

COMMAND BY SPEECH RECOGNITION

ARDIAN SYAH B MOHD YUSOF

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

MAY 2008

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS♦

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di
 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Kolej Universiti Kejuruteraan & Teknologi Malaysia.
2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.
3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.
4. **Sila tandakan (√)

 (Mengandungi maklumat yang berdarjah keselamatan
 SULIT atau kepentingan Malaysia seperti yang termaktub
 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
 oleh organisasi/badan di mana penyelidikan dijalankan)

 √ TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________
 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap: RAJA MOHD TAUFIKA RAJA ISMAIL

NO 91B, (Nama Penyelia)

 Jalan Sungai siput,
81900, Kota Tinggi,
Johor

Tarikh: 9 MAY 2008 Tarikh: : 9 MAY 2008

CATATAN: * Potong yang tidak berkenaan.
 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
 dikelaskan sebagai atau TERHAD.

♦ Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2007/2008

 ARDIAN SYAH B MOHD YUSOF (851001-01-5745)

COMMAND BY SPEECH RECOGNITION

“I hereby declare that the scope and quality of this thesis is qualified for the award of

the Bachelor Bachelor of Electrical Engineering (Electronics)”

Signature : __

 Name : RAJA MOHD TAUFIKA RAJA ISMAIL

 Date : 9 MAY 2008

 ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : ARDIAN SYAH B MOHD YUSOF

Date : 8 MAY 2008

ii

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ____________________________

Author : ARDIAN SYAH B MOHD YUSOF

Date : 9 MAY 2008

iii

DEDICATION

Decicate to my beloved father, mother, brothes and sisters

who always give me a courage to finish this thesis.

 Also, to those people who have been supportive through all this time.

 Thank you for the kindnes and advices that have been given.

iv

ACKNOWLEDGEMENT

With encouragement and determination, I would like to acknowledge those

people who gave all of their effort in helping me to finish this project. This project will

not come to the end without considerable ideas and support from them.

Firstly, I would like to thank my project supervisor, Mr. Raja Mohd Taufika Raja

Ismail, for providing the guideline with continues advices and feedback throughout the

duration of finishing this project.

Secondly, I would also like to give appreciation to all other University Malaysia

Pahang staff members especially Faculty of Electrical and Electronics Engineering staffs

that I may have called upon for assistance since the genesis of this project. Their

opinions and suggestions have helped me in realizing this project. Also not to be

forgotten, I would like to thank to all of my friends for their support, valuable opinions

and ideas sharing during the progress of this project.

Finally, I would like to thank to all of my family members for their understanding,

encouragement and support, towards the completion of my project. Thank you so much!

May god bless you all.

v

ABSTRACT

Speech recognition is a topic that very useful in many applications and

enviroments in our daily life. Generally, speech recognizer is a machine which

understand humans and their spoken word in some way and can act thereafter. In

daily usage, for example, it can be used in a car environment to voice control non-

critical operation such as dialing a phone number to ensure a maximum control to

the car and enhance the safety. A different aspect of speech recognition is to

facilitate for people with functional disability or other kinds of handicap. The system

develop for this speech recognizer will be done using MATLAB and for this project,

the system will recognize discrete word only and not a sentences or a robust speech.

There are two main operations in this speech recognizer which are generating the

voiceprint and store it as template in the word bank and recognizing the word

spoken by comparing it with the template stored in word bank. The voiceprint is

create by extracting it’s MEL Frequency Cepstral Coefficient (MFCC) which is the

default number of coefficients need to be extracted are 12. To get more accurate

result, 20 coefficients will be extracted. For recognizing purpose, Dynamic Time

Warping (DTW) method is use. DTW will calculate the distance of two vectors

which are the word spoken and the stored voiceprints and it will recognize the word

as the same word if the the distance is the lowest or in other words, nearly zero.

vi

ABSTRAK

Pengecaman suara adalah satu topik yang sangat berguna dalam pelbagai

kegunaan dan keadaan dalam kehidupan seharian. Secara amnya, pengecam suara

adalah satu mesin yang dapat memahami kata-kata manusia dan boleh bertindak

balas melaluinya. Dalam penggunaan seharian sebagai contoh, ia boleh digunakan di

dalam kereta bagi mengawal operasi yang tidak kritikal seperti mendail nombor

telefon bimbit bagi memaksimumkan pengawalan memandu ke atas kereta. Pada

aspek yang berlainan pula, teknologi pengecaman suara dpaat membantu orang-

orang cacat. Sistem pengecaman suara bagi projek ini telah dibangunkan

menggunakan perisisan MATLAB dan untuk projek ini, sistem ini hanya mengecam

perkataan diskret sahaja dan bukannya satu ayat penuh. Ada dua operasi utama

untuk sistem pengecaman suar aini iaitu menghasilkan ‘cap suara’ dan

menyimpannya sebagai templat di dalam bank perkataan dan yang kedua ialah

mengecam suara yang disebut dengan membandingkan suara yang disebut dengan

‘cap suara’ yang disimpan di dalam bank perkataan. Penghasilan ‘cap suara’

dilakukan dengan mengekstrak Pemalar Kepstral Frekuensi Mel (MFCC) di mana

pemalar yang perlu diekstrak pada asasnya adalah sebanyak 12. Untuk mendapatkan

hasil yang lebih jitu, sebanyak 20 pemalar akan diekstrak. Bagi tujuan pengecaman

pula, kaedah ‘Dynamic Time warping’ (DTW) akan digunakan. DTW akan mengira

perbezaan antara dua vektor iaitu suara yang disebut dan ‘cap suara’ yang disimpan

dan ia dapat membua tpengecaman jika perbezaan antara kedua-dua vektor tersebut

adalah kecil atau menghampiri sifar.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION OF THESIS’S STATUS

DECLARATION OF SUPERVISOR

TITLE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENT vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xiv

LIST OF APPENDICES xv

1 INTRODUCTION 1

 1.1 Background 1

 1.2 Project Objective 3

 1.3 Project Scopes 4

 1.4 Problem Statement 4

 1.5 Thesis Outline 4

 2 LITERATURE REVIEWS 6

 2.1 Introduction 6

 viii

 2.2 MATLAB 6

 2.2.1 The overview of the MATLAB 6

 2.2.2 Programming in MATLAB 8

 2.2.2.1 If, else, and elseif 8

 2.2.2.2 Switch and case 9

 2.2.2.3 Try 9

 2.2.3 Creating graphical user interface using GUIDE 10

 2.2.3.1 Laying out a GUI 11

 2.2.3.2 Programming a GUI 12

 2.3 SPEECH RECOGNITION 13

 2.3.1 Speech recognition methodology 13

 2.3.2 MEL Frequency Cepstral Coefficient 14

 2.3.3 Dynamic Time Warping 21

3 GRAPHICAL USER INTERFACE DESIGN 23

 3.1 Introduction 23

3.2 Graphical user interface (GUI) with MATLAB 23

 3.2.1 Creating a GUI programmatically 24

3.2.1.1 Describing the GUI 25

3.2.1.2 Functions summary 26

3.2.1.3 Creating the GUI M-file 26

3.2.1.4 Laying out the GUI 28

3.3 Create GUI using GUIDE 38

3.3.1 Guide Overview 39

3.3.2 Laying out GUI using GUIDE 41

3.3.2.1 Adding the components 43

4 SOFTWARE DEVELOPMENT 48

4.1 Introduction 48

4.2 Programming the gui for recording voice 48

 4.2.1 Programming the ‘RECORD’ push button 49

 ix

 4.2.1.1 Initializing window soundcard 51

 4.2.2 Programming the static text for slider 51

 4.2.3 Programming the play and save push button 52

4.3 Programming the GUI for speech recognizer 55

 4.3.1 Programming the ‘RECOGNIZE’ push button 55

 4.3.2 Creating the template 56

 4.3.3 Dynamic Time Warping 58

4.3.4 Interfacing MATLAB with hardware 59

5 RESULT AND DISCUSSION 60

 5.1 Introduction 60

 5.2 Voiceprint 61

 5.3 Performance of the speech recognizer 64

 5.4 Conclusion and future recommendation 68

 5.5 Cost and commercialiazation value 69

REFERENCES 70

Appendices A-F 71 - 88

 x

LIST OF TABLES

TABLE NO. TITLE PAGE

3.1 List of functions to create the GUI 27

3.2 Series of property/value pairs 33

3.3 Tools of layout editor 40

3.4 Components Description 44

4.1 Arguments for digitalio function 59

5.1 List of the Words in each template 61

5.2 Recognition rate for each template. 64

5.2 (a) English template 64

 5.2 (b) Malay template 64

5.2 (c) Dictionary template 64

5.3 User effect to the recognition rate 65

5.4 Voiceprint effect to the recognition rate 67

5.5 Number of words in template effect to the recognition 67
 rate

 xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 Spectral representation of speech intensity 2

1.1 (a)Sound Spectrogram 2

1.1 (b) amplitude of the voice signal 2

2.1 MATLAB 7

2.2 If, else, and elseif statement 8

2.3 Switch and case statement 9

2.4 Try statement 10

2.5 Overview of GUIDE 11

 2.5 (a) GUIDE quick start page 11

 2.5 (b) Layout editor 11

2.6 Adding the Push Button 12

2.7 Callback template for a push button. 13

2.8 Speech recognition algorithm 14

2.9 Steps to extract MFCC from speech signal 15

2.10 Pre-emphasizing the word ‘Backward’ signal 16

 2.10 (a) Original signal 16

 2.10 (b) after pre-emphasizing 16

2.11 Hamming windows with different curves 17

2.12 FFT of speech signal 18

 2.12 (a) Original signal 18

 2.12 (b) FFT signal 18

2.13 Relationship between the mel and the linear frequencies 19

2.14 Triangular Bandpass Filters 20

2.15 Mapping the Dynamic Time Warping 22

3.1 Block diagram of basic operation for recording voice 25

3.2 Sketching a GUI 26

 xii

3.3 M-file editor 27

3.4 Command function 28

3.5 Creating figure 29

3.6 Physical view of figure 29

3.7 Statement to add axes 31

3.8 Drawing the axes 32

3. 9 Statement to add push button 32

3.10 Effects of normalized unit when resize GUI 34

3.10 (a) Units for both axes are normalized 34

 3.10 (b) Units for upper axes is not normalized 34

3.11 Adding slider to GUI 35

3.12 Indicate slider with static text 35

3.13 Slider 36

3.14 Statement for adding pop-up menu 36

3.15 Pop-up menu 37

3.16 GUI for recording voice 38

3.17 GUI for speech recognizer 39

3.18 GUIDE Layout Editor 40

3.19 GUIDE Quick Start Dialog Box 41

3.20 GUIDE Blank Template 42

3.21 Resizing the GUI 42

3.22 Components Palette 43

3.23 Property Inspector 45

3.24 GUI for Speech Recognizer in Layout Editor 46

3.25 M-file Automatically Generated by MATLAB 47

4.1 Pop-up Menu value 49

4.2 Process for recording data 50

4.3 Initializing sound card with MATLAB 51

4.4 Flow Chart for programming the static text 52

4.5 Playing and saving data 53

 4.5 (a) Flowchart for playing data 53

 4.5 (b) Flowchar for saving data 53

4.6 UIPUTFILE window 54

4.7 Speech Recognizer flowchart 56

 xiii

4.8 Extracting MFCC from speech signal 57

4.9 Dynamic Time Warping flow chart 58

5.1 Complete GUI for Speech Recognizer 61

5.2 Voiceprints for the word spoken 62

 5.2 (a) ‘on’ 62

 5.2 (b) ‘off’ 62

 5.2 (c) ‘basikal’ 63

5.2 (d) ‘kucing’ 63

5.3 The difference between basic and improved MFCC 66
for word ‘basikal’

 xiv

LIST OF SYMBOLS

 - cosine

DCT - Discrete Cosine Transform

DTW - Dynamic Time Warping

 - frequency

FFT - Fast Fourier Transform

GUI - Graphical User Interface

GUIDE - Graphical User Interface Development

 Environment

Hz - Hertz

kHz - kiloHertz

 - Natural logarithma

 - Mel frequency

MFCC - Mel Frequency Cepstral Coefficient

ms - miliseconds

 - Speech signal

t - Seconds

α - Alpha

 - phi

 - delta

 xv

LIST OF APPENDIXES

APPENDIX TITLE PAGE

A M-file coding for recording GUI 71

B M-file coding for speech recognizer GUI 76

C M-file coding for creating voiceprint 80

D M-file coding for MFCC 81

E M-file coding for DTW 85

F M-file coding for initialize soundcard 88

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Speech recognition is a topic that very useful in many applications and

enviroments in our daily life. Generally, speech recognizer is a machine which

understand humans and their spoken word in some way and can act thereafter. In

daily usage, for example, it can be used in a car environment to voice control non-

critical operation such as dialing a phone number to ensure a maximum control to the

car and enhance the safety. Applying voice control technology or speech recognition

technology seems will help a lot in enhancing the safety for certain situation.A

different aspect of speech recognition is to facilitate for people with functional

disability or other kinds of handicap. To make their daily routine easier, voice control

could be helpful. With their voice, they could operate the light switch, turn on/off the

electrical aplliances. Incredibly, this leads to the discussion about intelligent homes

where these operations can be made available for common man as well as for the

handicapped.

The speech signal and all its characteristics can be represented in two

different domains,the time and frequency domain. Spectral representation of speech

intensity over time is very popular and the most popular one is the sound

spectrogram, see Figure 1.1.

 2

Figure 1.1: Spectral representation of speech intensity (a)Sound Spectrogram
 (b) amplitude of the voice signal

The main objective of this final year project is to develop a speech

recognition tool based on the MATLAB GUI. This tool will ease and help the

researchers, lecturers and the students whom involved in speech recognition study.

The implementation of MATLAB software is due to its features which are very

useful and easy to use for this project since its already provided certain features that

can be used directly for speech recognition analysis. Graphical User Interface (GUI)

is create to ensure this tool is user friendly and help the user to perform the analysis

faster and easier because they no longer need to write a complex program each time

they want to perform some calculations or obtain the graph.

Basically, this speech recognition tool will help the user to record the voice

for the analysis purposes. User can choose either to record it with sampling

frequency of 8 kHz or 16 kHz. After recording the voice, two graphs will be

executed and it will display the voice signal in time domain. One graph will shows

the amplitude of the voice signal and the another one will shows its spectrogram.

 3

User can play it back and save the file as .wav file. Besides that, user can also load

other wave files which are stored in their computer. Fourier analysis can be done

easily with this tool. With one click, user can obtain the voice signal graph in

frequency domain which is vital in speech recognition analysis.

This tool offers many advantages to the user because it can help to improve

the result of the analysis perform by the user. User no longer need to waste a lot of

time just to write a simple program, for example, to obtain the fourier graph for the

speech signal. The recording tool provided in this tool also enable the user to record

the voice with sampling frequency of 8 kHz compare with the Windows recorder

which only enable the user to record the voice with sampling frequency of 16 kHz.

This speech recognition tool is divided into two sections:-

1. Create a GUI to record the voice using microphone and play it back.

2. Create a GUI to perform speech recognition.

1.2 Objectives

1. To create a graphical user interface (GUI) with MATLAB

2. To create a voiceprint for the word spoken

3. To perform speech recognition for commanding electrical devices.

 This is the main objective for this project. A GUI will be created as the

speech recognizer and it will perform the speech recognition process. The process of

recognizing the word spoken is done based on the Dynamic Time Warping (DTW)

method/. By using DTW, it will calculate the difference or the distance between the

word spoken and and the voiceprint that have been stored in the words bank. If the

distance is small, that means the word spoken is equal to the voiceprint and the

speech recognizer will recognize it.

 4

1.3 Project scope

The main scope for this project is to create a user friendly GUI using

MATLAB to perform the speech signal analysis for the speech recognition purpose.

The GUI will consist of several functions and buttons of operation regarding to the

speech recognition analysis. User just need to select one of the button to perform

certain job. The GUI will display the desire result according to what its task is and

have the ability to save or print the result.

1. Recording Tool with Playback Ability.

2. Saving file

3. Perform the speech recognition using MATLAB

1.4 Problem statement

In our daily life, electrical devices are very important in order to improve the

quality of our life but most of them are not friendly for those handicapped user.

For that reason, this project is propose in order to create a system that can be attached

with electrical devices and command them by using our voice. Those handicapped

user can easily operate the devices without touching all the operate button. But, this

system is totally not suitable for those who are experience the mute problem.

1.5 Thesis outlines

The Speech Recognition Tool final thesis is a combination of 5 chapters that

contains and elaborates specific topics such as the Introduction, Literature Review,

 5

Software Design, Result, Discussion, Conclusion and Further Development that can

be applied in this project.

Chapter 1 basically is an introduction of the project. In this chapter, the main

idea about the background and objectives of the project will be discussed. The full

design and basic concept of the project will be focused in this chapter. The overview

of the entire project also will be discussed in this chapter to show proper

development of the project.

Chapter 2 is about the literature review and the methodologies for the

development of the Speech Recognition Tool. This includes the future project

development that can be added in this project.

Chapter 3 will be discussed about the design of the graphical user interface

(GUI) using MATLAB. In this chapter, it will explain how to create GUI

programmaticaly or using the graphical user interface development environment

(GUIDE) provided for MATLAB with version 7.0 and above.

 Chapter 4 will discuss the software development. It will shows and sexplain

the flow chart that been used to write the coding, developing the process using the

MATLAB.

Chapter 5 discusses all the results obtained and the limitation of the project.

All discussions are concentrating on the result and performance of the speech

recognizer. This chapter also discusses the problem and the recommendation for this

project. Commerciliazation value also be discussed in this chapter.

CHAPTER 2

LITERATURE REVIEWS

2.1 Introduction

In this chapter, the basic knowledges and fundamental concept in creating

the speech recognizer will be discussed. This speech recognition project is using the

MATLAB as the main processor and dynamic programming for the recognition

purpose.

2.2 MATLAB

MATLAB is an interactive, matrix-based system for scientific and

engineering numeric computation and visualization. User can solve complex

numerical problems in a fraction of the time required with a programming language

such as Fortan or C. The name MATLAB is derived from MATrix LABoratory.

When using MATLAB. The command help functionname will give information

about a specific function. For example, the command help fft will give information

about function fast fourier transform and how to use it.

7

2.2.1 The overview of the MATLAB

The MATLAB high-performance language for technical computing

integrates computation, visualization, and programming in an easy-to-use

environment where problems and solutions are expressed in familiar mathematical

notation. Figure 2.1 shows the looks of the MATLAB.

Figure 2.1: MATLAB

Typical uses include:

1. Math and computation

2. Algorithm development

3. Data acquisition

4. Modeling, simulation, and prototyping

5. Data analysis, exploration, and visualization

6. Scientific and engineering graphics

7. Application development, including graphical user interface building

8

 MATLAB has evolved over a period of years with input from many users.

In university environments, it is the standard instructional tool for introductory

and advanced courses in mathematics, engineering, and science. In industry,

MATLAB is the tool of choice for high-productivity research, development, and

analysis.

 MATLAB features a family of add-on application-specific solutions

called toolboxes. Very important to most users of MATLAB, toolboxes allow

you to learn and apply specialized technology. Toolboxes are comprehensive

collections of MATLAB functions (M-files) that extend the MATLAB

environment to solve particular classes of problems. You can add on toolboxes

for signal processing, control systems, neural networks, fuzzy logic, wavelets,

simulation, and many other areas.

2.2.2 Programming in MATLAB

This section covers those MATLAB product functions that provide

conditional program control.

2.2.2.1 If, else, and elseif

The if statement evaluates a logical expression and executes a group of

statements when the expression is true. The optional elseif and else keywords

provide for the execution of alternate groups of statements. An end keyword, which

matches the if, terminates the last group of statements. The groups of statements are

delineated by the four keywords—no braces or brackets are involved. The

MATLAB algorithm for generating a magic square of order n involves three

different cases: when n is odd, when n is even but not divisible by 4, or when n is

divisible by 4. This is described by Figure 2.2:

9

if rem(n,2) ~= 0
M = odd_magic(n)

elseif rem(n,4) ~= 0
M = single_even_magic(n)

else
M = double_even_magic(n)

end

Figure 2.2: If, else, and elseif statement

2.2.2.2 Switch and case

The switch statement executes groups of statements based on the value of a

variable or expression. The keywords case and otherwise delineate the groups. Only

the first matching case is executed. There must always be an end to match the

switch. The logic of the magic squares algorithm can also be described by Figure

2.3:

switch (rem(n,4)==0) + (rem(n,2)==0)
case 0
M = odd_magic(n)
case 1
M = single_even_magic(n)
case 2
M = double_even_magic(n)
otherwise

error('This is impossible')

end

Figure 2.3: Switch and case statement

Unlike the C language switch statement, the MATLAB switch does not

fall through. If the first case statement is true, the other case statements do

not execute. So, break statements are not required.

10

2.2.2.3 Try

The general form of a try-catch statement sequence is shown in Figure 2.4.

In this sequence the statements between try and catch are executed untilan error

occurs.The statements between catch and end are then executed.Use lasterr to see

the cause of the error. If an error occurs between catchand end, MATLAB

terminates execution unless another try-catch sequencehas been established.

try

statement
...
statement
catch
statement
...
statement
end

Figure 2.4: Try statement

2.2.3 Creating graphical user interface using GUIDE

GUIDE, the MATLAB graphical user interface development environment,

provides a set of tools for creating graphical user interfaces (GUIs). We can also

create GUIs programmatically. These tools greatly simplify the process of designing

and building GUIs. We can use the GUIDE tools to:

1. Lay out the GUI.

Using the GUIDE Layout Editor, we can lay out a GUI easily by clicking

and dragging GUI components—such as panels, buttons, text fields, sliders,

menus, and so on—into the layout area. GUIDE stores the GUI layout

in a FIG-file.

11

2. Program the GUI.

GUIDE automatically generates an M-file that controls how the GUI

operates. The M-file initializes the GUI and contains a framework for the

most commonly used callbacks for each component—the commands that

execute when a user clicks a GUI component. Using the M-file editor, we

can add code to the callbacks to perform the functions we want.

2.2.3.1 Laying out a GUI

 Start GUIDE by typing guide at the MATLAB® command prompt. This

displays the GUIDE Quick Start dialog box. When open a GUI in GUIDE, it is

displayed in the Layout Editor, which is the control panel for all of the GUIDE tools.

Figure 2. 5 (b) shows the Layout Editor with a blank GUI template.

(a)

12

(b)

Figure 2.5: Overview of GUIDE (a) GUIDE quick start page (b) Layout editor

We can lay out our GUI by dragging components, such as panels, push

buttons, pop-up menus, or axes, from the component palette, at the left side of the

Layout Editor, into the layout area. For example, if you drag a push button into the

layout area, it appears as in the Figure 2.6.

Figure 2.6: Adding the Push Button

13

We can also use the Layout Editor (along with the Toolbar Editor and Icon

Editor) to create menus and toolbars, create and modify tool icons, and set basic

properties of the GUI components.

2.2.3.2 Programming a GUI

After laying out the GUI and setting component properties, the next step is to

program the GUI. You program the GUI by coding one or more callbacks for each

of its components. Callbacks are functions that execute in response to some action

by the user. A typical action is clicking a push button. A GUI’s callbacks are found

in an M-file that GUIDE generates automatically. GUIDE adds templates for the

most commonly used callbacks to this M-file, but youmay want to add others. Use

the M file Editor to edit this file. The following figure shows the Callback template

for a push button.

Figure 2.7: Callback template for a push button.

14

2.3 SPEECH RECOGNITION

 Speech recognition (also known as automatic speech recognition or computer

speech recognition) converts spoken words to machine-readable input (for example,

to the binary code for a string of character codes). The term voice recognition may

also be used to refer to speech recognition, but more precisely refers to speaker

recognition, which attempts to identify the person speaking, as opposed to what is

being said.

2.3.1 SPEECH RECOGNITION METHODOLOGY

 Figure 2.8 shows the methodoly of the speech recognition algorithm tha tis

been used for this project.

Figure 2.8: Speech recognition algorithm

15

2.3.2 MEL Frequency Cepstral Coefficient

For speech/speaker recognition, the most commonly used acoustic feature

are mel-scale frequency cepstral coefficient (MFCC for short). The feature takes

human perception sensitivity with respect to frequencies into consideration, and thus

are best for speech/speaker recognition. Figure 2.9 shows the step on how to

calculate the MFCC.

Figure 2.9: Steps to extract MFCC from speech signal

Pre-emphasis is step to send the speech signal s(n) to a high pass filter:

� 2(�) = � (�) − � × � (� − 1)

where s2(n) is the output signal and the value of a is usually between 0.9 to 1.0. The

z-transform of the filter is

� (�) = 1 − � × (� − 1)

Frame
Blocking

Preemphasis
speech signal

Hamming
windowing

Fast Fourier
Transform
or FFT

Triangular
Bandpass
Filters

Discrete
cosine
transform or
DCT

Log energy

Delta
cepstrum

16

The goal of pre-emphasis is to compensate the high-frequency part that was

suppressed during the sound production mechanism of humans. Moreover, it can

also amplify the importance of high-frequency formants. The next example

demonstrates the effect of pre-emphasis. The speech after pre-emphasis sounds

sharper with a smaller volume as shown in the Figure 2.10.

 (b)

Figure 2.10: Pre-emphasizing the word ‘Backward’ signal (a) Original signal

(b) after pre-emphasizing

Frame blocking: The input speech signal is segmented into frames of 20~30

ms with optional overlap of 1/3~1/2 of the frame size. Usually the frame size in

terms of sample points is equal power of two in order to facilitate the use of FFT. If

this is not the case, we need to do zero padding to the nearest length of power of

 (a)

17

two. If the sampling rate is 16 Hz and the frame size is 320 sample points, then the

frame duration is 320/16000*1000 = 20 ms. Additional, if the overlap is 160 points,

then the frame rate is 16000/(320-160) = 100 frames per second.

Hamming windowing: Each frame has to be multiplied with a hamming

window in order to keep the continuity of the first and the last points in the frame. If

the signal in a frame is denoted by s(n), n = 0,…N-1, then the signal after Hamming

windowing is s(n)*w(n), where w(n) is the Hamming window defined by:

In practice, the value of α is set to 0.46. MATLAB also provides the

command hamming for generating the curve of a Hamming window. Different

values of a corresponds to different curves for the Hamming windows shown in

Figure 2.11.

Figure 2.11: Hamming windows with different curves

18

Fast Fourier Transform or FFT: Spectral analysis shows that different

timbres in speech signals corresponds to different energy distribution over

frequencies. Therefore we usually perform FFT to obtain the magnitude frequency

response of each frame.

When we perform FFT on a frame, we assume that the signal within a frame

is periodic and continuous on its first and last points. If this is not the case, we can

still perform FFT but the incontinuous at the frame's first and last points is likely to

introduce undesirable effects in the frequency response. To deal with this problem,

we have two strategies:

1. Multiply each frame by a Hamming window to increase its continuity at the

first and last points.

2. Take a frame of a variable size such that it always contains a multiple

number of the fundamental periods of the speech signal.

Figure 2.12: FFT of speech signal (a) Original signal (b) FFT signal

(a)

(b)

19

Triangular Bandpass Filters: Multiple the magnitude frequency response by a

set of 20 triangular bandpass filters to get the log energy of each triangular bandpass

filter. The positions of these filters are equally spaced along the Mel frequency,

which is related to the common frequency by the following equation:

� � � (�) = 1125 × � � (1 + � /700)

Mel-frequency is proportional to the logarithm of the linear frequency,

indicating the human's subjective aural perception also goes linearly with the

logarithm of the linear frequency. Figure 2.13 plots the relationship between the mel

and the linear frequencies.

Figure 2.13: Relationship between the mel and the linear frequencies

In practice, two choices for the triangular bandpass filters, as shown in the

Figure 2.14.

20

Figure 2.14: Triangular Bandpass Filters

The reasons for using triangular bandpass filters are two fold:

1. Smooth the magnitude spectrum such that the harmonics are flattened

in order to reflect the original spectrum. This indicates that,

theoretically, the pitch of a speech signal is not reflected in MFCC.

As a result, a speech recognition system will behave more or less the

same when the input utterances are of the same timbre but with

different tones/pitch.

2. Reduce the size of the features involved.

Discrete cosine transform or DCT: In this step, apply DCT on the 20 log

energy Ek obtained from the triangular bandpass filters to have L mel-scale cepstral

coefficients. The formula for DCT is shown next.

� � = � � = 1� � � � [� × (� − 0.5) × � /�] ∗ � � , � = 1,2, . . . , �

21

where N is the number of triangular bandpass filters, L is the number of mel-scale

cepstral coefficients. Usually we set N=20 and L=12. Since we have performed FFT,

DCT transforms the frequency domain into a time-like domain called quefrency

domain. The obtained features are similar to cepstrum, thus it is referred to as the

mel-scale cepstral coefficients, or MFCC. MFCC alone can be used as the feature

for speech recognition. For better performance, add the log energy and perform delta

operation, as explained in the next two steps.

Log energy: The energy within a frame is also an important feature that can

be easily obtained. Hence we usually add the log energy as the 13rd feature to

MFCC. If necessary, we can add some other features at this step, including pitch,

zero cross rate, high-order spectrum momentum, and so on.

Delta cepstrum: It is also advantagous to have the time derivatives of

(energy+MFCC) as new features, which shows the velocity and acceleration of

(energy+MFCC). The equations to compute these features are:

△ � � (�) = [� � = −� � � � (� + �)�] / [� � = −� � � 2]

The value of M is usually set to 2. If we add the velocity, the feature

dimension is 26. If we add both the velocity and the acceleration, the feature

dimension is 39. Most of the speech recognition systems on PC use these 39-

dimensional features for recognition.

2.3.3 DYNAMIC TIME WARPING

The distance between two point x = [x1, x2, ..., xn] and y = [y1, y2, ..., yn] in a

n-dimensional space can be computed via the Euclidean distance:

� � � � (� , �) = |� − � | = [(� 1 − � 1)2 + (� 2 − � 2)2 + . . . + (� � − � �)2]1/2

22

However, if the length of x is different from y, then we cannot use the above

formula to compute the distance. Instead, we need a more flexible method that can

find the best mapping from elements in x to those in y in order to compute the

distance.

The goal of dynamic time warping (DTW for short) is to find the best

mapping with the minimum distance by the use of dynamic programming. The

method is called "time warping" since both x and y are usually vectors of time series

and we need to compress or expand in time in order to find the best mapping as

shown in Figure 2.16. We shall give the formula for DTW in this section.

Let t and r be two vectors of lengths m and n, respectively. The goal of DTW is

to find a mapping path {(p1, q1), (p2, q2), ..., (pk, qk)} such that the distance on this

mapping path Si=1
k ∣t(pi) - r(qi)∣ is minimized, with the following constraints:

1. Boundary conditions: (p1, q1) = (1, 1), (pk, qk) = (m, n). This is a typical

example of "anchored beginning" and anchored end".

2. Local constraint: For any given node (i, j) in the path, the possible fan-

in nodes are restricted to (i-1, j), (i, j-1), (i-1, j-1). This local constraint

guarantees that the mapping path is monotonically non-decreasing in its

first and second arguments. Moreover, for any given element in t, we

should be able to find at least one corresponding element in r, and vice

versa.

Figure 2.15: Mapping the Dynamic Time Warping

CHAPTER 3

GRAPHICAL USER INTERFACE DESIGN

3.1 Introduction

 This chapter will discuss about developing a software for this speech

recognizer using MATLAB. A lot of functions provided by MATLAB will be

implemented in building this speech recognizer. The software will be a GUI that is

being programmed with MATLAB functions which can run a speech recognition

system and recognize the word spoken. For this project, it is compulsory to fully

understand the way MATLAB works and the language that it use. Knowledge on

applying and manipulating functions provided by MATLAB is totally a vital skill to

ensure the succes of this project. There are two parts that will be the main concern in

this chapter, which are creating the GUI and programming the GUI so that it will

work as a speech recognizer.

3.2 Graphical user interface (GUI) with MATLAB

This section will describe and elaborate the details on how to create GUI

using the MATLAB. The objective of this section is to give a clear picture on how

MATLAB can be used to create a beautiful yet powerful GUI that can ease the user

to perform the speech recognition without repeating writing the same programming

just to get a result with different inputs. In MATLAB, the GUI can be created

 24

programmatically or using the graphical user interface development environment

(GUIDE). Both way have its own advantages and disadvantage but for learning

purpose, both methods will be described and explained spesifically.

For this speech recognizer project, there are two GUIs are created which is

each GUI will have its own unique function. It is the GUI for recording the voice

and GUI for recognize the word spoken. The GUI for recording voice will be created

programmatically while for GUI to recognize the word spoken, it is done using the

GUIDE.

3.2.1 Creating a GUI programmatically

There are seven objectives need to be fulfilled for this section which are:

1. Describes the GUI to be constructed.

2. Lists the functions that are used in the construction of the GUI

3. Creates the M-file that holds the GUI script and adds help comments

to the file.

4. Laying out the GUI by creating the figure and adding the

components.

5. Initialize the GUI by performs various initialization chores and

generates the data to plot.

6. Programming the GUI by adding code for each component to the

GUI M-file to make the GUI work.

7. Runs the final GUI and demonstrates how the components work

together.

 25

3.2.1.1 Describing the GUI

Before creating the GUI, it is best to have a clear view on how the GUI will

looks alike. It is a good practice to draw a block diagram of the operations that will

be involved for this GUI. The block diagrams is shown in Figure 3.1:

Figure 3.1 : Block diagram of basic operation for recording voice

User

Set frequency
sampling

Set time
length

Click ‘record’
button

Display original
signal waveform

Display pre-
emphasized signal

waveform

Playback the
signal

Playback the
signal

Save as .wav
file

Save as .wav
file

 26

Block diagram above can give a hint on how to construt the GUI and the

elements that are necessary in the GUI. The block diagram above shows that the

GUI will contains the record button, a panel to set frequency sampling and time

length, two axes that will display two graphs, two play buttons to playback the

recorded signal and two save buttons to save the recorded sognal in wave file. Based

on this informations, it is always a good start to skctch the looks of the GUI as a

guidance as shown in the Figure 3.2.

Figure 3.2 : Sketching a GUI

 For this GUI, a slider will be used to set the time length, popupmenu listing

two different values of frequency sampling and push button for record, play and

save button.

3.2.1.2 Functions summary

Table 3.1 below shows the summary of the functions that are used in the

construction of this GUI for recording voice using MATLAB.

 27

\\\

Table 3.1 : List of functions to create the GUI

FUNCTION DESCRIPTIONS

align Align GUI components such as user interface controls
and axes.

axes Create axes objects.

figure Create figure objects. A GUI is a figure object.

movegui Move GUI figure to specified location on screen.

uicontrol Create user interface control objects, such as push
buttons, static text, and pop-up menus.

3.2.1.3 Creating the GUI M-file

Creating the GUI programmatically will be done using the M-file eitor. The

programming is wrote at the M-file editor provided by MATLAB. Hence, it is very

important to create a M-file for creating this recording GUI for MATLAb to execute

it. To open the M-file, type edit at the MATLAB command window.

Figure 3.3 : M-file editor

 28

 The GUI should be a function so that MATLAB can execute it when the user

want to use this GUI. For that purpose, command function will be used to make

the GUI as a function. For example, command function recordtool can be

written to tell MATLAB new function is added.Now, the GUI has become a stand-

alone executable function that is directly callable from the system command line.

‘recordtool’ is the name of the GUI and it is up to the user to name it. But since

this GUI is create to record the voice, so it will be named as recordtool. To complete

this function, an end statement must be added so that the function will work without

error. The end statement is needed because the GUI is written using nested

functions. End statement is written at the end of the line and a few blank space

below the function statement is leaved before adding the end statement. The file now

looks like this:

 function recordtool

 end

Figure 3.4: Command function

3.2.1.4 Laying out the GUI

 In MATLAB, a GUI is a figure. Hence, the first step to create the GUI is to

draw the figure and positions it on the screen. To draw the figure, command

figure will be used. The command figure creates figure graphics objects.

Figure objects are the individual windows on the screen in which MATLAB

displays graphical output. The property of the figure can be define explicitly as the

input argument when drawing the figure. The properties are such as its color, size of

the figure and the name of the figure. For this recording GUI, the figure will have

 29

the size of 950x600 pixels and is grey in color. The program is written in the M-file

that has been created before as shown in Figure 3.5.

function recordtool
width = 950;

 height = 600;

record_figure = figure('Position',[30 55 width
height],...

 'NumberTitle','off',...
 'Color',[.8 .8 .8],...
 'Name','recordtool');
end

Figure 3.5: Creating figure

 The position property specifies the size and the location of the GUI on the

screen. In the position property as shown above, the value 30 is the distance of the

GUI from left and the value 55 is the distance from bottom. Default units are pixels.

Position: [distancefromleft distancefrombottom width

height]

Figure 3.6 shows the result generated by the command above and the effect

of manipulating its properties.

Figure 3.6 : Physical view of figure

 30

 This GUI for recording voice has nine components; five push buttons, two

axes, one pop-up menu, one slider. Before adding all of this component, it is

compulsory to understand the command uicontrol since all of the components

will be created based on the command uicontrol except for the axes.

 The command uicontrol creates a uicontrol graphics objects (user

interface controls), which you use to implement graphical user interfaces. The

syntax is:

handle = uicontrol('PropertyName',PropertyValue,...)

handle = uicontrol('PropertyName',PropertyValue,...) creates a uicontrol and assigns

the specified properties and values to it. It assigns the default values to any

properties you do not specify. The default uicontrol style is a pushbutton. The

default parent is the current figure.

 MATLAB supports numerous styles of uicontrols, each suited for a

different purpose:

1. Check boxes

2. Editable text fields

3. Frames

4. List boxes

5. Pop-up menus

6. Push buttons

7. Radio buttons

8. Sliders

9. Static text

10. labels

11. Toggle buttons

 31

 To add the axes, command axes is used which will create the axes

graphic object. The syntax is:

axes('PropertyName',PropertyValue,...)

where axes('PropertyName',PropertyValue,...) creates an axes object having the

specified property values. MATLAB uses default values for any properties that do

not explicitly define as arguments.

 Statement below is written to add the two axes for this GUI. The program

is written in the M-file for this GUI is shown in the Figure 3.7.

original_axes = axes('Units', 'normalized',...

 'Position', [0.1 0.57 0.75 0.37],...

 'Xgrid', 'on',...

 'Ygrid', 'on',...

 'Xminortick', 'on');

 preemphasis_axes = axes('Units', 'normalized',...

 'Position', [0.1 0.07 0.75 0.37],...

 'Xgrid', 'on',...

 'Ygrid', 'on',...

 'Xminortick', 'on');

Figure 3.7: Statement to add axes

The grid of the axes is controlled by the property argument ‘Xgrid’ for grid

at the X axes and ‘Ygrid’ at the Y axes. Argument ‘on’ at the grid properties means

that the grid is visible. Figure 3.8 shows the result of this statement.

 32

Figure 3.8 : Drawing the axes

 ‘RECORD’ push button can be added by writing a statement as shown in
Figure 3.9.

record_button=uicontrol('Style','pushbutton'
 'Units','normalized',...
 'Position',[850/width 380/height 80/width
 30/height],...
 'ForegroundColor',[0 0.3 0],...
 'FontWeight','bold',...
 'String','RECORD',...
 'Visible','on',...
 'CallBack','recordtool(1)');

Figure 3.9: Statement to add push button

These statements use the uicontrol function to create the ‘record’ push

button. Each statement uses a series of property/value pairs to define the push

button. Table 2 explain more about the property and its description.

 33

Table 3.2 : Series of property/value pairs

Property Name Property Description Property Value
Style Type of uicontrol object Value:pushbutton,

togglebutton, radiobutton,
checkbox, edit, text,
slider, listbox, popupmenu
Default: pushbutton

Units Units to interpret position

vector

Value: pixels, normalized,

inches, centimeters,

points, characters

Default: pixels

Position Size and location of uicontrol Specify Position as

[left bottom width height]

ForegroundColor Color of text Value: ColorSpec

Default: [0 0 0]

FontWeight Weight of text characters Value: light, normal,

demi, bold

Default: normal

String For check boxes, editable text,

push buttons, radio buttons,

static text, and toggle buttons,

the text displayed on the

object. For list boxes and pop-

up menus, the set of entries or

items displayed in the object.

Value: string

Visible Uicontrol visibility Value: on, off

Default: on

Callback Control action. A routine that

executes whenever you

activate the uicontrol object

(e.g., when you click on a push

button or move a slider).

Value: string or function

handle

 34

The value for the position property is divided with the value of the figure

size. This is because the units for this push button is normalized. Normalized units

causes the components to resize when the GUI is resized. Apply the same statement

to create the ‘play’ and ‘save’ push button but change the string to ‘PLAY” for play

push button and ‘SAVE’ for save push button. The position also must be change to

desire location. Figure 3.10 shows the different for using or not using normalized

units.

(a)

(b)

Figure 3.10: Effects of normalized unit when resize GUI (a)Units for both

axes are normalized Units for upper axes is not normalized

 35

 Sliders accept numeric input within a specific range by enabling the user to

move a sliding bar. Users move the bar by pressing the mouse button and dragging

the pointer over the bar, or by clicking in the trough or on an arrow. The location of

the bar indicates a numeric value, which is selected by releasing the mouse button.

The minimum, maximum, and current values of the slider can be set. Figure 3.11

shows the statement to add slider in the GUI.

time_slider = uicontrol('Style','Slider',...
 'Units','normalized', ...
 'Position',[830/width 530/height 100/width
 20/height],...
 'Min',0.5,'Max',5,'Value',1,...
 'SliderStep',[1/9 1/9],...
 'Callback','recordtool(7)');

Figure 3.11: Adding slider to GUI

By setting the value equal to 1, this means the default value for the slider

when appear at the GUI is 1. Slidersteps means how many steps tha tare required for

the minimum value to reach he maximum value. For this slider, it is create to

represent the time length to record the voice and the minimum value is 0.5 seconds

and it takes nine steps to reach the maximum value that is 5 seconds. However, the

statement above will not display the value of the slider. For that purpose, static text

will be used as shown in Figure 3.12. Figure 3.13 shows the result for the statement.

slider_text = uicontrol('Style','text',...
'Units','normalized', ...
 'Position',[830/width 555/height 120/width
15/height],...
 'BackgroundColor',[.8 .8 .8],...
 'FontWeight','bold',...
 'String','Length - 1 sec');

Figure 3.12: Indicate slider with static text

 36

Figure 3.13 : Slider

Pop-up menus open to display a list of choices (defined using the String
property) when pressed. When not open, a pop-up menu indicates the current choice.
Pop-up menus are useful when you want to provide users with a number of mutually
exclusive choices, but do not want to take up the amount of space that a series of
radio buttons requires. A value must be specified for the String property as shown in
Figure 3.14.

 popupfreq_button = uicontrol('Style','popupmenu',...
 'Units','normalized',...
 'Position',[830/width 470/height 100/width
 30/height],...
 'ForegroundColor',[0 0 0],...
 'FontWeight','bold',...
 'String',{'8kHz','16kHz'},...
 'Visible','on');

Figure 3.14: Statement for adding pop-up menu

This pop-up menu will act as the frequency selector to the user. User can

select frequency sampling from this pop-up menu. Two value of frequency

sampling are provided which are 8k Hz and 16k Hz. To make the pop-up menu to

list both value, the string property is set to 8k Hz and 16k Hz . The first string will

be the default value. See Figure 3.15

Static text

Slider

 37

Figure 3.15: Pop-up menu

 In order for the GUI to appear at the centre of the screen, the command

function movegui can be used. The syntax is as follow:

movegui(h,'position')

movegui(h,'position') moves the figure identified by handle h to the

specified screen location, preserving the figure's size. The position argument can be

any of the following strings: north - top center edge of screen south - bottom center

edge of screen east - right center edge of screen west - left center edge of screen

northeast - top right corner of screen northwest - top left corner of screen southeast -

bottom right corner of screen southwest - bottom left corner center - center of screen

onscreen - nearest location with respect to current location that is on screen.

 After adding all the components in the GUI, it is time to run the script

written at the M-file editor. The script must be saved first and it should be saved at a

specific folder with a specific location. To run the script, simply type the name of

the GUI that have been turn into function which is recordtool at the command

window of the MATLAB. Make sure the current directory is specified at the

location which the script has been saved. Figure 3.16 below shows the final result of

the GUI after adding all the components.

 38

Figure 3.16 : GUI for recording voice

 Note that eventhough the GUI has been created but nothing will happen if

the user push the push buttonnor select the data set in the pop-up menu. This is

because there is no code in the M-file to service the pop-up menu.sliders and the

push button. Programming the GUI will be discussed at the next chapter.

3.3 Create GUI using GUIDE

This section shows how to use GUIDE to create the graphical user interface

(GUI). GUIDE, the MATLAB graphical user interface development environment,

provides a set of tools for creating graphical user interfaces (GUIs). These tools

greatly simplify the process of designing and building GUIs. With GUIDE, drawing

the figure, adding the components no longer require a hectic or labourous

programming but simply drag and drop the components at the layout editor. For this

project, GUIDE will be used to create the GUI for the speech recognizer. The GUI

for the speech recognizer is shown in Figure 3.17.

 39

Figure 3.17 : GUI for speech recognizer

 The GUI contains push button to run the recognition job, slider for setting

the time length and pop-up menu listing three different data sets that correspond to

the behaviour of the speech recognizer. The pop-up menu will list three templates

for the speech recognizer to recognizer which are english template, malay template

and dictionary that will display a picture. From the figure above, the GUI will have a

panel to display the word that have been recognized and picture.

3.3.1 GUIDE overview

Before using the GUIDE, it is wise to know the basic things about GUIDE.

GUIDE, the MATLAB graphical user interface development environment, provides

a set of tools for creating graphical user interfaces (GUIs). These tools simplify the

process of laying out and programming GUIs.

Using the GUIDE Layout Editor, you can populate a GUI by clicking and

dragging GUI components—such as axes, panels, buttons, text fields, sliders, and so

on—into the layout area. From the Layout Editor, GUI can be modified for the

component look and feel, align components, set tab order, view a hierarchical list of

the component objects, and set GUI options. Figure 3.18 shows the layout editor of

the GUIDE and table 3.3 describe the tools in the GUIDE

 40

Figure 3.18: GUIDE Layout Editor

Table 3.3 : Tools of layout editor
TOOL DESCRIPTIONS
Layout Editor Select components from the component palette, at the left side of the Layout

Editor, and arrange them in the layout area.
Figure Resize Tab set the size at which the GUI is initially displayed when you run it.
Menu Editor Create menus and context, i.e., pop-up, menus.
Align Objects Align and distribute groups of components. Grids and rulers also enable you

to align components on a grid with an optional snap-to-grid capability.
Tab Order Editor Set the tab and stacking order of the components in your layout.
Toolbar Editor Create Toolbars containing predefined and custom push buttons and toggle

buttons.
Icon Editor Create and modify icons for tools in a toolbar.
Property Inspector Set the properties of the components in your layout. It provides a list of all

the properties you can set and displays their current values.
Object Browser Display a hierarchical list of the objects in the GUI.
Run Save and run the current GUI.
M-File Editor Display, in your default editor, the M-file associated with the GUI.
Position Readouts Continuously display the mouse cursor position and the positions of selected

objects.

 41

3.3.2 Laying out GUI using GUIDE

To layout the GUI for speech recognizer as shown in Figure 3.19, start the

GUIDE from MATLAB. There are many ways to start GUIDE. GUIDE can be

started from the:

1. Command line by typing guide

2. Start menu by selecting MATLAB > GUIDE (GUI Builder)

3. MATLAB File menu by selecting New > GUI

4. MATLAB toolbar by clicking the GUIDE button

When starting GUIDE, it displays the GUIDE Quick Start dialog box shown

in the following figure.

Figure 3.19: GUIDE Quick Start Dialog Box

 42

For this project, blank GUI is selected. The blank GUI template displayed in

the Layout Editor is shown in Figure 3.20.

Figure 3.20: GUIDE Blank Template

Size of the GUI can be resize by resizing the grid area in the layout editor.

Just click the lower-right corner and drag it until the desire size is accomplish.

Figure 3.21: Resizing the GUI

 43

3.3.2.1 Adding the components

With GUIDE, it is easy to add the components. To add components, just

click the icon at the components palette and drag it to the layout editor. Figure 3.22

shows the components palette.

Figure 3.22: Components Palette

When open the Layout Editor, the component palette contains only icons. To

display the names of the GUI components, select Preferences from the File menu,

check the box next to Show names in component palette, and click OK. Table 3.5

explain the function of each components in the components palette.

 44

Table 3.5: Components Description

COMPONENT ICON DESCRIPTION
Push Button Push buttons generate an action when clicked. For example, an OK

button might apply settings and close a dialog box. When you click
a push button, it appears depressed; when you release the mouse
button, the push button appears raised.

Slider Sliders accept numeric input within a specified range by enabling
the user to move a sliding bar, which is called a slider or thumb.
Users move the slider by clicking the slider and dragging it, by
clicking in the trough, or by clicking an arrow. The location of the
slider indicates the relative location within the specified range.

Radio Button Radio buttons are similar to check boxes, but radio buttons are
typically mutually exclusive within a group of related radio buttons.
That is, when you select one button the previously selected button is
deselected. To activate a radio button, click the mouse button on the
object. The display indicates the state of the button. Use a button
group to manage mutually exclusive radio buttons.

Check Box Check boxes can generate an action when checked and indicate their
state as checked or not checked. Check boxes are useful when
providing the user with a number of independent choices, for
example, displaying a toolbar.

Edit Text Edit text components are fields that enable users to enter or modify
text strings. Use edit text when you want text as input. Users can
enter numbers but you must convert them to their numeric
equivalents.

Static Text Static text controls display lines of text. Static text is typically used
to label other controls, provide directions to the user, or indicate
values associated with a slider. Users cannot change static text
interactively.

Pop-Up Menu Pop-up menus open to display a list of choices when users click the
arrow.

List Box List boxes display a list of items and enable users to select one or
more items.

Toggle Button Toggle buttons generate an action and indicate whether they are
turned on or off. When you click a toggle button, it appears
depressed, showing that it is on. When you release the mouse
button, the toggle button remains depressed until you click it a
second time. When you do so, the button returns to the raised state,
showing that it is off. Use a button group to manage mutually
exclusive toggle buttons.

Table

Use the table button to create a table component.

Axes

Axes enable your GUI to display graphics such as graphs and
images. Like all graphics objects, axes have properties that you can
set to control many aspects of its behavior and appearance.

Panel

Panels arrange GUI components into groups. By visually grouping
related controls, panels can make the user interface easier to
understand. A panel can have a title and various borders.Panel
children can be user interface controls and axes as well as button
groups and other panels. The position of each component within a
panel is interpreted relative to the panel. If you move the panel, its
children move with it and maintain their positions on the panel.

Button Group

Button groups are like panels but are used to manage exclusive
selection behavior for radio buttons and toggle buttons.

 45

To change its property, simply double click the push button and a new

window will appear as shown in Figure 3.23. The new window is the Property

Inspector and a lot of properties of the components can be changed here such as the

string, tag, callback, font color and etc.

Figure 3.23: Property Inspector

 46

Figure 3.22 shows the GUI for speech recognizer in the layout editor. The

GUI has been created by drag and drop the components from the component palette

and no programming required. The components in the layout editor are not active.

Figure 3.24: GUI for Speech Recognizer in Layout Editor

All of the components properties have been changed using the Property

Inspector such as the background color, string, Font weight, font color and the size

of the font. For this GUI, editable text is used to display the word that are going to

be recognized. Two axes are used to display the UMP logo and picture regarding for

dictionary template. To run the GUI, simply click the RUN icon and figure as shown

in figure 3.10 will appear. However, this GUI will not act as the speech recognizer

since all the components don’t have the coding in the M-file to service them

specifically. Programming this GUI so that it can react as a speech recognizer will

be discussed at the next chapter.

When running or saving this GUI or any GUI created using GUIDE,

MATLAB will automatically create an M-file for the GUI. In the M-file, MATLAB

already assign all the components it’s callback and functions. To run the GUI

outside the layout editor, just type the GUI name tha tyou have been saved at the

 47

command window but make sure the current directory is at the same path with the

saved file. For this GUI, just type ‘speechrecognition’ at the command window and

the GUI will appear as shown in Figure 3.25

Figure 3.25: M-file Automatically Generated by MATLAB

CHAPTER 4

SOFTWARE DEVELOPMENT

4.1 Introduction

Flowchart is a chart that will show how the system flow step by step. This

procedure needed for every system to make sure the system work properly as it

desire. Error detection also can be define in the flow chart and it will be easy to

recover.

In software development, flow chart have it own role. With the proper

flowchart, a programmer will get the basic idea and process to write the program

shall less difficult. On the other hand, flowchart will describe overall system function

from the start to the end of the system.

4.2 Programming the GUI for recording voice

 This section shows the flow chart for programing the GUI made for recording

the voice using MATLAB. It consist several flow chart for the components in the

GUI that will work to record the voice. GUI that have been created before will not

functioning as desire since there is no coding or programming to service the

components so that it will act as the recording tool or speech recognizer.

49

4.2.1 Programming the ‘RECORD’ push button

The ‘record’ push button is the main element in this GUI. When user click the

‘RECORD’ push button, it will cause the MATLAB to initialize the window sound

card and start getting data from the microphone. After receiving the data, MATLAB

will process the data and plot it to 2D graph. Figure 4.2 shows the whole process

when user click the ‘RECORD’ button.

From Figure 4.1, one thing that may caught up some attention is about the

pop-up menu. The flow chart shows that to get the frequency sampling for recording

the voice, it depends on the value of the pop-up menu, Actually, the value is the

number that given to the string listed in the pop-up menu. The first string that being

listed will have the value equal to one and so on. Figure 4.1 picture the situation.

Figure 4.1: Pop-up Menu value

By default, the pop-up menu will have the value equal to one and if the user

don’t select anything from the pop-up menu, it will tell this recording tool to set the

frequency sampling to 8 kHz.

In order to intialize the sound card, special command from the data

acquasition toolbox will be used by MATLAB. The command is analoginput.

The syntax is as follow:

AI = analoginput('adaptor')

where adaptor is the hardware driver adaptor name. The supported adaptors are

advantech, hpe1432, keithley, mcc, nidaq, and winsound. For most computer, the

sound card adaptor name is winsound. The function analoginput only create the

The first string has
the value = 1 The second string

has the value = 2

50

analog input object for MATLAB only but to get or record the data, another

command will be used that is getdata. The syntax used to get the data from the

sound card:

data = getdata(AI);

Figure 4.1: Process for recording data

Click ‘RECORD’ button

Scan pop-up menu
value for fs

fs = 8000 Hz

Get value from slider
for time length

fs = 16000 Hz

Initialize window sound card

Change the string ‘RECORD’ to
‘Recording’ as indicator

Start taking data from microphone

Wait for 10sec to
retrieve data

Record and display original and
pre-emphasized signal waveform

ts = 1 seconds
(default value)

Button to save and playback both
waveforms appear

Display ’10 seconds
elapse....Try Again’ and
change the strimg
‘Recording to ‘RECORD’

Change string ‘Recording’ to
“RECORD’

fs = Frequency Sampling
ts = Time Length

value = 1
value = 2

If user does not set
time length

User set time length

Data retrieve

No data

51

4.2.1.1 Initializing window sound card

 Window sound card is a hardware that is installed in the computer/laptop for

processing all the files related to audio or sound. MATLAB will utilize the sound

card to capture and process the sound or voice signal from the microphone speak by

a user when the use ruse this recording tool to record the voice. Figure 4.3 shows the

flow chart on how the MATLAB initialize the sound card so that it is compatible

with it.

Figure 4.3: Initializing sound card with MATLAB

4.2.2 Programming the static text for slider

 Eventhough the slider will change its value whenever the user slide the button

at the slider, it doesn’t has any indicator to tell that the value have changed. Hence,

static text will be used to indicate the changes but it must be programmed first in

order for it to become the indicator. The static text is automatically changed

according to the value of the slider. The flow chart is shown in Figure 4.4.

Start Connecting with Sound Card

Scan for MATLAB
version

Set channel to
mono

TriggerDelayUnits equal
to seconds

StandardSampleRates
is off

TimeOut equal to
10 seconds

End initializing

Version 6.0 or version 6.5

52

Figure 4.4: Flow Chart for programming the static text

The value from the slider must be converted into string first because the

behaviour of the static text that can display string only. If the value which is in

numerical form is not converted, then the MATLAB cannot read it as static text. To

convert number into string, command num2str(data)is used.

4.2.3 Programming the play and save push button

The play and save push button will appear once all the waveform have been

displayed. Play push button when click, will playback the recorded voice and the

save push button will save the recorded voice as wave file when click. Figures 4.5

shows the flowchart for playing and saving the recorded voice.

Get value from slider

Convert the value which
is a number into string

Set the Static text with the

converted value.

Display

YES

NO

53

(a)

(b)

Figure 4.5: Playing and saving data (a) Flowchart for playing data
 (b) Flowchar for saving data

The command soundsc(y,Fs)is used by MATLAB to play the audio file.

soundsc(y,Fs) sends the signal in vector y (with sample frequency Fs) to the

speaker on PC and most UNIX platforms. The signal y is scaled to the range before

it is played, resulting in a sound that is played as loud as possible without clipping.

Click ‘Play’ push button

Get the frequency
sampling

Play the sound

Set frequency = 8k Hz

Click ‘SAVE’ push button

YES

NO

Select directory/path
to save the file

State the name of the
file

Save file as .wav

YES

YES

NO

NO

54

To save the recorded file in wave format, MATLAB used command

wavwrite. The syntax is:

wavwrite(y,Fs,'filename')

where wavwrite(y,'filename') writes the data stored in the variable y to a

WAVE file called filename. The data has a sample rate of 8000 Hz and is assumed to

be 16-bit. Each column of the data represents a separate channel. Therefore, stereo

data should be specified as a matrix with two columns. Amplitude values outside the

range [-1,+1] are clipped prior to writing. However, to select the directory or path for

saving the file, another command is used which is uiputfile. The syntax is:

[FileName,PathName] = uiputfile(...)

where [FileName,PathName] = uiputfile(...) returns the name and

path of the file selected in the dialog box. If the user clicks the Cancel button or

closes the dialog window, FileName and PathName are set to 0. Figure 4.6 shows the

window that appear when the command of uiputfile is executed.

Figure 4.6 : UIPUTFILE window

55

4.3 Programming the gui for speech recognizer

 The GUI tha thas been created for the speech recognizer before this will not

functioning unless its components is assigned with the coding that can run the speech

recognition program. For this speech recognizer, it have three templates to choose

which are the English template, Malay template and Dictionary template. For english

template, it will recognize english word only and Malay word will be recognized if

the template is the Malay template. For the dictionary template, a new feature is

added where it will display the picutre of the item that been spoken. This section will

explain the flowchart about programming the GUI so that it will act as the speech

recognizer.

4.3.1 Programming the ‘RECOGNIZE’ push button

 When the ‘RECOGNIZE’ push button is click, it will run the speech

recognition function. The speech recognition fucntion is created by writing a lot of

coding based on the calculation of Mel Frequency Cepstral Coefficient (MFCC) and

Dynamic Time Warping (DTW). Figure 4.7 shows the flowchart of its basic

operation.

56

Figure 4.7 : Speech Recognizer flowchart

4.3.2 Creating the template

 Template contains numbers of voiceprint of the spoken words. To create a

template, ti is necessary to create the voiceprint for the spoken words. Voiceprint is

Click ‘RECOGNIZE’ button

Choose Template

English Template Dictionary Template Malay Template

Initiliaze sound
card

Record the voice

Extract 17 MFCC
from the recorded

voice

Assign the
extracted MFCC
as the voiceprint

Compare
using DTW

Words bank

Display the word
spoken

Wait for 10 seconds to get
data from microphone

Display
’10

seconds
elapsed...tr

y again

yes

no

yes

no

57

generate by extracting its Mel Frequency Cepstral Coefficient (MFCC). For this

project, ten voiceprints is added for each template means that ten words can be

recognized by each template. There are steps to extract MFCC from a voice signal.

Figure 4.8 shows the steps:

Figure 4.8 : Extracting MFCC from speech signal

After extracting the MFCC from the recorded voice, then it will be save in

.mat file. .mat file is an extension of MATLAB file. The advantages saving in .mat is

it can allow to save more than parameter into one single file. For exampe, in English

Load the .wav file

Pre-emphasized the .wav file by
sending it to high pass filter.

Set coefficients to be extracted to 20

The input speech signal is segmented
into frames of 20~30 ms

Multiplied each frame with a
hamming window.

Perform FFT to obtain the magnitude
frequency response of each frame.

Multiple the magnitude frequency
response by a set of 20 triangular
bandpass filters.

Apply DCT on the 20 log energy Ek
obtained from the triangular
bandpass filters

Add the log energy as the 13rd
feature to MFCC

Perform delta operation

58

template, there will be ten voiceprints in it. To do so, save all the voiceprint as

English_template.mat.

4.3.3 DYNAMIC TIME WARPING

 Writing the coding to perform dynamic time warping (DTW) is not an easy

task. It requires a good command of mathematical knowledge and dynamic

programming. However, by the help of flow chart, it can ease this laborous job. The

flowchart is shown in Figure 4.9.

Figure 4.9 : Dynamic Time Warping flow chart

Spoken word

Extract MFCC as the
voiceprint

Normalized the
voiceprint

Calculate the absolute
value

Voiceprint from
template

Calculate the local
distance

Perform DTW

Obtain output

59

4.3.4 Interfacing MATLAB with hardware

Data from MATLAB can be transfered either using the parallel or serial port

to a hardware. The command is digitalio and the syntax is as follow:

DIO = digitalio('adaptor',ID)

DIO = digitalio('adaptor',ID) creates the digital I/O object DIO for the

specified adaptor and for the hardware device with device identifier ID. ID can be

specified as an integer or a string.

Table 4.1: Arguments for digitalio function
‘adaptor’ The hardware driver adaptor name. The supported adaptors are

advantech, keithley, mcc, nidaq, and parallel.
ID The hardware device identifier
DIO The digital I/O object.

CHAPTER 5

RESULT & DISCUSSION

5.1 Introduction

In this chapter, all results and the limitation of the project will be discussed.

All discussions will focus on the result obtained and performance of the project.

As a result, this speech recognizer develop using the MATLAB 7.1 as shown

in Figure 5.1 has gave a good result in terms of its efficieny for recognizing the word

spoken by a user. However, this speech recognizer can only recognize discrete word

only and cannot recognize words in a robust speech. This means, if the user want

the speech recognizer to recognizer the word that they want to say, the user must say

one word only at a time. For example, the speech recognizer can recognize the word

‘off’ if the user speak ‘off’ only but it cannot recognize the word ‘off’ if the user

speak a sentence that contain the word ‘off’ such as ‘please turn off the lamp’. There

are also several factors that effect the efficiency of this speech recognition and it will

be discussed thoroughly.

 61

Figure 5.1: Complete GUI for Speech Recognizer

5.2 Voiceprint

 Before the speech recognizer can perform, it must have the words bank or

template that contain voiceprint of the word. Voiceprint is a mark that represent the

word and it have different value for each word. For this project, the voiceprint is

generate by extracting the speech signal’s Mel Frequency Cepstral Coefficient

(MFCC). As mentioned before, this speech recognizer contain three templates which

are the english template, Malay template and dictionary template. Table 5.1 list all

the words for each template:

Table 5.1: List of the Words in each template

ENGLISH

MALAY

DICTIONARY

ON MULA KUCING
OFF KIRI GAJAH
FORWARD KANAN ITIK
BACKWARD DEPAN DURIAN
STOP BELAKANG BASIKAL
HELLO BERHENTI KERETA
APPLE BUKA LEMBU
ELEPHANT TUTUP KAMBING

 62

 The template does not contain the waveform of the word but it contain the

voiceprint of the word. The size of the voiceprint is smaller than the size of the

original waveform of the word and that is the reason why voiceprint for each word is

use for recognition purpose. Figures below show some of the voiceprints of the

words that have been stored in the templates.

(a)

(b)

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35 40
-25

-20

-15

-10

-5

0

5

10

15

20

25

‘on’

‘off’

 63

(c)

(d)

Figure 5.2: Voiceprints for the word spoken (a) ‘on’ (b) ‘off’ (c) ‘basikal’

 (d) ‘kucing’

0 5 10 15 20 25 30 35 40
-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

‘basikal’

‘kucing’

 64

5.3 Performance of the speech recognizer

 This speech recognizer cannot recognize the word spoken perfectly. The

recognition rate is depends on several factors. The recognition rate totally depends

on the way the user spoke and whose voice is used for creating the templates. Table

5.2 shows the recognition rate for this speech recognizer for each template.

Table 5.2: Recognition rate for each template.(a) English template
 (b) Malay template (c) Dictionary template

WORDS SPOKEN
(n times)

RECOGNIZE
(n times)

EFFICIENCY
(%)

ON 20 13 65
OFF 20 10 50
FORWARD 20 18 90
BACKWARD 20 17 85
STOP 20 12 60
HELLO 20 16 80
APPLE 20 17 85
ELEPHANT 20 20 100

(a)

WORDS SPOKEN
(n times)

RECOGNIZE
(n times)

EFFICIENCY
(%)

MULA 20 15 75
KIRI 20 10 50
KANAN 20 11 55
DEPAN 20 17 85
BELAKANG 20 20 100
BERHENTI 20 20 100
BUKA 20 13 65
TUTUP 20 16 80

(b)

WORDS SPOKEN
(n times)

RECOGNIZE
(n times)

EFFICIENCY
(%)

KUCING 20 15 75
GAJAH 20 10 50
ITIK 20 11 55
DURIAN 20 19 95
BASIKAL 20 20 100
KERETA 20 20 100
LEMBU 20 9 45
KAMBING 20 8 40

(c)

The above results is done by the same male person where is his voice also

been used to create the voiceprint. From the result above, it is found that the word

 65

that have more than one consonant can be recognized more than 95% compare to the

word that have only one consonant. The performance of this speech recognizer is

effected by several factors:

1. User

2. Voiceprint

3. Numbers of voiceprint in the template

4. Environment

User factor is the main problem for this project. This speech recognition will

recognize the word based on the template that have been stored in it. Basically, the

recognition rate is high for the user which his voice has been used to create the

template. But for other persons who his voice is not used to create the template, he

need to speak the way the person who create the template spoke. If not, it is quite

hard for this speech recognizer to recognize the word eventhough it is the same

word. Another issue regarding to the user effect is the gender. If the template is

create using the male voice, then it can only recognize the male voice and vice versa.

Table 5.3 shows the effect of the user factor towards the efficiency of this speech

recognizer.

Table 5.3: User effect to the recognition rate

WORDS SPOKEN

(n times)
TEMPLATE
CREATOR(male)

OTHER
MALE USER

FEMALE
USER

ON 20 65% 20% N/A
OFF 20 50% 20% N/A
FORWARD 20 90% 35% N/A
BACKWARD 20 85% 45% N/A
STOP 20 60% 50% N/A
HELLO 20 80% 40% N/A
APPLE 20 85% 30% N/A
ELEPHANT 20 100% 55% N/A

 The another factor that effect the efficiency of the speech recognizer is the

method to create the voiceprint. For this project, the voiceprint is create by

extracting the MFCC but there are many method to extract the MFCC from speech

recognition. When the voiceprint is made by extracting the basic MFCC only, the

recognition rate turn to be so worst that the speech recognition can recognize only

SPEAKER

 66

the words tha thave one consonant. Figure 5.3 shows the difference between basic

MFCC and improved MFCC.

Figure 5.3: The difference between basic and improved MFCC for word ‘basikal’

Figure 5.3 shows the difference between the basic and improved MFCC.

Improved MFCC is done by adding the the log energy calculation and perform delta

operation. This way, it can add more features into the MFCC and increase the

recognition rate since it has extra characteristic. As shown in figure 5.6, the graph

for basic MFCC has less information compare to the improved MFCC which contain

a lot of informations. Table 5.4 tells the huge different for the recognition rate

between these two MFCC. The recognition is done using the english template and

spoke by a male person. The speech recognizer can recognize not more than 50% for

the word that have one consonant but for words more than one consonant, it totally

can’t recognize it.

Basic MFCC

Improved MFCC

 67

Table 5.4:Voiceprint effect to the recognition rate

WORDS SPOKEN
(n times)

Basic
MFCC (%)

Improved
MFCC (%)

ON 20 45 65
OFF 20 30 50
FORWARD 20 N/A 90
BACKWARD 20 15 85
STOP 20 10 60
HELLO 20 N/A 80
APPLE 20 N/A 85
ELEPHANT 20 N/A 100

The third factor is the number of voiceprint in a template. When all of the

words from each template are combined into one template, there is a shocked result

regarding to the speech recognizer. Suprisingly, when the number of voiceprint or

words in the template is increasing, then the performance is decreasing, This is due

to the method of recognition which is using the Dynamic Time Warping (DTW).

DTW only calculate the distance or difference between the voiceprint and the

spoken word but it will not detect the pattern of the word. So, eventhough the

voiceprint may not represent the word ‘off’ for example, but if it have the smallest

distance with the spoken word ‘stop’, then the recognizer will recognize the spoken

word as ‘off’ and not ‘stop’. Table below shows the result when words in English

template and malay template are combined together.

Table 5.5:Number of words in template effect to the recognition

WORDS SPOKEN
(n times)

RECOGNIZE
(n times)

EFFICIENCY
(%)

ON 20 10 50
OFF 20 7 35
FORWARD 20 15 75
BACKWARD 20 12 60
STOP 20 8 40
HELLO 20 13 65
APPLE 20 15 75
ELEPHANT 20 17 85
MULA 20 10 50
KIRI 20 5 25
KANAN 20 7 35
DEPAN 20 13 65
BELAKANG 20 17 85
BERHENTI 20 19 95
BUKA 20 7 35
TUTUP 20 12 60

 68

The last factor is the environment. In order for this speech recognizer to

perform very well, user must use it in a silent room where there is no noise sound

surrounding. If the user use this speech recognizer at the busy place or crowded

place, then it can’t perform well. Since the speech recognizer will capture every

sound from the microphone to perform the speech recognition program, then it is

best to do it in a silent situation so that only the spoken word is capture by the

speech recognizer.

5.4 Conclusion and future recommendation

 In conclusion, the speech recognizer that has been develop using MATLAB

software can recognize the word spoken by the user but there are several condition

must be fulfilled in order to get the best result. The conditions are:

1. This speech recognizer can detect discrete word only and not a robust speech

2. This speech recognition is speaker dependant means that it can give a good

performance only for the user who is his voice is used to create the

voiceprint.

3. To perform the speech recognition, do it in a silent room or place. Crowded

or busy place will effect the performance of the speech recognizer.

There are several recommendations to improve this speech recognizer which

can be done in the future. There are:

1. Use Hidden Markov Model (HMM) method to recognize the word. HMM is

is a statistical model in which the system being modeled is assumed to be a

Markov process with unknown parameters, and the challenge is to determine

the hidden parameters from the observable parameters. The extracted model

parameters can then be used to perform further analysis, for example for

pattern recognition applications. By using HMM, it can boost the

performance of the speech recognizer and a large number of words in

template will not become a problem anymore since HMM is recognizing by

 69

predicting the pattern and not calculate the distance like Dynamic Time

Warping method.

2. Instead of using MATLAB, try using the microcontroller chip such as PIC

provided by the Microchip to perform the speech recognition. The coding is

written in C language and just embedded it into the microcontroller chip. By

using microcontroller chip, the speech recognizer can be a portable device

and easy to attach to any electrical devices compare to this speech recognizer

which using MATLAB to perform it.

5.5 COST AND COMMERCIALIAZATION VALUE

 For this speech recognizer, the cost to develop it for domestic usage is not

accountable yet due to several factors which are:

1. This speech recognizer using MATLAB to perform the operation. Because of

that, the cost must include the license cost from the MathWork company

which can cost more than RM20 000. But compare to the performance of this

speech recognizer, that cost is not acceptable.

2. Not every person has the MATLAB software, then this speech recognizer

cannot be commercialized.

71

APPENDIX A

M-file CODING FOR RECORDING GUI

function recordtool(a)
%%
% Projek Sarjana Muda %
% ARDIAN SYAH B MOHD YUSOF %
% EA04016- BEE %
% TOOLS FOR SPEECH RECOGNITION %
%%
% Type 'recordtool' at the MATLAB command window. Make sure the current
% directory is set at the same place where this file is saved.

global record_figure time_slider popupfreq_button record_button save1_button
save2_button slider_text emph_data recog_text
global load_button play1_button play2_button data R_fs R_samp_len ai
original_axes preemphasis_axes record_text filename

if nargin == 0 % if no input argument, draw the GUI
 a = 0;
end

spec = 'narrowband';
wideband_time = 4e-3;
narrowband_time = 25e-3;
fft_pts = 2048; % # of points in the FFT

switch a

case 0 % Draw figure

 clear global data % padam mana2 fail rakaman sebelumnya

 width = 950;
 height = 600;

 record_figure = figure('Position',[30 55 width height],...
 'NumberTitle','off',...
 'Color',[.8 .8 .8],...
 'Name','recordtool');

 record_button = uicontrol('Style','pushbutton',... % "record" button
 'Units','normalized',...
 'Position',[850/width 380/height 80/width 30/height],...
 'ForegroundColor',[0 0.3 0],...
 'FontWeight','bold',...
 'String','RECORD',...
 'Visible','on',...
 'CallBack','recordtool(1)');

 record_text = uicontrol('Style','text',...
 'Units','normalized', ...

72

 'Position',[830/width 415/height 110/width 20/height],...
 'BackgroundColor',[.8 .8 .8],...
 'String',' ');

 load_button = uicontrol('Style','pushbutton',... % "load" button
 'Units','normalized',...
 'Position',[850/width 330/height 80/width 30/height],...
 'ForegroundColor',[1 0.5 0.2],...
 'FontWeight','bold',...
 'String','LOAD',...
 'Visible','on',...
 'CallBack','recordtool(6)');
%
 save1_button = uicontrol('Style','pushbutton',... % "save1" button
 'Units','normalized',...
 'Position',[726/width 342/height 80/width 30/height],...
 'ForegroundColor',[0.2 0.2 1],...
 'FontWeight','bold',...
 'String','SAVE',...
 'Visible','on',...
 'CallBack','recordtool(4)');

 play1_button = uicontrol('Style','pushbutton',... % "play1" button
 'Units','normalized',...
 'Position',[645/width 342/height 80/width 30/height],...
 'ForegroundColor',[0.2 0.2 1],...
 'FontWeight','bold',...
 'String','PLAY',...
 'Visible','on',...
 'CallBack','recordtool(2)');

 save2_button = uicontrol('Style','pushbutton',... % "save2" button
 'Units','normalized',...
 'Position',[726/width 42/height 80/width 30/height],...
 'ForegroundColor',[0 0 0.4],...
 'FontWeight','bold',...
 'String','SAVE',...
 'Visible','on',...
 'CallBack','recordtool(5)');

 play2_button = uicontrol('Style','pushbutton',... % "play2" button
 'Units','normalized',...
 'Position',[645/width 42/height 80/width 30/height],...
 'ForegroundColor',[0 0 0.4],...
 'FontWeight','bold',...
 'String','PLAY',...
 'Visible','on',...
 'CallBack','recordtool(3)');

 time_slider = uicontrol('Style','Slider',... % slider untuk menetapkan
tempoh masa rakaman
 'Units','normalized', ...
 'Position',[830/width 530/height 100/width 20/height],...
 'Min',0.5,'Max',5,'Value',1,...
 'SliderStep',[1/9 1/9],...
 'Callback','recordtool(7)');

73

 slider_text = uicontrol('Style','text',... % untuk memaparkan slider
 'Units','normalized', ...
 'Position',[830/width 555/height 120/width 15/height],...
 'BackgroundColor',[.8 .8 .8],...
 'FontWeight','bold',...
 'String','Length - 1 sec');

 popupfreq_button = uicontrol('Style','popupmenu',... % "freq" menu
 'Units','normalized',...
 'Position',[830/width 470/height 100/width 30/height],...
 'ForegroundColor',[0 0 0],...
 'FontWeight','bold',...
 'String',{'8kHz','16kHz'},...
 'Visible','on');

 original_axes = axes('Units', 'normalized',...
 'Position', [0.1 0.57 0.75 0.37],...
 'Xgrid', 'on',...
 'Ygrid', 'on',...
 'Xminortick', 'on');

 preemphasis_axes = axes('Units', 'normalized',...
 'Position', [0.1 0.07 0.75 0.37],...
 'Xgrid', 'on',...
 'Ygrid', 'on',...
 'Xminortick', 'on');

 movegui(record_figure,'center')

 case 1 %rakam

 % menentukan panjang masa & frequency sampling
 val_freq = get(popupfreq_button,'Value');
 if val_freq == 1
 R_fs = 8000;
 elseif val_freq == 2
 R_fs = 16000;
 end
 R_samp_len = get(time_slider,'Value');

 %proses mengenalpasti input & output
 ai = init_sound(R_fs,R_samp_len);
 %R_fs = get(ai, 'SampleRate'); %digunakan jika fequency sampling
tidak ditetapkan.

 % mengambil data dari mikrofon
 nogo=0;

 while not (nogo)
 set(record_button,'String','Recording');
 set(record_text,'String','Talk Now!...');
 start(ai);
 try
 data = getdata(ai);

74

 nogo=1;
 catch
 disp('10 seconds elapsed... try again!');
 stop(ai);
 end
 end
 delete(ai);
 set(record_button,'String','RECORD');
 set(record_text,'String',' ');

 % normalize sound data to 99% of max
 data = 0.99*data/max(abs(data));

 % displays the time graph of the voice signal
 samp_len = length(data)/R_fs;
 t_period = 1/R_fs;
 t = 0:t_period:(samp_len-t_period);
 axes(original_axes)
 plot(t,data)
 grid on
 title('Original signal')
 xlabel('seconds')
 ylabel('amplitude')
 set(play1_button,'visible','on');
 set(save1_button,'visible','on');

 %perform the preemphasis calculation
 a=0.95;
 emph_data = filter([1, -a], 1, data);
 %display preemphasis signal
 axes(preemphasis_axes)
 plot(t,emph_data)
 grid on
 title('Preemphasized signal')
 xlabel('seconds')
 ylabel('amplitude')
 set(play2_button,'visible','on');
 set(save2_button,'visible','on');

 case 2 % Play recording for original signal

 % sends an array named z_data to the speakers/headphones
 if length(data) ~= 0
 soundsc(data,R_fs)
 end

 case 3 %play recording for emphasized signal
 % sends an array named z_data to the speakers/headphones
 if length(emph_data) ~= 0
 soundsc(emph_data,R_fs)
 end

 case 4 %saving original signal as .wav file
 [filename, pathname] = uiputfile('*.wav', 'Save Data to Wave File');

75

 if filename ~= 0
 wavwrite(data,R_fs,[pathname filename])
 end

 case 5 %saving preemphasized signal as .wav file
 [filename, pathname] = uiputfile('*.wav', 'Save Data to Wave File');
 if filename ~= 0
 wavwrite(emph_data,R_fs,[pathname filename])
 end

 case 6 %loading file
 [filename, pathname] = uigetfile('*.wav','Select Data File');

 if filename ~= 0

 cd(pathname);

 % Get data and sampling rate
 [data,R_fs] = wavread([pathname filename]);
 if min(size(data))>1
 error('Can''t load stereo data')
 end

 % displays the time graph of the voice signal
 samp_len = length(data)/R_fs;
 t_period = 1/R_fs;
 t = 0:t_period:(samp_len-t_period);
 axes(original_axes)
 plot(t,data)
 grid on
 title(['Original signal - ' filename])
 xlabel('seconds')
 ylabel('amplitude')
 set(play1_button,'visible','on');
 set(save1_button,'visible','on');

 %perform the preemphasis calculation
 a=0.95;
 emph_data = filter([1, -a], 1, data);
 %display preemphasis signal
 axes(preemphasis_axes)
 plot(t,emph_data)
 grid on
 title(['Preemphasized signal - ' filename])
 xlabel('seconds')
 ylabel('amplitude')
 set(play2_button,'visible','on');
 set(save2_button,'visible','on');
 end

 case 7 % Display time length text

 % Allow the user to set the time length of sample
 num = get(time_slider,'Value');
 set(slider_text,'String',['Length - ' num2str(num) ' sec']

76

APPENDIX B

M-file CODING FOR SPEECH RECOGNIZER GUI

function varargout = speechrecognition(varargin)

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @speechrecognition_OpeningFcn, ...
 'gui_OutputFcn', @speechrecognition_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before speechrecognition is made visible.
function speechrecognition_OpeningFcn(hObject, eventdata, handles, varargin)

axes(handles.axes3)
RGB=imread('UMP 2.jpg');
image(RGB);
axis off

axes(handles.axes1)
axis off

% Choose default command line output for speechrecognition
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% --- Outputs from this function are returned to the command line.
function varargout = speechrecognition_OutputFcn(hObject, eventdata, handles)
% Get default command line output from handles structure
varargout{1} = handles.output;

77

function popupmenu1_Callback(hObject, eventdata, handles)

function popupmenu1_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function pushbutton1_recognize_Callback(hObject, eventdata, handles)
%recognition process start here

initialize parallel port
parport=digitalio('parallel','LPT1');
line1=addline(parport,0:4,'out');

temp_type = get(handles.popupmenu1,'Value');

% menentukan panjang masa & frequency sampling

 R_samp_len = get(handles.slider3,'Value');
 R_fs = 8000;
 %proses mendapatkan input & output daripada soundcard
 ai = init_sound(R_fs,R_samp_len);

 % mengambil data dari mikrofon
 nogo=0;

 while not (nogo)
 set(handles.pushbutton1_recognize,'String','Recognizing');
 set(handles.recognition_text,'String','Talk Now!...');
 start(ai);
 try
 data = getdata(ai);
 nogo=1;
 catch
 disp('10 seconds elapsed... try again!');
 stop(ai);
 end
 end
 delete(ai);
 set(handles.pushbutton1_recognize,'String','Recognize');
 set(handles.recognition_text,'String',' ');

 % normalize sound data to 99% of max

78

 data = 0.99*data/max(abs(data));

 %recognition using dtw

[Answer_Distance,Answer_Path_x,Answer_Path_y,Answer_DistanceFrom,Answer_Name]
=Main_DTW(data,R_fs,temp_type);
 set(handles.edit_recognize,'String',Answer_Name);

 if temp_type == 3
 axes(handles.axes1)
 gambar=imread([Answer_Name '.jpg']);
 image(gambar);
 axis off
 elseif temp_type == 1
 if strcmp(Answer_Name,'on')
 putvalue(line1,[1 0 0 0 0]);
 elseif strcmp(Answer_Name,'off')
 putvalue(line1,0);
 elseif strcmp(Answer_Name,'forward')
 putvalue(line1,[1 1 0 0 1]);
 elseif strcmp(Answer_Name,'reverse')
 putvalue(line1,[1 0 1 1 0]);
 end
 end

 guidata(hObject, handles);

if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function edit2_Callback(hObject, eventdata, handles)

function edit2_CreateFcn(hObject, eventdata, handles)

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

79

function slider3_Callback(hObject, eventdata, handles)
% Allow the user to set the time length of sample
 num = get(handles.slider3,'Value');
 set(handles.slider_text,'String',['Length - ' num2str(num) ' sec']);

 guidata(hObject, handles);

function slider3_CreateFcn(hObject, eventdata, handles)

% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'),
get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

80

APPENDIX C

M-file CODING FOR CREATING VOICEPRINT

 clear all;
 close all;
 clc;

 Template_MFCC_Features_1=
CMS_Normalization(Feature_Extruction('basikal.wav'));
 Template_MFCC_Features_2= CMS_Normalization(Feature_Extruction('epal.wav'));
 Template_MFCC_Features_3=
CMS_Normalization(Feature_Extruction('gajah.wav'));
 Template_MFCC_Features_4=
CMS_Normalization(Feature_Extruction('harimau.wav'));
 Template_MFCC_Features_5= CMS_Normalization(Feature_Extruction('itik.wav'));
 Template_MFCC_Features_6=
CMS_Normalization(Feature_Extruction('kambing.wav'));
 Template_MFCC_Features_7=
CMS_Normalization(Feature_Extruction('kucing.wav'));
 Template_MFCC_Features_8=
CMS_Normalization(Feature_Extruction('timun.wav'));
 Template_MFCC_Features_9= CMS_Normalization(Feature_Extruction('ayam.wav'));
 Template_MFCC_Features_10=
CMS_Normalization(Feature_Extruction('kuda.wav'));

Template_MFCC_Features_11=CMS_Normalization(Feature_Extruction('lembu.wav'));

Template_MFCC_Features_12=CMS_Normalization(Feature_Extruction('petai.wav'));

Template_MFCC_Features_13=CMS_Normalization(Feature_Extruction('durian.wav'))
;

Template_MFCC_Features_14=CMS_Normalization(Feature_Extruction('pisang.wav'))
;

 %save Templates.mat
 save Templates_dictionary.mat

 clear path

81

APPENDIX D

M-file CODING FOR MFCC

% ***
% ****** Feature extruction *******
% ***
function Featurs= Feature_Extruction(InputWave,Fs)

 % Featurs= Feature_Extruction(InputWave);
 % Return 20 MFCC feature vectors of InputWave

 if nargin<1
 disp('Error: in Feature_Extruction, no wave file.');
 end
 if isstr(InputWave),
 [InputWave,Fs,NBits] = wavread(InputWave);
 elseif nargin==1
 Fs=8000;
 end

 % ====== Set Parameters.
 % Frame size: N(ms),Overlapping region is M(ms)
 % Generally , M = (1/2)*N , which N = 24.
 FrameSize_ms = 24; % Ex. N=32 = (256/8000)*1000 , each frame has
256 points.
 Overlap_ms = (1/2)*FrameSize_ms;
 FrameSize = round(FrameSize_ms*Fs/1000); % 256
 Overlap = round(Overlap_ms*Fs/1000); % 86
 %No_of_Frames= floor((size(InputWave,1)/(FrameSize-Overlap)) - 1)+2;
 % Triangular BandFilter parameters : StartFreq,CenterFreq,StopFreq. (20
Bank filters)
 StartFreq=[1 3 5 7 9 11 13 15 17 19 23 27 31 35 40
46 55 61 70 81]; %Start
 CenterFreq=[3 5 7 9 11 13 15 17 19 21 27 31 35 40 46
55 61 70 81 93]; %Center
 StopFreq=[5 7 9 11 13 15 17 19 21 23 31 35 40 46 55
61 70 81 93 108]; %End

 Threshold = 0.0001; % for energy test ==> remove fromes with energy
bellow this amount.

 % ====== Step 1: Pre-emphasis.
 InputWave = filter([1, -0.95], 1, InputWave);

 % ====== Step 2: Windowng & overlapping.
 Frame = buffer(InputWave, FrameSize, Overlap);

 normalize_coff = 10;
 energy = sum(Frame.^2)/FrameSize;
 index = find(energy < Threshold);

82

 energy(index) = [];
 logEnergy = 10*log10(energy)/normalize_coff;
 Frame(:, index) = []; % Remove empty frames
 Featurs = [];
 for i = 1:size(Frame, 2); % size(Frame, 2)=No_of_Frames

 % ====== Step 3: Hamming window.
 WindowedFrame = hamming(FrameSize).*Frame(:,i);

 % ====== Step 4: FFT: fast fourier transform.
 % Using FFT function to calculate.
 % Compute square of real part and imaginary part.
 FFT_Frame = abs(fft(WindowedFrame));

 % ====== Step 5: Triangular bandpass filter.
 % Using user defined function
triBandFilter(fftFrame{i}).
 No_of_FilterBanks = 20; %No_of_FilterBanks means counts of log
spectral magnitude.
 tbfCoef =
TriBandFilter(FFT_Frame,No_of_FilterBanks,StartFreq,CenterFreq,StopFreq);

 % ====== Step 6: Logearithm.
 tbfCoef = log(tbfCoef.^2);

 % ====== Step 7: DCT: Discrete Cosine Transform.
 % Using DCT to get L order mel-scale-cepstrum
parameters.
 No_of_Featurs = 12; % generally No_of_Featurs is 12.
 Cepstrums = Mel_Cepstrum2(No_of_Featurs,No_of_FilterBanks,tbfCoef);
 Featurs = [Featurs Cepstrums'];

 end;
 Featurs = [Featurs; logEnergy];

 %=========compute delta energy and delta cepstrum============
 %Calculate delta cepstrum and delta log energy
 % get 13 order Featurs.
 Delta_window = 2;
 D_Featurs = DeltaFeature(Delta_window, Featurs);

 %=========compute delta-delta energy and delta cepstrum============
 %Calculate delta-delta cepstrum and delta log energy
 %Combine them with previouse features, get 39 order Featurs.

 %Delta_window = 2;
 %D_d_Featurs = Delta_DeltaFeature(Delta_window, Featurs);
 % or
 D_d_Featurs = DeltaFeature(Delta_window, D_Featurs);

 %===== Combine cepstrum,delta and delta-delta
 Featurs = [Featurs ; D_Featurs ; D_d_Featurs]; % 39 features
 %Featurs = [Featurs ; D_Featurs]; % 26 features

83

%============================= Sub function ==============================
%==

% ***
% ****** Triangular Band Filter *******
% ***

function tbfCoef = TriBandFilter(fftFrame,P,StartFreq,CenterFreq,StopFreq)
 %The function is triangular bandpass filter.
 for i = 1 : P,
 % Compute the slope of left side of triangular bandpass filter
 for j = StartFreq(i) : CenterFreq(i),
 filtmag(j) = (j-StartFreq(i))/(CenterFreq(i)-StartFreq(i));
 end;
 % Compute the slope of right side of triangular bandpass filter
 for j = CenterFreq(i)+1: StopFreq(i),
 filtmag(j) = 1-(j-CenterFreq(i))/(StopFreq(i)-CenterFreq(i));
 end;
 tbfCoef(i) =
sum(fftFrame(StartFreq(i):StopFreq(i)).*filtmag(StartFreq(i):StopFreq(i))');
 end;

% ***
% ****** Mel-scale cepstrums *******
% ***

function Cepstrum = Mel_Cepstrum2(L,P,tbfCoef)
 %compute mel-scale cepstrum , L should be 12 at most part.
 for i=1:L,
 coef = cos((pi/P)*i*(linspace(1,P,P)-0.5))';
 Cepstrum(i) = sum(coef.*tbfCoef');
 end;

% ***
% ****** Delta cepstrums *******
% ***

function D_Featurs = DeltaFeature(delta_window,Featurs)
 % Compute delta cepstrum and delta log energy.
 rows = size(Featurs,1);
 cols = size(Featurs,2);
 temp = [zeros(rows,delta_window) Featurs zeros(rows,delta_window)];
 D_Featurs = zeros(rows,cols);
 denominator = sum([1:delta_window].^2)*2;
 for i = 1+delta_window : cols+delta_window,
 subtrahend = 0;
 minuend = 0;
 for j = 1 : delta_window,
 subtrahend = subtrahend + temp(:,i+j)*j;
 minuend = minuend + temp(:,i-j)*(-j);
 end;
 D_Featurs(:,i-delta_window) = (subtrahend - minuend)/denominator;
 end;
 %Featurs = [Featurs ; temp2];

84

% ***
% ****** Delta-Delta cepstrums *******
% ***

function D_d_Featurs = Delta_DeltaFeature(delta_window,Featurs)
 % Compute delta delta cepstrum and delta log energy.

 % another way!
 % Featurs1 = DeltaFeature(delta_window,Featurs);
 % Featurs2 = DeltaFeature(delta_window,Featurs1);
 % Featurs = [Featurs ; Featurs2];

 rows = size(Featurs,1);
 cols = size(Featurs,2);
 temp1 = [zeros(rows,delta_window) Featurs zeros(rows,delta_window)];
 temp2 = [zeros(rows,delta_window) Featurs zeros(rows,delta_window)];
 D_d_Featurs = zeros(rows,cols);

 % Rabiner method
 denominator = sum([1:delta_window].^2)*2;
 denominator2 =
delta_window*(delta_window+1)*(2*delta_window+1)*(3*delta_window^2+3*delta_wi
ndow-1)/15;
 for i = 1+delta_window : cols+delta_window,
 subtrahend = 0;
 minuend = 0;
 subtrahend2 = 0;
 minuend2 = 0;
 for j = 1 : delta_window,
 subtrahend = subtrahend + temp1(:,i+j);
 minuend = minuend + temp1(:,i-j);
 subtrahend2 = subtrahend2+ j*j*temp2(:,i+j);
 minuend2 = minuend2 + (-j)*(-j)*temp2(:,i-j);
 end;
 temp1(:,i) = subtrahend + minuend + temp1(:,i);
 temp2(:,i) = subtrahend2 + minuend2;
 D_d_Featurs(:,i-delta_window) = 2*(denominator.*temp1(:,i)-
(2*delta_window+1).*temp2(:,i))/(denominator*denominator-
(2*delta_window+1)*denominator2);
 end;
 % Featurs = [Featurs ; temp3];

85

APPENDIX E

M-file CODING FOR DTW

% Dynamic Time Warping (DTW)

function
[Answer_Distance,Answer_Path_x,Answer_Path_y,Answer_DistanceFrom,Answer_Name]
=Main_DTW(TestWave,Fs,Template)
 No_Templates=14; % from 0 to 13

Test_MFCC_Features= CMS_Normalization(Feature_Extruction(TestWave,Fs));
% CMS_MFCC=CMS_Normalization(MFCC_Features);
 for i=1:No_Templates
 [Template_MFCC_Features,Template_Name]=SelectNextTemplate(i,Template);
 % Construct the 'local match' scores matrix as the cosine distance
between the featurs
 Local_Distance =
LocalDistance(abs(Template_MFCC_Features),abs(Test_MFCC_Features));

 % Find the lowest-cost path across Local_Distance matrix
 [Path_y,Path_x,Distance] = DTW(Local_Distance);

 % Least cost (final cost) is value in top right corner of Distance
matrix
 Distance_from_Template(i)=Distance(1,size(Distance,2));
 if i>1
 if Distance_from_Template(i)<Answer_DistanceFrom
 Answer_Name=Template_Name;
 Answer_Distance=Distance;
 Answer_Path_x=Path_x;
 Answer_Path_y=Path_y;
 Answer_DistanceFrom=Distance_from_Template(i);
 end
 else
 Answer_Name=Template_Name;
 Answer_Distance=Distance;
 Answer_Path_x=Path_x;
 Answer_Path_y=Path_y;
 Answer_DistanceFrom=Distance_from_Template(i);
 end
 end

CALCULATING DTW

function [Path_y,Path_x,Distance] = DTW(LocalDistance)
 % [Path_y,Path_x] = DTW(LocalDistance)
 % Use dynamic programming to find a min-cost path through matrix
LocalDistance.
 % Return state sequence in Path_y,Path_x

86

 [Row,Col] = size(LocalDistance);

 % costs
 Distance = zeros(Row+1, Col+1);
 Distance(Row+1,:) = NaN;
 Distance(:,1) = NaN;
 Distance(Row+1,1) = 0;
 Distance(1:(Row), 2:(Col+1)) = LocalDistance;

 AllPath = zeros(Row,Col);

 for i = Row+1:-1:2;
 for j = 1:Col;
 [SelPath, tb] = min([Distance(i, j), Distance(i, j+1), Distance(i-1,
j)]);
 Distance(i-1,j+1) = Distance(i-1,j+1)+SelPath;
 AllPath(i-1,j) = tb;
 end
 end

 % Traceback from top left for finding Path
 i = 1;
 j = Col;
 Path_y = i;
 Path_x = j;
 while i < Row & j > 1
 tb = AllPath(i,j);
 if (tb == 1)
 i = i+1;
 j = j-1;
 elseif (tb == 2)
 i = i+1;
 elseif (tb == 3)
 j = j-1;
 else
 error;
 end
 Path_y = [i,Path_y];
 Path_x = [j,Path_x];
 end

 Distance = Distance(1:(Row),2:(Col+1));

CALCULATING LOCAL DISTANCE

function Out2 = LocalDistance(A,B)
 % Out = LocalDistance(A,B)
 % calculate the local distance between feature matrices A and B.
 % Using inner product i.e. cos(angle between vectors) between vectors.
 % A and B have same #rows.

87

 Mag_A = sqrt(sum(A.^2));
 Mag_B = sqrt(sum(B.^2));

 Cols_A = size(A,2);
 Cols_B = size(B,2);
 Out = zeros(Cols_A, Cols_B);
 for i = 1:Cols_A
 for j = 1:Cols_B
 % normalized inner product i.e. cos(angle between vectors)
 Out(i,j) = (A(:,i)'*B(:,j))/(Mag_A(i)*Mag_B(j));
 end
 end

 %Out = (A'*B)./(Mag_A'*Mag_B);

 Row=size(Out,1);
 for i=1:fix(Row/2)
 %tmp=M(Row-i+1,:);
 Out2(Row-i+1,:)=Out(i,:);
 Out2(i,:)=Out(Row-i+1,:);%tmp;
 end
 if mod(Row,2)~=0
 Out2(fix(Row/2+1),:)=Out(fix(Row/2+1),:);
 end

 % Use 1-Out2 because DTW will find the *lowest* total cost
 Out2=1-Out2;

88

APPENDIX F

M-file CODING FOR INITIALIZE SOUNDCARD

function ai = init_sound(fs,samp_len)
% Function 'init_sound' initializes microphone input for voice
% 'fs' is the sampling rate, 'samp_len' is the time to record
% in seconds.

v = ver;
name = {v.Name};
ind = find(strcmp(name,'MATLAB'));
if isempty(ind)
 ind = find(strcmp(name,'MATLAB Toolbox'));
end

v_num = str2num(v(ind).Version);

ai = analoginput('winsound');
addchannel(ai, 1);
if (v_num == 6.1) | (v_num == 6.5)
 set(ai, 'StandardSampleRates', 'Off');
end
set(ai, 'SampleRate', fs);
actual_fs = get(ai, 'SampleRate');
set(ai, 'TriggerType', 'software');
set(ai, 'TriggerRepeat', 0);
set(ai, 'TriggerCondition', 'Rising');
set(ai, 'TriggerConditionValue', 0.01);
set(ai, 'TriggerChannel', ai.Channel(1));
set(ai, 'TriggerDelay', -0.1);
set(ai, 'TriggerDelayUnits', 'seconds');
set(ai, 'SamplesPerTrigger', actual_fs*samp_len+1);
set(ai, 'TimeOut', 10);

REFERENCES

[1] Huang, X., Acero, A., and Hon, H.-W. (2001), Spoken Language Processing: A

Guide to Theory, Algorithm , and System Development, Prentice Hall, Upper

Saddle River, NJ

.

[2] Reynolds, D. A. (1994), \Experimental evaluation of features for robust speaker

identication", IEEE Trans. Speech Audio Process., 2(4): 639{643.

[3] Yiying Zhang ,(Oct 1997), "A robust and fast endpoint detection algorithm for

isolated word recgnition"IEEE conference.

[4] Kaustubh Kale ,(April 2000), "Speech synthesis and hardware implementation

of speech recognition system using digital signal processing", I.T.B.H.U

dissertation.

[5] H. Sakoe and S. Chiba. Dynamic Programming Algorithm Optimization for
Spoken Word Recognition, IEEE Transactions on Acoustics, Speech and
Signal Processing. ASSP-26(1): 43-49. February 1978.

[6] W. H. Abdulla, D. Chow and G. Sin. Cross-Words Reference Template for
DTW-based Speech Recognition System. IEEE Technology Conference
(TENCON). Bangalore, India, 1: 1-4, 2003.

	TitleARDIAN.pdf
	Pengesahan status tesis.pdf
	declaration by supervisor.pdf
	DeclarationaRDIAN.pdf
	Acknowledgement.pdf
	ABSTRACT.pdf
	TABLE OF CONTENTS.pdf
	CHAPTER_1.pdf
	CHAPTER_2.pdf
	CHAPTER_3.pdf
	CHAPTER_4.pdf
	CHAPTER_5.pdf
	APPENDIX A.pdf
	APPENDIX B.pdf
	APPENDIX C.pdf
	APPENDIX D.pdf
	APPENDIX E.pdf
	APPENDIX F.pdf
	REFERENCES.pdf

