

Effects of p-type-metal-doping (Ba, Cs, and Y) of the compact-TiO₂ electron transporting layer on the photovoltaic properties of n-i-p perovskite solar cells

U. Nwankwo^{1,2,3,4}, Agnes C. Nkele¹, Christopher J. Arendse⁵, Kenneth I. Ozoemena⁶, A. B. C. Ekwealor¹, Rajan Jose⁷, Malik Maaza^{3,4}, and Fabian I. Ezema^{1,3,4,*}

Received: 24 April 2023 Accepted: 21 September 2023 Published online: 29 September 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature, 2023

ABSTRACT

Tailoring of charge transport properties of the electron transport layer (ETL) in solution-processible solar cells is continuously addressed not only for the performance enhancements in perovskite solar cells but also in various other applications in nanotechnology. In this work, three p-type dopants: barium, cesium (Cs), and yttrium (Y) with varying crystal radii and charges are doped in the titanium dioxide (TiO₂) material so as to modify the electrical and optical properties of the ETL. The pure and doped TiO₂ films were prepared by spin-coating a sol-gel precursor and their effects on the crystal structure, morphology, optical, electrical and photovoltaic properties of the perovskite solar cells were studied and reported. Among them, Y-doped TiO₂ with similar crystal radii as that of the host titanium atom showed an enhanced photo-conversion efficiency mainly contributed by enhanced open circuit voltage and fill factor. The power conversion efficiency (PCE) for the perovskite absorber layer on Cs- and Y-doped TiO₂ show the maximum PCE of 2.81 and 4.50% respectively. These are encouraging results for optimizing the yttrium doping level and fabrication conditions to further push the performance indicators of PSCs.

Address correspondence to E-mail: Fabian.ezema@unn.edu.ng

¹ Department of Physics and Astronomy, University of Nigeria, Nsukka, Enugu State, Nigeria

² Department of Physics, Alex Ekwueme Federal University Ndufu-Alike, Abakaliki, Ebonyi State, Nigeria

³ Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, P.O.Box 722, Somerset West 7129, Western Cape, South Africa

⁴ UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P.O. Box 392, Pretoria, South Africa

⁵Department of Physics, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

⁶ Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P O Wits, Private Bag 3, Johannesburg 2050, South Africa

⁷ Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang, Malaysia