Catalysts derived from waste sources in the production of biodiesel using waste cooking oil

Peng-Lim Boey a,*, Shangeetha Ganesan a, Gaanty Pragas Maniam b, Melati Khairuddean a

a School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
b Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia

Abstract

Catalysts fully derived from waste materials in order to make sustainable chemical reactions have been a recent topic of interest. Calcined (900 °C, 2 h) calcium oxide (CaO) sourced from waste mud crab shells and cockleshells were mixed in a 1:1 mass ratio to be used for transesterification of waste cooking oil (WCO) at 5 wt.% catalyst and a methanol to oil molar ratio of 13:1 for 3 h at methanol refluxing temperature to give 98% conversion. Then, boiler ash (BA) from agricultural waste was used to transesterify WCO at 3 wt.% catalyst and a methanol to oil molar ratio of 15:1 for 0.5 h at methanol refluxing temperature to give 89% conversion. In order to reduce the reaction time (for CaO-catalyzed reaction) and to increase the conversion (for BA-catalyzed reaction) various amounts of BA were added to 5 wt.% of mixed CaO and optimized using Central Composite Design (CCD). The optimized conditions predicted by CCD were found to be 3.39 wt.% boiler ash, with a reaction time of 32.3 min and a conversion of 99.5%. The predicted results agree with the experimental results (3 wt.% boiler ash, reaction time of 30 min with 99% conversion).

© 2011 Elsevier B.V. All rights reserved.