
MACHINE LEARNING MALWARE

DETECTION FOR ANDROID

AMIR MUHAMMAD HAFIZ BIN OTHMAN

BACHELOR OF COMPUTER SCIENCE

(SOFTWARE ENGINEERING)

WITH HONOURS

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : AMIR MUHAMMAD HAFIZ BIN OTHMAN

Date of Birth

Title : MACHINE LEARNING MALWARE DETECTION FOR

 ANDROID

Academic Session : SEMESTER II 2022/2023

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

_ New IC/Passport

Number Date: 12/6/2023

 (Supervisor’s Signature)

Name of Supervisor

Date: 10/7/23

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,

Perpustakaan Universiti Malaysia Pahang,

Universiti Malaysia Pahang,

Lebuhraya Tun Razak,

26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three

(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan

Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name AMIR MUHAMMAD HAFIZ BIN OTHMAN

Thesis Title MACHINE LEARNING MALWARE DETECTION FOR ANDROID

Reasons (i)

(ii)

(iii)

SUPERVISOR’S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our* opinion, this

thesis/project* is adequate in terms of scope and quality for the award of the degree of *Doctor of

Philosophy/ Master of Engineering/ Master of Science in …………………………..

(Supervisor’s Signature)

Full Name :

Position :

Date :

(Co-supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been previously or concurrently

submitted for any other degree at Universiti Malaysia Pahang or any other institutions.

 (Student’s Signature)

Full Name : AMIR MUHAMMAD HAFIZ BIN OTHMAN

ID Number : CB20152

Date : 12/6/2023

MACHINE LEARNING MALWARE DETECTION FOR ANDROID

AMIR MUHAMMAD HAFIZ BIN OTHMAN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy/Master of Science/Master of Engineering

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

OCTOBER 2022

ii

ACKNOWLEDGEMENTS

 In accomplishing this research completely, many people have given their best and

support day and night. I want to thank those who have been supporting me in finishing

this research.

 Firstly, I would like to give my greatest thank to Allah for giving me a healthy

body and mind to complete this research. Next, I would like to thank my supervisor, Ts.

Dr Mohd Faizal Bin Abd Razak continues giving me advice and guidance in completing

the research. His guidance is one of the major contributions towards this research.

 Then, I would like to thank both of my parents for giving me moral support and

especially financial support. They are one of the people who are concerned about me

whenever I’m in trouble. I also want to express my thanks to all of my friends for teaching

me how to execute the system properly. I want to express my gratitude toward Nazrul

Haikal Nazrul Zailani because he is always there for me and is one of my best friends

who are concerned about me. With his support, I can give my best for this project.

 Lastly, I would like to thank all of the people who helps me indirectly or directly

in completing this research successfully.

iii

ABSTRAK

 Sepanjang beberapa tahun yang lepas sehingga kini, jumlah perisian perosak yang

melakukan kerosakan terhadap sistem operasi Android telah meningkat berbanding

system operasi yang lain. Oleh itu, aplikasi yang menggunakan android mesti dianaisis

bagi mengesan perisian perosak sementara ia tidak melakukan kerosakan yang serius.

Untuk melakukan analisis terhadap aplikasi tersebut, dua jenis analisis perisan perosak

boleh digunakan iaitu analisis statik dan analisis dinamik. Analisis statik adalah analisis

yang mengkaji kod dalam aplikasi dengan teliti manakala analisis dinamik adalah analisis

yang mengenal pasti perisian perosak melalui pemantauan. Walaupun kedua-dua analisis

telah dilakukan, namun penambahbaikan harus dilakukan bagi mengesan perisian

perosak dengan lebih tepat. Dengan zaman teknologi terkini, terlalu banyak cara yang

boleh digunakan bagi penyerang untuk menyebar perisian perosak ke telefon pintar

terutama pengguna Android. Dengan itu, kajian in telah mencadangkan sistem pengesan

perisian perosak dengan menggunakan teknik pembelajaran mesin. Objektif kajian ini

adalah untuk mengesan perisian perosak yang telah menyerang sistem operasi Android

dengan lebih tepat. Hasil kajian yang sangat baik dapat membuktikan bahawa sistem

pengesanan perisian perosak dapat mengesan perisian perosak Android dengan baik.

iv

ABSTRACT

 During this past year up until now, the total of malware that targets the Android

operating system has increased compared to other operating systems. Therefore, an

application that used the android operating system must be analyzed to detect the malware

before the malware causes serious damage. To analyze the application, two types of

analysis can be used which are static analysis and dynamic analysis. Static analysis is an

analysis that is done by reviewing the codes diligently while dynamic analysis is an

analysis that detects malware through observation. Even if both of the analysis was done

successfully, however, an improvement needs to be done to detect the malware more

accurately. With the technology arising now, there are many ways for the attacker to send

malware to an Android smartphone user. Therefore, this research proposes a malware

detection system using machine learning. This research objective is to detect the malware

that attacks Android smartphones more accurately. The result of this research proves that

the malware detection system is able to detect Android malware accurately.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES ix

LIST OF FIGURES x

LIST OF SYMBOLS xi

LIST OF ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Scope of project 3

1.5 Thesis organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Introduction 5

2.2 Malware 5

2.3 Type of malware attack 6

2.4 Malware Detection Approaches 7

vi

2.4.1 Specification-based Detection 7

2.4.2 Signature-Based Detection 8

2.4.3 Heuristic-Based Detection 8

2.4.4 Comparison Malware Detection Approaches 9

2.5 Analysis Techniques 10

2.5.1 Static Analysis 10

2.5.2 Dynamic Analysis 10

2.5.3 Comparison of Analysis Techniques 11

2.6 Machine Learning 11

2.7 Related Review on Related Research 13

2.7.1 Exploring Deep Reinforcement Learning for Android Malware

Detection 13

2.7.2 Malware Detection: A framework for Reverse Engineered

Android Applications through Machine Learning Algorithms 14

2.7.3 Android Malware Detection Using Machine Learning with

Feature Selection Based on the Genetic Algorithm 15

2.7.4 Improvement from the existing system 16

2.8 Conclusion 17

CHAPTER 3 METHODOLOGY 18

3.1 Introduction 18

3.2 Research-Based 18

3.3 Planning and Reviewing Literature 20

3.4 Developing the Architecture 20

3.4.1 Procedure Description 21

3.4.2 Data Collection Phase 22

3.4.3 Decompiling the apk file 22

vii

3.4.4 Machine Learning Classifier 24

3.4.5 Machine Learning Tool 25

3.5 Design and Implementation 27

3.6 Hardware and Software 29

3.6.1 Hardware Requirement 29

3.6.2 Software Specification 29

3.7 Testing and Evaluation 30

3.8 Comparison results from each classifiers 30

3.9 Conclusion 31

CHAPTER 4 IMPLEMENTATION, RESULT AND DISCUSSION 32

4.1 Introduction 32

4.2 Dataset Description 32

4.3 Machine Learning Approach 33

4.4 Evaluation and results 35

4.4.1 Confusion Matrix 36

4.4.2 Receiver and operating characteristics curve (ROC) 37

CHAPTER 5 CONCLUSION 40

5.1 Introduction 40

5.2 Research Objectives Revisit 41

5.3 Achievement of the study 41

5.3.1 A detection model for malware 42

5.3.2 Issues in Android malware detection studies 42

5.3.3 Issues in Android malware permission selection 42

5.4 Research Constraints 42

viii

5.4.1 Sample Size 43

5.4.2 Time 43

5.5 Future works 43

5.5.1 Enhance false alarm rate 43

5.5.2 Selection of relevant features 44

5.5.3 Deep data analysis and result evaluation 44

REFERENCES 45

APPENDIX A SAMPLE APPENDIX 1 47

APPENDIX B SAMPLE APPENDIX 2 48

ix

LIST OF TABLES

Table 2.1 Type of malware 7

Table 2.2 Comparison of malware detection approaches 10

Table 2.3 Comparison between static analysis and dynamic analysis 11

Table 2.4 Comparison between previous research 1, 2, and 3 16

Table 3.1 Dataset Summary 22

Table 3.2 Top twenty permissions from benign and malware applications 24

Table 3.3 Hardware requirement 29

Table 3.4 Software requirement 30

Table 3.5 Comparison accuracy between classifiers 31

Table 4.1 List of permission features 35

Table 4.2 Performance from each classifiers 35

Table 4.3 Confusion Matrix for each classifier 36

Table 4.4 AUC result 39

x

LIST OF FIGURES

Figure 1.1 Overall chapter 4

Figure 3.1 Main Phase of Research-Based 19

Figure 3.2 Malware Detection System Architecture 21

Figure 3.3 Data collection 23

Figure 3.4 Anaconda Navigator 26

Figure 3.5 Jupiter notebook application 27

Figure 3.6 The flowchart for the malware detection method testing improvement 28

Figure 4.1 ROC cure for Random Forest 37

Figure 4.2 ROC curve for KNN 38

Figure 4.3 ROC curve for MLP 38

Figure 4.4 ROC curve for SVM 39

xi

LIST OF SYMBOLS

xii

LIST OF ABBREVIATIONS

SVM Support Vector Machine

KNN

RF

MLP

GUI

VS

CSV

K-Nearest Neighbour

Random Forest

Multi-layer Perceptron

Graphical User Interface

Visual Studio

Comma-separated values

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

According to Android statistics as of 2022, the number of active android users

around the world has managed to reach an all-time high of 2.5 billion users across 190

countries[1]. As the number of smartphone users increases, it is safe to assume that almost

everyone in the world owns a smartphone. It is no wonder smartphones or mobile devices

are considered a necessity nowadays since the various functions and services assist and

ease users with their daily lives. Storing personal information, file access through cloud

services, and browsing the internet is one of the many features of a smartphone. With the

power to access almost everything from the touch of a screen and the ever-increasing

number of smartphone users, it is no surprise that many security concerns and threats will

rise. Attackers from any background can spread malware and viruses that can cause

malicious effects on a user’s smartphone. The most seen effect of this attack is when the

smartphone’s system starts acting differently than normal. Some malware is also capable

of sending fraudulent or fake messages that can hijack and compromise the user’s details

and bank account.

Approximately 5,520,908 mobile malware, adware, and riskware attacks were

prevented in the second quarter of 2022[2]. Continue to increase in frequency, with a

42% global year-on-year increase in attacks[3]. The incident demonstrates that a viable

technique for detecting malware on Android smartphones must be developed

immediately.

2

1.2 Problem Statement

In the era of globalisation, smartphones have become a necessity due to the

numerous services they provide, which include connecting individuals around the world.

The majority of users utilise smartphones for regular tasks such as document sharing,

internet banking, and message sharing. Even while the usage of a smartphone has

advantages for its user, there are disadvantages associated with the services supplied to

the user. For example, storing confidential information on smartphones might attract the

attacker to use dirty techniques to retrieve users' private information.

Therefore, several existing studies have presented various methodologies and

methods for detecting malware. However, an improvement can be made to Android

malware detection to increase detection efficiency and accuracy. The improvement can

be performed by using different method or technique where all of which comes with a

different result, especially accuracy.

 Besides, Android users continue to be deceived by false alarms on their

smartphones. As an example, more than a million people have downloaded a fake

Android app that was pretending to be WhatsApp. The app resembled WhatsApp in an

obvious attempt to deceive users into believing they were downloading an update for the

popular chat service[4]. This demonstrates that not every method and technique can

provide complete security against malware for Android users. Therefore, an improvement

should be made to increase the security of the Android smartphone.

3

1.3 Objectives

The objective of this research are:

i. To review the present issues related to the Android malware detection

system.

ii. To develop an Android malware detection system utilising Machine

Learning.

iii. To evaluate the accuracy of the Android malware detection system’s

capabilities.

1.4 Scope of project

The scope of this research:

i) Platform

- This system only supports Android packages.

ii) Development / Functionality

- The system is only capable of detecting malware, not eliminating it

from devices.

- The detection mechanism is only applicable to Android-powered

smartphones.

iii) User

- Android smartphones users solely.

4

1.5 Thesis organization

Figure 1.1 Overall chapter

Figure 1.1 shows the main chapters that will be elaborated including the introduction,

literature review, and methodology.

 Chapter 1, contains the introduction for the whole research and elaboration on the

current issue. This includes the problem statement, objective, scope, and significance.

 Chapter 2, contains a discussion regarding the literature review of existing

research. The discussion explains a definition of malicious software, types of malware

attacks, and the comparison of the solution of the present methodologies with earlier

studies on the subject.

 Chapter 3, demonstrate the discussion about the methodology used during this

study. In this topic, the study discusses the data collection, data normalization and the

software that has been used in this experiment.

 Chapter 4, consists of the introduction of the chapter. Then, a details description

of the dataset used in the research. Next, an explanation of each of the machine learning

approach results. Lastly, evaluation of the resulting gain from all of the machine learning

approach used in this research.

 Finally, chapter 5 contains a discussion about the research objectives and the

achievement of the study. It also discusses the research constraint and the improvement

that can be made for future work.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter will provide a literature review that might aid comprehension of

malware detection techniques and their characteristics. A description of how malware

can be discovered will also be examined. Besides, there will also be a comprehensive

comparison of previous research, each of which employed a different technique to detect

malware. The comparison will be made to improve the current work.

2.2 Malware

Malicious software, often known as malware, is an infiltration programme meant

to harm and destroy computer systems. Many types of malware can be found and each of

them has the capability to steal user information, and abuse it. Each malware can be

detected by observing its particular actions which are backdoors, rootkits, spyware,

worm, and etc.

In reality, malware can corrupt the operating system or any application in the

devices by bypassing the device's access control. This will lead to unwanted actions from

the device’s user such as accessing sensitive data, increasing battery consumption, and

many more. Malware is also defined by its malicious actions against the system

requirements which includes observing the end user activity without authorization.

6

2.3 Type of malware attack

Various types of malware can damage Android mobile devices. One of the most

dangerous malware is malware that infiltrates the end user's mobile devices via bogus

software updates, fraudulent applications, and spam emails. This malware deceives the

user into executing malware websites and applications. Users tend to be deceived by the

malware because the malware has been designed to resemble an authentic website and

user-friendly applications.

However, protecting smartphones from malware attacks has become a significant

hurdle for the attacker. The fact that attacker employed covert approaches by concealing

the malware in the code to prevent detecting the malware and extend the malware through

static analysis. In reality, every malware creator has a different objective which uses a

different method to approach their target. Therefore, an exceptional method is a must to

detect and prevent malware from spreading. Figure 2.1 shows the types of malware with

the difference that is used by the attacker

Malware Type Description

Rootkits

 Provide the hacker access to control over a target device. It

is hard to detect because malware activities are executed

while the user is not using their device.

Spyware
 Malware software that is used to disclose user private

information through eavesdropping.

Botnet
 Able to infiltrate almost any device that is connected to the

internet like a zombie.

Backdoor
 Neutralize normal authentication procedures in accessing

the remote system to take control of the infected system.

Trojan Horse Malware conceals itself by pretending to be an ordinary

application which attracts a user to execute the program. It

7

has the ability to control resources and attack the

accessibility of the operating system with denial of service.

Adware
 Malware software pops up an advertisement to deceive

users to install malicious software on their devices.

Table 2.1 Type of malware

2.4 Malware Detection Approaches

Figure 2.1 Malware Detection Approach

2.4.1 Specification-based Detection

Specification-based detection is virtually identical to anomaly detection which

identifies a high false alarm rate. Instead of using machine learning to detect malware, it

depends on the manual evolution of standards that control legal system behaviour.

Consequently, this strategy relies on the programme specifications that apply to the

objective of critical security programme behaviour. This method involved monitoring

programme execution and finding deviations from the specification, despite detecting the

circumstances of a particular assault. In addition, it estimated the application or system

needs as opposed to attempting to design an application or system without precision.

8

A benefit of this strategy is that malware may be detected rapidly in both familiar

and unexpected situations. However, it takes more time to create a detailed specification.

2.4.2 Signature-Based Detection

This type of detection, also known as abuse detection, must maintain a signature-

based system and match the pattern to the database in order to detect malware. In other

words, signature-based recognition also utilised the sample taken from different types of

malware. This strategy is considerably more productive and efficient than others. Due to

the fact that this signature was established by analysing the binary disassembly code of

the infection, some antivirus programmes refer to this method. In addition, this

disassembled code's characteristics were analysed and extracted.

In addition, these recovered attributes were used to build the malware family's

signature. Since anti-virus software developers are continually updating and changing

their unknown code, an approach based on signatures can detect malware more precisely.

However, there are still flaws that need to be investigated, rendering it incapable

of identifying new or unknown viruses. This is because the document lacks a signature.

Although it has a downside, it also has advantages. By deploying signature-based

detection, malware can be precisely recognised while decreasing the number of resources

required to detect malware and concentrating on signature-based attacks.

2.4.3 Heuristic-Based Detection

Heuristic detection, also known as anomaly-based detection, analyses the

behaviour of both known and undiscovered malware. The behaviour parameter includes

source and destination addresses, attachment types, and other statistically measurable

information. There are two steps to this detection: the training phase and the detecting

phase. During the training phase, the system's behaviour will be observed to assess the

existence of an attack, whereas the goal of machine learning is to generate a profile of

normal activity. On the other hand, the discrepancy between the detection phase of a usual

9

behaviour profile and the current behaviour will be classified as a potential assault. These

components will be employed for behaviour detection:

i. Data Collection

- Use to gather both dynamic and static data.

ii. Interpreter

- The module for information accumulation will transform the raw

information data into intermediate representations.

iii. Matching Algorithm

- The representation will be compared against the behaviour signature.

 This method has the ability to detect new and unknown malware. Consequently,

this method for identifying malware will focus on indicators of system behaviour.

Moreover, this method demands an upgrade to the standard profile data describing

statistics and system activities. Nonetheless, this strategy requires more disc space, RAM,

and a high risk of false alarms.

2.4.4 Comparison Malware Detection Approaches

 In order to identify malware, numerous detection types have been developed and

their functionality enhanced. In Table 2.2, the differences between specification-based,

signature-based, and heuristic malware detection methods are elaborated.

Malware Detection Advantages Disadvantage

Specification-Based

Any malware, whether

known or unfamiliar, can be

easily identified.

Takes longer to

develop a specific

specification

Signature-Based

Malware can be identified

precisely while reducing the

number of resources

necessary to detect malware

Cannot detect

unknown or new malware

that lacks a signature.

10

and concentrating on

signature-based attacks.

Heuristic-Based

Able to identify new and

unidentified malware

Needs an update to the

describing data of statistics

and system behaviour in

normal profile.

Table 2.2 Comparison of malware detection approaches

2.5 Analysis Techniques

There are two types of analytic techniques for identifying malware: static analysis

and dynamic analysis. Malware can be analysed without execution using static analysis.

In contrast, dynamic analysis involves the execution of malware prior to analysis. Both

can be utilised to protect devices from malicious software (malware).

2.5.1 Static Analysis

 Code analysis is another name for static analysis. Static will analyse the

programme by examining it. For instance, the malware's source code will be analysed to

gain an understanding of its operation. This technique employs a dissembler tool,

debugger, and source code analyser, such as Interactive Disassembler (IDA), to build an

assembly language source code from machine-executable code, which is then translated

into an installation code that humans can comprehend. This opcode will be extracted as

a feature to statically assess the application behaviour to detect the malware.

2.5.2 Dynamic Analysis

 Behaviour analysis is another name for dynamic analysis. In this method, infected

files are analysed in a simulated environment, such as the simulator and virtual machine,

prior to identifying the file's general behaviour using SysAnalyzer, RegShot, and any

other relevant tools. The file will then be detected upon execution in the real environment.

During this execution, the system's interaction, behaviour, and machine output will also

be observed. This strategy makes it easier to discover unknown viruses, but it requires a

11

great deal more work. This is because these techniques require extensive time to prepare

the environment for malware analysis, such as sandboxes.

2.5.3 Comparison of Analysis Techniques

 In order to detect malware, static analysis and dynamic analysis both have their

advantages and limitations. Table 2.3 illustrates the distinction between static and

dynamic analysis.

Type of Analysis Description

Static Analysis - Capable of identifying a novel or unfamiliar threat or

malware.

- Capable of analysing polymorphic and obfuscated

threats and malware.

- High accuracy

- More secure and fast

Dynamic Analysis - Incapable of identifying a new or unfamiliar threat or

malware.

- Incapable of analysing polymorphic and obfuscated

threats and malware.

- Low accuracy

- Less secure and slow

Table 2.3 Comparison between static analysis and dynamic analysis

2.6 Machine Learning

 Machine learning is an application of artificial intelligence (AI) that gives systems

the ability to automatically learn and enhance their experience without being explicitly

12

programmed. Machine learning focuses on the creation of data-accessible computer

programmes.

 The learning process begins with observations of data, such as direct experience

or teaching, in order to search for patterns in data and make future decisions based on the

examples supplied. There are several techniques for machine learning:

Machine learning algorithms are often categorized as supervised or unsupervised

algorithms.

 Supervised learning is capable of predicting outcomes accurately by using its

labelled dataset to train the algorithm[5]. It uses a training dataset from the dataset

to train the models in order to produce expected outcomes. The training dataset

consists of inputs and real outputs. The dataset will be used to train the model

over time. After sufficient training, the algorithm is able to predict the expected

result based on the new input. The algorithm is also able to identify the output

with the expected or real output, which will find errors to modify the model to

minimize the error.

 Unsupervised learning is used to analyse and cluster unlabelled datasets[6]. This

algorithm can identify hidden patterns or data clusters without the assistance of a

human. It is one of the ideal solutions for exploratory data analysis, cross-selling

strategies, customer segmentation, and image recognition because of its capacity

to identify similarities and differences in information[6].

 Semi-supervised learning uses a sizable amount of unlabelled and a small amount

of labelled data to train a predictive model. It works for a variety of problems,

including clustering, association, and regression as well as classification[7]. This

strategy can significantly increase the accuracy of learning systems.

 Reinforcement learning is a technique for teaching a machine to learn based on

rewarding desired actions and/or undesirable ones. A reinforcement learning

agent can perceive and understand its surrounding, act, and learn from

mistakes[8].

13

 Machine learning can be used for analysing a massive amount of data. Even

though it produces more accurate results in identifying dangerous risks, it required longer

time and resources to train the model. The power of processing a massive amount of data

by using machine learning may be increased by integrating it with cognitive technologies

and AI.

2.7 Related Review on Related Research

Machine learning has been used in much previous research in detecting malware

on android. Each of the research has its method on how to solve the problem by using

machine learning. However, every method has its limitations that could affect the

accuracy of android malware detection. In this section, three existing research will be

explained regarding the method used to detect malware on android.

2.7.1 Exploring Deep Reinforcement Learning for Android Malware Detection

In this research, the main purpose is to deploy reinforcement learning for cyber

security issues and compare it to the existing work done using Deep Learning[9]. The

number of the defected android device has increased compared to other OS platforms due

to the third-party policy of Android. With all of the available malware detection

techniques created by the past researcher, deep learning also has been used for detecting

malware on Android. The dataset used in this research is the Drebin Dataset which is

provided by the Technische Universitat Braunschweig. The dataset includes over 215

attributes and its feature derived. The dataset is extracted from 15,036 applications which

consist of 5,560 malware files and 9,476 benign files. It is collected from August 2010 to

October 2012. The training dataset that will be used in training the model is 75% of the

total sample which is 11,277. The testing dataset is over 25% which is 3,759 samples for

testing the model.

14

The type of machine learning used is reinforcement learning which is defined by

a tuple of state, reward, and action. The algorithm used is Q learning which will decide

the best solution of action based on the current state of the agent. The classifier used in

this research is Random Forest Classifier and Extra Trees Classifier. By using Q-learning

with Random Forest, the accuracy produced is 87.652% with a learning rate of 0.00039.

Compared to Random Forest, Extra Trees Classifiers have produced more accuracy with

94.30% with the same learning rate of 0.00039.

In conclusion, Q-learning with Extra Trees Classifier produce the best accuracy

of 94.30 using the sample dataset from Debrin Dataset compared to Random Forest. It is

proof that by using reinforcement learning with the Q-learning algorithm, it can segregate

the sample as either benign or malware. However, further exploration can be done toward

the modelling for better accuracy.

2.7.2 Malware Detection: A framework for Reverse Engineered Android

Applications through Machine Learning Algorithms

In this research, the author uses machine learning and reverse-engineered

technique to detect android malware[10]. The major purpose of this research is to identify

the most helpful criteria for detecting malware on Android. The researcher provides a

novel subset of features for the static detection of Android malware. The subset consists

of seven additional features from around 56000 features. The result obtained from

detecting android malware is over 96.4% in accuracy with 0.3% false positive. To

increase the prediction rate, the researcher implemented a Boosting ensemble learning

approach with Decision Tree based on binary classification. The model is trained by using

the latest sample of android malware collected in recent years. The algorithms used in

this research are Naïve Bayes, Decision Tree, K-Neighbor, Gaussian NB, AdaBoost,

Support Vector Machine, and Random forest. The best accuracy of all the machine

learning algorithms is AdaBoost with an accuracy of 96.24%. The model does not achieve

the highest peak in accuracy or predictive but it contributes by providing enhanced feature

sets with the latest API level applications datasets.

15

In conclusion, the researcher has improved a framework that could detect Android

malware. This proves that reverse engineering with the proposed method is able to detect

the malware with an accuracy of 96.24% which is the highest accuracy in this research.

However, the suggested approach has a limitation in terms of a lack of sustainability

concerns and static analysis. The model resilience will be reconsidered in terms of

enhanced and dynamic features.

2.7.3 Android Malware Detection Using Machine Learning with Feature

Selection Based on the Genetic Algorithm

This research discusses the efficiency of applying machine learning feature

selection with a genetic algorithm[11]. In the wider category of evolutionary algorithms,

a genetic algorithm is a metaheuristic that draws inspiration from the process of natural

selection. The algorithm cannot guarantee the best solution because the solution does not

progress which results in the solution being poorly optimized. However, it could help

find optimal combinations and find a solution that is hard to accomplish. The algorithms

that are used in this research are Decision Tree, Random Forest, Decision Table, Naïve

Bayes, MLP, SVM, Logistic Regression, AdaBoost, and K-NN. Each of the algorithms

will be measured by using a confusion matrix. Based on the final result, the best accuracy

is using SVM with an accuracy of 99.20%. The performance of the Naïve Bayes

algorithm has the lowest accuracy compared to other algorithms which is 71.00%.

In conclusion, genetic algorithm-based feature selection is useful compared to

common feature selection. It is able to drastically reduce the model’s building time over

non-selection. Even though this research needs to be improved, it is confirmed that

genetic algorithms can help detect Android malware using machine learning.

Table 2.4 show the comparison of the three existing research in term of analysis

and accuracy.

16

Research 1 2 3

Technique

Deep

Reinforcement

Learning

Reverse

Engineered

Genetic

Algorithm

Analysis

A training

approach that

emphasises

rewarding good

actions while

penalising

undesirable ones

Codes from

decompiled mobile

applications are

automatically

analysed.

A

metaheuristic that

draws inspiration

from the process

of natural

selection.

Accuracy 94.30% 96.24% 99.20%

Table 2.4 Comparison between previous research 1, 2, and 3

2.7.4 Improvement from the existing system

The existing studies of malware detection systems utilised a dataset, features,

precision, etc. to determine whether malware exists in the system or not. Despite this,

none of the existing machine learning systems can prevent malware from entering a

system. Therefore, the purpose of this research is to enhance an existing system by

granting permission to dangerous code-free applications. In contrast, malware-containing

software would be denied system access. By utilising both static and dynamic analysis,

the system can detect malware.

17

2.8 Conclusion

This chapter is one of the essential components of this research, as can be

concluded. This chapter compares previous solutions proposed by another researcher

with Machine Learning, the current solution. In addition, this chapter describes the

various approaches that assisted the researcher in achieving their proposed malware

detection technique. So many techniques have been proposed over the past few decades.

However, those strategies needed refining in order to have a better results in the future.

Therefore, chapter 3 proposes the current method to assist Android users in identifying

malware on their devices.

18

CHAPTER 3

METHODOLOGY

3.1 Introduction

In the previous chapter, the explanation regarding malware has been explored

including their restriction capabilities. Three existing research related to android malware

detection also has been described briefly in chapter 2. This chapter will describe the

proposed technique and approach that will be implemented during this research including

the methodology of this research.

3.2 Research-Based

Figure 3.1 depicts the four key steps of a research-based approach, which include

literature review, development of new architecture, design, and implementation, as well

as testing and assessment. Research-based is appropriate to be used as the methodology

in this research since the phase can be continuously examined to get accurate results. This

research-based system development life cycle differs from those previously proposed.

This is due to the fact that this strategy will emphasise handling and observing every

detail of this topic's investigation.

There are 4 phases involved in the research-based approach. The first phase is

planning and reviewing the literature. The previous research based on the research topic

will be reviewed and analysed. After that, the research requirement will be defined

including the problem statement, scope, and objective of the research. The second phase

is developing the architecture. During this phase, a detailed analysis of previous research

will be considered to observe the appropriate algorithm and method that will be used in

this research. After the development of the architecture is completed, the design and

19

implementation of this research will be conducted. There are two requirements that will

be needed for this research which are software and hardware. After all the requirement is

prepared and ready to be used, the implementation of the design and detection model will

be included. After the implementation is completely executed, the modal need to be tested

and evaluated to observe the research constraint and improvement for further research.

Figure 3.1 Main Phase of Research-Based

This research is modified because it is possible to revert to prior phases with little

losses in order to incorporate the enhancements in the new research. Even more so,

research-based methods permit occasional modifications to solve problems during the

current phase. In addition, research-based methodologies allow researchers to quickly

make adjustments to the requirement of the research project.

20

3.3 Planning and Reviewing Literature

The key phases of this research-based are planning and a relevant literature

review. Before examining current studies, the relevant sort of research question is

determined through conceptualization. When a research topic is selected, relevant

publications, studies, and journals are compiled for study. Existing studies' analysis

facilitates comprehension of the research subject. These allow for the clarification of the

problem statement, the purpose, and the scope of this investigation. Using the suggested

n-gram opcode, associated information on malicious code detection and their current

code detection must be found for this research.

This research's sources consist of prior student references and Internet

publications or articles. In addition, the current research is scrutinised and screened for

relevance to the study question. Additionally, the collected material should be pertinent

to research and used in the advancement of research.

The objective of research on various approaches and techniques is to determine

which strategy and methodology are most suitable for resolving the problems that have

occurred on Android devices, particularly those linked to malware. Since security is the

primary concern for Android devices, this research must concentrate on malware

detection for Android smartphones. Existing research studies on malware detection are

evaluated critically and categorised according to the location where the malicious code

structure was developed. Each proposed method of malware detection is analysed to

determine its limits and contributions. Therefore, this type of information is essential for

determining the testing approach employed by the researchers. Therefore, the constraints

of previous research will be avoided in this research.

3.4 Developing the Architecture

On the basis of a previously examined strategy, it has been determined that

Machine Learning will be employed to build malware detection. Figure 3.2 depicts the

architecture development of the malware detection system.

21

Figure 3.2 Malware Detection System Architecture

3.4.1 Procedure Description

The malware detection system architecture was used in developing a machine

learning technique that can train a model by using dataset samples to learn the behaviour

of benign and malware applications. This architecture is able to identify the new

application status whether it is benign or malware. Furthermore, the architecture is a basic

step in implementing machine learning algorithms and it cannot skip even a step. If one

of the steps is skipped, the algorithm cannot be executed and can cause an error.

 The data collection begins by gathering permissions which include the feature

with the value of benign and malware. The data processing involved in this process is

decompiling an apk file to extract the permissions. The data cleansing is where the dataset

is observed which involves exploratory data analysis including descriptive analytics and

handling missing values. Next, for the data labelling, all the permission gained from the

extraction will be stored in an appropriate format and saved as either attribute-relation

file format (x.arff) file or comma-separated value (CSV) before using them in Jupiter

notebook.

Next, from the dataset that has been processed, a feature selection process will be

conducted to find the best feature for model training. The purpose of this feature

optimization technique is to differentiate the non-bio-inspired with a bio-inspired

algorithm.

Furthermore, the data collection and feature selection process is the most crucial

part of implementing a machine learning algorithm. The reason is that preparing a usable

22

dataset that is suitable for the model to be trained is difficult and sensitive which could

affect the machine learning algorithm result. Then, this process will notify the database.

From this moment, the filtering data will rely on the permission and its package names

to ensure that the database is free of duplicate features and applications. Hence, the

filtered features will be sent to the machine learning process for the optimization features.

3.4.2 Data Collection Phase

In the data collection phase, the process of data collection about benign and

malware application datasets will be discussed. The sample dataset used in this research

is drawn from the Kaggle website which was uploaded by Shashwat Timari[12]. The

dataset consists of a feature vector of 215 attributes extracted from 15,036. There are

5,560 malware apps from the Drebin project and 9,476 benign apps. The table below

shows the number of malware and benign application from the dataset.

Dataset Source Total Use in Experiment

Benign Benign App 9476

Malware Drebin 5560

Total 15036

Table 3.1 Dataset Summary

3.4.3 Decompiling the apk file

Firstly, the dataset of benign and malware applications is collected with a total of

15,036 samples with 9476 benign applications and 5560 malware applications. The

malware application was collected from the Drebin dataset. The figure below shows the

process of data collection.

23

Figure 3.3 Data collection

 The AdroidManifest.xml file is used to retrieve data required for this research

such as android permission and activities. All of the extracted permission will be labelled

before storing them in the database as an x.arff file or CSV file. All of the permission

value stored is in binary number which is 0 or 1 except for class which stored either

B(Benign) or S(Malware). Furthermore, feature optimization helps to find the best

feature(permission) to be used. The table below shows the best permission from benign

and malware applications.

Permission Frequency

INTERNET 13111

READ_PHONE_STATE 9509

GET_ACCOUNTS 4492

SEND_SMS 3558

RECEIVE_SMS 2814

READ_SMS 2808

CAMERA 2054

WRITE_SMS 1702

MANAGE_ACCOUNTS 1565

24

USE_CREDENTIALS 1520

READ_HISTORY_BOOKMARKS 1397

RECORD_AUDIO 1357

READ_SYNC_SETTINGS 1252

RESTART_PACKAGES 1199

WRITE_HISTORY_BOOKMARKS 1193

WRITE_SYNC_SETTINGS 1159

INSTALL_PACKAGES 1052

AUTHENTICATE_ACCOUNTS 968

ACCESS_LOCATION_EXTRA_COMMANDS 779

WRITE_APN_SETTINGS 714

Table 3.2 Top twenty permissions from benign and malware applications

 Based on the table above, there are three major permissions that have been

requested in either benign or malware applications which are INTERNET,

READ_PHONE_STATE, and GET_ACCOUNTS. INTERNET is the most frequent

permission request which is 13111 requests. The other permissions also have a high value

of frequency which need to be concerned. This shows that this is the android trend based

on permission results nowadays.

3.4.4 Machine Learning Classifier

Machine learning is a subpart of Artificial Intelligence(AI) which was used in

prediction, classification, and automation. It can be learned without the need of using

explicit programming. It can predict future results and make better decisions when

receiving new data. The process is called learning where the system will learn about the

dataset and find the pattern for each result. The process and learning method are different

for every classifier type which also give different result such as accuracy. The technique

is widely used to classify samples in the intrusion detection system either benign or

25

malware. In this research, a supervised learning approach will be applied because the

dataset has labels (malware and benign). Other than that, supervised learning is able to

produce satisfying results via error reduction. In this research, four different classifiers

will be used to observe the comparison of results between the classifiers. The classifiers

are Random Forest (RF), K-Nearest Neighbour(KNN), Multi-Layer Perceptron(MLP),

and Support Vector Machine(SVM).

Random Forest (RF): Popular collective learning technique for supervised

classification and regression. This technique works by structuring a random set of

decision tree and producing the class based on mean prediction (regression) or class

category (classification)[13].

K-Nearest neighbour(KNN): In KNN, it depends on the nearest each data point.

Each of the data points plays its role when determining the classes of new input data. The

data will calculate the distance between the existing data point and the new data point.

The nearest distance will be chosen. It can conclude that the new data point will be in the

same classes as the chosen data point classes.

MLP: Multi-layer perceptron is a model of an artificial neural network. Multiple

node layers made up the MLP, which interacted through weighted connections.

SVM: In Support Vector Machine, it has a data point, hyperplane, and margin.

The data point is the point where each data will be placed at. The hyperplane is a line that

separates a set of an object having different classes. A margin is a gap between the line

and the data point. The distance between the line and the data point will be calculated. A

good margin is a margin that has a larger distance between the line and the data point. To

predict the value, all the data point located under the line is considered one category while

the upper is considered another category[14].

3.4.5 Machine Learning Tool

Many machine learning tools can be used to execute the research. The purpose of

machine learning tools is to run the analysis model development that produces data

analysis. By training the model, it helps the system to learn the pattern or make a

prediction by using a past dataset or present dataset. By implementing the machine

learning tools, it provides the user with a feature that could help speed up the analytical

26

work. Other than that, it is also able to execute complex mathematical calculations to

solve a problem without requiring expertise in machine learning. The machine learning

tool that will be used in this research is Anaconda.

3.4.5.1 Anaconda

Anaconda is a data science platform that could run python and R programming

languages and it is open-source software. At the current moment, there are around 30

million users from 236 countries and regions that use anaconda to perform complex data

analysis[15]. Anaconda support many application and feature including cmd.exe prompt,

Jupiter notebook, JupiterLab, VS Code, and etc. In this research, Jupiter notebook will

be used to write the code and execute the model. By developing the system on Jupiter

notebook, the researcher can add and edit the system anytime. Since it is a notebook, the

outcome from each note can be displayed separately. This will make it easier for the

researcher to observe the result for each note. It also can print out a report of the notebook

in pdf format. The figure below displays the Anaconda Navigator desktop graphical user

interface(GUI).

Figure 3.4 Anaconda Navigator

Anaconda Navigator consists of 4 main navigator buttons:

a. Home: display a list of default applications with the main application. All of the

applications can be opened via the home interface without executing the program

27

manually. In this research, Jupiter notebook will be used to execute the machine

learning algorithm.

b. Environment: contain a list of environments that will be used to execute the

anaconda navigator. The user can create, import, clone, backup, or remove the

environment.

c. Learning: Anaconda Navigator provides a learning platform for the user to learn

about different topics such as python and Jupiter documentation.

d. Community: the user can communicate or engage in a community that has been

prepared in the platform. The community is divided into two sections which are

forum and social.

Figure 3.5 Jupiter notebook application

 The figure above shows the example of the Jupiter notebook interface that was

open in google chrome. The user must have knowledge of python language to use the

application since the outcome are displayed through code. The user will need to import a

library such as the sklearn library to execute each classifier in this application. This

application is a good start for those who want to learn more about data science.

3.5 Design and Implementation

After the research framework has been developed, the framework needs to be

approved. To test the accuracy of the malware detection, a draft is made before executing

the implementation of the system. The figure below shows the flowchart of the procedure

28

to test the concept before moving forward to the malware detection system for Android

smartphones.

There are 5 components of the design model which are exploratory data, defining

a database, creating a system, testing, and evaluating the result. Each of the components

will be briefly discussed in the next subtopic.

Figure 3.6 The flowchart for the malware detection method testing improvement

 The final phase in this research is implementation. The implementation of the

proposed solution will use the design model as a guideline during this phase. Then,

software preparation such as Anaconda is an important step that needs to be considered

during this research.

 Next, the dataset that consists of an Android permission dataset will be explored

in the system. Then, the research flow will follow according to the procedure which has

been done during the designing phase.

29

3.6 Hardware and Software

In this research, there are hardware and software needed in order to train and test

the model. The hardware and software requirements needed for the training and testing

phase need to be specified in the early stages to carry out this research. All of the

requirements needed will be used throughout this research in the next chapter.

3.6.1 Hardware Requirement

Hardware Description

Processor: Intel® Core(TM) i5-

7200U @ 2.50 GHz 2.70 GHz

RAM: 8.00 GB

System type: x64-based processor

Laptop specification that was used

during documentation, testing, gathering

references, and implementation for the

entire research.

Table 3.3 Hardware requirement

3.6.2 Software Specification

Software Description

Window 10 An operating system of the device used.

Anaconda To execute machine learning algorithm

and display results.

Microsoft Words 2016 To document the whole research

documentation.

Microsoft Excel 2016 To create a Gantt chart and view the

dataset.

Google Chrome To search and download material.

30

Mendeley To make citations for the research

document.

Table 3.4 Software requirement

3.7 Testing and Evaluation

The final phase in this research is testing and evaluation. The system will be tested

and the algorithm result needs to be evaluated. By conducting the testing and evaluation,

it could help detect the best result and determine the limits of the system which can avoid

the previous existing research constraint. The main objective of this research is to prove

that the proposed solution is the best malware detection system with accurate results is

claimed in this research. Hence, this phase is to identify the constraint and defects of this

research that could be used to make an improvement to get the desired result.

Furthermore, a thorough analysis will be made based on the experiment’s results. Then,

the research's hypothesis will next be evaluated to see if it has been proven or not.

Lastly, a clear explanation describing the entire process of this research is

elaborated. The result is evaluated and recorded to view the achievement of this research.

A full explanation regarding the implementation phase will be discussed in the next

chapter.

3.8 Comparison results from each classifiers

By using the dataset in this research, the classifier can be executed and each of

them produce different results. Table below shows that Random Forest have the highest

accuracy compared to other classifiers. This shows that by using Random Forest

classifier, the malware detection system can detect the malware more efficiently. For

MLP and SVM does not have accuracy at this moment.

Classifiers Accuracy

Random Forest 90.46%

K-Nearest Neighbour 90.31%

31

Multi-layer Perceptron 90.30%

Support Vector Machine 90.06%

Table 3.5 Comparison accuracy between classifiers

3.9 Conclusion

This chapter consists of preparation that the researcher will be used to conduct

this research such as algorithm, research framework, and etc. The hardware and software

requirements needed also been mentioned to execute the experiment and to gain the

result. Next, a list of classifiers and methods that will be used are briefly explained

because each of the classifiers has different usage. Then, the explanation of the process

that will be executed is described such as testing and evaluation. In the next chapter, a

detailed explanation regarding the implementation, testing, and evaluation will be further

discussed.

32

CHAPTER 4

IMPLEMENTATION, RESULT AND DISCUSSION

4.1 Introduction

This chapter will provide the implementation from the methodology included in

chapter 3. The implementation stage is very important and crucial during the development

as it could affect the results. The result will be analysis and visualize to conclude the

outcome from the process. Through the implementation, a discussion regarding the

malware detection results will be made.

4.2 Dataset Description

It is important to decide which dataset that will be used in the implementation

because it could affect the accuracy of the results. Exploratory data analysis is the early

process in the implementation. The collected dataset will be explored and analysed to

know the details explanation and understanding about the malware and benign activities.

The dataset will be separated into training and testing data to see the result details and

prediction.

The dataset titled “Android Malware Dataset for Machine Learning” was

provided by Shashwat Timari at Kaggle website[12]. The dataset used in this research

consists of 15,036 instances of 5,560 malware applications and 9,476 benign applications.

The malware application in the dataset was collected from Drebin dataset. The label in

the dataset named as “class” to identify whether the instance is benign application or

malware application. The class value stored in short case alphabet which are “s” for

malware and “b” for benign. The dataset consists of 3 types of features which are

Manifest Permission (53%), API call signature (33%) and Others (14%). Most of the

33

feature used in this research is based on Manifest Permission feature which is declaration

of the specific permission that an app requires to access the system resources or data.

4.3 Machine Learning Approach

By using machine learning approach, the machine is surely able to detect malware

on an Android smartphone through Android permission features approach. This approach

takes shorter training and testing time in detecting malware.

The dataset consists of many feature that can be used to detect the malware.

However, not all of them are significant to detect malware. To find the most significant

feature for malware detection, features selection process is included. Feature selection

helps in identifying the most important feature that have the most impact on the label and

removing irrelevant or redundant features that may not contribute much to the model

performance. It also helps to reduce the complexity of the model and reducing time taken

and cost of data acquisition, preparation and analysis. Table 4.1 shows list of features

used in this research.

Permission Description

INTERNET
Allow an application to access to the

internet connection.

READ_PHONE_STATE
Allow an application to have access to the

phone state of the device.

GET_ACCOUNTS Allow an application to access

SEND_SMS
Allow an application to have access in

sending SMS

RECEIVE_SMS Allow an application to have access in

receiving SMS

34

READ_SMS Allow an application to have access in

reading SMS

CAMERA Allow an application to have access to

camera

WRITE_SMS Allow an application to have access in

writing SMS

MANAGE_ACCOUNTS Allow an application to have access in

managing user accounts on the device.

USER_CREDENTIALS Allow an application to have access the

user’s credentials

READ_HISTORY_BOOKMARKS Allow an application to have access in

reading history bookmarks

RECORD_AUDIO Allow an application to have access in

recording audio

READ_SYNC_SETTINGS Allow an application to have access in

reading sync settings

RESTART_PACKAGES Allow an application to have access in

restarting packages

WRITE_HISTORY_BOOKMARKS Allow an application to have access in

writing history bookmarks

WRITE_SYNC_SETTINGS Allow an application to have access in

writing sync settings

INSTALL_PACKAGES Allow an application to have access in

installing packages

AUTHENTICATE_ACCOUNTS Allow an application to have access in

authenticating accounts

ACCESS_LOCATION_EXTRA_COMMANDS Allow an application to have access in

location extra commands

35

WRITE_APN_SETTINGS Allow an application to have access in

writing APN settings

Table 4.1 List of permission features

4.4 Evaluation and results

The results show below are the outcome that obtained from five machine learning

classifiers which are Random Forest, K-Nearest neighbour, Multi-layer perceptron, and

Support Vector Machine. In this research, the result consists of five parameters that will

be used to compare and analysis between each classifier. The parameters are accuracy,

FP rate, precision, recall, and f-measure. Table 4.2 shows the outcome from testing set

for the four selected classifiers.

Classifiers Accuracy FP rate Precision Recall F-

measure

Random

Forest

90.46 1.48 96.84 76.89 85.72

K-Nearest

neighbor (KNN)

90.31 1.58 96.62 76.65 85.48

Multi-layer

perceptron

(MLP)

90.30 1.66 96.48 76.83 85.54

Support

Vector Machine

90.06 1.71 96.01 75.15 84.31

Table 4.2 Performance from each classifiers

The results from figure 4.2 shows that Random Forest has achieve the highest

accuracy which is 90.42% compare to KNN which only 90.31%. From the comparison

between classifier, Random Forest classifier are able to detect malware more effective

compare to other classifier. Feature selection also contribute greatly in determining the

36

effectiveness of the Android malware detection. Based on the results, the precision rate

affects the classifier in producing relevant and accurate result.

4.4.1 Confusion Matrix

A confusion matrix is a table that is used to evaluate the performance of a machine

learning model by comparing the predicted values with the actual values. It is also known

as an error matrix. The table below shows possible classes of prediction between benign

and malware based on testing set. Table 4.3 shows the performance for each classifiers.

Classifier Actual Prediction

Benign Malware

Random Forest Benign 2789 42

Malware 388 1291

K-Nearest

Neighbour (KNN)

Benign 2786 45

Malware 392 1287

Multi-layer

Perceptron (MLP)

Benign 2594 44

Malware 364 1207

Support Vector

Machine

Benign 2858 50

Malware 398 1204

Table 4.3 Confusion Matrix for each classifier

The table above shows that Random Forest prediction in identify malware and

benign are better compare to other classifiers. The Random Forest produces correct

results by predicting the malware with 128. In term of incorrect predicted, Random Forest

predict the most minimal value for incorrect benign which is 42 and MLP predict the

37

most minimal value for incorrect malware which is 364. Based on the observation,

Random Forest classifiers able to predict malware more accurate compare to other

classifiers.

4.4.2 Receiver and operating characteristics curve (ROC)

 The research classified processes as either malware or benign based on the

Android manifest features. In addition to using performance metrics. Receiver Operating

Characteristics (ROC) curve is calculated for each machine learning classifier. In this

analysis, the True Positive Rate (TPR) is consider as the detection rate for correctly

predicting malware processes, while the False Positive Rate (FPR) was selected as the

detection rate for incorrectly predicting normal processes as malware.

Figure 4.1 ROC cure for Random Forest

38

Figure 4.2 ROC curve for KNN

Figure 4.3 ROC curve for MLP

39

Figure 4.4 ROC curve for SVM

 The x-axis in figure 4.1, 4.2, 4.3, and 4.4 represents the rate of error detection,

while the y-axis represents the detection rate. Comparing the ROC curves directly is

challenging due to the similar appearance when examined under the same conditions. To

address this, the area under the curve (AUC) will be used to measure the detection

accuracy. The AUC of 1 indicates perfect prediction, while AUC of 0.5 indicates poor

prediction. Table 4.4 present the performance results based on AUC measurements.

Classifier AUC Prediction

Random Forest 0.96 Perfect Prediction

K-Nearest Neighbor 0.94 Perfect Prediction

Multi-Layer Perceptron 0.96 Perfect Prediction

Support Vector Machine 0.95 Perfect Prediction

Table 4.4 AUC result

40

CHAPTER 5

CONCLUSION

5.1 Introduction

 In this day and age, Android smartphone have become a useful device that

have changed human life style. With the increasing of smartphone users, many

applications have been developed that help utilising the smartphone usage. There is

various type of application that have been created for its Android user such as

educational, games, social networking, and shopping applications. Some application need

the user personal information to utilise the application feature smoothly. For example, a

shopping application need the user address and phone number to send parcel and contact

the user for any inquiry. Downloading an application on Android smartphone have

become easier nowadays as it can be downloaded anytime and anywhere as long as the

smartphone connect to the internet. Internet have become an important service because

most of the applications require internet connection. With the internet connection, a

smartphone has become the best medium for communication and data sharing through

application. In spite of the benefits from using the applications, it also has the

disadvantages in term of security and integrity. Most people did not understand the

importance of security and integrity of the smartphone and the harm that could occur to

them.

This research provides the understanding of malware application and malware

detection by using machine learning. The dataset used in this research consist of android

manifest permission and feature selection approach has been performed to list out the

most relevant permissions. The feature selection process has decrease the size of dataset

and the number of permission used. The machine learning classifiers that involve in this

research are Random Forest, Multi-Layer Perceptron, K-Nearest Neighbor, and Support

Vector Machines. The parameters are taken into consideration to detect malware

application effectively.

41

5.2 Research Objectives Revisit

The purpose of this research is to improve a malware detection system by using

machine learning. There are three research objectives of this research that was listed in

chapter 1.

The first objective is to review the present issues related to the Android malware

detection system. This objective was achieved at chapter 2 where three research thesis

that publish in online scholarly journals was carefully reviewed and compared. In

addition, chapter 2 consist of information regarding malware detection system and the

classification of malware detection and machine learning approach.

The second objective is to develop an Android malware detection system utilising

Machine Learning. The objective was achieved at chapter 3 and 4 which involve in the

model implementation and result. The evaluation regarding Android malware detection

system was evaluated through Jupyter Notebook Anaconda software. All the testing

executed will produce five result that will be used to evaluate the model: accuracy, False

Positive Rate (FPR), precision, recall, and f-measure.

The third objective is to evaluate the accuracy of the Android malware detection

system’s capabilities. This objective was achieved in chapter 4 where all the model result

has been written and the performance was evaluated. Based on the model result, Random

Forest have the highest percentage of accuracy in detecting Android malware.

5.3 Achievement of the study

This research started by observing the evolution of machine learning system

through literature review. The past thesis reviewed the detection of malware application

issues and feature selection. Four machine learning classifier have executed and tested

while the result had been evaluated. The result from each classifier was evaluated which

fulfil the objectives of this research.

42

5.3.1 A detection model for malware

This research has developed a model that can detect malware application based

on Android permission by means of a dynamic analysis. An approach of machine learning

has been used as it is a better adaptive detection model. All of the model are able to detect

malware on android very well based using the given dataset.

5.3.2 Issues in Android malware detection studies

In chapter 2, malware detection type and its relevance in malware detection was

presented. There were three past research thesis that was used to compare and review. By

drawing out each of the past research thesis strengths and weaknesses, a great

understanding and analysis could be performed. To improve the effectiveness of the

malware detection system, an observation has been carried out to identify the best

classifier and dataset that will be used as the limitation of the past thesis is known. An

addition to it, relevant features could be listed to increase the efficiency of the detection

system.

5.3.3 Issues in Android malware permission selection

This research shows that feature selection is very important in improving

detection performance and minimizing its complexity. The selected feature will affect the

model result as the feature importance is not the same for every feature in the dataset. In

addition, the number of selected feature will affect the accuracy of the model and not all

of the feature need to be involved in the execution.

5.4 Research Constraints

It is confirmed that the research satisfactorily achieved its aim and objectives from

the discussion in the previous chapter. In spite of the achievement, there are several

number of constraints and limitation found in the research which will be mentioned for

the future reference.

43

5.4.1 Sample Size

The sample size used in this research is 15,036. It is difficult to identify the

significant relationships of the data. A large sample size is required in this research as it

will impact the result and to ensure a representative distribution of the populations. A

small number of data tend to cause imbalanced data and model over fitting or under fitting

due to the small data scale, and too high or low feature dimensions[16].

5.4.2 Time

The time given to complete the whole research including investigating research

problem, exploratory data analysis, executing machine learning model, and manage

changes or stability are limited with the due date of the given task.

5.5 Future works

There are three recommendations for future work that could be made for further

improvement. The following future work outside the scope of this research are listed as

follows:

5.5.1 Enhance false alarm rate

False alarm rate involves in any of the machine learning model. It will occur when

the model incorrectly identifies a sample class. This means that the model incorrectly

predicted a sample from malware class as belong to the benign class. It will affect the

accuracy of the malware detection which can cause huge impact in term of result.

Therefore, a reliable and effective technique to enhance the false alarm rate is needed to

improve the model’s ability to minimize false alarms and increase its reliability and

usefulness.

44

5.5.2 Selection of relevant features

Complex dataset is difficult to handle especially in feature selection process to

improve the model detection performances. It requires further analysis to identify the

correlation between benign and malware applications. By performing further analysis,

this will reduce false which will increase the detection accuracy.

5.5.3 Deep data analysis and result evaluation

This research can perform deep data analysis and result evaluation. A deep data

analysis would be able to provide a clear information about the dataset description. It can

display the faulty or any anomaly in the dataset before performing data cleaning. In

addition, the model should include other result that could contribute to the result

evaluation such as time taken for the module to finish execute. The time taken can be

used in comparing the time taken for each of the classifier to determine the best classifier

to detect malware.

45

REFERENCES

Use a reference manager such as Mendeley or EndNote to generate your list of references here.

[1] DAVID CURRY, “Android Statistics (2022),” Business of Apps, 2022.

https://www.businessofapps.com/data/android-statistics/#:~:text=Android is the most

popular,users spanning over 190 countries. (accessed Nov. 29, 2022).

[2] T. SHISHKOVA, “IT threat evolution in Q2 2022. Mobile statistics | Securelist,”

Securitylist, 2022. https://securelist.com/it-threat-evolution-in-q2-2022-mobile-

statistics/107123/ (accessed Dec. 01, 2022).

[3] “The Mobile Malware Landscape in 2022 - Check Point Software,” Check Point, 2022.

https://blog.checkpoint.com/2022/09/15/the-mobile-malware-landscape-in-2022-of-

spyware-zero-click-attacks-smishing-and-store-security/ (accessed Dec. 02, 2022).

[4] Lorenzo Franceschi-Bicchierai, “More Than 1 Million People Downloaded a Fake

WhatsApp Android App,” Vice, 2017. https://www.vice.com/en/article/evbakk/fake-

whatsapp-android-app-1-million-downloads (accessed Dec. 02, 2022).

[5] “What is Supervised Learning? | IBM.” https://www.ibm.com/my-en/topics/supervised-

learning (accessed Jan. 17, 2023).

[6] “What is Unsupervised Learning? | IBM.” https://www.ibm.com/my-

en/topics/unsupervised-learning (accessed Jan. 17, 2023).

[7] “Semi-Supervised Learning, Explained | AltexSoft.”

https://www.altexsoft.com/blog/semi-supervised-learning/ (accessed Jan. 17, 2023).

[8] “What is Reinforcement Learning? A Comprehensive Overview.”

https://www.techtarget.com/searchenterpriseai/definition/reinforcement-learning

(accessed Jan. 17, 2023).

[9] S. Gill et al., “Exploring Deep Reinforcement Learning for Android Malware

Detection,” EasyChair Prepr. no. 6594, vol. 2, no. July, pp. 1–8, 2021, [Online].

Available: https://easychair.org/publications/preprint/MhtN.

[10] B. Urooj, M. A. Shah, C. Maple, M. K. Abbasi, and S. Riasat, “Malware Detection: A

Framework for Reverse Engineered Android Applications Through Machine Learning

Algorithms,” IEEE Access, vol. 10, pp. 89031–89050, 2022, doi:

10.1109/ACCESS.2022.3149053.

[11] J. Lee, H. Jang, S. Ha, and Y. Yoon, “Android malware detection using machine

learning with feature selection based on the genetic algorithm,” Mathematics, vol. 9, no.

46

21, pp. 1–20, 2021, doi: 10.3390/math9212813.

[12] “Android Malware Dataset for Machine Learning | Kaggle.”

https://www.kaggle.com/datasets/shashwatwork/android-malware-dataset-for-machine-

learning?select=drebin-215-dataset-5560malware-9476-benign.csv (accessed Jan. 22,

2023).

[13] J. Ali, R. Khan, N. Ahmad, and I. Maqsood, “Random Forests and Decision Trees,” no.

December 2013, 2012.

[14] T. Evgeniou and M. Pontil, “Support Vector Machines : Theory and Applications

WORKSHOP ON SUPPORT VECTOR MACHINES : THEORY AND

APPLICATIONS,” no. May, 2014, doi: 10.1007/3-540-44673-7.

[15] “Anaconda (Python distribution) - Wikipedia.”

https://en.wikipedia.org/wiki/Anaconda_(Python_distribution) (accessed Jan. 22, 2023).

[16] P. Xu, X. Ji, M. Li, and W. Lu, “Small data machine learning in materials science,” npj

Comput. Mater. 2023 91, vol. 9, no. 1, pp. 1–15, Mar. 2023, doi: 10.1038/s41524-023-

01000-z.

47

APPENDIX A

SAMPLE APPENDIX 1

48

APPENDIX B

SAMPLE APPENDIX 2

