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ABSTRAK 

 Sepanjang beberapa tahun yang lepas sehingga kini, jumlah perisian perosak yang 

melakukan kerosakan terhadap sistem operasi Android telah meningkat berbanding 

system operasi yang lain. Oleh itu, aplikasi yang menggunakan android mesti dianaisis 

bagi mengesan perisian perosak sementara ia tidak melakukan kerosakan yang serius. 

Untuk melakukan analisis terhadap aplikasi tersebut, dua jenis analisis perisan perosak 

boleh digunakan iaitu analisis statik dan analisis dinamik. Analisis statik adalah analisis 

yang mengkaji kod dalam aplikasi dengan teliti manakala analisis dinamik adalah analisis 

yang mengenal pasti perisian perosak melalui pemantauan. Walaupun kedua-dua analisis 

telah dilakukan, namun penambahbaikan harus dilakukan bagi mengesan perisian 

perosak dengan lebih tepat. Dengan zaman teknologi terkini, terlalu banyak cara yang 

boleh digunakan bagi penyerang untuk menyebar perisian perosak ke telefon pintar 

terutama pengguna Android. Dengan itu, kajian in telah mencadangkan sistem pengesan 

perisian perosak dengan menggunakan teknik pembelajaran mesin. Objektif kajian ini 

adalah untuk mengesan perisian perosak yang telah menyerang sistem operasi Android 

dengan lebih tepat. Hasil kajian yang sangat baik dapat membuktikan bahawa sistem 

pengesanan perisian perosak dapat mengesan perisian perosak Android dengan baik. 
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ABSTRACT 

 During this past year up until now, the total of malware that targets the Android 

operating system has increased compared to other operating systems. Therefore, an 

application that used the android operating system must be analyzed to detect the malware 

before the malware causes serious damage. To analyze the application, two types of 

analysis can be used which are static analysis and dynamic analysis. Static analysis is an 

analysis that is done by reviewing the codes diligently while dynamic analysis is an 

analysis that detects malware through observation. Even if both of the analysis was done 

successfully, however, an improvement needs to be done to detect the malware more 

accurately. With the technology arising now, there are many ways for the attacker to send 

malware to an Android smartphone user. Therefore, this research proposes a malware 

detection system using machine learning. This research objective is to detect the malware 

that attacks Android smartphones more accurately. The result of this research proves that 

the malware detection system is able to detect Android malware accurately.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Introduction 

According to Android statistics as of 2022, the number of active android users 

around the world has managed to reach an all-time high of 2.5 billion users across 190 

countries[1]. As the number of smartphone users increases, it is safe to assume that almost 

everyone in the world owns a smartphone. It is no wonder smartphones or mobile devices 

are considered a necessity nowadays since the various functions and services assist and 

ease users with their daily lives. Storing personal information, file access through cloud 

services, and browsing the internet is one of the many features of a smartphone. With the 

power to access almost everything from the touch of a screen and the ever-increasing 

number of smartphone users, it is no surprise that many security concerns and threats will 

rise. Attackers from any background can spread malware and viruses that can cause 

malicious effects on a user’s smartphone. The most seen effect of this attack is when the 

smartphone’s system starts acting differently than normal. Some malware is also capable 

of sending fraudulent or fake messages that can hijack and compromise the user’s details 

and bank account. 

Approximately 5,520,908 mobile malware, adware, and riskware attacks were 

prevented in the second quarter of 2022[2]. Continue to increase in frequency, with a 

42% global year-on-year increase in attacks[3]. The incident demonstrates that a viable 

technique for detecting malware on Android smartphones must be developed 

immediately. 
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1.2 Problem Statement 

In the era of globalisation, smartphones have become a necessity due to the 

numerous services they provide, which include connecting individuals around the world. 

The majority of users utilise smartphones for regular tasks such as document sharing, 

internet banking, and message sharing. Even while the usage of a smartphone has 

advantages for its user, there are disadvantages associated with the services supplied to 

the user. For example, storing confidential information on smartphones might attract the 

attacker to use dirty techniques to retrieve users' private information.  

Therefore, several existing studies have presented various methodologies and 

methods for detecting malware. However, an improvement can be made to Android 

malware detection to increase detection efficiency and accuracy. The improvement can 

be performed by using different method or technique where all of which comes with a 

different result, especially accuracy. 

 Besides, Android users continue to be deceived by false alarms on their 

smartphones. As an example, more than a million people have downloaded a fake 

Android app that was pretending to be WhatsApp. The app resembled WhatsApp in an 

obvious attempt to deceive users into believing they were downloading an update for the 

popular chat service[4]. This demonstrates that not every method and technique can 

provide complete security against malware for Android users. Therefore, an improvement 

should be made to increase the security of the Android smartphone. 
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1.3 Objectives 

The objective of this research are: 

i. To review the present issues related to the Android malware detection 

system. 

ii. To develop an Android malware detection system utilising Machine 

Learning. 

iii. To evaluate the accuracy of the Android malware detection system’s 

capabilities. 

 

1.4 Scope of project 

The scope of this research: 

i) Platform 

- This system only supports Android packages. 

ii) Development / Functionality 

- The system is only capable of detecting malware, not eliminating it 

from devices. 

- The detection mechanism is only applicable to Android-powered 

smartphones. 

iii) User 

- Android smartphones users solely. 
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1.5 Thesis organization 

 

Figure 1.1 Overall chapter 

Figure 1.1 shows the main chapters that will be elaborated including the introduction, 

literature review, and methodology. 

 Chapter 1, contains the introduction for the whole research and elaboration on the 

current issue. This includes the problem statement, objective, scope, and significance. 

 Chapter 2, contains a discussion regarding the literature review of existing 

research. The discussion explains a definition of malicious software, types of malware 

attacks, and the comparison of the solution of the present methodologies with earlier 

studies on the subject.  

 Chapter 3, demonstrate the discussion about the methodology used during this 

study. In this topic, the study discusses the data collection, data normalization and the 

software that has been used in this experiment. 

 Chapter 4, consists of the introduction of the chapter. Then, a details description 

of the dataset used in the research. Next, an explanation of each of the machine learning 

approach results. Lastly, evaluation of the resulting gain from all of the machine learning 

approach used in this research. 

 Finally, chapter 5 contains a discussion about the research objectives and the 

achievement of the study. It also discusses the research constraint and the improvement 

that can be made for future work. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter will provide a literature review that might aid comprehension of 

malware detection techniques and their characteristics. A description of how malware 

can be discovered will also be examined. Besides, there will also be a comprehensive 

comparison of previous research, each of which employed a different technique to detect 

malware. The comparison will be made to improve the current work. 

 

2.2 Malware 

Malicious software, often known as malware, is an infiltration programme meant 

to harm and destroy computer systems. Many types of malware can be found and each of 

them has the capability to steal user information, and abuse it. Each malware can be 

detected by observing its particular actions which are backdoors, rootkits, spyware, 

worm, and etc.  

In reality, malware can corrupt the operating system or any application in the 

devices by bypassing the device's access control. This will lead to unwanted actions from 

the device’s user such as accessing sensitive data, increasing battery consumption, and 

many more. Malware is also defined by its malicious actions against the system 

requirements which includes observing the end user activity without authorization. 
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2.3 Type of malware attack 

Various types of malware can damage Android mobile devices. One of the most 

dangerous malware is malware that infiltrates the end user's mobile devices via bogus 

software updates, fraudulent applications, and spam emails. This malware deceives the 

user into executing malware websites and applications. Users tend to be deceived by the 

malware because the malware has been designed to resemble an authentic website and 

user-friendly applications. 

However, protecting smartphones from malware attacks has become a significant 

hurdle for the attacker. The fact that attacker employed covert approaches by concealing 

the malware in the code to prevent detecting the malware and extend the malware through 

static analysis. In reality, every malware creator has a different objective which uses a 

different method to approach their target. Therefore, an exceptional method is a must to 

detect and prevent malware from spreading. Figure 2.1 shows the types of malware with 

the difference that is used by the attacker  

 

Malware Type Description 

Rootkits 

 Provide the hacker access to control over a target device. It 

is hard to detect because malware activities are executed 

while the user is not using their device. 

Spyware 
 Malware software that is used to disclose user private 

information through eavesdropping. 

Botnet 
 Able to infiltrate almost any device that is connected to the 

internet like a zombie. 

Backdoor 
 Neutralize normal authentication procedures in accessing 

the remote system to take control of the infected system. 

Trojan Horse  Malware conceals itself by pretending to be an ordinary 

application which attracts a user to execute the program. It 
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has the ability to control resources and attack the 

accessibility of the operating system with denial of service. 

Adware 
 Malware software pops up an advertisement to deceive 

users to install malicious software on their devices. 

Table 2.1 Type of malware 

 

2.4 Malware Detection Approaches 

 

Figure 2.1 Malware Detection Approach 

 

2.4.1 Specification-based Detection 

Specification-based detection is virtually identical to anomaly detection which 

identifies a high false alarm rate. Instead of using machine learning to detect malware, it 

depends on the manual evolution of standards that control legal system behaviour. 

Consequently, this strategy relies on the programme specifications that apply to the 

objective of critical security programme behaviour. This method involved monitoring 

programme execution and finding deviations from the specification, despite detecting the 

circumstances of a particular assault. In addition, it estimated the application or system 

needs as opposed to attempting to design an application or system without precision. 
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A benefit of this strategy is that malware may be detected rapidly in both familiar 

and unexpected situations. However, it takes more time to create a detailed specification. 

 

2.4.2 Signature-Based Detection 

This type of detection, also known as abuse detection, must maintain a signature-

based system and match the pattern to the database in order to detect malware. In other 

words, signature-based recognition also utilised the sample taken from different types of 

malware. This strategy is considerably more productive and efficient than others. Due to 

the fact that this signature was established by analysing the binary disassembly code of 

the infection, some antivirus programmes refer to this method. In addition, this 

disassembled code's characteristics were analysed and extracted. 

In addition, these recovered attributes were used to build the malware family's 

signature. Since anti-virus software developers are continually updating and changing 

their unknown code, an approach based on signatures can detect malware more precisely. 

However, there are still flaws that need to be investigated, rendering it incapable 

of identifying new or unknown viruses. This is because the document lacks a signature. 

Although it has a downside, it also has advantages. By deploying signature-based 

detection, malware can be precisely recognised while decreasing the number of resources 

required to detect malware and concentrating on signature-based attacks. 

 

2.4.3 Heuristic-Based Detection 

Heuristic detection, also known as anomaly-based detection, analyses the 

behaviour of both known and undiscovered malware. The behaviour parameter includes 

source and destination addresses, attachment types, and other statistically measurable 

information. There are two steps to this detection: the training phase and the detecting 

phase. During the training phase, the system's behaviour will be observed to assess the 

existence of an attack, whereas the goal of machine learning is to generate a profile of 

normal activity. On the other hand, the discrepancy between the detection phase of a usual 
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behaviour profile and the current behaviour will be classified as a potential assault. These 

components will be employed for behaviour detection: 

i. Data Collection 

- Use to gather both dynamic and static data. 

ii. Interpreter 

- The module for information accumulation will transform the raw 

information data into intermediate representations. 

iii. Matching Algorithm 

- The representation will be compared against the behaviour signature. 

 This method has the ability to detect new and unknown malware. Consequently, 

this method for identifying malware will focus on indicators of system behaviour. 

Moreover, this method demands an upgrade to the standard profile data describing 

statistics and system activities. Nonetheless, this strategy requires more disc space, RAM, 

and a high risk of false alarms. 

2.4.4 Comparison Malware Detection Approaches 

 In order to identify malware, numerous detection types have been developed and 

their functionality enhanced. In Table 2.2, the differences between specification-based, 

signature-based, and heuristic malware detection methods are elaborated. 

 

Malware Detection Advantages Disadvantage 

Specification-Based 

Any malware, whether 

known or unfamiliar, can be 

easily identified. 

Takes longer to 

develop a specific 

specification 

Signature-Based 

Malware can be identified 

precisely while reducing the 

number of resources 

necessary to detect malware 

Cannot detect 

unknown or new malware 

that lacks a signature. 
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and concentrating on 

signature-based attacks. 

Heuristic-Based 

Able to identify new and 

unidentified malware 

Needs an update to the 

describing data of statistics 

and system behaviour in 

normal profile. 

Table 2.2 Comparison of malware detection approaches 

 

 

2.5 Analysis Techniques 

There are two types of analytic techniques for identifying malware: static analysis 

and dynamic analysis. Malware can be analysed without execution using static analysis. 

In contrast, dynamic analysis involves the execution of malware prior to analysis. Both 

can be utilised to protect devices from malicious software (malware). 

2.5.1 Static Analysis 

 Code analysis is another name for static analysis. Static will analyse the 

programme by examining it. For instance, the malware's source code will be analysed to 

gain an understanding of its operation. This technique employs a dissembler tool, 

debugger, and source code analyser, such as Interactive Disassembler (IDA), to build an 

assembly language source code from machine-executable code, which is then translated 

into an installation code that humans can comprehend. This opcode will be extracted as 

a feature to statically assess the application behaviour to detect the malware. 

 

2.5.2 Dynamic Analysis 

 Behaviour analysis is another name for dynamic analysis. In this method, infected 

files are analysed in a simulated environment, such as the simulator and virtual machine, 

prior to identifying the file's general behaviour using SysAnalyzer, RegShot, and any 

other relevant tools. The file will then be detected upon execution in the real environment. 

During this execution, the system's interaction, behaviour, and machine output will also 

be observed. This strategy makes it easier to discover unknown viruses, but it requires a 
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great deal more work. This is because these techniques require extensive time to prepare 

the environment for malware analysis, such as sandboxes. 

 

2.5.3 Comparison of Analysis Techniques 

 

 In order to detect malware, static analysis and dynamic analysis both have their 

advantages and limitations. Table 2.3 illustrates the distinction between static and 

dynamic analysis. 

 

Type of Analysis Description 

Static Analysis - Capable of identifying a novel or unfamiliar threat or 

malware. 

- Capable of analysing polymorphic and obfuscated 

threats and malware. 

- High accuracy 

- More secure and fast 

Dynamic Analysis - Incapable of identifying a new or unfamiliar threat or 

malware. 

- Incapable of analysing polymorphic and obfuscated 

threats and malware. 

- Low accuracy 

- Less secure and slow 

 

Table 2.3 Comparison between static analysis and dynamic analysis 

 

 

 

2.6 Machine Learning 

 

 Machine learning is an application of artificial intelligence (AI) that gives systems 

the ability to automatically learn and enhance their experience without being explicitly 
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programmed. Machine learning focuses on the creation of data-accessible computer 

programmes. 

  

 The learning process begins with observations of data, such as direct experience 

or teaching, in order to search for patterns in data and make future decisions based on the 

examples supplied. There are several techniques for machine learning: 

 

Machine learning algorithms are often categorized as supervised or unsupervised 

algorithms. 

 

 Supervised learning is capable of predicting outcomes accurately by using its 

labelled dataset to train the algorithm[5]. It uses a training dataset from the dataset 

to train the models in order to produce expected outcomes. The training dataset 

consists of inputs and real outputs. The dataset will be used to train the model 

over time. After sufficient training, the algorithm is able to predict the expected 

result based on the new input. The algorithm is also able to identify the output 

with the expected or real output, which will find errors to modify the model to 

minimize the error.  

 Unsupervised learning is used to analyse and cluster unlabelled datasets[6]. This 

algorithm can identify hidden patterns or data clusters without the assistance of a 

human. It is one of the ideal solutions for exploratory data analysis, cross-selling 

strategies, customer segmentation, and image recognition because of its capacity 

to identify similarities and differences in information[6]. 

 Semi-supervised learning uses a sizable amount of unlabelled and a small amount 

of labelled data to train a predictive model. It works for a variety of problems, 

including clustering, association, and regression as well as classification[7]. This 

strategy can significantly increase the accuracy of learning systems. 

 Reinforcement learning is a technique for teaching a machine to learn based on 

rewarding desired actions and/or undesirable ones. A reinforcement learning 

agent can perceive and understand its surrounding, act, and learn from 

mistakes[8]. 
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 Machine learning can be used for analysing a massive amount of data. Even 

though it produces more accurate results in identifying dangerous risks, it required longer 

time and resources to train the model. The power of processing a massive amount of data 

by using machine learning may be increased by integrating it with cognitive technologies 

and AI. 

 

2.7 Related Review on Related Research 

Machine learning has been used in much previous research in detecting malware 

on android. Each of the research has its method on how to solve the problem by using 

machine learning. However, every method has its limitations that could affect the 

accuracy of android malware detection. In this section, three existing research will be 

explained regarding the method used to detect malware on android. 

 

2.7.1 Exploring Deep Reinforcement Learning for Android Malware Detection 

 

In this research, the main purpose is to deploy reinforcement learning for cyber 

security issues and compare it to the existing work done using Deep Learning[9]. The 

number of the defected android device has increased compared to other OS platforms due 

to the third-party policy of Android. With all of the available malware detection 

techniques created by the past researcher, deep learning also has been used for detecting 

malware on Android. The dataset used in this research is the Drebin Dataset which is 

provided by the Technische Universitat Braunschweig. The dataset includes over 215 

attributes and its feature derived. The dataset is extracted from 15,036 applications which 

consist of 5,560 malware files and 9,476 benign files. It is collected from August 2010 to 

October 2012. The training dataset that will be used in training the model is 75% of the 

total sample which is 11,277. The testing dataset is over 25% which is 3,759 samples for 

testing the model. 
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The type of machine learning used is reinforcement learning which is defined by 

a tuple of state, reward, and action. The algorithm used is Q learning which will decide 

the best solution of action based on the current state of the agent. The classifier used in 

this research is Random Forest Classifier and Extra Trees Classifier. By using Q-learning 

with Random Forest, the accuracy produced is 87.652% with a learning rate of 0.00039. 

Compared to Random Forest, Extra Trees Classifiers have produced more accuracy with 

94.30% with the same learning rate of 0.00039. 

In conclusion, Q-learning with Extra Trees Classifier produce the best accuracy 

of 94.30 using the sample dataset from Debrin Dataset compared to Random Forest. It is 

proof that by using reinforcement learning with the Q-learning algorithm, it can segregate 

the sample as either benign or malware. However, further exploration can be done toward 

the modelling for better accuracy.  

 

2.7.2 Malware Detection: A framework for Reverse Engineered Android 

Applications through Machine Learning Algorithms 

 

In this research, the author uses machine learning and reverse-engineered 

technique to detect android malware[10]. The major purpose of this research is to identify 

the most helpful criteria for detecting malware on Android. The researcher provides a 

novel subset of features for the static detection of Android malware. The subset consists 

of seven additional features from around 56000 features. The result obtained from 

detecting android malware is over 96.4% in accuracy with 0.3% false positive. To 

increase the prediction rate, the researcher implemented a Boosting ensemble learning 

approach with Decision Tree based on binary classification. The model is trained by using 

the latest sample of android malware collected in recent years. The algorithms used in 

this research are Naïve Bayes, Decision Tree, K-Neighbor, Gaussian NB, AdaBoost, 

Support Vector Machine, and Random forest. The best accuracy of all the machine 

learning algorithms is AdaBoost with an accuracy of 96.24%. The model does not achieve 

the highest peak in accuracy or predictive but it contributes by providing enhanced feature 

sets with the latest API level applications datasets. 
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In conclusion, the researcher has improved a framework that could detect Android 

malware. This proves that reverse engineering with the proposed method is able to detect 

the malware with an accuracy of 96.24% which is the highest accuracy in this research. 

However, the suggested approach has a limitation in terms of a lack of sustainability 

concerns and static analysis. The model resilience will be reconsidered in terms of 

enhanced and dynamic features. 

 

2.7.3 Android Malware Detection Using Machine Learning with Feature 

Selection Based on the Genetic Algorithm 

 

This research discusses the efficiency of applying machine learning feature 

selection with a genetic algorithm[11]. In the wider category of evolutionary algorithms, 

a genetic algorithm is a metaheuristic that draws inspiration from the process of natural 

selection. The algorithm cannot guarantee the best solution because the solution does not 

progress which results in the solution being poorly optimized. However, it could help 

find optimal combinations and find a solution that is hard to accomplish. The algorithms 

that are used in this research are Decision Tree, Random Forest, Decision Table, Naïve 

Bayes, MLP, SVM, Logistic Regression, AdaBoost, and K-NN. Each of the algorithms 

will be measured by using a confusion matrix. Based on the final result, the best accuracy 

is using SVM with an accuracy of 99.20%. The performance of the Naïve Bayes 

algorithm has the lowest accuracy compared to other algorithms which is 71.00%.  

In conclusion, genetic algorithm-based feature selection is useful compared to 

common feature selection. It is able to drastically reduce the model’s building time over 

non-selection. Even though this research needs to be improved, it is confirmed that 

genetic algorithms can help detect Android malware using machine learning.  

Table 2.4 show the comparison of the three existing research in term of analysis 

and accuracy. 
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Research 1 2 3 

Technique 

Deep 

Reinforcement 

Learning 

Reverse 

Engineered 

Genetic 

Algorithm 

Analysis 

A training 

approach that 

emphasises 

rewarding good 

actions while 

penalising 

undesirable ones 

Codes from 

decompiled mobile 

applications are 

automatically 

analysed. 

A 

metaheuristic that 

draws inspiration 

from the process 

of natural 

selection. 

Accuracy 94.30% 96.24% 99.20% 

Table 2.4 Comparison between previous research 1, 2, and 3 

 

2.7.4 Improvement from the existing system 

The existing studies of malware detection systems utilised a dataset, features, 

precision, etc. to determine whether malware exists in the system or not. Despite this, 

none of the existing machine learning systems can prevent malware from entering a 

system. Therefore, the purpose of this research is to enhance an existing system by 

granting permission to dangerous code-free applications. In contrast, malware-containing 

software would be denied system access. By utilising both static and dynamic analysis, 

the system can detect malware. 
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2.8 Conclusion 

This chapter is one of the essential components of this research, as can be 

concluded. This chapter compares previous solutions proposed by another researcher 

with Machine Learning, the current solution. In addition, this chapter describes the 

various approaches that assisted the researcher in achieving their proposed malware 

detection technique. So many techniques have been proposed over the past few decades. 

However, those strategies needed refining in order to have a better results in the future. 

Therefore, chapter 3 proposes the current method to assist Android users in identifying 

malware on their devices. 
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CHAPTER 3 

 

 

METHODOLOGY 

3.1 Introduction 

In the previous chapter, the explanation regarding malware has been explored 

including their restriction capabilities. Three existing research related to android malware 

detection also has been described briefly in chapter 2. This chapter will describe the 

proposed technique and approach that will be implemented during this research including 

the methodology of this research. 

 

3.2 Research-Based 

Figure 3.1 depicts the four key steps of a research-based approach, which include 

literature review, development of new architecture, design, and implementation, as well 

as testing and assessment. Research-based is appropriate to be used as the methodology 

in this research since the phase can be continuously examined to get accurate results. This 

research-based system development life cycle differs from those previously proposed. 

This is due to the fact that this strategy will emphasise handling and observing every 

detail of this topic's investigation. 

There are 4 phases involved in the research-based approach. The first phase is 

planning and reviewing the literature. The previous research based on the research topic 

will be reviewed and analysed. After that, the research requirement will be defined 

including the problem statement, scope, and objective of the research. The second phase 

is developing the architecture. During this phase, a detailed analysis of previous research 

will be considered to observe the appropriate algorithm and method that will be used in 

this research. After the development of the architecture is completed, the design and 



19 

implementation of this research will be conducted. There are two requirements that will 

be needed for this research which are software and hardware. After all the requirement is 

prepared and ready to be used, the implementation of the design and detection model will 

be included. After the implementation is completely executed, the modal need to be tested 

and evaluated to observe the research constraint and improvement for further research. 

 

 

Figure 3.1 Main Phase of Research-Based 

 

This research is modified because it is possible to revert to prior phases with little 

losses in order to incorporate the enhancements in the new research. Even more so, 

research-based methods permit occasional modifications to solve problems during the 

current phase. In addition, research-based methodologies allow researchers to quickly 

make adjustments to the requirement of the research project. 
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3.3 Planning and Reviewing Literature 

The key phases of this research-based are planning and a relevant literature 

review. Before examining current studies, the relevant sort of research question is 

determined through conceptualization. When a research topic is selected, relevant 

publications, studies, and journals are compiled for study. Existing studies' analysis 

facilitates comprehension of the research subject. These allow for the clarification of the 

problem statement, the purpose, and the scope of this investigation. Using the suggested 

n-gram opcode, associated information on malicious code detection and their current 

code detection must be found for this research. 

This research's sources consist of prior student references and Internet 

publications or articles. In addition, the current research is scrutinised and screened for 

relevance to the study question. Additionally, the collected material should be pertinent 

to research and used in the advancement of research. 

The objective of research on various approaches and techniques is to determine 

which strategy and methodology are most suitable for resolving the problems that have 

occurred on Android devices, particularly those linked to malware. Since security is the 

primary concern for Android devices, this research must concentrate on malware 

detection for Android smartphones. Existing research studies on malware detection are 

evaluated critically and categorised according to the location where the malicious code 

structure was developed. Each proposed method of malware detection is analysed to 

determine its limits and contributions. Therefore, this type of information is essential for 

determining the testing approach employed by the researchers. Therefore, the constraints 

of previous research will be avoided in this research. 

3.4 Developing the Architecture 

On the basis of a previously examined strategy, it has been determined that 

Machine Learning will be employed to build malware detection. Figure 3.2 depicts the 

architecture development of the malware detection system. 
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Figure 3.2 Malware Detection System Architecture 

 

3.4.1 Procedure Description 

The malware detection system architecture was used in developing a machine 

learning technique that can train a model by using dataset samples to learn the behaviour 

of benign and malware applications. This architecture is able to identify the new 

application status whether it is benign or malware. Furthermore, the architecture is a basic 

step in implementing machine learning algorithms and it cannot skip even a step. If one 

of the steps is skipped, the algorithm cannot be executed and can cause an error. 

 The data collection begins by gathering permissions which include the feature 

with the value of benign and malware. The data processing involved in this process is 

decompiling an apk file to extract the permissions. The data cleansing is where the dataset 

is observed which involves exploratory data analysis including descriptive analytics and 

handling missing values. Next, for the data labelling, all the permission gained from the 

extraction will be stored in an appropriate format and saved as either attribute-relation 

file format (x.arff) file or comma-separated value (CSV) before using them in Jupiter 

notebook.  

Next, from the dataset that has been processed, a feature selection process will be 

conducted to find the best feature for model training. The purpose of this feature 

optimization technique is to differentiate the non-bio-inspired with a bio-inspired 

algorithm. 

Furthermore, the data collection and feature selection process is the most crucial 

part of implementing a machine learning algorithm. The reason is that preparing a usable 



22 

dataset that is suitable for the model to be trained is difficult and sensitive which could 

affect the machine learning algorithm result. Then, this process will notify the database. 

From this moment, the filtering data will rely on the permission and its package names 

to ensure that the database is free of duplicate features and applications. Hence, the 

filtered features will be sent to the machine learning process for the optimization features. 

 

3.4.2 Data Collection Phase 

In the data collection phase, the process of data collection about benign and 

malware application datasets will be discussed. The sample dataset used in this research 

is drawn from the Kaggle website which was uploaded by Shashwat Timari[12]. The 

dataset consists of a feature vector of 215 attributes extracted from 15,036. There are 

5,560 malware apps from the Drebin project and 9,476 benign apps. The table below 

shows the number of malware and benign application from the dataset. 

Dataset Source Total Use in Experiment 

Benign Benign App 9476 

Malware Drebin 5560 

Total 15036 

Table 3.1 Dataset Summary 

3.4.3 Decompiling the apk file 

Firstly, the dataset of benign and malware applications is collected with a total of 

15,036 samples with 9476 benign applications and 5560 malware applications. The 

malware application was collected from the Drebin dataset. The figure below shows the 

process of data collection. 
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Figure 3.3 Data collection 

 The AdroidManifest.xml file is used to retrieve data required for this research 

such as android permission and activities. All of the extracted permission will be labelled 

before storing them in the database as an x.arff file or CSV file. All of the permission 

value stored is in binary number which is 0 or 1 except for class which stored either 

B(Benign) or S(Malware). Furthermore, feature optimization helps to find the best 

feature(permission) to be used. The table below shows the best permission from benign 

and malware applications. 

Permission Frequency 

INTERNET 13111 

READ_PHONE_STATE 9509 

GET_ACCOUNTS 4492 

SEND_SMS 3558 

RECEIVE_SMS 2814 

READ_SMS 2808 

CAMERA 2054 

WRITE_SMS 1702 

MANAGE_ACCOUNTS 1565 
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USE_CREDENTIALS 1520 

READ_HISTORY_BOOKMARKS 1397 

RECORD_AUDIO 1357 

READ_SYNC_SETTINGS 1252 

RESTART_PACKAGES 1199 

WRITE_HISTORY_BOOKMARKS 1193 

WRITE_SYNC_SETTINGS 1159 

INSTALL_PACKAGES 1052 

AUTHENTICATE_ACCOUNTS 968 

ACCESS_LOCATION_EXTRA_COMMANDS 779 

WRITE_APN_SETTINGS 714 

Table 3.2 Top twenty permissions from benign and malware applications 

 Based on the table above, there are three major permissions that have been 

requested in either benign or malware applications which are INTERNET, 

READ_PHONE_STATE, and GET_ACCOUNTS. INTERNET is the most frequent 

permission request which is 13111 requests. The other permissions also have a high value 

of frequency which need to be concerned. This shows that this is the android trend based 

on permission results nowadays. 

3.4.4 Machine Learning Classifier 

Machine learning is a subpart of Artificial Intelligence(AI) which was used in 

prediction, classification, and automation. It can be learned without the need of using 

explicit programming. It can predict future results and make better decisions when 

receiving new data. The process is called learning where the system will learn about the 

dataset and find the pattern for each result. The process and learning method are different 

for every classifier type which also give different result such as accuracy. The technique 

is widely used to classify samples in the intrusion detection system either benign or 
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malware. In this research, a supervised learning approach will be applied because the 

dataset has labels (malware and benign). Other than that, supervised learning is able to 

produce satisfying results via error reduction. In this research, four different classifiers 

will be used to observe the comparison of results between the classifiers. The classifiers 

are Random Forest (RF), K-Nearest Neighbour(KNN), Multi-Layer Perceptron(MLP), 

and Support Vector Machine(SVM). 

Random Forest (RF): Popular collective learning technique for supervised 

classification and regression. This technique works by structuring a random set of 

decision tree and producing the class based on mean prediction (regression) or class 

category (classification)[13].    

K-Nearest neighbour(KNN): In KNN, it depends on the nearest each data point. 

Each of the data points plays its role when determining the classes of new input data. The 

data will calculate the distance between the existing data point and the new data point. 

The nearest distance will be chosen. It can conclude that the new data point will be in the 

same classes as the chosen data point classes. 

MLP: Multi-layer perceptron is a model of an artificial neural network. Multiple 

node layers made up the MLP, which interacted through weighted connections. 

SVM: In Support Vector Machine, it has a data point, hyperplane, and margin. 

The data point is the point where each data will be placed at. The hyperplane is a line that 

separates a set of an object having different classes. A margin is a gap between the line 

and the data point. The distance between the line and the data point will be calculated. A 

good margin is a margin that has a larger distance between the line and the data point. To 

predict the value, all the data point located under the line is considered one category while 

the upper is considered another category[14]. 

3.4.5 Machine Learning Tool 

Many machine learning tools can be used to execute the research. The purpose of 

machine learning tools is to run the analysis model development that produces data 

analysis. By training the model, it helps the system to learn the pattern or make a 

prediction by using a past dataset or present dataset. By implementing the machine 

learning tools, it provides the user with a feature that could help speed up the analytical 
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work. Other than that, it is also able to execute complex mathematical calculations to 

solve a problem without requiring expertise in machine learning. The machine learning 

tool that will be used in this research is Anaconda. 

3.4.5.1 Anaconda 

Anaconda is a data science platform that could run python and R programming 

languages and it is open-source software. At the current moment, there are around 30 

million users from 236 countries and regions that use anaconda to perform complex data 

analysis[15]. Anaconda support many application and feature including cmd.exe prompt, 

Jupiter notebook, JupiterLab, VS Code, and etc. In this research, Jupiter notebook will 

be used to write the code and execute the model. By developing the system on Jupiter 

notebook, the researcher can add and edit the system anytime. Since it is a notebook, the 

outcome from each note can be displayed separately. This will make it easier for the 

researcher to observe the result for each note. It also can print out a report of the notebook 

in pdf format. The figure below displays the Anaconda Navigator desktop graphical user 

interface(GUI).  

 

Figure 3.4 Anaconda Navigator 

Anaconda Navigator consists of 4 main navigator buttons: 

a. Home: display a list of default applications with the main application. All of the 

applications can be opened via the home interface without executing the program 
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manually. In this research, Jupiter notebook will be used to execute the machine 

learning algorithm. 

b. Environment: contain a list of environments that will be used to execute the 

anaconda navigator. The user can create, import, clone, backup, or remove the 

environment.  

c. Learning: Anaconda Navigator provides a learning platform for the user to learn 

about different topics such as python and Jupiter documentation. 

d. Community: the user can communicate or engage in a community that has been 

prepared in the platform. The community is divided into two sections which are 

forum and social. 

 

 

Figure 3.5 Jupiter notebook application 

 

 The figure above shows the example of the Jupiter notebook interface that was 

open in google chrome. The user must have knowledge of python language to use the 

application since the outcome are displayed through code. The user will need to import a 

library such as the sklearn library to execute each classifier in this application. This 

application is a good start for those who want to learn more about data science. 

3.5 Design and Implementation 

After the research framework has been developed, the framework needs to be 

approved. To test the accuracy of the malware detection, a draft is made before executing 

the implementation of the system. The figure below shows the flowchart of the procedure 
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to test the concept before moving forward to the malware detection system for Android 

smartphones. 

There are 5 components of the design model which are exploratory data, defining 

a database, creating a system, testing, and evaluating the result. Each of the components 

will be briefly discussed in the next subtopic. 

 

Figure 3.6 The flowchart for the malware detection method testing improvement 

 The final phase in this research is implementation. The implementation of the 

proposed solution will use the design model as a guideline during this phase. Then, 

software preparation such as Anaconda is an important step that needs to be considered 

during this research. 

 Next, the dataset that consists of an Android permission dataset will be explored 

in the system. Then, the research flow will follow according to the procedure which has 

been done during the designing phase.  
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3.6 Hardware and Software 

In this research, there are hardware and software needed in order to train and test 

the model. The hardware and software requirements needed for the training and testing 

phase need to be specified in the early stages to carry out this research. All of the 

requirements needed will be used throughout this research in the next chapter.  

3.6.1 Hardware Requirement 

Hardware Description 

Processor: Intel® Core(TM) i5-

7200U @ 2.50 GHz 2.70 GHz 

RAM: 8.00 GB 

System type: x64-based processor 

Laptop specification that was used 

during documentation, testing, gathering 

references, and implementation for the 

entire research. 

Table 3.3 Hardware requirement 

3.6.2 Software Specification 

Software Description 

Window 10 An operating system of the device used. 

Anaconda To execute machine learning algorithm 

and display results. 

Microsoft Words 2016 To document the whole research 

documentation. 

Microsoft Excel 2016 To create a Gantt chart and view the 

dataset. 

Google Chrome To search and download material. 
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Mendeley To make citations for the research 

document. 

Table 3.4 Software requirement 

3.7 Testing and Evaluation 

The final phase in this research is testing and evaluation. The system will be tested 

and the algorithm result needs to be evaluated. By conducting the testing and evaluation, 

it could help detect the best result and determine the limits of the system which can avoid 

the previous existing research constraint. The main objective of this research is to prove 

that the proposed solution is the best malware detection system with accurate results is 

claimed in this research. Hence, this phase is to identify the constraint and defects of this 

research that could be used to make an improvement to get the desired result. 

Furthermore, a thorough analysis will be made based on the experiment’s results. Then, 

the research's hypothesis will next be evaluated to see if it has been proven or not. 

Lastly, a clear explanation describing the entire process of this research is 

elaborated. The result is evaluated and recorded to view the achievement of this research. 

A full explanation regarding the implementation phase will be discussed in the next 

chapter. 

 

3.8 Comparison results from each classifiers 

By using the dataset in this research, the classifier can be executed and each of 

them produce different results. Table below shows that Random Forest have the highest 

accuracy compared to other classifiers. This shows that by using Random Forest 

classifier, the malware detection system can detect the malware more efficiently. For 

MLP and SVM does not have accuracy at this moment. 

Classifiers Accuracy 

Random Forest 90.46% 

K-Nearest Neighbour 90.31% 
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Multi-layer Perceptron 90.30% 

Support Vector Machine 90.06% 

Table 3.5 Comparison accuracy between classifiers 

3.9 Conclusion 

This chapter consists of preparation that the researcher will be used to conduct 

this research such as algorithm, research framework, and etc. The hardware and software 

requirements needed also been mentioned to execute the experiment and to gain the 

result. Next, a list of classifiers and methods that will be used are briefly explained 

because each of the classifiers has different usage. Then, the explanation of the process 

that will be executed is described such as testing and evaluation. In the next chapter, a 

detailed explanation regarding the implementation, testing, and evaluation will be further 

discussed. 
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CHAPTER 4 

 

 

IMPLEMENTATION, RESULT AND DISCUSSION 

4.1 Introduction 

This chapter will provide the implementation from the methodology included in 

chapter 3. The implementation stage is very important and crucial during the development 

as it could affect the results. The result will be analysis and visualize to conclude the 

outcome from the process. Through the implementation, a discussion regarding the 

malware detection results will be made. 

 

4.2 Dataset Description 

It is important to decide which dataset that will be used in the implementation 

because it could affect the accuracy of the results. Exploratory data analysis is the early 

process in the implementation. The collected dataset will be explored and analysed to 

know the details explanation and understanding about the malware and benign activities. 

The dataset will be separated into training and testing data to see the result details and 

prediction.    

The dataset titled “Android Malware Dataset for Machine Learning” was 

provided by Shashwat Timari at Kaggle website[12]. The dataset used in this research 

consists of 15,036 instances of 5,560 malware applications and 9,476 benign applications. 

The malware application in the dataset was collected from Drebin dataset. The label in 

the dataset named as “class” to identify whether the instance is benign application or 

malware application. The class value stored in short case alphabet which are “s” for 

malware and “b” for benign. The dataset consists of 3 types of features which are 

Manifest Permission (53%), API call signature (33%) and Others (14%). Most of the 
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feature used in this research is based on Manifest Permission feature which is declaration 

of the specific permission that an app requires to access the system resources or data. 

  

4.3 Machine Learning Approach 

By using machine learning approach, the machine is surely able to detect malware 

on an Android smartphone through Android permission features approach. This approach 

takes shorter training and testing time in detecting malware. 

The dataset consists of many feature that can be used to detect the malware. 

However, not all of them are significant to detect malware. To find the most significant 

feature for malware detection, features selection process is included. Feature selection 

helps in identifying the most important feature that have the most impact on the label and 

removing irrelevant or redundant features that may not contribute much to the model 

performance. It also helps to reduce the complexity of the model and reducing time taken 

and cost of data acquisition, preparation and analysis. Table 4.1 shows list of features 

used in this research. 

 

Permission Description 

INTERNET 
Allow an application to access to the 

internet connection. 

READ_PHONE_STATE 
Allow an application to have access to the 

phone state of the device. 

GET_ACCOUNTS Allow an application to access  

SEND_SMS 
Allow an application to have access in 

sending SMS 

RECEIVE_SMS Allow an application to have access in 

receiving SMS 
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READ_SMS Allow an application to have access in 

reading SMS 

CAMERA Allow an application to have access to 

camera 

WRITE_SMS Allow an application to have access in 

writing SMS 

MANAGE_ACCOUNTS Allow an application to have access in 

managing user accounts on the device. 

USER_CREDENTIALS Allow an application to have access the 

user’s credentials 

READ_HISTORY_BOOKMARKS Allow an application to have access in 

reading history bookmarks 

RECORD_AUDIO Allow an application to have access in 

recording audio 

READ_SYNC_SETTINGS Allow an application to have access in 

reading sync settings 

RESTART_PACKAGES Allow an application to have access in 

restarting packages 

WRITE_HISTORY_BOOKMARKS Allow an application to have access in 

writing history bookmarks 

WRITE_SYNC_SETTINGS Allow an application to have access in 

writing sync settings 

INSTALL_PACKAGES Allow an application to have access in 

installing packages 

AUTHENTICATE_ACCOUNTS Allow an application to have access in 

authenticating accounts 

ACCESS_LOCATION_EXTRA_COMMANDS Allow an application to have access in 

location extra commands 
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WRITE_APN_SETTINGS Allow an application to have access in 

writing APN settings 

Table 4.1 List of permission features 

 

4.4 Evaluation and results 

The results show below are the outcome that obtained from five machine learning 

classifiers which are Random Forest, K-Nearest neighbour, Multi-layer perceptron, and 

Support Vector Machine. In this research, the result consists of five parameters that will 

be used to compare and analysis between each classifier. The parameters are accuracy, 

FP rate, precision, recall, and f-measure. Table 4.2 shows the outcome from testing set 

for the four selected classifiers. 

 

Classifiers Accuracy FP rate Precision Recall F-

measure 

Random 

Forest  

90.46 1.48 96.84 76.89 85.72 

K-Nearest 

neighbor (KNN) 

90.31 1.58 96.62 76.65 85.48 

Multi-layer 

perceptron 

(MLP) 

90.30 1.66 96.48 76.83 85.54 

Support 

Vector Machine 

90.06 1.71 96.01 75.15 84.31 

Table 4.2 Performance from each classifiers 

The results from figure 4.2 shows that Random Forest has achieve the highest 

accuracy which is 90.42% compare to KNN which only 90.31%. From the comparison 

between classifier, Random Forest classifier are able to detect malware more effective 

compare to other classifier. Feature selection also contribute greatly in determining the 
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effectiveness of the Android malware detection. Based on the results, the precision rate 

affects the classifier in producing relevant and accurate result. 

 

4.4.1 Confusion Matrix 

A confusion matrix is a table that is used to evaluate the performance of a machine 

learning model by comparing the predicted values with the actual values. It is also known 

as an error matrix. The table below shows possible classes of prediction between benign 

and malware based on testing set. Table 4.3 shows the performance for each classifiers. 

 

Classifier Actual Prediction 

Benign Malware 

Random Forest Benign 2789 42 

Malware 388 1291 

K-Nearest 

Neighbour (KNN) 

Benign 2786 45 

Malware 392 1287 

Multi-layer 

Perceptron (MLP) 

Benign 2594 44 

Malware 364 1207 

Support Vector 

Machine 

Benign 2858 50 

Malware 398 1204 

Table 4.3 Confusion Matrix for each classifier 

The table above shows that Random Forest prediction in identify malware and 

benign are better compare to other classifiers. The Random Forest produces correct 

results by predicting the malware with 128. In term of incorrect predicted, Random Forest 

predict the most minimal value for incorrect benign which is 42 and MLP predict the 
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most minimal value for incorrect malware which is 364. Based on the observation, 

Random Forest classifiers able to predict malware more accurate compare to other 

classifiers. 

4.4.2 Receiver and operating characteristics curve (ROC) 

 The research classified processes as either malware or benign based on the 

Android manifest features. In addition to using performance metrics. Receiver Operating 

Characteristics (ROC) curve is calculated for each machine learning classifier. In this 

analysis, the True Positive Rate (TPR) is consider as the detection rate for correctly 

predicting malware processes, while the False Positive Rate (FPR) was selected as the 

detection rate for incorrectly predicting normal processes as malware.  

 

Figure 4.1 ROC cure for Random Forest 
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Figure 4.2 ROC curve for KNN 

 

Figure 4.3 ROC curve for MLP 
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Figure 4.4 ROC curve for SVM 

 The x-axis in figure 4.1, 4.2, 4.3, and 4.4 represents the rate of error detection, 

while the y-axis represents the detection rate. Comparing the ROC curves directly is 

challenging due to the similar appearance when examined under the same conditions. To 

address this, the area under the curve (AUC) will be used to measure the detection 

accuracy. The AUC of 1 indicates perfect prediction, while AUC of 0.5 indicates poor 

prediction. Table 4.4 present the performance results based on AUC measurements. 

Classifier AUC Prediction 

Random Forest 0.96 Perfect Prediction 

K-Nearest Neighbor 0.94 Perfect Prediction 

Multi-Layer Perceptron 0.96 Perfect Prediction 

Support Vector Machine 0.95 Perfect Prediction 

Table 4.4 AUC result 
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CHAPTER 5 

 

 

CONCLUSION 

5.1 Introduction 

 In this day and age, Android smartphone have become a useful device that 

have changed human life style. With the increasing of smartphone users, many 

applications have been developed that help utilising the smartphone usage. There is 

various type of application that have been created for its Android user such as 

educational, games, social networking, and shopping applications. Some application need 

the user personal information to utilise the application feature smoothly. For example, a 

shopping application need the user address and phone number to send parcel and contact 

the user for any inquiry. Downloading an application on Android smartphone have 

become easier nowadays as it can be downloaded anytime and anywhere as long as the 

smartphone connect to the internet. Internet have become an important service because 

most of the applications require internet connection. With the internet connection, a 

smartphone has become the best medium for communication and data sharing through 

application. In spite of the benefits from using the applications, it also has the 

disadvantages in term of security and integrity. Most people did not understand the 

importance of security and integrity of the smartphone and the harm that could occur to 

them. 

This research provides the understanding of malware application and malware 

detection by using machine learning. The dataset used in this research consist of android 

manifest permission and feature selection approach has been performed to list out the 

most relevant permissions. The feature selection process has decrease the size of dataset 

and the number of permission used. The machine learning classifiers that involve in this 

research are Random Forest, Multi-Layer Perceptron, K-Nearest Neighbor, and Support 

Vector Machines. The parameters are taken into consideration to detect malware 

application effectively. 
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5.2 Research Objectives Revisit 

The purpose of this research is to improve a malware detection system by using 

machine learning. There are three research objectives of this research that was listed in 

chapter 1. 

The first objective is to review the present issues related to the Android malware 

detection system. This objective was achieved at chapter 2 where three research thesis 

that publish in online scholarly journals was carefully reviewed and compared. In 

addition, chapter 2 consist of information regarding malware detection system and the 

classification of malware detection and machine learning approach. 

The second objective is to develop an Android malware detection system utilising 

Machine Learning. The objective was achieved at chapter 3 and 4 which involve in the 

model implementation and result. The evaluation regarding Android malware detection 

system was evaluated through Jupyter Notebook Anaconda software. All the testing 

executed will produce five result that will be used to evaluate the model: accuracy, False 

Positive Rate (FPR), precision, recall, and f-measure. 

The third objective is to evaluate the accuracy of the Android malware detection 

system’s capabilities. This objective was achieved in chapter 4 where all the model result 

has been written and the performance was evaluated. Based on the model result, Random 

Forest have the highest percentage of accuracy in detecting Android malware. 

 

5.3 Achievement of the study 

This research started by observing the evolution of machine learning system 

through literature review. The past thesis reviewed the detection of malware application 

issues and feature selection. Four machine learning classifier have executed and tested 

while the result had been evaluated. The result from each classifier was evaluated which 

fulfil the objectives of this research.  
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5.3.1 A detection model for malware 

This research has developed a model that can detect malware application based 

on Android permission by means of a dynamic analysis. An approach of machine learning 

has been used as it is a better adaptive detection model. All of the model are able to detect 

malware on android very well based using the given dataset.  

 

5.3.2 Issues in Android malware detection studies 

In chapter 2, malware detection type and its relevance in malware detection was 

presented. There were three past research thesis that was used to compare and review. By 

drawing out each of the past research thesis strengths and weaknesses, a great 

understanding and analysis could be performed. To improve the effectiveness of the 

malware detection system, an observation has been carried out to identify the best 

classifier and dataset that will be used as the limitation of the past thesis is known. An 

addition to it, relevant features could be listed to increase the efficiency of the detection 

system. 

 

5.3.3 Issues in Android malware permission selection 

This research shows that feature selection is very important in improving 

detection performance and minimizing its complexity. The selected feature will affect the 

model result as the feature importance is not the same for every feature in the dataset. In 

addition, the number of selected feature will affect the accuracy of the model and not all 

of the feature need to be involved in the execution. 

 

5.4 Research Constraints 

It is confirmed that the research satisfactorily achieved its aim and objectives from 

the discussion in the previous chapter. In spite of the achievement, there are several 

number of constraints and limitation found in the research which will be mentioned for 

the future reference.  
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5.4.1 Sample Size 

The sample size used in this research is 15,036. It is difficult to identify the 

significant relationships of the data. A large sample size is required in this research as it 

will impact the result and to ensure a representative distribution of the populations. A 

small number of data tend to cause imbalanced data and model over fitting or under fitting 

due to the small data scale, and too high or low feature dimensions[16].    

 

5.4.2 Time 

The time given to complete the whole research including investigating research 

problem, exploratory data analysis, executing machine learning model, and manage 

changes or stability are limited with the due date of the given task. 

 

5.5 Future works 

There are three recommendations for future work that could be made for further 

improvement. The following future work outside the scope of this research are listed as 

follows: 

 

5.5.1 Enhance false alarm rate 

False alarm rate involves in any of the machine learning model. It will occur when 

the model incorrectly identifies a sample class. This means that the model incorrectly 

predicted a sample from malware class as belong to the benign class. It will affect the 

accuracy of the malware detection which can cause huge impact in term of result. 

Therefore, a reliable and effective technique to enhance the false alarm rate is needed to 

improve the model’s ability to minimize false alarms and increase its reliability and 

usefulness. 
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5.5.2 Selection of relevant features 

Complex dataset is difficult to handle especially in feature selection process to 

improve the model detection performances. It requires further analysis to identify the 

correlation between benign and malware applications. By performing further analysis, 

this will reduce false which will increase the detection accuracy.  

5.5.3 Deep data analysis and result evaluation 

This research can perform deep data analysis and result evaluation. A deep data 

analysis would be able to provide a clear information about the dataset description. It can 

display the faulty or any anomaly in the dataset before performing data cleaning. In 

addition, the model should include other result that could contribute to the result 

evaluation such as time taken for the module to finish execute. The time taken can be 

used in comparing the time taken for each of the classifier to determine the best classifier 

to detect malware.  
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APPENDIX B 
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