/

window.axios = require('axios');

window.axios.defaults.headers.common['X-Requested-With'] = 'XMLHttpRequest';

/**

* Echo exposes an expressive API for subscribing to channels and listening

* for events that are broadcast by Laravel. Echo and event broadcasting

* allows your team to easily build robust real-time web applications.

*/

import Echo from 'laravel-echo';

window.Pusher = require('pusher-js');

window.Echo = new Echo({

broadcaster: 'pusher',
key: process.env.MIX_PUSHER_APP_KEY,

cluster: process.env.MIX_PUSHER_APP_CLUSTER,

wsHost: '10.26.30.32',

wsPort: 6001,

forceTLS: false

});

59

<?php

return [

/*

|

| Default Broadcaster

|

|

| This option controls the default broadcaster that will be used by the

| framework when an event needs to be broadcast. You may set this to

| any of the connections defined in the "connections" array below.

|

| Supported: "pusher", "ably", "redis", "log", "null"

|

*/

'default' => env('BROADCAST_DRIVER', 'null'),

/*

|

| Broadcast Connections

|

|

| Here you may define all of the broadcast connections that will be used

| to broadcast events to other systems or over websockets. Samples of

| each available type of connection are provided inside this array.

|

*/

'connections' => [

'pusher' => [

'driver' => 'pusher',

'key' => env('PUSHER_APP_KEY'),

'secret' => env('PUSHER_APP_SECRET'),

'app_id' => env('PUSHER_APP_ID'),

'options' => [

'cluster' => env('PUSHER_APP_CLUSTER'),

'encrypted' => true,

'host' => '10.26.30.32',

'port' => 6001,

'scheme' => 'http'

f. broadcasting.php

60

<?php

use Illuminate\Support\Facades\Route;

/*

|

| Web Routes

|

|

| Here is where you can register web routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| contains the "web" middleware group. Now create something great!

|

*/

Route::get('/', function () {

return view('welcome');

g. web.php

],

],

'ably' => [

'driver' => 'ably',

'key' => env('ABLY_KEY'),

],

'redis' => [

'driver' => 'redis',

'connection' => 'default',

],

'log' => [

'driver' => 'log',

],

'null' => [

'driver' => 'null',

],

],

];

61

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\DB;

use App\Models\temp;

use App\Models\humid;

use App\Models\rain;

h. dbcontroller.php

});

Route::group(['middleware' => 'auth'], function ()

{

Route::get('/page1', function () {

return view('dashboard');

});

Route::post('/InServo',function(){

$message = 'on';

event(new App\Events\AlarmStatus($message));

return redirect('page1');

});

Route::post('/OutServo',function(){

$message = 'off';

event(new App\Events\AlarmStatus($message));

return redirect('page1');

});

Route::get('route/temproute', 'App\Http\Controllers\dbcontroller@getTemp');

Route::get('route/humidroute', 'App\Http\Controllers\dbcontroller@getHumid');

Route::get('route/lightroute', 'App\Http\Controllers\dbcontroller@getLight');

Route::get('route/rainroute', 'App\Http\Controllers\dbcontroller@getRain');

Route::get('route/alarmroute', 'App\Http\Controllers\dbcontroller@getAlarm');

});

Auth::routes();

Route::get('/home', [App\Http\Controllers\HomeController::class, 'index'])-

>name('home');

62

use App\Models\light;

use App\Models\alarm;

class dbcontroller extends Controller

{

public function construct()

{

$this->temp = new temp();

$this->humid = new humid();

$this->rain = new rain();

$this->light = new light();

$this->alarm = new alarm();

}

public function getTemp()

{

$blocks = DB::table('temp')

->select('Value')

->latest('datetime')

->limit(6)

->pluck('Value'); //give value

$blocks2 = DB::table('temp')

->select('Value','datetime')

->latest('datetime')

->limit(6)

->pluck('datetime');

return (compact('blocks','blocks2'));

}

public function getHumid()

{

$blocks = DB::table('humid')

->select('Value')

->latest('datetime')

->limit(6)

->pluck('Value'); //give value

$blocks2 = DB::table('humid')

->select('Value','datetime')

->latest('datetime')

->limit(6)

->pluck('datetime');

return (compact('blocks','blocks2'));

}

public function getLight()

{

$blocks = DB::table('light')

->select('Value')

->latest('datetime')

->limit(6)

63

->pluck('Value'); //give value

$blocks2 = DB::table('light')

->select('Value','datetime')

->latest('datetime')

->limit(6)

->pluck('datetime');

return (compact('blocks','blocks2'));

}

public function getRain()

{

$blocks = DB::table('rain')

->select('Value')

->latest('datetime')

->limit(6)

->pluck('Value'); //give value

$blocks2 = DB::table('rain')

->select('Value','datetime')

->latest('datetime')

->limit(6)

->pluck('datetime');

return (compact('blocks','blocks2'));

}

public function getAlarm()

{

$blocks = DB::table('alarm')

->select('DeviceID')

->latest('datetime')

->limit(5)

->pluck('DeviceID'); //give value

$blocks2 = DB::table('alarm')

->select('DeviceID','datetime')

->latest('datetime')

->limit(5)

->pluck('datetime');

return (compact('blocks','blocks2'));

}

}

64

i. app.blade.php

<!doctype html>

<html lang="{{ str_replace('_', '-', app()->getLocale()) }}">

<head>

<meta charset="utf-8">

<meta name="viewport" content="width=device-width, initial-scale=1">

<!-- CSRF Token -->

<meta name="csrf-token" content="{{ csrf_token() }}">

<title>{{ config('app.name', 'Smart Drying Rack') }}</title>

<!-- Scripts -->

<script src="{{ asset('js/app.js') }}"></script>

<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>

<script src="https://cdn.jsdelivr.net/npm/chart.js@2.8.0"></script>

<script src="https://unpkg.com/leaflet/dist/leaflet-src.js"></script>

<script src="https://unpkg.com/esri-leaflet"></script>

<script src="https://unpkg.com/esri-leaflet-geocoder"></script>

<!-- routing -->

<link rel="stylesheet" href="https://unpkg.com/leaflet@1.2.0/dist/leaflet.css" />

<link rel="stylesheet" href="https://unpkg.com/leaflet-routing-

machine@latest/dist/leaflet-routing-machine.css" />

<!-- <script src="https://unpkg.com/leaflet@1.2.0/dist/leaflet.js"></script> -->

<script src="https://unpkg.com/leaflet-routing-machine@latest/dist/leaflet-routing-

machine.js"></script>

<!-- Fonts -->

<link rel="dns-prefetch" href="//fonts.gstatic.com">

<link href="https://fonts.googleapis.com/css?family=Nunito" rel="stylesheet">

<!-- Styles -->

<link href="{{ asset('css/app.css') }}" rel="stylesheet">

<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha3/dist/js/bootstrap.bundle.min.js" integrity="sha384-

ENjdO4Dr2bkBIFxQpeoTz1HIcje39Wm4jDKdf19U8gI4ddQ3GYNS7NTKfAdVQS

Ze" crossorigin="anonymous"></script>

<link href="{{ asset('css/sidebars.css') }}" rel="stylesheet">

<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0-

alpha3/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-

KK94CHFLLe+nY2dmCWGMq91rCGa5gtU4mk92HdvYe+M/SXH301p5ILy+dN9

https://cdn.jsdelivr.net/npm/chart.js%402.8.0
https://cdn.jsdelivr.net/npm/chart.js%402.8.0
https://unpkg.com/leaflet%401.2.0/dist/leaflet.css
https://unpkg.com/leaflet%401.2.0/dist/leaflet.css
https://unpkg.com/leaflet%401.2.0/dist/leaflet.js
https://unpkg.com/leaflet-routing-machine%40latest/dist/leaflet-routing-
https://unpkg.com/leaflet-routing-machine%40latest/dist/leaflet-routing-
https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-
https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-
https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-
https://cdn.jsdelivr.net/npm/bootstrap%405.3.0-

65

+nJOZ" crossorigin="anonymous">

<!-- Scroll Bar -->

<link href="{{ asset('css/sidebars.css') }}" rel="stylesheet">

</head>

<body>

<style>

body

{

background-color: #FAF2DA;

}

.h1

{

color: #000000;

font-weight: bold;

text-align: center;

}

.grid-container

{

display: grid;

grid-gap: 10px;

grid-template-columns: repeat(12, minmax(0, 1fr));

/* background-color: #BEBDB8; */

}

@media only screen and (max-width: 865px)

{

.grid-container {

grid-template-columns: 1fr;

}

}

.grid-item

{

width: 100%;

height: 100%;

}

.card

{

background-color: white;

color: black;

}

.card-header

{

66

background-color: #011B10;

color: #E4DEAE;

font-weight: bold;

text-align: center;

}

.card-body

{

font-size: 20px;

text-align: center;

background-color: #B7BF96;

color: white;

}

.mycard1

{

grid-row-start: 1;

grid-row-end: 3;

grid-column-start: 1;

grid-column-end: 4;

text-align: center;

}

.mycard2

{

grid-row-start: 1;

grid-row-end: 3;

grid-column-start: 4;

grid-column-end: 7;

text-align: center;

}

.mycard3

{

grid-row-start: 1;

grid-row-end: 3;

grid-column-start: 7;

grid-column-end: 10;

text-align: center;

}

.mycard4

{

grid-row-start: 1;

grid-row-end: 3;

grid-column-start: 10;

grid-column-end: 13;

text-align: center;

}

67

.fuzzy

{

grid-row-start: 4;

grid-row-end: 9;

grid-column-start: 1;

grid-column-end: 5;

text-align: center;

}

.mycard5

{

grid-row-start: 4;

grid-row-end 8;

grid-column-start: 5;

grid-column-end: 9;

text-align: center;

}

.mycard6

{

grid-row-start: 4;

grid-row-end: 8;

grid-column-start: 9;

grid-column-end: 13;

text-align: center;

}

.mycard7

{

grid-row-start: 8;

grid-row-end: 12;

grid-column-start: 5;

grid-column-end: 9;

text-align: center;

}

.mycard8

{

grid-row-start: 8;

grid-row-end: 12;

grid-column-start: 9;

grid-column-end: 13;

text-align: center;
}

.ServoMotor

{

grid-row-start: 9;

68

grid-row-end: 12;

grid-column-start: 1;

grid-column-end: 5;

text-align: center;

}

.itemAlarm

{

grid-row-start: 13;

grid-row-end: 16;

grid-column-start: 1;

grid-column-end: 13;

text-align: center;

}

</style>

<div id="app">

<nav class="navbar navbar-expand-md navbar-dark" style="background-color:

#011B10; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.4);">

<div class="container">

<img src="ampaian.png" alt="Logo" width="40" height="40" class="d-

inline-block align-text-top">

<a class="nav-link active" aria-current="page" href="/page1"

style="font-size: 25px; color: #E4DEAE;">DRYING RACK

<button class="navbar-toggler" type="button" data-bs-toggle="collapse"

data-bs-target="#navbarSupportedContent" aria-controls="navbarSupportedContent"

aria-expanded="false" aria-label="{{ ('Toggle navigation') }}">

</button>

<div class="collapse navbar-collapse" id="navbarSupportedContent">

<!-- Left Side Of Navbar -->

<ul class="navbar-nav me-auto">

}}

<!-- Right Side Of Navbar -->

<ul class="navbar-nav ms-auto">

<!-- Authentication Links -->

@guest

@if (Route::has('login'))

<li class="nav-item">

{{ ('Login')

@endif

69

@if (Route::has('register'))

<li class="nav-item">

{{

 ('Register') }}

@endif

@else

<li class="nav-item dropdown">

<a id="navbarDropdown" class="nav-link dropdown-toggle"

href="#" role="button" data-bs-toggle="dropdown" aria-haspopup="true" aria-

expanded="false" v-pre>

{{ Auth::user()->name }}

<div class="dropdown-menu dropdown-menu-end" aria-

labelledby="navbarDropdown">

<a class="dropdown-item" href="{{ route('logout') }}"

onclick="event.preventDefault();

document.getElementById('logout-

form').submit();">

{{ ('Logout') }}

<form id="logout-form" action="{{ route('logout') }}"

method="POST" class="d-none">

@csrf

</form>

</div>

@endguest

</div>

</div>

</nav>

<main class="py-4">

@yield('content')

</main>

</div>

</body>

</html>

70

j. dashboard.blade.php

@extends('layouts.app')

@section('content')

<div class="h1">INTELLIGENT DRYING RACK CONTROL SYSTEM WITH

WEATHER CONDITION PREDICTION USING FUZZY LOGIC</div>

<div class="container-fluid">

<div class="dashboard">

<div class="grid-container">

<!--value sensors-->

<div class="grid-item mycard1"> <!--value g1-->

<div class="card">

<div class="card-header"><img src="temp.png" alt="Logo" width="30"

height="30" class="d-inline-block align-text-top">

Temperature °C

</div>

<div class="card-body">Value = <span class="badge badge-info float-

right" id="tempvalue"></div>

</div>

</div>

<div class="grid-item mycard2"> <!--value g2-->

<div class="card">

<div class="card-header"><img src="humid.png" alt="Logo"

width="30" height="30" class="d-inline-block align-text-top">

Humidity %

</div>

<div class="card-body">Value = <span class="badge badge-info float-

right" id="humidvalue"></div>

</div>

</div>

<div class="grid-item mycard3"> <!--value g3-->

<div class="card">

<div class="card-header"><img src="sun.png" alt="Logo" width="30"

height="30" class="d-inline-block align-text-top">

Light Intensity %

</div>

<div class="card-body">Value = <span class="badge badge-info float-

right" id="lightvalue"></div>

</div>

</div>

<div class="grid-item mycard4"> <!--value g4-->

71

<div class="card">

<div class="card-header"><img src="rain.png" alt="Logo" width="30"

height="30" class="d-inline-block align-text-top">

Rain %

</div>

<div class="card-body">Value = <span class="badge badge-info float-

right" id="rainvalue"></div>

</div>

</div>

<!--fuzzy logic-->

<div class="grid-item fuzzy">

<div class="card">

<div class="card-header">Powered by fuzzy<span class="badge badge-

info float-right"></div>

<div class="card-body">

<!-- <div class="card">

<div class="card-header">value<span class="badge badge-info

float-right"></div>

<div class="card-bodyV"><span class="badge badge-info float-

right" id="Pred3"></div>

</div> -->

<div class="card">

<div class="card-header">status<span class="badge badge-info

float-right"></div>

<div class="card-bodyV"><span class="badge badge-info float-

right" id="fuzzyresult"></div>

</div>

</div>

</div>

</div>

<!--graph sensors-->

<div class="grid-item mycard5"> <!--graph g1-->

<div class="card">

<div class="card-header">Graph for Temperature<span class="badge

badge-info float-right"></div>
<div class="card-body d-flex justify-content-center allign-items-center"

>

<canvas id="myfirstgraph" class="chartjs" style="position: relative;

height:40vh;width:60vw"></canvas>

<!--script under here -->

</div>

</div>

72

</div>

<div class="grid-item mycard6"> <!--graph g2-->

<div class="card">

<div class="card-header">Graph for Humidity<span class="badge

badge-info float-right"></div>

<div class="card-body d-flex justify-content-center allign-items-center"

>

<canvas id="mysecondgraph" class="chartjs" style="position: relative;

height:40vh;width:60vw"></canvas>

<!--script under here -->

</div>

</div>

</div>

<div class="grid-item mycard7"> <!--graph g3-->

<div class="card">

<div class="card-header">Graph for Light Level<span class="badge

badge-info float-right"></div>

<div class="card-body d-flex justify-content-center allign-items-center"

>

<canvas id="mythirdgraph" class="chartjs" style="position: relative;

height:40vh;width:60vw"></canvas>

<!--script under here -->

</div>

</div>

</div>

<div class="grid-item mycard8"> <!--graph g4-->

<div class="card">

<div class="card-header">Graph for Rain<span class="badge badge-info

float-right"></div>

<div class="card-body d-flex justify-content-center allign-items-center"

>

<canvas id="myfourthgraph" class="chartjs" style="position: relative;

height:40vh;width:60vw"></canvas>

<!--script under here -->

</div>

</div>

</div>

<!--Card servo motor -->

<div class="grid-item ServoMotor">

<div class="card">

<!--ON/OFF switch SM-->

<div class="card-header">Status for Drying Rack: <span class="badge

badge-info float-right" id="myDeviceStat1"></div>

73

<div class="card-body d-flex justify-content-center align-items-center">

<form action="/InServo" method="post">

<input type="submit" value="RackIN" class="btn btn-success">

{{csrf_field()}}

</form>

</div>

<div class="card-body d-flex justify-content-center align-items-center">

<form action="/OutServo" method="post">

<input type="submit" value="RackOUT" class="btn btn-danger">

{{csrf_field()}}

</form>

</div>

</div>

</div>

<!--Card Alert -->

<div class="grid-item itemAlarm">

<div class="card">

<div class="card-header">Event<span class="badge badge-info float-

right" id="myAlert">

<div class="card-body d-flex justify-content-center align-items-center"

>

<div class="card" style="width: 100%; height: auto;">

<div class="card-header" style= "height: 50px;">

<table id="myTablehead" style="width: 100%">

<tr>

<td><img src="alarm.png" alt="Logo" width="30"

height="30" class="d-inline-block align-text-top">Alarm Status</td>

<td style="width: 80%">Date</td>

</tr>

</table>

</div>

<div class="card-bodyV" style="overflow: auto; max-height:

200px;"> <!-- Adjust max-height as needed -->

<table id="myTable" style="width: 100%">

<tr>

<td> </td>

<td> </td>

</tr>

</table>

</div>

</div>

</div>

</div>

</div>

74

</div>

</div>

</div>

</div>

<script>

setInterval(ajaxcall,5000);

function ajaxcall(){

$.getJSON('/route/temproute', function(blocksall){

var datas = blocksall.blocks.map(Number);

datas = datas.reverse();

console.log(datas)

°C";

var datasx = blocksall.blocks2.map(String);

datasx = datasx.reverse();

console.log(datasx)

var temperatureValue = datas[datas.length - 1].toFixed(2);

document.getElementById("tempvalue").innerHTML = temperatureValue + "

document.getElementById("tempvalue").style.color="green";

var chart = new Chart(document.getElementById('myfirstgraph'), //mesti sama

dgn id

{

type: 'line',

data:

{

labels : datasx,

datasets:

[{

label: 'Temperature, °C',

data: datas,

fill: false,

borderColor: '#FA255E',

backgroundcolor: 'rgb(255, 255, 0)',

tension: 0.1

}]

},

options: {

animation: {

duration: 100,

easing: 'easeOutBounce' //movement
},

scales: {

yAxes: [{

display: true,

stacked: true,

ticks: {

75

min: 0, //minimum value

max: 50 //maximum value

}

}]

}

}

});

});

}

$.getJSON('/route/humidroute', function(blocksall){

var datas = blocksall.blocks.map(Number);

datas = datas.reverse();

console.log(datas)

var datasx = blocksall.blocks2.map(String);

datasx = datasx.reverse();

console.log(datasx)

var humidValue = datas[datas.length - 1].toFixed(2);

document.getElementById("humidvalue").innerHTML = humidValue + " %";

document.getElementById("humidvalue").style.color="green";

var chart = new Chart(document.getElementById('mysecondgraph'), //mesti

sama dgn id

{

type: 'line',

data:

{

labels : datasx,

datasets:

[{

label: 'Humidity, %',

data: datas,

fill: false,

borderColor: '#FA255E',

backgroundcolor: 'rgb(255, 255, 0)',

tension: 0.1

}]

},

options: {

animation: {

duration: 100,

easing: 'easeOutBounce' //movement
},

scales: {

yAxes: [{

display: true,

stacked: true,

ticks: {

76

min: 0, //minimum value

max: 100 //maximum value

}

}]

}

}

});

});

$.getJSON('/route/lightroute', function(blocksall){

var datas = blocksall.blocks.map(Number);

datas = datas.reverse();

console.log(datas)

var datasx = blocksall.blocks2.map(String);

datasx = datasx.reverse();

console.log(datasx)

var lightValue = datas[datas.length - 1].toFixed(2);

document.getElementById("lightvalue").innerHTML = lightValue + " %";

document.getElementById("lightvalue").style.color="green";

var chart = new Chart(document.getElementById('mythirdgraph'), //mesti sama

dgn id

{

type: 'bar',

data:

{

labels : datasx,

datasets:

[{

label: 'Light intensity, %',

data: datas,

fill: false,

borderColor: '#FA255E',

backgroundcolor: 'rgb(255, 255, 0)', //'#FA255E',

tension: 0.1

}]

},

options: {

animation: {

duration: 100,

easing: 'easeOutBounce' //movement

},

scales: {

yAxes: [{

display: true,

stacked: true,

ticks: {

min: 0, //minimum value

77

max: 100 //maximum value

}

}]

}

}

});

});

$.getJSON('/route/rainroute', function(blocksall){

var datas = blocksall.blocks.map(Number);

datas = datas.reverse();

console.log(datas)

var datasx = blocksall.blocks2.map(String);

datasx = datasx.reverse();

console.log(datasx)

var rainValue = datas[datas.length - 1].toFixed(2);

document.getElementById("rainvalue").innerHTML = rainValue + " %";

document.getElementById("rainvalue").style.color="green";

var chart = new Chart(document.getElementById('myfourthgraph'), //mesti sama

dgn id

{

type: 'line',

data:

{

labels : datasx,

datasets:

[{

label: 'rain level, %',

data: datas,

fill: false,

borderColor: '#FA255E',

backgroundcolor: '#FA255E',

tension: 0.1

}]

},

options: {

animation: {

duration: 100,

easing: 'easeOutBounce' //movement

},

scales: {

yAxes: [{

display: true,

stacked: true,

ticks: {

min: 0, //minimum value

78

}

}

});

});

max: 100 //maximum value

}

}]

//button

Echo.channel('AppStatus1').listen('AlarmStatus', (e) => {

//console.log(e)

if (e['status'] ==1) {

document.getElementById("myDeviceStat1").innerHTML = 'on';

document.getElementById("myDeviceStat1").style.color = "green";

} else{

document.getElementById("myDeviceStat1").innerHTML = 'off';

document.getElementById("myDeviceStat1").style.color = "blue";

}

}); //AppStatus1,DeviceStatus=VNC , myDeviceStat1=dkt table button

Echo.channel('ToControlDar').listen('FuzzyEventDar', (e) =>

{

console.log(e['Pred3'])

if (e['Pred3'] > 0 && e['Pred3'] <= 67.5) {

document.getElementById("fuzzyresult").innerHTML = 'Sunny';

document.getElementById("fuzzyresult").style.color = "green";

}

else if (e['Pred3'] > 67.5 && e['Pred3'] <= 80) {

document.getElementById("fuzzyresult").innerHTML = 'Cloudy';

document.getElementById("fuzzyresult").style.color = "blue";

}

else if (e['Pred3'] > 80) {

document.getElementById("fuzzyresult").innerHTML = 'Rainy';

document.getElementById("fuzzyresult").style.color = "red";

}

});

//alarm

$.getJSON('/route/alarmroute', function(blocksall){

//console.log(blocksall.blocks)

var datas = blocksall.blocks.map(String);

datas = datas.reverse();

// console.log(datas)

var datasx = blocksall.blocks2.map(String);

datasx = datasx.reverse();

79

var table = document.getElementById("myTable");

for (let step = 0; step < datas.length; step++)

{

// console.log(datas[step]);

var row = table.insertRow(0);

var cell1 = row.insertCell(0);

var cell2 = row.insertCell(1);

cell1.innerHTML = datas[step];

cell2.innerHTML = datasx[step];

}

});

Echo.channel('DeviceAlarm').listen('AlarmStatus', (e) =>

{

var table = document.getElementById("myTable");

var row = table.insertRow(0);

var cell1 = row.insertCell(0);

var cell2 = row.insertCell(1);

cell1.innerHTML = e['DeviceID'];

cell2.innerHTML = new Date().toLocaleString('en-CA', {hour12: false,});

document.getElementById("myAlert").innerHTML = 'Alarm Trigger!!';

document.getElementById("myAlert").style.color="red";

// This is for timecheck

first = new Date(datasx[datasx.length - 1]); // Get the first date epoch object

// document.write((first.getTime())/1000); // get the actual epoch values

second = new Date(); // Get the first date epoch object

// document.write((second.getTime())/1000); // get the actual epoch values

diff= second.getTime() - first.getTime() ;

// console.log(diff);

if (diff < 10000) {

document.getElementById("myAlert").innerHTML = "online";

document.getElementById("myAlert").style.color="green";

document.getElementById("myAlert").style.backgroundColor = "white";

} else{

document.getElementById("myAlert").innerHTML = "offline";

document.getElementById("myAlert").style.color="red";

document.getElementById("myAlert").style.backgroundColor = "white";
}

});

</script>

@endsection

k. api.php

80

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

use Illuminate\Support\Facades\DB;

use App\Models\temp; #refer to table in dbase

use App\Models\rain;

use App\Models\light;

class APIcontroller extends Controller

{

public function construct()

{

$this->temp = new temp();

$this->rain = new rain();

l. apicontroller.php

<?php

use Illuminate\Http\Request;

use Illuminate\Support\Facades\Route;

/*

|

| API Routes

|

|

| Here is where you can register API routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| is assigned the "api" middleware group. Enjoy building your API!

|

*/

Route::middleware('auth:sanctum')->get('/user', function (Request $request) {

return $request->user();

});

Route::get('myTemperatureLink',

'App\Http\Controllers\APIcontroller@APIlisttemp');

Route::get('myRainLink', 'App\Http\Controllers\APIcontroller@APIlistrain');

Route::get('myLightLink', 'App\Http\Controllers\APIcontroller@APIlistlight');

81

<?php

namespace App\Events;

use Illuminate\Broadcasting\Channel;

use Illuminate\Broadcasting\InteractsWithSockets;

use Illuminate\Broadcasting\PresenceChannel;

m. alarmstatus.php

$this->light = new light();

}

public function APIlisttemp()

{

$blocks = DB::table('temp')

->select('Value')

->latest('datetime')

->limit(1)

->pluck('Value'); //give value

return (compact('blocks'));

}

public function APIlistrain()

{

$blocks = DB::table('rain')

->select('Value')

->latest('datetime')

->limit(1)

->pluck('Value'); //give value

return (compact('blocks'));

}

public function APIlistlight()

{

$blocks = DB::table('light')

->select('Value')

->latest('datetime')

->limit(1)

->pluck('Value'); //give value

return (compact('blocks'));

}

}

82

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;

use Illuminate\Database\Eloquent\Model;

class alarm extends Model

{

use HasFactory;

}

n. alarm.php

use Illuminate\Broadcasting\PrivateChannel;

use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

use Illuminate\Foundation\Events\Dispatchable;

use Illuminate\Queue\SerializesModels;

class alarmstatus implements ShouldBroadcast

{

use Dispatchable, InteractsWithSockets, SerializesModels;

public $message;

/**

* Create a new event instance.

*

* @return void

*/

public function construct($message)

{

$this->message = $message;

}

/**

* Get the channels the event should broadcast on.

*

* @return \Illuminate\Broadcasting\Channel|array

*/

public function broadcastOn()

{

return new Channel('ToControlDar');

}

}

83

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;

use Illuminate\Database\Eloquent\Model;

class temp extends Model

{

use HasFactory;

}

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;

use Illuminate\Database\Eloquent\Model;

class humid extends Model

{

use HasFactory;

}

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;

use Illuminate\Database\Eloquent\Model;

o. temp.php

p. humid.php

q. rain.php

84

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Factories\HasFactory;

use Illuminate\Database\Eloquent\Model;

class light extends Model

{

use HasFactory;

}

-*- coding: utf-8 -*-

"""

Created on Sun Jun 11 22:22:10 2023

@author: darwisyah

"""

import numpy as np

from skfuzzy import control as ctrl

import skfuzzy as fuzz

import pickle

Define the fuzzy sets for the inputs

temperature = ctrl.Antecedent(np.arange(0, 41, 1), 'temperature') #range = 0-40

rain = ctrl.Antecedent(np.arange(0, 101, 1), 'rain') #range = 0-2000

r. light.php

Spyder

a. fuzzytrain.py

class rain extends Model

{

use HasFactory;

}

85

light = ctrl.Antecedent(np.arange(0, 101, 1), 'light') #range = 0-4095

Define the fuzzy sets for the output

weather = ctrl.Consequent(np.arange(0, 101, 1), 'weather')

temperature['cold'] = fuzz.trimf(temperature.universe, [0, 10, 16])

temperature['mild'] = fuzz.trimf(temperature.universe, [15, 20, 33])

temperature['hot'] = fuzz.trimf(temperature.universe, [32, 36, 40])

rain['dry'] = fuzz.trimf(rain.universe, [2, 20, 30])

rain['lightrain'] = fuzz.trimf(rain.universe, [25, 35, 45])

rain['heavyrain'] = fuzz.trimf(rain.universe, [40, 60, 100])

light['dark'] = fuzz.trimf(light.universe, [0, 20, 30])

light['moderate'] = fuzz.trimf(light.universe, [25, 45, 50])

light['bright'] = fuzz.trimf(light.universe, [48, 80, 100])

weather['sunny'] = fuzz.trimf(weather.universe, [0, 33.75, 67.5]) #0-25 #-5,0

weather['cloudy'] = fuzz.trimf(weather.universe, [66.5, 71.25, 80]) #25-50 #0,

weather['rainy'] = fuzz.trimf(weather.universe, [79, 87.5, 100]) #50-100 #0,-5

#shaded region under graph

#handling.view(sim=conveyor)

temperature.view()

rain.view()

light.view()

weather.view()

Define the rule base using the 'rule' method

rule1 = ctrl.Rule(temperature['cold'] & rain['dry'] & light['dark'], weather['cloudy'])

rule2 = ctrl.Rule(temperature['cold'] & rain['dry'] & light['moderate'],

weather['sunny'])

rule3 = ctrl.Rule(temperature['cold'] & rain['dry'] & light['bright'], weather['sunny'])

rule4 = ctrl.Rule(temperature['cold'] & rain['lightrain'] & light['dark'],

weather['rainy'])

rule5 = ctrl.Rule(temperature['cold'] & rain['lightrain'] & light['moderate'],

weather['rainy'])

rule6 = ctrl.Rule(temperature['cold'] & rain['lightrain'] & light['bright'],

weather['rainy'])

rule7 = ctrl.Rule(temperature['cold'] & rain['heavyrain'] & light['dark'],

weather['rainy'])

rule8 = ctrl.Rule(temperature['cold'] & rain['heavyrain'] & light['moderate'],

weather['rainy'])

rule9 = ctrl.Rule(temperature['cold'] & rain['heavyrain'] & light['bright'],

weather['rainy'])

rule10 = ctrl.Rule(temperature['mild'] & rain['dry'] & light['dark'], weather['cloudy'])

rule11 = ctrl.Rule(temperature['mild'] & rain['dry'] & light['moderate'],

86

weather['sunny'])

rule12 = ctrl.Rule(temperature['mild'] & rain['dry'] & light['bright'], weather['sunny'])

rule13 = ctrl.Rule(temperature['mild'] & rain['lightrain'] & light['dark'],

weather['rainy'])

rule14 = ctrl.Rule(temperature['mild'] & rain['lightrain'] & light['moderate'],

weather['rainy'])

rule15 = ctrl.Rule(temperature['mild'] & rain['lightrain'] & light['bright'],

weather['rainy'])

rule16 = ctrl.Rule(temperature['mild'] & rain['heavyrain'] & light['dark'],

weather['rainy'])

rule17 = ctrl.Rule(temperature['mild'] & rain['heavyrain'] & light['moderate'],

weather['rainy'])

rule18 = ctrl.Rule(temperature['mild'] & rain['heavyrain'] & light['bright'],

weather['rainy'])

rule19 = ctrl.Rule(temperature['hot'] & rain['dry'] & light['dark'], weather['cloudy'])

rule20 = ctrl.Rule(temperature['hot'] & rain['dry'] & light['moderate'],

weather['sunny'])

rule21 = ctrl.Rule(temperature['hot'] & rain['dry'] & light['bright'], weather['sunny'])

rule22 = ctrl.Rule(temperature['hot'] & rain['lightrain'] & light['dark'],

weather['rainy'])

rule23 = ctrl.Rule(temperature['hot'] & rain['lightrain'] & light['moderate'],

weather['rainy'])

rule24 = ctrl.Rule(temperature['hot'] & rain['lightrain'] & light['bright'],

weather['rainy'])

rule25 = ctrl.Rule(temperature['hot'] & rain['heavyrain'] & light['dark'],

weather['rainy'])

rule26 = ctrl.Rule(temperature['hot'] & rain['heavyrain'] & light['moderate'],

weather['rainy'])

rule27 = ctrl.Rule(temperature['hot'] & rain['heavyrain'] & light['bright'],

weather['rainy'])

Create the control system using the rules

dryingRack_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7,

rule8, rule9, rule10,

rule19, rule20,

rule11, rule12, rule13, rule14, rule15, rule16, rule17, rule18,

rule21, rule22, rule23, rule24, rule25, rule26, rule27])

Create a control system simulation

dryingRack = ctrl.ControlSystemSimulation(dryingRack_ctrl)

Pass inputs to the control system using Antecedent labels with Pythonic API

Note: if you like passing many inputs all at once, use .inputs(dict_of_data)

value tu utk kluakan result normal

dryingRack.input['temperature'] = 27

dryingRack.input['rain'] = 1

dryingRack.input['light'] = 40

87

Crunch the numbers

dryingRack.compute()

weather.view(sim=dryingRack)

Print the result in a human-friendly form

print(dryingRack.output['weather'])

file = open('fuzzydar.picl', 'wb')

pickle.dump(dryingRack,file)

file.close()

88

.

89

