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Abstract

Background

Currently, there is no antiviral medication for dengue, a potentially fatal tropical infectious ill-

ness spread by two mosquito species, Aedes aegypti and Aedes albopictus. The RdRp pro-

tease of dengue virus is a potential therapeutic target. This study focused on the in silico

drug discovery of RdRp protease inhibitors.

Methods

To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L.

against DENV3-NS5 RdRp, a range of computational methods were employed. These

included docking, drug-likeness analysis, ADMET prediction, density functional theory

(DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies

was to confirm the stability of the ligand-protein complex and the binding pose identified dur-

ing the docking experiment.

Results

Twenty-one compounds were found to have possible inhibitory activities against DENV

according to the docking data, and they had a binding affinity of�-37.417 kcal/mol for
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DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the

drug-likeness investigation produced four hit compounds that were subjected to ADMET

screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band

energy gap, the DFT calculations showed strong electronegetivity, favouravle global soft-

ness and chemical reactivity with considerable intra-molecular charge transfer between

electron-donor to electron-acceptor groups for catechin. The MD simulation result also dem-

onstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-

NS5 RdRp for catechin as compared to panduratin A.

Conclusion

According to the present findings, catechin showed high binding affinity and sufficient drug-

like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further

supported the drug-like action of catechin as a potential therapeutic candidate. Therefore,

further in vitro and in vivo research on cocoa and its phytochemical catechin should be

taken into consideration to develop as a potential DENV inhibitor.

Introduction

A virus transmitted by mosquitoes called dengue has recently become widespread around the

world. According to Wilder-Smith et al., almost half of the population of the world is suscepti-

ble to dengue infection, particularly in the tropics and subtropics [1]. Every year, between 50

and 100 million clinical cases are documented, and more than 500,000 people have dengue

shock syndrome (DSS) or dengue hemorrhagic fever (DHF), which are severe signs of dengue

infections. As of right present, there is no specific medication available to treat DENV infec-

tions. For patients with DENV infections that are hospitalized, supportive therapy is the sole

choice for treatment.

DENV is a member of the Flaviviridae family, which also comprises the four serotypes

DENV1, DENV2, DENV3, and DENV4 [2]. In DENV-endemic regions, all four serotypes

often coexist. The virus infects people when female Aedes aegypti or Aedes albopictus mosqui-

toes bite them, resulting in clinical symptoms that can range from mild to severe. One of the

fundamental challenges to the development of a DENV vaccine is the documented promotion

of severe illness by subsequent infections with serotypes distinct from the original infection

[3]. A tetravalent dengue vaccine called CYD-TDV (Dengvaxia, Sanofi Pasteur, Lyon, France)

was recently given the go-ahead in 20 endemic nations. The World Health Organiztion

(WHO) advises against administering CYD-TDV to seronegative people since it increases the

risk of developing severe dengue [4]. CYD-TDV should only be administered to dengue-

infected people aged 9 to 45. However, this vaccine’s overall effectiveness was said to be

restricted to just average protection against DENV1 and DENV2 (protection rates of 50% and

35–42%, respectively) [3]. The discovery of anti-DENV medications in the treatment of

DENV infection are crucial for avoiding illness development, lowering disease severity, and

halting the transmission of the virus, even if the availability of a DENV vaccination is essential

for the prevention and control of viral infection.

The positive-sense RNA genome of DENV is single-stranded and approximately ~11 kb in

size. It actively contributes to the production of RNA signals that control the viral replication

process [5, 6]. Three structural and seven non-structural proteins surround a single lengthy
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open reading frame (ORF) that is the product of the gene. The capsid, membrane, and enve-

lope proteins are structural proteins, while NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 are

nonstructural proteins [7]. These nonstructural proteins play a crucial role in the success of

viral replication in flaviviruses, and nonstructural protein 5 (NS5) is the biggest and most con-

served of them all. The bifunctional DENV-NS5 protein has 900 amino acids [8]. It is a big

oligomer that plays important enzymatic tasks such as catalysing 5’-RNA methylation and

RNA synthesis, respectively [9, 10]. It has a methyltransferase (MTase) domain at the N-termi-

nal and an RNA-dependent RNA polymerase (RdRp) domain at its C-terminal. These

enzymes are located as distinct domains inside a polypeptide and are encoded in a single mul-

tifunctional protein. RdRp and other viral polymerases are known therapeutic targets in clini-

cal practice. Additionally, RdRp is a crucial target for anti-dengue drug development since it is

the most conserved viral protein across all four DENV serotypes [11], as well as among other

flaviviruses, including the West Nile Virus (WNV) and Yellow Fever Virus.

By providing consistent supplies of bioactive lead molecules, natural products play a signifi-

cant role in the finding of leads for the development of chemical therapies [12]. According to

statistics recently released by the US Food and Drug Administration (FDA), natural products

made up 67% of the 1562 small molecules that were approved for sale between 1981 and 2014

[13–15]. David et al., have classified these substances as either novel chemical entities (NCEs),

unmodified natural products (NPs), biological macromolecules, herbal medicines, NP deriva-

tives, structurally similar NPs, semisynthetic NPs, analogues, or synthetic compounds based

on NP pharmacophores [16].

Chocolate and other food products made from the Theobroma cacao L bean are very popu-

lar across the world among all aged group of people. Pro capita chocolate consumption in

Europe ranges from 1.04 kg per year in Poland to 11.85 kg per year in Ireland [17]. Due to its

distinctive chemical makeup of more than 500 different chemicals, cocoa has emerged as a

valuable ethnomedicinal plant [18]. The following pharmacological activities have been linked

to their reported benefits for human health: analgesic [19], immunomodulatory [20], vasodila-

tory [21], antioxidant [22], anti-inflammatory, anticarcinogenic [23], immunomodulatory

[20], vasodilatory [21], analgesic [19], antimicrobial [24] and antiviral [25, 26] activities. Cocoa

has long been regarded as a food that is high in polyphenols. The kind of polyphenols is mostly

formed by flavonoids and phenolic acids. Indeed, phenolic acids have been shown to have a

wide range of biological effects, particularly those that are anti-inflammatory [27], anti-malar-

ial [28], antioxidant [29], anticancer [30], and antiviral [31] effects.

Computational drug design (CADD) employs theoretical concepts and computer meth-

ods to investigate potential drug interactions with biomolecules [32, 33] involving a number

of techniques and tools such as molecular docking, molecular dynamic simulation, ADMET,

and drug-likeness. Molecular docking, a key aspect of CADD, is commonly utilized to fore-

cast the binding patterns of known ligands, discover new potent ligands, and estimate bind-

ing affinities with target proteins. It aids in lead or hit identification based on chemical

diversity, known biological activity, or potential for drug development [34]. Overall, molecu-

lar docking signify the drug discovery process, enabling the understanding of interactions

between a ligand and its target, crucial for designing new drugs, optimizing existing ones,

and uncovering molecular mechanisms in biological processes [32]. Additionally, molecular

dynamics (MD) simulations are pivotal in drug discovery, offering insights into the atomic-

level behavior of biological systems. MD simulations have been applied for pharmacophore

development, drug design, and identifying compounds that complement the receptor [35].

ADMET and drug-likeness approaches have gained importance due to the abundance of

ligand property data and the creation of on-demand virtual libraries of drug-like small mole-

cules [36]. Virtual screening, exemplified by molecular docking, presents an affordable,
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rapid, direct, and systematic approach to drug discovery compared to traditional experimen-

tal high-throughput screening [37].

About 29 phenolic compounds from Theobroma cacao L. were docked to the DENV-3

NS5 RdRp in this work. The top hits underwent additional in-silico testing for druggability,

pharmacokinetics, and pharmacodynamics characteristics. The lead chemical was subse-

quently put through a DFT and MD simulation analysis to check the accuracy and stability

of the docking.

Methodology

Protein selection and preparation

The most crucial phase in the drug discovery process is choosing a prospective therapeutic tar-

get or receptor that is involved in dengue replication. To find a dengue virus inhibitor, the tar-

get protein of DENV-3 NS5 RdRp was chosen with the PDB ID: 6IZZ [38]. The Protein Data

Bank (http://rcsb.org) was used to retrieve the target protein’s crystal structure.

Discovery Studio 3.1 and Chimaera 1.5.3 were used to prepare the protein. Hydrogen

atoms were inserted where amino acid residues were missing them, loop segments were added

around the active regions of macromolecules, and various bond configurations were checked

again. The PDB files also no longer contain any crystallographic waters [39].

Ligand selection and preparation

ChemDraw was used to generate a two-dimensional (2D) structure of 29 phenolic compounds

that were extracted from Theobroma cacao L., and the structures that were taken from Yaez

et al., [40].

With the help of Discovery Studio 3.1 and the CHARMm force field, the three-dimensional

(3D) structure was generated from a 2D model. To create low-energy ring conformations, the

CHARMm force field in DS3.1 was used to produce the ligand. By default, all compounds

were adjusted to a pH range of 5.0 to 9.0 for an appropriate protonation state.

Molecular docking validation

To validate the molecular docking process, the co-crystallized ligand was redocked into the

binding site of the target protein using DS3.1. The prior docking position of compounds and

the lowest energy posture achieved after re-docking were overlaid, and its root mean square

deviation (RMSD) was determined. The RMSD must be contained within the 2.0 Å reliable

range in order to certify the docking operation.

Molecular docking

Utilising the DS3.1, molecular docking was performed on the Theobroma cacao L. phenolic

compounds and the DENV-3 NS5 RdRp crystal structures (PDB ID: 6IZZ; 1.97). Under the

CDOCKER technique, rigid docking was used to anticipate the interaction between a

ligand and a protein. A grid box made up of the dimensions -15.65 Å × -19.54 Å ×38.24 Å
was created around the active site using the DS3.1 software using protein PDBQT input

files, and docking calculations were carried out inside an 8.24 Å sphere. The co-crystallized

ligand’s binding position determined the site sphere centre, and all other parameters were

kept at their normal settings. The exclusion was carried out using the Root Mean Square

Deviation (RMSD) parameter in accordance with the co-crystallized compound, with the

radius set at 10. Assuming that each ligand’s best 10 conformations were preserved based
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on scoring and ranking by the negative value of CDOCKER capacity, the best Hits parame-

ter was set to 10.

Additionally, in the most recent induced fit docking simulation, molecules that are being

examined as potential ligands must have lower binding interaction energies than the reference

ligands. In this investigation, panduratin A served as the reference compound. Panduratin A is

a phenolic derivative of a natural substance that has an anti-DENV protease with IC50 value of

57.2871.30 μmol/L [41]. Additionally, with an IC50 value of 0.81 μM against SARS-CoV-2, this

substance also demonstrated anti-SARS-CoV-2 action [42].

Physicochemical properties and drug-likeness study

Through the online tool SwissADME (http://www.swissadme.ch), the molecular characteris-

tics and applicability of the compounds as drug candidates were assessed based on the "Lipins-

ki’s Rule of Five" cutoff point. Molecular weight, molar refractivity, topological polar surface

area, the number of O or N, the number of OH or NH, and the number of rotatable bonds are

the six descriptors according to Lipinski’s rule. The threshold some method, such as Lipinski,

Ghose, Veber, Egan, and Muegge, as well as the bioavailability score of a molecule, were used

to determine the drug-likeness research.

ADMET study

In order to ascertain the pharmacokinetic characteristics of the compounds, ADMET predic-

tion was used to forecast the hit compounds from the Physicochemical Properties and Drug-

likeness Study. The pkCSM web server (http://biosig.unimelb.edu.au/pkcsm/prediction) was

used to conduct these experiments. For the preparation, just SMILES or SD file structures of

active compounds are needed; understanding of the active site or binding mechanism is not

required. As typical predictors, we looked at aqueous solubility, human intestinal absorption,

blood-brain barrier, CYP450 substrate and inhibitor, hERG I and II inhibitor, hepatotoxicity,

and skin sensitization.

Density function theory (DFT) calculations and the molecular electrostatic

potential (MESP) calculations

The electronic attributes of the compounds were determined using quantum mechanics (QM)

theories. The computational chemistry calculations in this study were based on one of the

most effective methods for analyzing compound stability and reactivity. Vibrational frequency

calculations using density functional theory (DFT) are critical for theoretical studies of organic

molecules and related domains [43, 44]. Furthermore, the DFT technique is an important and

useful tool for investigating the relationship between the geometry and electrical properties of

bioactive molecules [44–46]. As a result, we present DFT calculations involving HOMO--

LUMO energy, various chemical reactivity parameters, and the electrostatic potential of a mol-

ecule. Using the HOMO and LUMO values, numerous other computations, such as chemical

hardness, softness, electronegativity, and electrophilicity, have been performed. The com-

pound’s complete molecular geometry optimization was performed using the Gaussian 09

software package and the density functional theory at the B3LYP/6-31G (d, p) level of theory

[47]. Using their optimized structures, the molecular electrostatic potential, highest occupied

molecular orbital, and lowest unoccupied molecular orbital energies of compounds catechin

and panduratin A (control) were calculated.
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Molecular dynamic simulations of the top-scoring molecule with anti-

dengue RdRp protease

The GROMACS 2023.2 software was employed to perform molecular dynamics (MD) simula-

tions on the protein-panduratin and protein-catechin complexes, as well as the apo-protein.

The CHARMM27 force field and the pre-configured TIP3P solvent model within the GRO-

MACS module were utilized to generate topologies for the protein-ligand complexes under

investigation. Subsequently, these test systems were positioned within a cubic water

box featuring a 12-surface polyhedron as its edge, set at a distance of 1.0 nm. Neutralization of

the system was achieved by introducing appropriate Na+ and Cl- ions. The protein-panduratin

A and protein-catechin complexes underwent an initial energy minimization for 100 fs under

"isothermal-isobaric" conditions, followed by equilibration in the NVT and NPT phases. Data

were collected throughout a 100 ns simulation using a 2fs time step. To assess the stability of

the complexes, measurements of the root mean square deviation (RMSD) for each Cα atom,

RMSF, SASA, and hydrogen bonds (HB) were recorded at 100 ns intervals during the MD

trajectories.

Binding free energy calculations of top-scoring molecule with anti-dengue

RdRp protease

The protein-ligand interaction binding free energies, including van der Waals, electrostatic,

polar salvation, SASA, and binding energies, may be integrated with high-throughput MD

simulations using MM-PBSA calculations. Here, we employed the g_mmpbsa package byap-

plying the single step computing method. Here we executed g_mmpbsa with the protein-

ligand MD trajectory data and parameter file. With the help of the MmPbsaStat.py Python

script, which is offered by the g_mmpbsa package van der Waals, binding, electrostatic, and

polar salvation energies are computed. Utilising MmPbSaDecomp.py from the g_mmpbsa

package allowed us to also forecast the contribution energy of each residue.

Ethics

Ethical approval was not required for this work.

Results and discussion

Molecular docking validation

The co-crystallized ligand of the target protein was re-docked into each of its individual bind-

ing sites on the DENV-3 NS5 RdRp (PDB ID: 6IZZ; resolution: 1.97 Å) in order to confirm the

docking procedure. Re-docked co-crystallized ligand had a root mean square deviation

(RMSD) of 0.39 Å, which was less than 2.0 Å. In Fig 1, the docked structure and co-crystallized

ligand are superimposed.

Molecular docking

In this work, 29 phenolic compounds were extracted from Theobroma cacao L., and docked

against DENV-3 NS5 RdRp enzyme. The top-ranked compounds were determined by com-

paring them to the reference compound apnduratin A and determining which had the lowest

docking energy value and the greatest number of contacts with active site residues. Potential

inhibitors can be thought of as substances that can thwart virus-host binding and prevent viral

particles from entering target cells. The amino acid residues with the highest binding affinity
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and interactions with the reference chemical were therefore chosen for additional study. The

interactions were, however, favourable, as indicated by the negative docking energy values.

The suppression of viral replication depends on NS5 RdRp [41, 48, 49]. Compared to the

reference molecule panduratin A, 21 compounds exhibited the lowest interaction energies, the

highest number of hydrogen bonds, and the most significant hydrophobic interactions upon

docking at the binding site of DENV-3 NS5 RdRp (S1 Table). In contrast to panduratin A,

which displayed a docking energy (CDOCKER interaction energy) of -37.4166 kcal/mol, the

selected compounds demonstrated a range of -39.287 to -60.4769 kcal/mol. The stability of the

ligand-protein complexes was primarily attributed to hydrogen bonds and carbon-hydrogen

bonds formed with the residues of the active site. The study unveiled additional stabilizing fac-

tors such as π-sulphur interactions, π-π stacked interactions, and π-alkyl interactions at the

binding site of the target protein. These interactions further contributed to the stability of the

complexes. The active site residue, common to all 21 compounds, was discussed earlier for its

pivotal role in maintaining the structural and functional integrity of NS5 dengue proteases.

The docking poses for panduratin A and catechin are illustrated in Fig 2.

Physicochemical properties and drug-likeness study

The SwissADME server’s drug scan algorithms forecast the potential drug-likeness of the sug-

gested DENV inhibitors. The Lipinski rule of five was used to filter all of the chosen com-

pounds in order to determine their physicochemical characteristics. The drug-like molecules

Fig 1. Superimposed of the crystal structure (green) and docked structure (dark gray).

https://doi.org/10.1371/journal.pone.0299238.g001

Fig 2. Docking poses for (a) Panduratin A and (b) Catechin in PDB: 6IZZ.

https://doi.org/10.1371/journal.pone.0299238.g002
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were identified based on the threshold of some methods including Lipinski, Ghose, Veber,

Egan, and Muegge as well as the bioavailability score of a compound. The six descriptors

included molecular weight, molar refractivity, topological polar surface area, number of O or

N, number of OH or NH, and number of rotatable bonds. Only four of the tested compounds

—catechin, isorhamnetin, luteolin, and quercetin—passed all drug-likeness assays with flying

colours (S2 Table). The substances that successfully satisfied all of these criteria were identified

as possible lead substances with good pharmacokinetic properties and were then the focus of

additional ADMET research.

ADMET study

Additional ADMET calculations were performed to forecast the inhibitor’s capacity to mimic

a medication. The criteria included in this investigation were toxicity, absorption, distribution,

and metabolism. The number of thresholds has then been used to assess these parameters. The

findings indicated that all of the chosen compounds did not meet the requirements for some

metrics. However, the catechin inhibitor’s ADME prediction result indicated that it would be

able to surpass the ADMET drug ability threshold (S3 Table).

The ADMET prediction result for catechin indicated some water solubility (Log S) with a

value of -3.117 and moderate absorption in the human gut with a value of 68.829. The sub-

stance failed to cross the blood-brain barrier and serve as a non-substrate of P-glycoprotein.

However, it was determined that this substance did not inhibit the CYP1A2, CYP23A4,

CYP2C9, or CYP2D6 subtypes of the enzyme. The results of this in silico ADMET study also

indicated that Catechin would not be harmful to hERG I or II, cause hepatotoxicity, or cause

skin sensitization. Due to the fact that there were no breaches of Lipinski’s rule of five, and

because ADMET analysis anticipated catechin to be a possible inhibitor, the findings of Lipins-

ki’s calculation and ADMET analysis showed that it was the most preferred among the others.

Density function theory (DFT) calculations

The values of HOMO and LUMO energy can be used to define a molecule’s ability to donate

and receive electrons. These molecular orbitals are important for electronic and optical prop-

erties, pharmaceutical research, and understanding biological mechanisms [50, 51]. The

energy gap supports of the frontier molecular orbital (FMO) structure indicate the structure’s

stability. Furthermore, FMOs provide information about a molecule’s kinetic stability and

chemical reactivity. The energy values determined for catechin’s HOMO and LUMO orbitals

are -0.2195 eV and -0.0053 eV, respectively. The FMO molecule’s energy gap (HOMO--

LUMO) was determined to be 0.21412eV. The lower HOMO and LUMO energy gaps indi-

cated that the investigated molecule has strong chemical reactivity, biological properties, and

polarizability (Figs 3 and 4). A large energy gap generally indicates a hard and stable molecule,

whereas a small energy gap indicates a soft and reactive molecule. Catechin has a lower energy

gap of 0.21412 eV, making it a soft, reactive, and polarizable molecule. Furthermore, chemical

reactivity parameters such as chemical softness (S), chemical potential (m), electrophilicity

index (u), and chemical hardness (h) of the studied molecules were calculated using the ener-

gies of the HOMO and LUMO orbitals. Because of the molecule’s small energy gap (0.21412

eV), significant softness (9.3 eV), and low chemical hardness (0.1 eV), catechin is a promising

candidate for use as a chelating agent. The electronegativity of the control molecule is slightly

greater than that of the catechin, indicating that the control molecule is more stable and the

catechin is slightly more reactive. The electrophilicity index of catechin indicates its ability to

bind to biomolecules [52–54]. The molecule of interest (catechin) has nearly identical values to

that of control molecule panduratin A. Table 1 contains a list of all DFT descriptors.
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The molecular electrostatic potential (MESP) calculations

The molecular electrostatic potential (MEP) predicts the relative reactivity positions of a spe-

cies for nucleophilic and electrophilic attack. The significance of MESP lines demonstrates the

color marking system’s design, size, negative, positive, and neutral electrostatic potential

zones. The MEP surface analysis of the compounds were determined using the optimized

structures and the B3LYP/6-31G (d, p) basis set. Figs 5 and 6 shows the electrostatic potential

surface map of the studied compound as well as the control. The blue color scheme area repre-

sents the significant positive electrostatic potential of the compounds (indicating a signifi-

cantly electron-deficient region), whereas the red color area represents the compounds’ most

Fig 3. Catechin HOMO-LUMO map with energy gap.

https://doi.org/10.1371/journal.pone.0299238.g003

Fig 4. Panduratin A HOMO-LUMO map with energy gap.

https://doi.org/10.1371/journal.pone.0299238.g004

Table 1. Showing DFT descriptors of the compound and control.

Name Catechin Panduratin A

Total energy -1092.14 -1389.03

Binding energy -70.231 -94.257

Dipole moment 1.54211 3.53376

HOMO energy -0.219516 -0.216736

LUMO energy -0.00539583 -0.0542137

Band Gap Energy 0.21412 0.162523

Hardness 0.10706 0.0812615

Softness 9.340556697179151 12.3059505423847701556

Electronegativity 0.112455915 0.13547485

Electrophilicity 0.0590618943512386 0.1129282315888982

https://doi.org/10.1371/journal.pone.0299238.t001
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electronegative potential (indicating an electron-rich region). The negative potential regions

in the MESP are localized over electronegative atoms (oxygen and carbon), while the positive

electrical regions are localized over hydrogen atoms. As a result, nucleophilic and electrophilic

species prefer sites with higher negative electronegative potential and lower positive electro-

static potential. Electronic charges play a significant role in describing the bonding abilities of

a compound.

In the case of catechin, highly negative points were localized at atoms O1, O2, O3, O4, O5,

and O6 whereas the highly positive points were located at atoms H1, H4, H6, H7, H11, H12,

and H13 (Fig 5). Whereas in the case of panduratin A, the electrostatic map reveals that highly

negative points were located at atoms C2, C6, C9, C15, H6, H7, O1, O2, and O4 atoms,

whereas the highly positive points are present at H19, H27, H28, and H29 atoms (Fig 6). The

degree of negative Hirshfeld charge on the targeted molecule, displaying nucleophilicity,

strongly correlates with its ability to donate electrons to the approaching electrophile. S4 Table

shows the mulliken charge values of the examined compound’s component atoms. The com-

puted bond properties are shown in S5 Table.

The comparison between catechin and panduratin A highlights distinct reactivity and inter-

action mechanisms based on various molecular properties. Panduratin A exhibits considerably

higher total energy and binding energy in comparison to catechin, indicating slightly lower

stability and a potentiality for forming robust interactions during reactions or when binding to

other molecules as compared to panduratin A. Moreover, panduratin A possesses a substan-

tially larger dipole moment, signifying higher polarity and a heightened potential for strong

electrostatic interactions. While both compounds share similar HOMO energies, catechin

showcases a slightly higher LUMO energy and an extended band energy gap, hinting at a

slightly lower reactivity potential due to its lesser likelihood to donate or accept electrons.

Additionally, catechin’s increased hardness and lower softness compared to panduratin A

Fig 5. (A) Molecular electrostatic potential of catechin (B) Optimized structure of catechin.

https://doi.org/10.1371/journal.pone.0299238.g005

Fig 6. (A) Molecular electrostatic potential of panduratin A (B) Optimized structure of panduratin A.

https://doi.org/10.1371/journal.pone.0299238.g006
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suggest a more controlled reactivity, indicating a lesser susceptibility to changes in electron

density. The compound’s higher electronegativity and electrophilicity further reinforce its

potential for increased reactivity and stronger interactions in various chemical contexts. It is

crucial to note that these observations offer a molecular perspective, and the actual reactivity

and interaction mechanisms can be influenced by external factors and specific experimental

conditions.

Understanding the molecular properties of compounds such as catechin and panduratin A

is critical when exploring their potential inhibitory action on the RdRp (RNA-dependent RNA

polymerase) enzyme in diseases like dengue, where RdRp plays a pivotal role in the virus’s rep-

lication. Panduratin A’s traits, like higher stability indicated by elevated total and binding ener-

gies, suggest its capacity for establishing robust interactions with the RdRp enzyme. The larger

dipole moment and increased polarity might enable panduratin A to engage in specific inter-

actions with crucial regions of the RdRp protein, potentially influencing its binding capacity

and inhibitory potential. Comparable and similar properties of catechin may also show favor-

able inhibitory action of RdRp. Additionally, the lower LUMO energy and smaller band gap

energy of compounds hint at a greater likelihood for electron transfer, advantageous in dis-

rupting electron transfer processes or active sites of the RdRp enzyme, hindering its function

and impeding viral replication. Higher hardness and lower softness imply controlled reactivity,

beneficial for stable and specific interactions with active sites or critical residues within the

RdRp enzyme, potentially interfering with its catalytic activity and inhibiting viral replication.

Moreover, compound’s higher electronegativity and electrophilicity suggest its capability to

act as an electron acceptor, forming robust interactions with specific functional groups or resi-

dues within the RdRp enzyme, possibly disrupting its function and contributing to inhibitory

action against the dengue virus. Despite the fact that, catechin showed slightly lower outcomes

in DFT result in contrast to panduran A, its potentiality to interact with the RdRp can not be

denied. While these molecular properties provide insights into both panduratin A and cate-

chin’s potential inhibitory action on the RdRp enzyme in dengue virus replication, rigorous

experimental investigations, including enzymatic assays, and in vitro studies, are necessary to

validate these interactions and elucidate specific mechanisms by which catechin interacts with

the RdRp protease, thus determining its effectiveness as a potential therapeutic agent against

dengue virus infections.

The molecular properties exhibited by compounds like catechin play a critical role in deter-

mining their potential as inhibitors, particularly concerning their interaction with specific

enzymes like the RdRp protease. These properties contribute to its function as a potential

inhibitor in several ways: i) Stability and Binding Energy: A high total and binding energies

suggest that catechin could form more stable interactions with the active sites or binding pock-

ets of the RdRp enzyme. This stability is crucial for a strong and long-lasting inhibitor-enzyme

interaction, potentially disrupting the enzyme’s function necessary for viral replication; ii)

Dipole moment and polarity: Larger dipole moment and increased polarity allow it to interact

with the RdRp enzyme via electrostatic forces. These interactions may facilitate the com-

pound’s binding to specific regions of the enzyme, enhancing its inhibitory potential by dis-

rupting the enzyme’s active sites or altering its conformation; iii) HOMO and LUMO energy,

band gap energy: Lower LUMO energy and smaller band gap energy suggest its propensity for

electron transfer. This characteristic is beneficial as it may interfere with the electron transfer

processes essential for the RdRp enzyme’s catalytic activity, thereby inhibiting the enzyme’s

function and viral replication; iv). Hardness and softness: Higher hardness and lower softness

imply controlled reactivity. This controlled reactivity could enable the compound to form sta-

ble and specific interactions with the active sites or critical residues within the RdRp enzyme,

effectively disrupting its function and inhibiting viral replication; v) Electronegativity and
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electrophilicity: Higher electronegativity and electrophilicity indicate potential to accept elec-

trons and form strong interactions with specific functional groups or residues within the

RdRp enzyme. These interactions could hinder the enzyme’s function and contribute to its

inhibition.

Collectively, these molecular properties of catechin which is comparable with panduratin A

in this study may contribute to its potential as an inhibitor by facilitating strong and specific

interactions with the RdRp enzyme. By binding to critical sites or interfering with essential

processes in the enzyme’s function, catechin in a similar fashion to panduratin A may disrupt

the replication cycle of the virus, making it a promising candidate for further exploration as a

potential therapeutic agent against viral infections, such as dengue.

Molecular dynamic simulations of the top-scoring molecule with anti-

dengue RdRp protease

We used molecular dynamic simulation to study target receptor and lead compound interac-

tions in the dynamic behavior of both receptor and ligand in order to investigate the stability

of bound conformation following binding of lead compound within the binding site of RdRp

protease, as molecular docking studies were conducted using the protein rigid crystal

structure.

The conformational stability of biological molecules is investigated using the root mean

square deviation (RMSD) [55]. RMSD analysis was employed to evaluate the structural modifi-

cations induced by catechin and panduratin A (reference) on 6IZZ, and the results are

depicted in Fig 7. The overall stability and structural convergence of the two complexes, 6IZZ-

catechin and 6IZZ-panduratin A (Reference compound), along with the native system, were

scrutinized over a 100 ns simulation period. The 6IZZ-panduratin A complex exhibited sus-

tained stability with minimal fluctuations until 40 ns, after which it experienced a maximum

deviation of up to 10.42 nm. Subsequently, it displayed inconsistent fluctuations until 80 ns,

followed by a relative stabilization with a mean RMSD of 3.22±2.88 nm, reaching 6.2 nm at the

simulation’s conclusion.

In contrast, the 6IZZ-catechin complex demonstrated remarkable stability throughout the

simulation, with a mean RMSD of 0.32±0.06 nm and a maximum fluctuation of 0.63 nm.

Moreover, the average RMSD values of the apo protein (Cα) were 0.21±0.02 nm, suggesting

that both complexes were stable, and the deviations were essentially comparable in both the

apo form and the catechin-protein complex.

Fig 7. RMSD of apo protein, protein-catechin, protein-panduratin A complexes.

https://doi.org/10.1371/journal.pone.0299238.g007
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Protein residue flexibility is elucidated through the root mean square fluctuation (RMSF)

analysis, examining the positional variations of each protein residue in its native state and

when bound to the respective ligands [56]. In the 6IZZ-panduratin A complex, the calculated

RMSF was 0.17±0.27 nm, while for the 6IZZ-Catechin complex, it was 0.14±0.07 nm. In con-

trast, the apo-protein displayed average fluctuations of 0.10±0.05 nm (refer to Fig 8). This

result suggests that the binding of both compounds slightly increased the mean RMSF value,

indicating that the complexes were slightly more flexible upon ligand binding [57]. The analy-

sis reveals that specific residues at the binding site, namely Ala763, Arg773, Ser776, Asn 777,

Cys780, Met809, Leu810, Trp833, Leu 880, Tyr882, and Met883, exhibited reduced fluctuation

in the presence of panduratin A. Notably, chemical interactions involving Cys780, Met809,

Leu810, Trp833, and Tyr882 were also observed in the corresponding docked complexes, sug-

gesting sustained stability throughout the simulation.

Similarly, for catechin, the fluctuations in binding site residues, including Ala759, Gln760,

Ala763, Ser776, Asn777, Cys780, Pro784, Val785, Trp787, Pro789, Thr806, Glu807, Asp808,

Met809, Trp833, Leu880, and Tyr882, were less pronounced, indicating stability during the

simulation. Intriguingly, chemical interactions involving Gln760, Asn777, Cys780, Thr806,

Met809, and Tyr882 were consistently present in the corresponding docked complexes, affirm-

ing the sustained stability of the docked complex throughout the simulation period.

To comprehend how biomolecules interact, geometric analysis of hydrogen bonding is

used. Hydrogen bonding is one of the essential interactions that biomolecules use to preserve

their structural integrity [55]. Fig 9a and 9b depict the interactions between the apo-protein

and panduratin A, as well as catechin, examined in this investigation over a 100 ns molecular

dynamics (MD) simulation. In Fig 9a, the 6IZZ-anduratin A complex reveals the presence of

six hydrogen bonds, although they were not consistently maintained throughout the entire

simulation. On the other hand, Fig 9b illustrates the 6IZZ-catechin complex, which displays

seven hydrogen bonds, with nearly half of them persisting throughout the simulation. This

suggests a more robust interaction of catechin with the protein, characterized by a higher

number of hydrogen bonds contributing to the stability of the complex.

Fig 8. Root mean square fluctuations of apo protein, protein-catechin, protein-panduratin A complexes.

https://doi.org/10.1371/journal.pone.0299238.g008

PLOS ONE Anti dengue activity of Theobroma cacao flavonoids

PLOS ONE | https://doi.org/10.1371/journal.pone.0299238 March 14, 2024 13 / 20

https://doi.org/10.1371/journal.pone.0299238.g008
https://doi.org/10.1371/journal.pone.0299238


To understand the interactions between residues and the surrounding solvent, the polar

and non-polar molecular surface areas are calculated using the solvent-accessible surface area

(SASA) method [58]. The calculated mean SASA was 356.53±1.74, 283.78±3.48, and 273.14

±4.17 nm2 for the apo-protein, 6IZZ-panduratin A, and 6IZZ-catchin complexes, respectively

(Fig 10). The conformational changes brought about by the both the complexes are evident by

the fact that these complexes have lower SASA values than the apo-protein.

Binding free energy calculations of top-scoring molecule with anti-dengue

RdRp protease

The MM-GBSA approach was undertaken to calculate the binding free energies of the 6IZZ-

panduratin A and 6IZZ-catechin complexes in order to confirm our investigated results. By

taking into consideration all energy sources, the computed free energy sheds light on the

ligand binding process. Table 2 displays the outcomes of the MM-GBSA computations for

panduratin A and catechin. It is demonstrates that van der Waals forces were mostly responsi-

ble for the binding of both compounds. The electrostatic and hydrophobic interactions have

major impact on the Gibbs binding free energy. Again, Table 2 unequivocally demonstrates

Fig 9. Number of Hydrogen bonds of (a) Panduratin A and (b) Catechin.

https://doi.org/10.1371/journal.pone.0299238.g009

Fig 10. Solvent-accessible surface area (SASA) analysis of 6IZZ-panduratin A and 6IZZ-catechin complexes and

apo-protein.

https://doi.org/10.1371/journal.pone.0299238.g010
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that panduratin A and catechin had total binding free energies of -17.15 kcal/mol and -25.91

kcal/mol, respectively (Fig 11a and 11b, respectively). It was anticipated that the non-covalent

binding of both compounds were advantageous for the five parallel groups of ΔEvdw, ΔEelec,

ΔGnonpol, ΔGgas, and ΔGbinding. Understanding the role of each residue to ΔG binding will

benefit from further deconstruction of the Gibbs binding free energy. Inconsistent from sam-

ple to sample is the contribution of residues to ΔGbinding. In order to generate stable connec-

tions with panduratin A, the amino acids Arg763, Arg773, Ser776, Asn777, Cys780, Met809,

Leu810, Trp833, Leu880, Tyr882 and Met883 provided the negative Gibbs binding energy (Fig

12a). Additionally, in the simulated system, Ala759, Gln760, Ala763, Ser776, Asn777, Cys780,

Pro784, Val785, Trp787, Pro789, Thr806, Glu807, Asp808, Met809, Trp833, Leu880 and

Tyr882 contributed to the negative Gibbs binding free energy and created stable contacts with

catechin (Fig 12b).

Conclusion

The study of 29 phenolic compounds from Theobroma cacao L. revealed that catechin had

high binding affinity with the active binding site of DENV3-NS5 RdRp protease. Further

investigation on the catechin and target protein interaction through MD simulation for 100 ns

period validates the docking study where catechin bound at the active site residues. The

Table 2. Gibbs binding free energy (kcal/mol) of 6IZZ-panduratin A and 6IZZ-catechin complexes calculated by

MM/GBSA.

MM/GBSA (kcal/mol) Panduratin A Catechin

ΔEvdw -20.13 -26.16

ΔEelec -14.40 -42.93

ΔEpol 20.22 47.54

ΔGnonpol -2.84 -4.35

ΔEDISPER 0.00 0.00

ΔGgas -34.53 -69.09

ΔGsolv 17.38 43.18

ΔGbinding -17.15 -25.91

https://doi.org/10.1371/journal.pone.0299238.t002

Fig 11. The Gibbs binding free energy decomposition diagram of (a) 6IZZ-panduratin A and (b) 6IZZ-catechin complexes based on (MM-GBSA).

https://doi.org/10.1371/journal.pone.0299238.g011
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reactivity of this molecule was further supported by the DFT study. Moreover, a robust drug-

like property with the favourable ADMET profiles of catechin was also demonstrated. This

suggests that catechin could be a potential lead or drug candidate. To further design and

develop catechin as RdRp protease inhibitor to treat dengue infection in vitro, in vivo and clin-

ical studies should be undertaken to validate this effectiveness, mechanism of action and toxic-

ity of this compound. Nonetheless, the Cocoa could also be studied further as a potential anti-

dengue herbal therapy.
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