
VULNERABILITY DETECTION SYSTEM
(XPOSED)

NURIN AZYYATI BINTI KAMILIZAHRI

Bachelor of Computer Science
(Software Engineering)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

NOTE : * If the thesis is CONFIDENTIAL or RESTRICTED, please attach a thesis declaration letter.

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : NURIN AZYYATI BINTI KAMILIZAHRI

Date of Birth

Title : VULNERABILITY DETECTION SYSTEM (XPOSED)

Academic Session : SEMESTER II ACADEMIC SESSION 2022/2023

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official
Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the
organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access
(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang
2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.
3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

New IC/Passport Number
Date: 9/6/2023

 (Supervisor’s Signature)

Dr. Al-Fahim Bin Mubarak Ali

Name of Supervisor
Date:

upfell.
Any

910612023

THESIS DECLARATION LETTER (OPTIONAL)

Librarian,
Perpustakaan Universiti Malaysia Pahang,
Universiti Malaysia Pahang,
Lebuhraya Tun Razak,
26300, Gambang, Kuantan.

Dear Sir,

CLASSIFICATION OF THESIS AS RESTRICTED

Please be informed that the following thesis is classified as RESTRICTED for a period of three
(3) years from the date of this letter. The reasons for this classification are as listed below.

Thank you.

Yours faithfully,

 (Supervisor’s Signature)

Date:

Stamp:

Note: This letter should be written by the supervisor, addressed to the Librarian, Perpustakaan
Universiti Malaysia Pahang with its copy attached to the thesis.

Author’s Name
Thesis Title

Reasons (i)

(ii)

(iii)

SUPERVISOR’S DECLARATION

I/We* hereby declare that I/We* have checked this thesis/project* and in my/our*

opinion, this thesis/project* is adequate in terms of scope and quality for the award of the

degree of Bachelor of Computer Science (Software Engineering) with Honours.

(Supervisor’s Signature)

Full Name : Dr. Al-Fahim Bin Mubarak Ali

Position : Senior Lecturer

Date :

(Co-supervisor’s Signature)

Full Name :

Position :

Date :

- - - -

-

affe.

910612024

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

(Student’s Signature)

Full Name : NURIN AZYYATI BINTI KAMILIZAHRI

ID Number: CB20155

Date : 9/6/2023

Any

VULNERABILITY DETECTION SYSTEM

(XPOSED)

NURIN AZYYATI BINTI KAMILIZAHRI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering) with Honors

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JUNE 2023

ii

ACKNOWLEDGEMENTS

First, I am deeply grateful to my supervisor, Dr. Al-Fahim Bin Mubarak Ali, for

his invaluable guidance, constant encouragement, and unwavering support throughout

the project. His guidance was essential in helping me develop a successful project.

Besides, I also extend my sincere thanks to my parents for their unwavering love,

care, and sacrifice throughout my life, which has been an inspiration to me from my

earliest days. I am unable to fully express my appreciation for their support and belief in

my abilities.

Lastly, I am grateful to my friends, who helped me in countless ways and made

my degree journey at UMP a pleasant and unforgettable experience. I would like to

particularly thank my classmates for their excellent cooperation, inspiration, and support

during my studies. I will always remember this three-year experience with all of you.

I also want to extend my thanks to anyone who has contributed to this project

directly or indirectly, your contributions will not be forgotten.

iii

ABSTRAK

Apabila dunia menjadi semakin digital, sistem perisian telah menjadi sasaran utama

penyerang siber. Dengan percambahan teknologi baharu dan kerumitan sistem perisian

yang semakin meningkat, bilangan kelemahan yang terdapat dalam sistem ini juga telah

meningkat. Kerentanan ini boleh terdiri daripada ralat pengekodan mudah kepada

kecacatan seni bina yang lebih kompleks, dan ia boleh membawa akibat yang serius

kepada organisasi dan individu. Untuk memerangi ancaman yang semakin meningkat ini,

adalah penting untuk membangunkan sistem pengesanan kerentanan yang berkesan yang

boleh mengenal pasti dan mengklasifikasikan risiko keselamatan dengan cepat dan tepat

dalam sistem perisian. Sistem Pengesanan Kerentanan XPOSED, dibangunkan sebagai

projek tahun akhir, menggunakan teknik pengimbasan untuk mengesan dan

mengklasifikasikan kelemahan dalam sistem perisian, dengan itu membantu organisasi

dalam mencegah serangan siber dan melindungi aset penting mereka.

iv

ABSTRACT

As the world becomes increasingly digitized, software systems have become a primary

target for cyber attackers. With the proliferation of new technologies and the growing

complexity of software systems, the number of vulnerabilities present in these systems

has also grown. These vulnerabilities can range from simple coding errors to more

complex architectural flaws, and they can have serious consequences for organizations

and individuals alike. To combat this growing threat, it is essential to develop effective

vulnerability detection systems that can quickly and accurately identify and classify

security risks in software systems. XPOSED Vulnerability Detection System, developed

as a final year project, employs scanning techniques to detect and classify vulnerabilities

in software systems, thereby assisting organizations in preventing cyber-attacks and

safeguarding their essential assets.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF SYMBOLS x

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Scope 3

1.5 Thesis Organization 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Introduction 4

2.2 Software Vulnerability 4

2.2.1 OWASP Top 10 4

2.2.2 CWE SANS Top 25 6

vi

2.2.3 Mapping of OWASP and CWE 8

2.3 Analysis of Existing Sources 10

2.4 Studies on Existing Systems 11

2.4.1 Acunetix 11

2.4.2 Nessus 12

2.4.3 Qualys 13

2.5 Comparison on Existing Systems 14

2.6 Summary 15

CHAPTER 3 METHODOLOGY 16

3.1 Introduction 16

3.2 Software Development Life Cycle (SDLC) 16

3.2.1 Phase 1 – REQUIREMENTS PLANNING 17

3.2.2 Phase 2 – USER DESIGN 18

3.2.3 Phase 3 – CONSTRUCTION 18

3.2.4 Phase 4 – CUTOVER 18

3.3 Project Requirement 19

3.4 Propose Design 21

3.4.1 Flowchart 21

3.4.2 Context Diagram 24

3.4.3 Use Case Diagram 25

3.4.4 Storyboard 36

3.5 Data Design 39

3.5.1 Entity Relationship Diagram (ERD) 39

3.5.2 Data Dictionary 40

3.6 Proof of Initial Concept 45

vii

3.6.1 Dashboard Interface 45

3.6.2 Add New Scan Interface 46

3.6.3 Scan List Interface 47

3.6.4 Scan Details Interface 48

3.6.5 Scan Info Interface 49

3.6.6 History Interface 50

3.7 Testing / Validation Plan 51

3.8 Potential Use of Proposed Solution 52

3.9 Gantt Chart 53

CHAPTER 4 RESULTS AND DISCUSSION 54

4.1 Introduction 54

4.2 Implementation 55

4.2.1 User Manual 56

4.2.2 Database Design 64

4.2.3 Coding Implementation 69

4.3 Testing and Result Discussion 71

CHAPTER 5 CONCLUSION 74

5.1 Introduction 74

5.2 Limitations and Constraints 76

5.3 Future Work 77

viii

LIST OF TABLES

Table 2.1 List of OWASP Top 10 Vulnerabilities 2021 5

Table 2.2 List of CWE SANS Top 25 Weaknesses 2022 6

Table 2.3 Mapping between OWASP 2021 and CWE SANS 2022 8

Table 2.4 Comparison between all three existing system 14

Table 3.1 Project requirements for XPOSED system 19

Table 3.2 Use case description of XPOSED system 26

ix

LIST OF FIGURES

Figure 3.1 Rapid Application Development Process 17

Figure 3.2 General workflow of XPOSED system 21

Figure 3.3 Detailed workflow of End Users 22

Figure 3.4 Detailed workflow of Administrator 23

Figure 3.5 Context diagram of XPOSED system 24

Figure 3.6 Use case diagram of XPOSED system 25

Figure 3.7 ERD for XPOSED system 39

Figure 3.8 Dashboard interface of XPOSED 45

Figure 3.9 Add New Scan interface of XPOSED 46

Figure 3.10 Scan Lists interface of XPOSED 47

Figure 3.11 Scan Details interfaces of XPOSED 48

Figure 3.12 Scan Info interface of XPOSED 49

Figure 3.13 Scan History interface of XPOSED 50

Figure 3.14 Gantt chart table of XPOSED project 53

Figure 4.1 Register page 56

Figure 4.2 Login page 57

Figure 4.3 Dashboard overview for users 58

Figure 4.4 Interface when uploading folder 59

Figure 4.5 List of scans page 60

Figure 4.6 Scan details page 61

Figure 4.11 Implementation of xposed database 64

Figure 4.14 Structure of migrations table 65

Figure 4.15 Structure of reports table 65

Figure 4.16 Structure of risks table 66

Figure 4.17 Structure of scans table 67

Figure 4.18 Structure of users table 68

x

LIST OF SYMBOLS

SBPWM Simple Boost Pulse Width Modulation

ZSI Z source inverter

xi

LIST OF ABBREVIATIONS

SBPWM Simple Boost Pulse Width Modulation

ZSI Z source inverter

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Every day, more software vulnerabilities, particularly in systems and applications,

are found. This is because software applications are now one of our most essential

demands, particularly for reducing daily workload. To meet the needs of the customers,

the number of software developers is growing in tandem with the growth of software

applications. However, this situation gave rise to a wide range of vulnerabilities that

might represent a serious risk of being exploited, loss of data, and a chance for attackers

to find weaknesses in the systems of their victims.

With that, developers would find way to develop their software applications in

more secure by referring to the most popular and trusted sources which are OWASP and

CWE SANS. Both mentioned sources are important as a guidance to the developers to

maintain a good practices to prevent dangerous attack from attackers. CWE SANS is

more detailed compared to the OWASP as it is more general. CWE SANS is considered

a high-level category as it has more detailed explanation on the security risks. While for

the OWASP it is considered a low-level category as it is quite general when listing the

top 10 security risks. Therefore, developers would review these sources to implement

best practises into their software, and attackers would discover these sources to use as a

means of attacking their target.

Thus, this work focuses on creating a system for detection and analysis of

software vulnerabilities in software application to understand the types of security risks

that attackers used to harm their targets. With the help of this system, it may be possible

to obtain detailed information about the security risks that possible to damage any

software application as well as solutions for defending the software against attacks.

2

1.2 Problem Statement

Individuals or organizations may protect their software application with its own

kind of protection to prevent such bad things from happening. However, the problem is,

it is possible that the protection set up is only for a specific form of security risk, and they

are unaware of other types of security threats, which could explain why their software

application is still under attack despite the protection they've put in place. This will

happen, if they are unaware about the exact type of security threats on their application.

Therefore, using this tool can aid in determining the exact nature of the threats as well as

in determining how to stop those attacks from occurring against the software application.

Another problem is that it takes time to quickly comprehend the nature of security

risks. Normally, people would simply use Google to look up similar cases involving

security threats that occur on their application and to look for a solution in order to address

the problem right away. However, it is difficult to find a website that gives direct answer

to the issue they faced. Thus, with this tool, security threats may be precisely identified

and ways to avoid them will also be provided.

1.3 Objectives

The aim of the project is to develop a vulnerability detection tool that can be used

to identify, classify, and provide a more thorough explanation of any vulnerability that is

found.

The aims will be supported by 3 objectives. The objectives are:

i. To study the types of vulnerabilities based on the standard vulnerabilities

benchmark.

ii. To develop a software vulnerabilities detection tool for software

application.

iii. To evaluate the develop tool using User Acceptance Test.

3

1.4 Scope

The following are the scope of this project:

i. The target user for this project is for those who need to determine the

different types of vulnerabilities in their software application.

ii. The programming language used for vulnerability detection is limited to

PHP and Java applications.

iii. Only source code-related risks, in line with the OWASP Top 10, are

targeted for detection.

1.5 Thesis Organization

This thesis consists of five chapters. Chapter 1 will cover the concept and

justification for creating a detection tool for various vulnerabilities. Chapter 2 generally

explain and discuss about the OWASP Top 10 and CWE SANS Top 25 lists of different

software vulnerabilities. A mapping is being created to compare the vulnerabilities listed

on the two sources. Chapter 3 explains the methodology in which the Software

Development Life Cycle (SDLC) model will be used to develop the system. Each phase

of the SDLC model must clearly describe the activities related to the project. This chapter

also includes the system design and the interface of the system. In Chapter 4, the results

and discussion are presented, highlighting the implementation and testing of this project.

Chapter 5 concludes by summarizing the final outcome of the project, discussing its

limitations, and suggesting future directions for further work.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter discuss the literature review on which two different sources or

articles, OWASP Top 10 and CWE SANS Top 25 being compared and discussed to see

the relationship between the listed top security risks. Before starting the development

process, literature reviews must be conducted first for requirement gathering. In this

literature review, two existing sources are being compared for their list of vulnerabilities.

The comparison will help to understand the top security risks present in the two sources

as well as help to identify the best approach to develop the tool. From the comparison it

will help to identify which 25 vulnerabilities in CWE SANS belongs to group in OWASP

Top 10. There are a lot of differences between these two sources in terms of detail

explanation on each of the listed vulnerabilities. Thus, this section is related to the

software vulnerabilities, categorized based on standard benchmarking from OWASP Top

10 and CWE SANS 25.

2.2 Software Vulnerability

2.2.1 OWASP Top 10

The Open Web Application Security Project, also known as OWASP Top 10, is

sponsored by OWASP, and is primarily known for educating individuals and

organisations about the need for software security that exists in this world and assisting

them in securing their software against security threats (OWASP Top 10:2021, n.d.). The

Top 10 list was most recently updated in 2021. The list of OWASP's Top 10

Vulnerabilities in the year of 2021 is shown in Table 2.1. The OWASP project has created

5

a list of the top 10 global web application security threats, explaining each vulnerability

with a practical example and providing tips on how to avoid it.

Table 2.1 List of OWASP Top 10 Vulnerabilities 2021

OWASP Rank OWASP vulnerabilities

1 A01:2021-Broken Access Control

2 A02:2021-Cryptographic Failures

3 A03:2021-Injection

4 A04:2021-Insecure Design

5 A05:2021-Security Misconfiguration

6 A06:2021-Vulnerable and Outdated Components

7 A07:2021-Identification and Authentication Failures

8 A08:2021-Software and Data Integrity Failures

9 A09:2021-Security Logging and Monitoring Failures

10 A10:2021-Server-Side Request Forgery

OWASP Top 10 will aid in educating developers, designers, architects, and

organizations about the most important web application security weaknesses which each

of the Top 10 security risks will outline basic ways to defend the software application

against those high-risk vulnerabilities. The Top 10 listed risks are referenced usually by

produced projects from developers as developers learn from the mistakes of their past

projects (OWASP and Its Importance to Application Security – Conviso AppSec, n.d.).

For each of the Top 10 risks, it will clearly outline the factors that determine how severe

a risk is often considered to be. It also explains how to determine whether or not the

produced software application possesses the characteristics necessary to be attacked. Not

only that, but it will also offer suggestions for reducing the security risks associated with

the application.

6

2.2.2 CWE SANS Top 25

The National Cyber Security Division of the US Department of Homeland

Security sponsors the CWE SANS Top 25 project, also known as Common Weakness

Enumeration, to categorise security flaws. The most recent version, which included

feedback from about 40 security experts and a list of typical errors made by software

developers, was released in 2022. The list of OWASP's Top 10 Vulnerabilities is shown

in Table 2.2. The top 25 software application errors are listed in order of severity (CWE -

2022 CWE Top 25 Most Dangerous Software Weaknesses, n.d.). All the listed errors can result

in serious software vulnerabilities since they commonly let attackers to take entire control

of the software, steal data, or stop the software from functioning at all. Therefore, it can

be claimed that these security risks are common, simple to detect, and easy to exploit.

Each of the listed risks will be described in detailed, along with suggestions for reducing

and avoiding them.

CWE Top 25 will assist in preventing vulnerabilities by educating designers and

programmers on how to avoid common mistakes before releasing the completed software

product (What Is Common Weakness Enumeration (CWE)? | Definition from TechTarget, n.d.).

With that, programmers may guard against the vulnerabilities that harm their software

applications. Not only that, but clients should also be able to use the list to ask software

developers to create applications that are more secure, and software managers should be

able to use it as a measuring stick of progress in their efforts to secure their software.

Table 2.2 List of CWE SANS Top 25 Weaknesses 2022

Rank ID Name

[1] CWE-787 Out-of-bounds Write

[2] CWE-79
Improper Neutralization of Input During Web Page Generation

('Cross-site Scripting')

[3] CWE-89
Improper Neutralization of Special Elements used in an SQL

Command ('SQL Injection')

[4] CWE-20 Improper Input Validation

[5] CWE-125 Out-of-bounds Read

7

[6] CWE-78
Improper Neutralization of Special Elements used in an OS

Command ('OS Command Injection')

[7] CWE-416 Use After Free

[8] CWE-22
Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')

[9] CWE-352 Cross-Site Request Forgery (CSRF)

[10] CWE-434 Unrestricted Upload of File with Dangerous Type

[11] CWE-476 NULL Pointer Dereference

[12] CWE-502 Deserialization of Untrusted Data

[13] CWE-190 Integer Overflow or Wraparound

[14] CWE-287 Improper Authentication

[15] CWE-798 Use of Hard-coded Credentials

[16] CWE-862 Missing Authorization

[17] CWE-77
Improper Neutralization of Special Elements used in a

Command ('Command Injection')

[18] CWE-306 Missing Authentication for Critical Function

[19] CWE-119
Improper Restriction of Operations within the Bounds of a

Memory Buffer

[20] CWE-276 Incorrect Default Permissions

[21] CWE-918 Server-Side Request Forgery (SSRF)

[22] CWE-362
Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')

[23] CWE-400 Uncontrolled Resource Consumption

[24] CWE-611 Improper Restriction of XML External Entity Reference

[25] CWE-94 Improper Control of Generation of Code ('Code Injection')

8

2.2.3 Mapping of OWASP and CWE

According to this project, the detection tool will be able to detect and categorize

the CWE Top 25 vulnerabilities into the 10 categories of OWASP Top 10 security risks

group. However, the focus of this project is specifically on vulnerabilities related to

source code category. With that, the mapping between these two sources is depicted in

Table 2.3. The mapping involves the top security risks from both OWASP Top 10 2021

and CWE Top 25 2022.

Table 2.3 Mapping between OWASP 2021 and CWE SANS 2022

OWASP

Rank

2021

OWASP Vulnerability SANS CWE ID

A01 Broken Access Control CWE-22: Improper Limitation of a Pathname to

a Restricted Directory ('Path Traversal')

CWE-276: Incorrect Default Permissions

CWE-352: Cross-Site Request Forgery (CSRF)

CWE-862: Missing Authorization

A02 Cryptographic Failures CWE-362: Concurrent Execution using Shared

Resource with Improper Synchronization ('Race

Condition')

A03 Injection CWE-20: Improper Input Validation

CWE-77: Improper Neutralization of Special

Elements used in a Command ('Command

Injection')

CWE-78: Improper Neutralization of Special

Elements used in an OS Command ('OS

Command Injection')

CWE-79: Improper Neutralization of Input

During Web Page Generation ('Cross-site

Scripting')

9

CWE-89: Improper Neutralization of Special

Elements used in an SQL Command ('SQL

Injection')

CWE-94: Improper Control of Generation of

Code ('Code Injection')

A04 Insecure Design CWE-434: Unrestricted Upload of File with

Dangerous Type

A05 Security

Misconfiguration

CWE-611: Improper Restriction of XML

External Entity Reference

A06 Vulnerable and

Outdated Components

CWE-190: Integer Overflow or Wraparound

A07 Identification and

Authentication Failures

CWE-287: Improper Authentication

CWE-306: Missing Authentication for Critical

Function

CWE-798: Use of Hard-coded Credentials

A08 Software and Data

Integrity Failures

CWE-502: Deserialization of Untrusted Data

A09 Security Logging and

Monitoring Failures

CWE-400:Uncontrolled Resource Consumption

CWE-416: Use After Free

CWE-476: NULL Pointer Dereference

A10 Server-Side Request

Forgery

CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

CWE-125: Out-of-bounds Read

CWE-787: Out-of-bounds Write

CWE-918:Server-Side Request Forgery (SSRF)

10

2.3 Analysis of Existing Sources

The difference between OWASP and CWE is not that much as both articles aim

to assist developers and security engineers in addressing faults that could result in greater

harm to the application they are working on. Using both lists together is a better idea as

the OWASP is more broad and the CWE (CWE - Frequently Asked Questions (FAQ),

n.d.) can narrow down a specific risk type within the broad topics of the OWASP top 10

for better mitigation. Both articles are easy to understand and provide suggestions on how

to prioritize risks and take precautions against them.

However, there is a slight difference in terms of the details. OWASP Top 10 is

the main category and the CWE is a breakdown of each vulnerability. Their scope and

objectives also differ (CWEs vs OWASP Top 10? - DEV Community , n.d.). The

OWASP groups the most common web application security weaknesses into ten

categories that correspond to broader cybersecurity issues. The CWE, on the other hand,

lists the most prevalent issues from the Common Weakness Enumeration. Thus, CWE

differs from the OWASP list as it more focuses on specific weaknesses rather than more

general categories. As a result, each item on the list pertains to actual implementation

problems that can be identified and fixed, making it more directly useful for developers

and security engineers.

In addition, CWE Top 25 covers all software categories, while the OWASP Top

10 only covers web applications (What Is OWASP? What Is the OWASP Top 10? |

Cloudflare, n.d.). Thus, OWASP Top 10 covers more general concepts and is more

focused on web applications, while CWE Top 25 covers a wider range of vulnerabilities

than what is covered by OWASP Top 10. Therefore, these two sources can be trusted as

they provide unbiased and practical information on security risks. These two significant

sources of information have been crucial in mitigating dangerous attacks from happening

all over the world and have provided developers with the greatest security practices.

11

2.4 Studies on Existing Systems

2.4.1 Acunetix

Acunetix is a web vulnerability scanner that automates the process of detecting

and reporting security issues on web applications and servers (Introduction to Acunetix |

Acunetix, n.d.). It is intended to assist organizations in identifying and resolving

vulnerabilities in their websites and web-based applications, such as SQL injection, cross-

site scripting (XSS), and other common vulnerabilities. Furthermore, it can check for

vulnerabilities on both the network and web application levels.

The scanner can uncover both known and unknown vulnerabilities, with its built-

in technology that can detect even zero-day vulnerabilities. It supports various

authentication methods, including forms-based authentication, NTLM, and Kerberos, and

has advanced false positive management to minimize false alerts. It also includes pre-

configured compliance checks for standards such as OWASP and PCI-DSS (C-YBER -

What You Need to Know about Acunetix?, n.d.).

Acunetix provides detailed reporting, including information on affected pages and

inputs, as well as recommendations for remediation. It can also be integrated with other

tools, such as bug trackers, to simplify the management of vulnerabilities. The software

can be run on Windows, Linux, and macOS.

Acunetix is a commercial software. The company offers email and phone support,

as well as a knowledge base and user community to help with any issues that may arise.

12

2.4.2 Nessus

Nessus is a widely used vulnerability scanner that can detect various types of

security problems on multiple platforms like Windows, Linux, and macOS. It can scan

for vulnerabilities on different levels like web applications, network, and cloud. The

purpose of Nessus is to assist organizations in identifying and resolving vulnerabilities in

their IT infrastructure, including servers, network devices, and cloud environments (What

Is NESSUS and How Does It Work? - ITperfection - Network Security, n.d.).

Nessus can scan for known and unknown vulnerabilities and includes pre-

configured compliance checks for standards like OWASP and PCI-DSS. It supports

different authentication methods like forms-based authentication, NTLM, and Kerberos

and has advanced false positive management to reduce false alerts.

The tool provides a detailed report that includes information about the specific

vulnerabilities found and suggestions for resolving the issues. Additionally, it can be

integrated with other tools such as bug trackers to simplify the process of managing

vulnerabilities.

Nessus is a commercial software with pricing based on the number of IPs. It offers

email and phone support, a knowledge base and user community to assist users with any

issues they may encounter. It also offers various licensing options such as Professional,

Nessus Manager and Nessus Cloud, to suit the organization's needs and the scale of the

deployment.

13

2.4.3 Qualys

Qualys is a security and compliance solution that operates on cloud, it helps

organizations detect and defend against cyber threats by providing a variety of services

including vulnerability management, compliance, and threat protection. The platform

adopts the Software-as-a-Service (SaaS) model which facilitates users to quickly and

easily access the necessary tools to secure their networks and data (Qualys Vulnerability

Scanner | Bugcrowd, n.d.).

A major feature of Qualys is its vulnerability management capabilities, it can scan

for vulnerabilities on a wide range of systems including servers, network devices, and

cloud environments. The platform offers an extensive library of vulnerability checks and

can identify both known and unknown vulnerabilities.

Qualys also provides threat protection capabilities which enables organizations to

detect and respond to cyber threats in real-time. The platform uses machine learning and

AI to analyze network traffic and detect potential threats, enabling organizations to

respond quickly to incidents and minimize the impact of cyber-attacks.

The platform also provides detailed reporting and analytics which assist

organizations in identifying vulnerabilities and threats and monitoring their progress in

resolving them. It also offers integration with other security tools like firewalls and

intrusion detection systems to streamline the process of managing security across an

organization.

Qualys is a commercial software, pricing is based on the number of assets being

scanned with different licensing options available to suit the organization's needs. It offers

24/7 customer support, a knowledge base, and user community to assist users with any

issues they may encounter.

14

2.5 Comparison on Existing Systems

Table 2.4 Comparison between all three existing system

Feature Acunetix Nessus Qualys

Logo

Platform Windows, Linux,

macOS

Windows, Linux,

macOS

Cloud-based

Scan Types Web Application,

Network

Network, Web

Application, Cloud,

Containers, IoT

Web Application,

Network, Cloud

Vulnerability

Detection

SQL Injection,

XSS, XXE, File

inclusion, and

others

Comprehensive

coverage of

vulnerabilities

Comprehensive

coverage of

vulnerabilities

Reporting Detailed reports

with remediation

advice

Customizable

reports

Detailed reports

with remediation

advice

Integration Integrates with bug

tracking systems

Integrates with

other security tools

Integrates with

other security tools

Pricing Commercial Commercial,

pricing based on

number of IPs

Subscription-based,

pricing based on

number of IPs

Support Offers email and

phone support, as

well as a

knowledge base

and user

community

Offers email and

phone support, as

well as a

knowledge base

and user

community

Offers email and

phone support, as

well as a

knowledge base

and user

community

15

2.6 Summary

Based on the review of these two articles, it shows that the sources are the most

popular and can be trusted. All the requirements gathered through this literature review

will be practiced throughout the development process of the detection tool. In order to

make sure the successful outcome of doing this vulnerability detection tool, all

requirements must be fulfilled. The results and findings that have been identified will

become the guideline during the development process.

16

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter provides a detailed explanation of the approach and steps taken

throughout the development of the proposed system, XPOSED. The gathering procedure

used in collecting data on user requirements, system requirements, and the principle used

in each stage of the chosen model will be explained. The activity involved in each

principle will be explained in more detail from start until the completion of the project.

All the principles applied are to be shown in the Software Development Life Cycle

(SDLC). The flowchart will describe the flow of work. A Gantt chart will also be shown

as it shows the track of development activities from start to finish. Besides, the design of

the proposed system, interface design, and database design has also been made. For

planning and implementation, the User Acceptance Test (UAT) form will be produced

according to the system requirements. This chapter would be really important as it shows

each process and steps to complete the project. Hence, a suitable methodology has been

chosen to apply in the development of the XPOSED system.

3.2 Software Development Life Cycle (SDLC)

After some research on the suitable Software Development Life Cycle (SDLC)

model, the RAD or Rapid Application Development approach has been chosen as it

seems suitable for the development of this XPOSED system. Based on Figure 3.1, the

RAD model is chosen based on the nature of this project and the methods to be used, as

well as the deliverables that are required to develop the system. The detection tool system

focuses on delivering the full functionality of the system and not just fulfilling all the user

requirements. The function of the system might be changed based on the user

requirements from time to time. This adaptable approach ensures active user involvement

17

throughout development, reducing the risk of non-conformance with user requirements

and saving time and resources in the process.

Hence, designing and developing the system needs to be done first, only then will

be shown to the user. If there are any unclear requirements after getting feedback from

user, the developer will rework that particular problem. This iteration will be repeated

until fulfilling all the requirements. With that, there will be a total of 4 stages in this RAD

model which are Requirements Planning, User Design, Construction, and Cutover. Every

single stage is to be explained more specifically and each stage characteristics will be

pointed out.

Figure 3.1 Rapid Application Development Process

3.2.1 Phase 1 – REQUIREMENTS PLANNING

The Requirements Planning stage involves the discussion of the important aspects

such as the project name and the desired functionalities of the system. This includes

identifying both functional requirements (features and capabilities the system should

have) and non-functional requirements (performance, security, and usability criteria).

After several meetings with the supervisor, a project name XPOSED Vulnerability

Detection System is produced. Next, proceed with studies on existing trusted sources on

top-listed security risks that relate to this project. The existing sources that are being

chosen are OWASP Top 10 and CWE SANS Top 25. Each source has its uniqueness of

deliverables on the information related to security risks.

18

3.2.2 Phase 2 – USER DESIGN

At this this stage, it involves the design of user interface of the developed system.

The overall design of the system needs to be suitable for the project and the functions

involved must be stated clearly. The interface design should contain a suitable layout

used, appropriate colour used, and readable font size as well as responsiveness for both

online and mobile views. All these elements are preferably maintained in the same

position on all pages to practice the consistency concept in designing a responsive

application suitable for all different sizes of display. Besides, the position where the

information is being displayed is important as it tells the user what the system is all about.

3.2.3 Phase 3 – CONSTRUCTION

After the previous stage, the construction phase begins. This phase involves the

actual construction of the system and the creation of the database according to the design

developed in the earlier design phase. The user interface design is also implemented,

incorporating the features identified in the previous stage. The main objective of the

construction stage is to build a robust and efficient system that can effectively detect and

analyze various types of software vulnerabilities.

3.2.4 Phase 4 – CUTOVER

The cutover stage is an important step when the developed system is ready to be

put into action. At this stage, the team thoroughly tests the system, making sure to fix any

bugs or issues that are found during testing. Once the system is stable and reliable, it is

deployed to the intended users. The team provides necessary training and support to help

users smoothly transition and start using the system effectively. Ongoing maintenance

and updates are also part of the cutover stage to ensure the system stays up to date with

the latest security practices and is protected against emerging vulnerabilities.

19

3.3 Project Requirement

The XPOSED project requirements are summarised in this section. The nature of

this system, including its functional and non-functional requirements, is depicted in Table

3.1 below.

Table 3.1 Project requirements for XPOSED system

Background XPOSED Vulnerability Detection System objective is to manage

the detection of vulnerabilities that exist in applications

systematically. For detection, the system focuses on the specific

programming language of a few selected vulnerabilities. It focuses

on the vulnerability caused by a source code attack.

Project Name XPOSED Vulnerability Detection System

Objective/Vision System needs to be able to handle the detection and provide

appropriate solutions.

Users of the

system

Individuals who want to find vulnerabilities in their application.

Functional

Requirements
• The system should have the capability to identify

vulnerabilities in source code.

• The system should be able to classify risks based on the

OWASP Top 10 categories.

• Users should be able to upload source code files for

vulnerability detection.

• The system should provide a user-friendly interface to

view reports and visualize analytics related to the

vulnerabilities detected.

• The system should allow admin to manage user accounts.

• The system should allow admin to download

comprehensive reports summarizing the scanning

activities performed by all users.

• The system should support essential functionalities such as

adding, editing, and deleting different types of risk

categories.

20

Non-functional

Requirements
• Support concurrent connections from multiple users.

• Robust database design to handle a large number of users

effectively.

• Ensure acceptable response time for system operations.

• Implement easy backup and recovery mechanisms for

user-supplied information.

• Develop a web-based platform for the XPOSED

Vulnerability Detection System.

• Limit the number of concurrent users to a few hundred to

maintain optimal system performance and prevent lagging

or delayed response times.

• Require an active internet connection for accessing the

XPOSED system to facilitate efficient data transfer

between the server and users.

• Restrict users to a single account per person to prevent

duplication and simplify user tracking.

21

3.4 Propose Design

3.4.1 Flowchart

Figure 3.2 illustrates the general step-by-step process for finding the security risks

of the uploaded source code file. The flowchart visually displays the different decision

points and paths that can be taken throughout the process, such as creating new scan,

updating existing scan record, viewing results, and generating reports. The flowchart

helps to clearly understand the flow of information and the interactions between different

components of the system.

Figure 3.2 General workflow of XPOSED system

22

The flow of a user in the XPOSED system is shown in Figure 3.3. The user must

first log in to the system and then has the option to initiate a new scan or review their

previous scan activities. To initiate a new scan, the user needs to upload a zip file

containing the source code into the system. After starting the scanning process, the user

is required to wait for a notification from the system confirming the completion of the

scan. They can then view the results, which are displayed in an analytics view and show

any detected vulnerabilities in the source code, categorized according to OWASP Top 10

categories. These vulnerabilities are further broken down by specific security risk names

and detailed explanations of the vulnerability type according to CWE SANS Top 25.

Finally, the user can export the results as desired.

Figure 3.3 Detailed workflow of End Users

23

In Figure 3.4, the system flow for Admin is depicted. The main focus of an

admin's tasks within the XPOSED system is twofold: managing the list of risk categories

and handling user data. This process commences with the admin's login to the system.

By accessing the analytics dashboard, the admin can obtain informative statistics

regarding various categories. These statistics include the total number of users, total

vulnerabilities, and the number of existing categories. The manage user page allows the

admin to view a list of registered users. Moreover, the admin has the capability to

generate reports concerning scan analysis and user information. This enables the

identification of patterns and trends in user activity.

Figure 3.4 Detailed workflow of Administrator

24

3.4.2 Context Diagram

The context diagram in Figure 3.5 provides an overview of the XPOSED system

and how it interacts with external entities such as end users or administrators. In this

system, end users and administrators are the entities that interact with the system. The

data flow between the entities and the system indicates the exchange of information. The

diagram shows that all users are required to log in to the system in order to use it. Users

have the ability to upload source code, initiate a scan, view the results of the scan, and

generate reports. The administrator can manage the risk information and generate reports

based on the user activity, as well as identifying trends and patterns.

Figure 3.5 Context diagram of XPOSED system

25

3.4.3 Use Case Diagram

The use case diagram is a visual representation of the XPOSED system's

behaviour and functionality as it responds to requests made by different actors, such as

User and Admin. The Figure 3.6 shows how these actors interact with the system and the

specific actions they are able to perform. The User actors are required to log in to the

system before they can use it and are able to log out once they are finished. On the other

hand, Admin actors have the capability to oversee risk categories and generate reports

containing relevant information about scans and user data. One behaviour that is common

to both actors is the ability to generate reports based on their own representations of the

system. This allows both User and Admin actors to gain insights and understand how the

system is being used. Besides, Table 3.2 shows the use case functionality for XPOSED

system.

Figure 3.6 Use case diagram of XPOSED system

26

Table 3.2 Use case description of XPOSED system

Use Case ID XPS-UCD-100 (Manage Registration)

Brief Description This use case involves Endusers creating new accounts and

both Endusers and Admin logging in with existing accounts.

Actor Enduser and Admin

Pre-Conditions Endusers must register an account prior to accessing the

system.

Basic Flow [Enduser]

1. The use case begins when the system displays the

Registration page.

2. User enters username, email address, and password

for account creation.

3. System validates the format of the entered details.

[C1: Password length]

4. User clicks <<Create Account>> button.

5. System validates the input against existing

accounts. [E1: User already exist]

6. System redirects to Login page, indicating

successful registration.

7. User enters registered email address and password.

8. User clicks <<Login>> button. [E2: Invalid

27

credentials]

9. The use case ends.

[Admin]

1. The use case begins when the system displays the

Login page.

2. Admin enters username and email address.

3. Admin clicks the <<Login >> button.

4. The use case ends.

Exception Flow [E1: User already exist]

1. System shows message “User already existed”.

2. Use case continues at Step 2 in Basic Flow

(Enduser).

[E2: Invalid credentials]

1. System shows message “Username or email is not

matched”.

2. Use case continues at Basic Flow Step 2 for

Enduser.

Post-Conditions User successfully logs in or registers, gaining access to their

account and functionalities.

Rules Not Applicable

Constraints [C1: Password length]

Password length should be in between 10 to 30 alphabets.

28

Use Case ID XPS-UCD-200 (Manage Scan Activity)

Brief Description This use case enables the Enduser to view, create, and delete

their scan activity.

Actor Enduser

Pre-Conditions Enduser is logged in.

Basic Flow 1. The use case begins when the system displays the

My Scan page.

2. System displays all the existing scan list with the

information regarding that scan.

3. From the My Scan page, the Enduser is able to:

i. Create a new scan. [A1: Add New Scan]

ii. Export report of existing scan. [A2:

Download Scan]

iii. Delete old scan. [A3: Delete Scan]

4. The use case ends.

Alternative Flow [A1: Add New Scan]

1. Clicks <<Add New Scan>> button.

2. Enter scan name and scan description.

3. Upload zip file. [E1: Wrong file format]

4. Click <<Scan>> button to submit.

5. System verifies and processes the uploaded file.

6. System shows loader to indicate the progress of

scanning process.

7. The system saves the data to the database.

8. System shows analytics report of the scan activity.

29

9. The use case continues at Step 4 in Basic Flow.

[A2: Download Scan]

1. Clicks the download icon which parallel to the

selected record.

2. System process the download request.

3. The use case continues at Step 4 in Basic Flow.

[A3: Delete Scan]

1. Clicks the trash icon parallel to the selected record.

2. System pop-up message to confirm the delete

action.

3. User clicks <<Delete>> button.

4. System displays successful message.

5. The use case continues at Step 4 in Basic Flow.

Exception Flow [E1: Wrong file format]

1. System shows message “Only .zip type accepted”.

2. The use case continues at Step 3 in Basic Flow.

Post-Conditions Source code file is successfully uploaded and ready for

vulnerability scanning.

Rules Not Applicable

Constraints Not Applicable

30

Use Case ID XPS-UCD-300 (View Analytics Visualization)

Brief Description This use case involves Endusers to access analytics data for the

identified vulnerabilities in their scan.

Actor Enduser

Pre-Conditions Endusers have initiated a scan and there are vulnerabilities

identified in the system.

Basic Flow [Enduser]

1. The use case begins when the system displays the

scan detail page.

2. The user selects one of the records they want to

explore further.

3. The system presents the selected record's

information along with relevant data analytics

visualizations.

4. The user views and analyzes the displayed

information and data visualizations.

5. The use case ends.

Exception Flow [None]

Post-Conditions User has successfully viewed and analyzed the selected

record's information and data analytics visualization.

Rules Not Applicable

Constraints Not Applicable

31

Use Case ID XPS-UCD-400 (Manage User Activity)

Brief Description This use case involves Admin to monitor and review all user

activities related to their scan.

Actor Admin

Pre-Conditions Admin must be logged into the system.

Basic Flow [Admin]

1. The use case starts when the system presents the

user movement page.

2. The admin chooses a specific record for further

exploration.

3. The admin verifies the accuracy of the displayed

report.

4. The use case ends.

Exception Flow [None]

Post-Conditions Any necessary actions or decisions based on the report can be

taken.

Rules Not Applicable

Constraints Not Applicable

32

Use Case ID XPS-UCD-500 (Manage Risk Category)

Brief Description This use case enables the Admin to add, edit, and delete risk

category.

Actor Admin

Pre-Conditions Admin is logged in.

Basic Flow 1. The use case begins when the system displays the

Add New Word page.

2. System displays all the existing risk list with the

information regarding that risk.

3. From this page, admin able to:

i. Add a new word for the risk. [A1: Add New

Risk]

ii. Edit any of existing risk record. [A2: Edit

Risk]

iii. Delete unwanted risk type. [A3: Delete

Risk]

4. The use case ends.

Alternative Flow [A1: Add New Scan]

1. Clicks <<Add New Word>> button

2. System displays a modal form to be insert with

several details regarding the risk.

3. Click <<Save>> to submit the risk.

4. The system saves the data into the database.

5. The use case continues at Step 4 in Basic Flow.

[A2: Edit Risk]

1. Clicks the <<Edit>> button.

2. Edit the risk form modal.

33

3. Clicks <<Save>> button.

4. System saves the data to the database.

5. System displays successful message.

6. The use case continues at Step 4 in Basic Flow.

[A3: Delete Risk]

1. Clicks <<Delete>> button to delete any of the

unwanted risk.

2. System pop-up message to confirm the delete

action.

3. User clicks <<Delete>> button.

4. System deletes the data from database.

5. System displays successful message.

6. The use case continues at Step 4 in Basic Flow.

Exception Flow [None]

Post-Conditions Risks are successfully added, edited, or deleted within the

system as per the admin's actions.

Rules Not Applicable

Constraints Not Applicable

34

Use Case ID XPS-UCD-600 (Generate Report)

Brief Description This use case enables the Enduser and Admin to generate a

comprehensive report based on the scan data.

Actor Enduser and Admin

Pre-Conditions The presence of data from the scanning process.

Basic Flow [Enduser]

1. The use case starts when the system shows the scan

detail page.

2. The system displays the scan activity report.

3. The user selects the <<Export>> button.

4. The system processes the request and shows the

report in PDF format.

5. The user saves the file.

6. The use case ends.

[Admin]

1. The use case begins when the admin navigates to

the Manage Settings menu.

2. The system redirects to the corresponding page,

providing access to various settings.

3. Admin clicks on the Export menu tab.

4. The admin triggers the export functionality by

clicking the designated <<Export>> button.

5. The system promptly processes the export request

and generates a detailed report in PDF format.

6. The user is then able to save the PDF file for future

reference or further analysis.

7. The use case ends.

35

Alternative Flow [None]

Exception Flow [None]

Post-Conditions Admin successfully exports and saves the report in PDF

format.

Rules Not Applicable

Constraints Not Applicable

36

3.4.4 Storyboard

The storyboard illustrates the sketched user interface for the XPOSED system.

The storyboard includes a visual representation of the different screens and how they will

be navigated by the user.

Dashboard sketch

37

Add new scan sketch

Scan lists sketch

38

Re-launch existing scan sketch

39

3.5 Data Design

3.5.1 Entity Relationship Diagram (ERD)

Figure 3.7 ERD for XPOSED system

The business rule for this XPOSED system is:

1) A vulnerability can be detected on multiple files (one-to-many).

2) One file can have multiple vulnerabilities (one-to-many).

3) A scan can detect multiple vulnerabilities (one-to-many).

4) A user can have many scanning activities.

5) A user can run one scanning at a time.

6) Each scanning is limited to having a single report at any given time.

7) Users can view the results of the scanning process as well as view the

reports.

8) Many scanning projects can belong to one user.

40

3.5.2 Data Dictionary

USERS TABLE

Field Name Data Type Purpose Constraints

user_id Integer A unique identifier for each

user in the system.

PRIMARY

KEY

name String A unique username chosen

by the user.

email String The email address

associated with the user's

account.

password String The password chosen by the

user for their account.

(Hashed or Encrypted)

phone_no String The user's phone number.

category String The role of the user in the

system (e.g. administrator,

user, etc.).

avatar String The image that represents a

user's profile

created_at Date The date the user registered

for the system.

updated_at Date The system login date of the

user.

41

RISKS TABLE

Field Name Data Type Purpose Constraints

risk_id Integer Unique identifier for each

vulnerability.

PRIMARY

KEY

name String Name of the vulnerability.

search_word String Refer to a keyword or

phrase that is used in a

search operation.

next_line String Text or word present in the

next line of a source code.

severity_level Integer Severity level of the

vulnerability. (e.g. high,

medium, low)

owasp_category String The OWASP Top 10

category the vulnerability

belongs to, if applicable.

cwe_id String The Common Weakness

Enumeration (CWE) ID

associated with the

vulnerability.

sans_category String The SANS Top 25

category the vulnerability

belongs to, if applicable.

base_score Float The Common

Vulnerability Scoring

System (CVSS) v3 base

score for the vulnerability.

42

description String A brief description of the

vulnerability and how it

can be exploited.

solution String Suggested solution to

mitigate the vulnerability.

impact String The potential impact of the

vulnerability on the system

and data.

reference String Link for more information

about the vulnerability.

date_discovered Date The date the vulnerability

was discovered.

status String The current status of the

vulnerability (e.g.

unpatched, patched, under

investigation, etc.).

43

SCANS TABLE

Field Name Data Type Purpose Constraints

scan_id Integer A unique identifier for each

scan in the system.

PRIMARY

KEY

user_id Integer A unique identifier for the

user who initiated the scan.

FOREIGN

KEY

report_id String A unique identifier assigned

to a specific report.

FOREIGN

KEY

risk_id String A unique identifier assigned

to a specific risk.

FOREIGN

KEY

scan_code String A numeric and alphabet

code associated with a

specific scan.

filename String The name of uploaded file.

line_number String The line numbers where the

vulnerability is located.

file_path String The specific location or

address of a file.

scan_type String The type of scan performed

(e.g. full, partial).

language String The programming language

used.

status String The current status of the

scan (e.g. completed, in

progress, etc.).

deleted_at Datetime The point in time when the

deletion operation occurred.

44

REPORTS TABLE

Field Name Data Type Purpose Constraints

report_id Integer A unique identifier for each

report in the system.

PRIMARY

KEY

scan_id Integer The ID of the scan the

report is associated with.

FOREIGN

KEY

user_id Integer A unique identifier for the

user who generated the

report.

FOREIGN

KEY

title String The name of report (e.g.

vulnerability report,

penetration test report, etc.)

date_generated Date Time The date and time the report

was generated.

link_file String Link to the report file.

45

3.6 Proof of Initial Concept

3.6.1 Dashboard Interface

The dashboard displayed in Figure 3.8 within the XPOSED system offers a clear

and organized presentation of vital information. It specifically highlights the

current severity level of security risks, which are categorized as Low, Medium,

or High.

Figure 3.8 Dashboard interface of XPOSED

46

3.6.2 Add New Scan Interface

The interface displayed in Figure 3.9 is designed to facilitate the scheduling and

initiation of new scans. Users can input all necessary details before starting the

scanning process, making it easy to create a new scan record.

Figure 3.9 Add New Scan interface of XPOSED

47

3.6.3 Scan List Interface

The interface illustrated in Figure 3.10 is designed to offer users a comprehensive

overview of all the scan records that have been executed within the system. Users

can sort and filter the records using various criteria such as the latest scan, name

of the scan, and date range.

Figure 3.10 Scan Lists interface of XPOSED

48

3.6.4 Scan Details Interface

As depicted in Figure 3.11, the interface displays the outcome of the scanning

process. It shows a list of all the vulnerabilities discovered in the uploaded project

file. Users can gain a more detailed understanding of the security risks by clicking

the "INFO" button.

Figure 3.11 Scan Details interfaces of XPOSED

49

3.6.5 Scan Info Interface

Figure 3.12 offers users in-depth information about a selected vulnerability. It

provides information such as the name of the vulnerability, a description of the

vulnerability, the level of risk associated with it, and the solution to prevent it

from happening.

Figure 3.12 Scan Info interface of XPOSED

50

3.6.6 History Interface

The history interface, as depicted in Figure 3.13, allows users to view a

chronological record of all previous scans. Users can access data such as the date

and time of each scan and can see the total number of scans that have been

performed.

Figure 3.13 Scan History interface of XPOSED

51

3.7 Testing / Validation Plan

The primary objective of the UAT (User Acceptance Test) form is to thoroughly evaluate

the performance of the XPOSED Vulnerability Detection System in real-world scenarios.

The UAT form as shown in Figure below is specifically designed for end-users who

actively utilize the system. By collecting valuable user feedback through the UAT form,

the development team can gain insights into the system's strengths and areas for

improvement. This feedback serves as a vital input for implementing necessary

enhancements or modifications to the system, ensuring that it meets the end-users'

requirements and expectations. Additionally, the feedback received from the UAT form

contributes to an overall evaluation of the system's effectiveness, allowing for continuous

refinement and optimization.

No. Module Activities Comments
User login Yes () No ()
User logout Yes () No ()
Forgot password Yes () No ()
New user registration Yes () No ()
Form validation Yes () No ()
Submit registration Yes () No ()
Display correct data Yes () No ()
Chart visualization Yes () No ()
Upload source code Yes () No ()
Submit new scan Yes () No ()
Display scan results Yes () No ()
Delete scan record Yes () No ()
Restore scan record Yes () No ()
Download report Yes () No ()
Email Notification Yes () No ()
View word risk Yes () No ()
Edit selected record Yes () No ()
Delete record Yes () No ()
Add new risk Yes () No ()

Register2

4 Manage Scan

5 Manage Risk

Status

1 Login

3 Dashboard

This test has been performed by:

Name : jsdskjdhwjfhejfhefrfeirfjerfefjkehrfefeiufher
Signature : jsdskjdhwjfhejfhefrfeirfjerfefjkehrfefeiufher
Date : jsdskjdhwjfhejfhefrfeirfjerfefjkehrfefeiufher

52

3.8 Potential Use of Proposed Solution

XPOSED is a tool that can be used to identify potential vulnerabilities in software

application in real-time. This can include identifying vulnerabilities in software and

hardware, as well as in the organization's overall network infrastructure.

In a real-time situation, XPOSED can be used to detect and alert IT staff to

potential vulnerabilities as they occur. This can help organizations to quickly respond to

and address potential security threats. For example, if a new vulnerability is discovered

in a widely used software application, this system can be used to scan the running source

code in order to determine if any files are running the affected software. The XPOSED

system can then alert IT staff, who can take action to patch the vulnerability before an

attacker can exploit it.

XPOSED solutions in the future, can also be commercialized for companies and

organizations that want to protect their systems from vulnerabilities. These solutions can

be used by companies of all sizes and in various industries, including healthcare, finance,

and government. They can be deployed on-premises or in the cloud and can be

customized to meet the specific needs of the organization.

Besides, XPOSED system offer additional services such as vulnerability

information to help organizations identify the natural of the security risks. They also

provide a detailed report on the vulnerabilities found, which can be used for compliance

purpose.

Thus, XPOSED is a valuable tool that can help users and organizations to

proactively identify and address potential security threats in real-time. It may also be

commercialised in the future to be able to offer a service to other organisations.

53

3.9 Gantt Chart

The Gantt chart is a tool used to visualize the timeline of a project by breaking

down tasks into bars on a timeline. It is often used in conjunction with the Incremental

and Iterative model to ensure that the project is completed on schedule. The chart in

Figure 3.14 illustrates the planned schedule for the project using this method.

Figure 3.14 Gantt chart table of XPOSED project

Duration (Week) 1 2 3 4 5 6 7 8 9 10 11 12 13
PHASE 1: PLANNING 1-2
Define problem statement, objective, scope 1
PHASE 2: ANALYSIS 2-4
Define OWASP and CWE SANS 2
Construct mapping between two sources 2
Compare existing detection tools 3
Determine suitable SLDC 4
Identify project requirements 4
PHASE 3: DESIGN 5-13
Construct flowchart 5
Design use case diagram 6
Develop context diagram 6
Create an activity diagram 6
Design entity relationship diagram 7
Construct data dictionary 7
Develop design for database 8
Design storyboard 9-10
Develop design for user interface 10-11
Design UAT form 12
Identify the significant of the project 13

Activities

UNDERGRADUATE PROJECT SCHEDULE
UNDERGRADUATE PROJECT I 2022/2023 SEM 1

54

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, the process and methodology used to deploy the XPOSED

Vulnerability System will be explained. The system flow will be described in detail,

starting from the initial stages until the completion of the system. Additionally, a user

manual has been created to guide users on how to use the completed system. The user

manual will include screenshots and explanations that will provide step-by-step

instructions for the user to follow and understand. To ensure that the system performs

optimally, a User Acceptance Test (UAT) form will be designed. This form will be used

to test all the functional and non-functional requirements of the system, and users will be

asked to provide feedback on their experience. The feedback received will be used to

improve the system, and all the results will be recorded in the UAT form. It is important

to note that several tests are needed to examine the performance of the system thoroughly.

By doing so, it can be ensured that the system meets all the requirements and performs

as expected. The UAT form will be an essential tool in this process, as it will provide

valuable insights into the system's performance and areas that need improvement.

55

4.2 Implementation

The developed system has been implemented using three different web-based

programming languages, namely PHP, CSS, and JavaScript. During the development

process, Visual Studio Code was used as a source-code editor to write code for each

interface design of the existing page. Before deploying the system into a real server,

XAMPP was used as a demo web-server. The web-server will connect the web with the

database, which is MySQL. This connection is essential for the system to function

correctly and to store and retrieve data from the database. The XPOSED system consists

of two types of users, namely End Users and Admin. Each of these users will have their

own interface, and each of them will have different implementations towards the system.

The End Users will be able to use the system to identify vulnerabilities in their systems,

while the Admin will have access to additional features that allow them to manage the

system and its users. The system includes several pages, such as the sign-up page, sign-

in page, profile page, and notifications page. Each of these pages serves a specific purpose

and is designed to provide a seamless user experience.

56

4.2.1 User Manual

This section provides a detailed description of each existing interface in the XPOSED

system. Step-by-step instructions are included to guide users on how to use the system

effectively. Each interface is designed to be user-friendly and intuitive, with clear

instructions and easy-to-use features.

4.2.1.1 User Sign Up or Register

Figure 4.1 Register page

Displayed in Figure 4.1 is an essential part of the XPOSED system, which is the

page that allows new users to create an account and gain access to the system's features.

To create an account, users must provide their personal information, including their name,

email address, and password. This information is necessary to ensure that each user has

a unique account and to protect the system from unauthorized access. For users who

already have an account, they can click on the Login link to access their existing account.

Enter name, email,
and password

Link to login page Click this
to register

57

4.2.1.2 User Login

Figure 4.2 Login page

Figure 4.2 shows the login page, which allows existing users to log in to the

system. Users must enter their existing email and password before clicking on the Login

button. If a user wishes to register or create an account, they simply need to click on the

Register link, which will redirect them to the registration page.

Fill in the
details

Link to register page
Login button

58

4.2.1.3 End User

4.2.1.3.1 Viewing dashboard overview

Figure 4.3 Dashboard overview for users

The dashboard page, displayed in Figure 4.3, is a vital component of the XPOSED

system. It provides users with real-time information about their scan activity, allowing

them to stay informed and take proactive measures to prevent vulnerabilities from

occurring. The dashboard is designed to be user-friendly and intuitive, with clear

visualizations and easy-to-use features.

The upper section of the dashboard displays the status of existing scan activity,

including total scan, total risk found etc. This information keeps users informed about the

scan’s activity. The middle section of the dashboard provides users with a simplified

threat summary in a pie chart view, indicating the severity level of vulnerabilities.

Additionally, the dashboard informs users which type of vulnerability they need to pay

attention to more, according to the rank of OWASP Top 10.

By clicking on the view button in the lower section of the dashboard, users can

access detailed information about their recent scans. This action will redirect them to the

My Scan page.

Statuses of the
scan activity

Visualizing threat
data in chart form Informing the highest

priority risks to be addressed

59

4.2.1.3.2 Uploading source code folder

Figure 4.4 Interface when uploading folder

Figure 4.4 shows the interface that allows users to upload their source code folder

into the XPOSED system. To upload their folder, users can click on the "Add New Scan"

button located on the left navigation bar. This button provides users with a quick and easy

way to initiate the scanning process. The system only accepts zip file format for the folder

that can be uploaded, and any other file format will result in an error message. To upload

a folder, users must first enter the scan name and then select the zip folder they want to

upload by clicking on the "Choose File" button. Once the folder is selected, users can

upload it into the system by clicking the "Create" button. The system will then save the

uploaded zip folder into the database and display a success message to indicate that the

uploading process is complete.

Enter the
scan info

Click to choose a
file to be uploaded

Click to upload

60

4.2.1.3.3 Managing scan records

Figure 4.5 List of scans page

In Figure 4.5, the user interface displays a list of scan activities in a table format,

providing an organized and visually appealing layout. The user can sort the scan names

and use the search feature to find specific information. The primary focus of the table is

to present crucial data that pertains to the presence or absence of specific words in the

uploaded zip file. This concise presentation offers users a rapid summary of the content

within their uploaded file. Moreover, the user has the ability to perform various actions

on each listed scan, including viewing, deleting, or downloading the scan activity.

Click scan name
for more details

Choose to view,
delete, or download

61

Figure 4.6 Scan details page

Figure 4.6 displays the interface that appears when the user clicks on a scan name

from the previous interface. This interface lists all the vulnerabilities found during the

scan process. For a comprehensive understanding of a particular security risk, users can

effortlessly scroll down the page to access a dedicated section containing detailed

information about the risk type. Additionally, the right section of the interface offers a

concise summary of the completed scan. To export a report of the displayed information,

users can simply click on the Export button, enabling them to conveniently obtain a

comprehensive record of the relevant details. The interface is designed to be minimalist,

making it easy for the user to navigate and use the system with ease.

List of found
vulnerabilities

Click to export

62

4.2.1.3.4 Restoring Deleted Scan

Figure 4.7 Bin page

Figure 4.7 shows the interface that gathers all the deletions made by the user,

providing them with a safety net to restore any crucial folders that they may have

accidentally deleted. The bin interface displays the file name, file path, deleted at, and

actions, which include two buttons: the "Permanently Delete" and "Restore" buttons. If

users click on the "Permanently Delete" button, the system will ask for confirmation of

their delete action. This feature is designed to prevent users from accidentally deleting

folders and to ensure that they are aware of the consequences of their actions. The

"Restore" button is a feature in the bin interface that allows users to restore any

accidentally deleted folders. When a user clicks on the "Restore" button, the system will

restore the selected folder back into the list of scan activity, and users will be able to use

the restored folder for the scan process.

Click to
delete forever

Click to restore

63

4.2.1.3.5 Updating user account

Figure 4.8 User profile settings page

This interface in Figure 4.8 allows users to update or change several details related

to their account. Users can update their account name and username, as well as their

profile image by following the specified image file type and size requirements. To update

their account details, users can change any of the displayed data and click the "Update

Account" button. This will save the new changes made in the database. Additionally, if

users forget their current password, they can reset it by clicking on the "Reset Password"

button.

For update
profile image

Click to update

Fill out the form
to update profile

64

4.2.2 Database Design

This section focuses on the testing of the XPOSED system with the MySQL

database. The database, named "xposed," records all the data completed by users. To

record all the information entered or changed by users, several tables have been created

in the database. These tables are designed to store all the necessary information related

to the system, ensuring that all user data is accurately recorded and easily accessible.

Figure 4.7 Implementation of xposed database

The table used for the "xposed" database is listed in Figure 4.11 above. Each

existing page in the XPOSED system will have its data and information recorded in its

corresponding table. This means that the data for each page will be stored in a structured

manner, making it easier to access and analyze.

65

Figure 4.8 Structure of migrations table

The migrations table in Figure 4.14 is used to keep track of changes made to the

database schema over time. When developing a web application, it is common to make

changes to the database schema as the application evolves and new features are added.

The migrations table is used to store a record of these changes, allowing developers to

easily track and manage the evolution of the database schema.

Figure 4.9 Structure of reports table

The "reports" table is depicted in Figure 4.15, and it is responsible for storing all

the data related to the export reports generated by users. Whenever a user clicks on the

"generate report" button, new data is added to this table and saved in the database for

future reference. The data inserted into this table includes information such as the scanID,

the user ID who exported the report, the title of the report, the date it was generated, and

the link to the report.

66

Figure 4.10 Structure of risks table

The "risks" table, as shown in Figure 4.16, is a crucial component of the system

that stores the latest information about software vulnerabilities that follow the current

OWASP Top 10 and CWE SANS Top 25. The admin is responsible for updating the table

with the latest rank of security risks according to the two sources being referred to. It is

important for the admin to edit the records in the table every time the latest rank is

released by the two sources, ensuring that users have access to the most up-to-date

information regarding software vulnerabilities. The "risks" table contains columns that

are based solely on the information provided by the sources' websites, as it is not

appropriate to assume the software risks. The admin inserts data such as the risk name,

severity level, the OWASP Top 10 category to which the vulnerability belongs, the base

score, a brief description of the risk, and suggested solutions to mitigate the vulnerability.

By storing this information in a dedicated table, users can easily access and retrieve the

latest information about software vulnerabilities.

67

Figure 4.11 Structure of scans table

The "scans" table, as depicted in Figure 4.17, is responsible for keeping all the

scan activities produced by the user. The data recorded in this table is listed on the List

Scan page, and users can view or edit the information as needed. Any changes made by

the user will be reflected in this table, ensuring that the information is always up-to-date.

The "scans" table contains important data such as the userID, start time of the scanning

activity, type of scan, riskID, scan status, and reportID.

68

Figure 4.12 Structure of users table

The "users" table in Figure 4.18 is also a crucial table, as it stores all the records

of users who have registered their accounts and also data related to user accounts,

including their personal information and login credentials. This table contains important

data such as the user's ID, name, email address, password, category, and avatar. By

keeping a record of this information, users can easily access and manage their account

information, while also ensuring that the system remains secure and reliable. Users can

easily manage their account information, update their personal details, and change their

login credentials as needed.

69

4.2.3 Coding Implementation

TO VIEW

TO UPDATE

70

TO DELETE

TO ADD

71

4.3 Testing and Result Discussion

In this section, testers will test the system to identify any problems or areas for

improvement that need to be addressed to ensure that the system functions well and meets

all the intended requirements. The UAT form will be divided into several modules for

testing, and based on the user acceptance test, all testers will provide feedback on the

system's functionality and any issues they encounter while using it. Testers will also

provide comments on any areas where the system could be improved to make it more

efficient and effective for users.

This testing is crucial before the XPOSED system is released for public use, as it

helps to ensure that the system is functioning as intended and meets the needs of its users.

By identifying any issues or areas for improvement during the testing phase, developers

can make the necessary changes to the system to ensure that it is reliable, efficient, and

effective. Thus, this testing phase is an essential component of the system development

process, helping to ensure that the system meets the needs of its users and functions well

in real-world scenarios.

74

CHAPTER 5

CONCLUSION

5.1 Introduction

It can be said that this development of XPOSED Vulnerability Detection System

represents a significant advancement in the field of cybersecurity by providing a

comprehensive solution for identifying and mitigating vulnerabilities in software

applications. The project aimed to enhance the security posture by offering an automated

and efficient vulnerability detection process.

Throughout the development of the XPOSED system, several key features were

implemented to achieve its objectives. These features included advanced scanning

algorithms, comprehensive vulnerability databases, and real-time monitoring

capabilities. By leveraging these capabilities, the system effectively identified and alerted

users to potential vulnerabilities, allowing them to take proactive measures to protect

their systems.

However, it is important to acknowledge that the XPOSED Vulnerability

Detection System has some limitations that need to be addressed. While the system

demonstrated promising results in detecting known vulnerabilities, further research and

development are required to improve its effectiveness in identifying zero-day

vulnerabilities and emerging threats. Additionally, the system's performance and

scalability could be enhanced to accommodate larger networks and ensure efficient

scanning across diverse environments.

Furthermore, user feedback and evaluations played a crucial role in assessing the

usability and effectiveness of the XPOSED system. User Acceptance Testing (UAT)

form were distributed to gather insights and opinions from users regarding their

experience with the system. The feedback received indicated a positive response, with

75

users expressing satisfaction with the system's usability and its ability to enhance their

organization's security posture.

In conclusion, the XPOSED Vulnerability Detection System has made significant

progress in achieving its objectives of automating vulnerability detection and enhancing

cybersecurity. Moving forward, it is recommended to address the identified limitations

and flaws to further improve the system's effectiveness and user satisfaction. This

includes conducting research to detect zero-day vulnerabilities, optimizing system

performance, and expanding its capabilities to adapt to evolving security threats. By

continuously enhancing the system, the XPOSED project can make a valuable

contribution to the ongoing effort to protect computer systems from vulnerabilities and

ensure the resilience of digital infrastructure.

76

5.2 Limitations and Constraints

XPOSED encounters several factors that limit its capabilities and impose constraints:

- Time constraints: The project faced limitations in terms of the available

development time, which resulted in a reduced number of modules being

incorporated into the system. This means that certain desired features or

functionalities might not have been fully implemented or explored due to the

limited timeframe for development.

- Insufficient knowledge about integrating social media account registration:

Encountered challenges in implementing the functionality that allows users to

register using their social media accounts, such as Facebook or Google. This

might be due to a lack of understanding or expertise in integrating third-party

authentication systems, which ultimately limited the system's ability to offer this

convenient registration option for users.

- Limited knowledge about handling file types other than PHP and Java: Faced

difficulties in enabling users to upload file types other than PHP and Java. This

limitation might have been caused by a lack of familiarity with file handling

techniques or a limited understanding of how to implement file scanning

functionality for different file extensions. As a result, the system might not be

able to effectively scan and analyze files of various formats, restricting its overall

capability.

- Lack of proper guidance and instructions: The system lacks comprehensive

guidance and instructions for users. The absence of highlighted features or a

dedicated tour might make it challenging for users to understand how to navigate

and utilize the system effectively. Clear and intuitive instructions, tooltips, or a

step-by-step tutorial would greatly improve the user experience and ensure users

can leverage the system's functionalities to their fullest extent.

77

5.3 Future Work

The detection tool system poses significant challenges, and while XPOSED has

made progress, there is still ample room for improvement. The following enhancements

could be considered for future work:

- Predictive Modelling for detecting upcoming vulnerability types: This feature

could leverage the data gathered from user scan activities to develop predictive

models. By analyzing patterns and trends, the system could potentially identify

new types of vulnerabilities before they are officially documented. This predictive

capability would provide users with more accurate information and enable

proactive measures to address emerging threats.

- Source code editor and vulnerability highlighting: Adding a feature that allows

users to view the uploaded source code in an integrated editor would enhance the

system's usability. Upon completion of the scanning process, the system could

indicate the specific lines of code where vulnerabilities may occur. Users would

then have the ability to make changes or edits directly within the editor and

save/download the modified source code. This feature would facilitate efficient

vulnerability mitigation and reduce the risk of introducing new issues.

- Expanded chart visualization options: Consideration could be given to

incorporating a wider range of chart types for visualizing the data generated by

XPOSED. By offering different chart formats, users would have additional ways

to comprehend and interpret the information presented. This visual diversity can

enhance data analysis and promote a deeper understanding of the displayed chart

data.

78

REFERENCES

Agile methodology — Zomato Case study | by Bhavz Kakarla | Medium. (n.d.). Retrieved
January 22, 2023, from https://medium.com/@srisayi.bhavani/agile-methodology-zomato-
case-study-311da3388518

CWE - 2022 CWE Top 25 Most Dangerous Software Weaknesses. (n.d.). Retrieved January 22,
2023, from https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

CWE - Frequently Asked Questions (FAQ). (n.d.). Retrieved January 22, 2023, from
https://cwe.mitre.org/about/faq.html

CWEs vs OWASP top 10? - DEV Community . (n.d.). Retrieved January 22, 2023, from
https://dev.to/caffiendkitten/cwes-vs-owasp-top-10-4imm

C-YBER - What you need to know about Acunetix? (n.d.). Retrieved January 22, 2023, from
https://c-yber.com/what-you-need-to-know-about-acunetix/

Introduction to Acunetix | Acunetix. (n.d.). Retrieved January 22, 2023, from
https://www.acunetix.com/support/docs/introduction/

OWASP and its importance to Application Security – Conviso AppSec. (n.d.). Retrieved January
22, 2023, from https://blog.convisoappsec.com/en/owasp-and-its-importance-to-
application-security/

OWASP Top 10:2021. (n.d.). Retrieved January 22, 2023, from https://owasp.org/Top10/

Qualys Vulnerability Scanner | Bugcrowd. (n.d.). Retrieved January 22, 2023, from
https://www.bugcrowd.com/glossary/qualys-vulnerability-scanner/

What is Common Weakness Enumeration (CWE)? | Definition from TechTarget. (n.d.).
Retrieved January 22, 2023, from
https://www.techtarget.com/searchsecurity/definition/Common-Weakness-Enumeration

What is NESSUS and How Does it Work? - ITperfection - Network Security. (n.d.). Retrieved
January 22, 2023, from https://www.itperfection.com/network-security/network-
monitoring/what-is-nessus-and-how-does-it-work-network-munitoring-vulnerabilit-
scaning-security-data-windows-unix-linux/

79

What is OWASP? What is the OWASP Top 10? | Cloudflare. (n.d.). Retrieved January 22, 2023,
from https://www.cloudflare.com/learning/security/threats/owasp-top-10/

80

