
LEARNING SIGN LANGUAGE USING SINGLE

SHOT DETECTOR (SSD) AND MOBILENET

NIK AHMAD FARIHIN BIN MOHD ZULKIFLI

Bachelor of Computer Science

(Software Engineering)

UNIVERSITI MALAYSIA PAHANG

UNIVERSITI MALAYSIA PAHANG

DECLARATION OF THESIS AND COPYRIGHT

Author’s Full Name : __

Date of Birth

Title : ___

Academic Session : ___

I declare that this thesis is classified as:

 CONFIDENTIAL (Contains confidential information under the Official

Secret Act 1997)*

 RESTRICTED (Contains restricted information as specified by the

organization where research was done)*

 OPEN ACCESS I agree that my thesis to be published as online open access

(Full Text)

I acknowledge that Universiti Malaysia Pahang reserves the following rights:

1. The Thesis is the Property of Universiti Malaysia Pahang

2. The Library of Universiti Malaysia Pahang has the right to make copies of the thesis for

the purpose of research only.

3. The Library has the right to make copies of the thesis for academic exchange.

Certified by:

 (Student’s Signature)

Date: 01/07/2023

 (Supervisor’s Signature)

Dr. Zuriani Binti Mustaffa

Date:

NIK AHMAD FARIHIN BIN MOHD ZULKIFLI

LEARNING SIGN LANGUAGE USING SINGLE

SHOT DETECTOR (SSD) AND MOBILENET

SEMESTER 2 2022/2023

17/07/2023

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this project and in my opinion, this project is

adequate in terms of scope and quality for the award of the degree of Bachelor of

Computer Science (Software Engineering) with Honors.

(Supervisor’s Signature)

Full Name :

Position :

Date :

Zuriani Mustaffa

Senior lecturer

17/07/2023

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

(Student’s Signature)

Full Name : NIK AHMAD FARIHIN BIN MOHD ZULKIFLI

ID Number : CB20179

Date : 01 July 2023

LEARNING SIGN LANGUAGE USING SINGLE SHOT DETECTOR (SSD) AND

MOBILENET

NIK AHMAD FARIHIN BIN MOHD ZULKIFLI

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Computer Science (Software Engineering) with Honors

Faculty of Computing

UNIVERSITI MALAYSIA PAHANG

JULY 2023

ii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my supervisor, Dr.

Zuriani Binti Mustaffa for her invaluable guidance, support, and encouragement

throughout the course of this project. Their expertise and patience were instrumental in

helping me navigate the research process and complete this project successfully.

My heartfelt gratitude goes to my family for their unwavering support and encouragement

throughout this journey. They have been my rock, my source of strength and inspiration,

and I couldn't have done it without them. Their love and understanding have been a

constant source of motivation throughout my journey.

I would also like to express my sincere appreciation to my colleagues and friends for their

support and encouragement throughout this project. Their contributions have been

invaluable and have helped me to achieve my goals. They have been a constant source of

inspiration, motivation, and support. They have always been there to lend a listening ear,

share their wisdom and offer valuable suggestions. I am grateful for the camaraderie and

friendship that we have shared.

Lastly, I extend my heartfelt thanks to all who have supported and assisted me in the

completion of this project, particularly my thesis advisor, colleagues, friends, family, and

every person involved. Your contributions and support have been invaluable and have

played a vital role in the success of this project.

iii

ABSTRAK

Bahasa isyarat adalah bentuk komunikasi yang digunakan oleh komuniti yang pekak dan

kurang pendengaran. Bahasa Isyarat Melayu (BIM) adalah bahasa isyarat rasmi yang

diamalkan di Malaysia untuk berkomunikasi menggunakan isyarat tangan dan ekspresi

wajah. Setiap isyarat dan kombinasinya mempunyai maksud yang berbeza, ini

membuatkan ia lebih sukar bagi sesiapa untuk dengan mudahnya belajar Bahasa Isyarat

Melayu. Oleh itu, kajian ini menghasilkan model pengesanan objek menggunakan Single

Shot Detector (SSD) dan Mobilenet untuk mengesan Bahasa Isyarat dalam masa sebenar.

Model ini hanya dilatih untuk mengesan isyarat statik yang tidak memerlukan kombinasi

yang kompleks. Set data terdiri dari 2083 imej isyarat yang dikumpulkan dari laman web

Kaggle dan dikumpulkan menggunakan kamera peribadi. Untuk fasa latihan, pengesahan

dan pengujian, set data dibahagikan kepada nisbah 8:1:1. Dengan itu, tesis ini berjaya

menghasilkan sistem yang sebenar dan tepat untuk pengenalan BIM menggunakan model

SSD-Mobilenet, yang boleh memberi sumbangan kepada bidang pengenalan bahasa

isyarat dan membantu untuk meningkatkan akses komunikasi untuk individu yang pekak

dan kurang pendengaran.

iv

ABSTRACT

Sign languages are a form of communication used by the deaf and hard-of-hearing

community. Malay Sign Language (MSL) is the official sign language that is practiced

in Malaysia to communicate using hand signs and facial expressions. Every sign and its

combination have a different meaning, this makes it quite hard for people to just casually

pick up Malay Sign Language to learn. Therefore, this study presents an object detection

model using Single Shot Detector (SSD) and Mobilenet to detect Sign Language in real

time. This model is only trained to detect static signs which didn’t require any complex

combination. The dataset consists of 2000 sign images that were collected from a website

called Kaggle and collected using a personal camera. For the training, validation, and

testing phases, the dataset was divided into 8:1:1 respectively. In conclusion, this thesis

has succeeded in developing a real-time and accurate system for MSL recognition using

the SSD-Mobilenet model, which can contribute to the field of sign language recognition

and help to improve communication access for deaf and hard-of-hearing individuals.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRAK iii

ABSTRACT iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xi

CHAPTER 1 INTRODUCTION 1

1.1 Introduction 1

1.2 Problem Statement 5

1.3 Objective 6

1.4 Scope 6

1.5 Thesis Organization 7

CHAPTER 2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 Existing Works 9

2.2.1 Region-based Convolutional Neural Network (R-CNN) 9

2.2.2 Faster Region-based Convolutional Neural Network (R-CNN) 10

2.2.3 You Only Look Once (YOLO) 12

vi

2.3 Analysis/Comparison of Existing System 14

2.3.1 Table of Comparison 15

2.3.2 Analysis Review 16

2.3.3 Relevance of Comparison with project title 17

2.4 Summary 18

CHAPTER 3 METHODOLOGY 19

3.1 Introduction 19

3.2 Project Management Framework/Methodology 20

3.2.1 Data Capturing 21

3.2.2 Data Processing 22

3.2.3 Data Organization 24

3.2.4 Development 24

3.2.5 Model Training 25

3.2.6 Model Validation 26

3.2.7 Model Testing 26

3.2.8 Model Evaluation 26

3.2.9 Deploy Model to Mobile Apps 27

3.2.10 Real-time Testing 28

3.3 Project Requirement 28

3.4 Propose Design 30

3.5 Data Design 32

3.6 Proof of Initial Concept 33

3.7 Testing/Validation Plan 34

3.8 Potential Use of Proposed Solution 41

3.9 Gantt Chart 42

vii

CHAPTER 4 RESULTS AND DISCUSSION 43

4.1 Introduction 43

4.2 Implementation Process 44

4.2.1 Data Description and Analysis 44

4.2.2 Data Labelling 52

4.2.3 Development of SSD-MobileNet model 54

4.2.4 Real-time testing 63

4.3 Result 66

4.3.1 Model evaluations 66

4.3.2 Model Testing 69

4.3.3 Real-Time testing 71

4.4 Discussion 76

CHAPTER 5 CONCLUSION 77

5.1 Introduction 77

5.2 Objective Revisited 77

5.3 Limitation 78

5.4 Future Work 79

REFERENCES ii

APPENDIX A v

viii

LIST OF TABLES

Table 2.1 Table of Comparison 15

Table 3.1 Samples of Datasets 21

Table 3.2 Software Items 29

Table 3.3 Hardware Items 29

Table 3.4 Samples of Datasets from Kaggle.com 32

Table 4.1 Sample of Datasets 44

Table 4.2 Model evaluation result 67

Table 4.3 Model testing result 70

Table 4.4 Real-time testing result 71

Table 4.5 Real-time Testing result 74

Table 4.6 Evaluation matrix result 74

ix

LIST OF FIGURES

Figure 1.1 Survey Chart 1 2

Figure 1.2 Survey Chart 2 2

Figure 1.3 Survey Chart 3 3

Figure 1.4 Survery Chart 4 3

Figure 1.5 Survey Chart 5 3

Figure 2.1 Selective Searching Process Figure 9

Figure 2.2 Convolutional Neural Network (CNN) 10

Figure 2.3 Faster R-CNN figure 11

Figure 2.4 Feature Maps 11

Figure 2.5 YOLO Grid divide process 12

Figure 2.6 Bounding Box Regression 13

Figure 2.7 Intersection over Union Formula 13

Figure 2.8 YOLO algorithm works 14

Figure 2.9 Graph of Accuracy and speed for All techniques 15

Figure 2.10 Accuracy detection for a different size 16

Figure 3.1 Flowchart of Model Development 20

Figure 3.2 Labelling using OpenLabeling software 22

Figure 3.3 XML File of labeled image 23

Figure 3.4 Line of label 23

Figure 3.5 Contents of the Images folder 24

Figure 3.6 Tensorboard example 25

Figure 3.7 Model Testing 26

Figure 3.8 Real-time testing 28

Figure 3.9 Single Shot Detector (SSD) MobileNet-v2 Architecture 30

Figure 3.10 Mobile Application Flowchart 31

Figure 3.11 Proof of Initial Concept 33

Figure 3.12 Malay Sign Language letters and numbers 34

Figure 3.13 Chosen Malay Words 34

Figure 4.1 Labelling using OpenLabeling 52

Figure 4.2 Annotations files 52

Figure 4.3 XML File of labeled image 53

Figure 4.4 Line of label 53

Figure 4.5 Connect Colab to Drive python code 54

x

Figure 4.6 Clone Object Detection API 54

Figure 4.7 Install Tensorflow 54

Figure 4.8 Create Training and testing record 55

Figure 4.9 Configure chosen Model SSD 55

Figure 4.10 Download SSD-MobileNet model file 56

Figure 4.11 Configure num_class 56

Figure 4.12 Configure file 57

Figure 4.13 Configure model learning rate 57

Figure 4.14 Load Tensorboard 58

Figure 4.15 Tensorboard interface 58

Figure 4.16 Train model command 58

Figure 4.17 Validation during training 59

Figure 4.18 Evaluation result 59

Figure 4.19 Stop model training 60

Figure 4.20 Export Inference Graph 60

Figure 4.21 Create tflite file 61

Figure 4.22 Model testing command 61

Figure 4.23 Testing model 62

Figure 4.24 Download TFlite file 62

Figure 4.25 Downloaded TFLite model 62

Figure 4.26 Tensorflow Mobile apps Github 63

Figure 4.27 Copy model into android asset 63

Figure 4.28 Change model name 64

Figure 4.29 Install mobile application 64

Figure 4.30 Real-time Testing in mobile apps 65

Figure 4.31 Total loss graph SSD-MobileNet model 66

Figure 4.32 Average Precision result after training 66

Figure 4.33 Average Recall result after training 66

Figure 4.34 Total loss result after training 66

Figure 4.35 Model Evaluation result after TFlite conversion 69

xi

LIST OF ABBREVIATIONS

MSL

CNN

Malay Sign Language

Convolutional Neural Network

SSD Single Shot Detector

YOLO You Only Look Once

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Deaf and mute are a type of disability that makes people unable to hear or speak to other

people which makes it hard for them to communicate with others. In Malaysia alone,

there are over 2 million people that have a hearing problem (Siti Hajar, 2019), and it is

very common for people with a hearing problem to lose their ability to speak. People who

are deaf or mute come in many ways, it could be genetics which means that they are born

deaf or mute, and some people get it through injury or disease which led them to lose

their ability to speak or hear voices. These people will be referred to as deaf-mute people

from now on in this proposal.

To combat this communication barrier, researchers have developed many things to

address this issue. One of the solutions is to use sign language to communicate with deaf-

mute people. Sign languages are defined as languages that use our body parts to convey

meaning to people without muttering any noise. It is first found in the 16th century when

a Spanish Benedictine monk named Pedro Ponce de Leon create sign language for the

hearing impaired at that time (DAYAS, 2019). Sign language has now developed since

then and now and it has been used worldwide to communicate with deaf-mute people.

There is also some slang in sign language that people use differently like how the Malay

language has many slangs.

There are still a huge number of people who are unable to use sign language because they

have no need for it or find it difficult to learn it, even though sign language is one of the

most popular solutions to this communication problem. In any case, learning sign

language is challenging because it is essentially a new language that we must master

extensively before we can communicate using it. One of the common problems was

finding it hard to study it by yourself by using books or videos from the internet because

2

we are unable to test and check if we are doing the sign correctly. This makes people that

are new to learning this easily gave up learning it more.

A survey has been conducted for this project to study the knowledge and attitudes of

Malaysia citizens towards Malay Sign Language. This survey covers three sections, the

first section has the details of the respondents, second section ask questions about their

attitudes and opinion towards Malay Sign Language, and third section has a simple test

to test the respondents knowledge on MSL.

Figure 1.1 Survey Chart 1

Figure 1.2 Survey Chart 2

From figure 1.1 and 1.2, it shows that over 90 percent of the respondents agree that it is

important to learn Malay sign language but 90 percent of them have little to no experience

learning Malay sign language.

3

Figure 1.3 Survey Chart 3

Figure 1.4 Survery Chart 4

Figure 1.5 Survey Chart 5

From figure 1.3, it is quite apparent that many respondents rarely face a situation where

they are required to use MSL. This is because most of the people nowadays will not be

put into that situation unless they have some knowledge about MSL. Figure 1.5 shows

that over 50 percent of the respondents agree that learning sign language will benefit them

4

in daily life. Figure 1.4 proves that learning sign language without any guidance or a tutor

will be quite hard and challenging as 59 percent of the respondents agree with it. From

this survey we could make an assumption that over 90 percent of Malaysia citizens

wanted to learn MSL and interested in it, but most of the time, they find themselves in a

situation where they do not want to get a tutor due to time and money constraints. This

leads to them to learn MSL by themselves which ended up in disappointment because it’s

too hards to learn without a tutor.

Concerning the above matter, this project proposes a solution to use Single Shot Detectors

and MobileNet to study sign language in Malaysia. Single Shot Detector with MobileNet

is a deep learning-based technique that focused on embedded vision applications (Shafi

et al., 2022). Deep Learning is a subset of Machine Learning, sign language model will

be trained by using a Single Shot Detector for object detection and a MobileNet

convolution neural network as the classifier (Pathak et al., 2018). A model is a file that is

generated after going through training data to recognize patterns. The model will be used

to make detection or decisions without being programmed manually to give the wanted

output. There are many ways where Deep Learning is applied, such as image

classification, face recognition, pose estimation, and many more. In this project, the

Single Shot Detectors and MobileNet will be used to study sign language for object

detection. Object detection means that the machine will learn how to recognize a certain

pose and its meaning by learning from the training data that will be given.

In this study. the machines will be supplied with lots of image data of people doing Malay

signs language that will be used for them to train and learn to recognize all the signs that

have been selected for this project. This will create a model that can recognize Malay

sign language from image input, the model will be used in a mobile phone application

where user can use their camera to check if they are doing the sign correctly. Almost

everyone in Malaysia has a smartphone nowadays, by deploying this model into a mobile

application, users can use it everywhere and anytime that they want. This will help people

to learn the Malay sign language easily by themselves.

5

1.2 Problem Statement

The current implementation of how people learn sign language is by going to classes

either online or physically or they will find books or videos that they could use to learn

sign language. The most effective way to learn sign language is to get a teacher that could

teach step by step and will correct them when they make mistakes, they will also test

them, and the student will be able to use them to communicate with the teacher. This

method is effective, but it requires a lot of time and money spent for them to be able to

learn and use sign language which they may or may never use, which deviates people to

study by themselves either through books or internet content like videos and articles on

the internet. The second method where people learn by themselves is suitable for people

that don’t have a lot of time and money on their side to spend on learning sign language.

The problem with learning by themselves is that they won’t be able to know if they are

doing the signs correctly. Without supervision from teachers, they will be going in blindly

only by referring to anything they have on their hands and the internet, but they will be

nobody for them to test and use what they learn. It makes it harder to learn and takes more

time for them to be able to use sign language compared to people that learn from teachers

or attend classes. Learning sign language wasn’t that difficult but learning to be able to

use it in daily life is difficult because it requires a lot of time until we can use it fluently

(Jamie Berke, 2020).

At the current time and moment, there are already a lot of models that have been

developed and trained to detect Malay Sign Language in a picture. In Malaysia alone,

there are a lot of researchers that have developed this model but most of the method that

has been used are not suitable for real-time object detection in an embedded device like

mobile applications. Most of the time, the model is developed to be used in machines that

run at a higher computation power like a computer. Other than that, researchers also

developed a model that requires to use of external technology like Microsoft Kinect

XBOX 360 camera or Microsoft Glove that can detect hand signs for sign language

interpreters (Capilla, 2012).

Based on the highlighted issue, this project proposes a solution to use Single Shot

Detectors and MobileNet to develop an object detection model that will learn sign

language to help ease people's study of Malay sign language. In this proposal, we will

6

only use the formal Malay sign language also known as MSL, and only study the

numbers, letters, and basic Malay Language for introductions which are “Nama”, “Saya”,

and “Umur” (Darus et al., 2012). This model will be trained using hundreds and

thousands of pictures of Malay sign language poses which will make the model able to

recognize the signs from the poses that were given. This model is lightweight and can be

deployed into an android phone application where people can test and check if they are

doing the pose correctly or not by only posing in front of the camera and the model will

check if the pose is similar to the one that has been learned and produce the confidence

level and the sign meaning. In conclusion, this solution will help people to learn sign

language easier without needing to find a teacher and they can do it faster by only using

their phone.

1.3 Objective

The objectives of this project are:

i. To study the usage of object detection model using Single Shot Detector and

MobileNet to study sign language.

ii. To design and train the object detection model using Single Shot Detector and

MobileNet to study Sign languages.

iii. To evaluate the functionality of the developed object detection model to study

sign language.

1.4 Scope

User scope:

i. Understand Malay Language

ii. Age 7 years old and above.

iii. Able to use a smartphone to study sign language means that the user can

understand how to use a smartphone and use it as a platform to study.

System scope:

i. Only used formal Malay sign language, this means any slang or short form in

sign language is not covered in this project.

7

ii. Only covered numbers from 0 to 9, all letters except for J and Z, and Malay

words for basic introduction which are “Nama”, “saya” and “umur”, the words

and letters that are chosen are static signs, which means that it doesn’t require

any hand movement, meanwhile, those that are not covered are dynamic signs

which require hand movement, this can’t be detected when using object

detection.

Development scope:

i. Develop environment using Python language in Google Colab for model

development and Android Studio for object detection model deployment. The

code for training and testing will be written in python language, meanwhile,

the code for the mobile application will be written in Java language using the

Android framework to deploy and test the trained model.

ii. The dataset taken from Kaggle, and personal camera will be combined.

iii. The dataset will be split into 80% for training, 10% for validation and 10%

for testing.

iv. Use OpenLabeling software for image annotations labeling.

v. Use the Single Shot Detector and MobileNet-V2 Fpn lite Tensorflow pre-

trained model to train MSL object detection model.

vi. Deployed model to an android mobile application. When training and testing

are done, the model will be downloaded and loaded into Android Studio to be

deployed into a mobile application.

vii. Use a desktop camera for collecting training and testing data and a phone

camera for object detection in the mobile application.

1.5 Thesis Organization

This thesis consists of five chapters. Chapter 1 shall discuss the introduction and the

background of the study for this project. Chapter 2 will discuss the literature review where

the proposed solution will be compared with other solutions that have been done. Chapter

3 will generally explain the methodology that will be used in this project to achieve the

solution. Chapter 4 contains the implementation and results of testing from the solution

that is produced. Chapter 5 will summarize the founding and conclude the results of this

project.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

In this project, the pre-trained SSD-MobileNet-V2 fpn lite object detection model that

will be used is developed by Tensorflow. Tensorflow is an open-source library for

machine learning and Artificial Intelligence, by using functions that have been compiled

into Tensorflow, people with almost little to no knowledge about how deep learning and

machine learning work can create their deep learning model (Tensorflow, 2015).

In Deep Learning, there are many algorithms that we can use for object detection, there

was a survey paper conducted on deep learning-based object detection, object detection

algorithms for two-stage detectors like faster Region-based Convolutional Neural

Network (RCNN), mask RCNN, Feature Pyramid Network (FPN), or one stage detectors

You Only Look Once (YOLO), Single Shot Detector (SSD), RefineDet, and finally

advanced detectors like CornerNet (Mittal et al., 2020). Other papers do compare in terms

of the performance of the listed algorithms for object detection (Sharrab et al., 2021;

Subbiah et al., 2020). In other papers, researchers also do a comparison of YOLO v3,

Faster R-CNN, and SSD for real-time pill identification (Tan et al., 2021). There is also

an article that talks about the difference between one-stage detectors and two-stage

detectors to further our understanding of the two (Jason Brownlee, 2021)

In this project, Single Shot Detector MobileNet pre trained model will be used for our

object detection model training, Single Shot Detector (SSD) MobileNet falls under the

category of one stage detector for object detection algorithm. Single Shot Detector able

to detect multiple boxes or objects in only one single shot which is considered quite fast

and suitable for real-time object detection, SSD is explained in more detail and tested

with many datasets in this cited paper (Liu et al., 2015). For this project, the SSD

detection will be compared with R-CNN, Faster RCNN, and YOLO to test which

9

algorithm is the most suitable for sign language object detection in mobile phone

applications.

2.2 Existing Works

2.2.1 Region-based Convolutional Neural Network (R-CNN)

Region-based Convolutional Neural Networks (R-CNN) is a type of machine learning

model used in image processing and computer vision. The basic purpose of any R-CNN,

which is specifically built for object detection, is to detect objects in any input image and

define boundaries around them (Girshick et al., 2014). The way R-CNN works is divided

into two parts as it is a two-staged detectors model, it divides the process of finding the

region of interest (ROI) and classification processes using convolutional neural networks.

First, when image input is given, it will do a selective search on the image (Sharif Elfouly,

2019).

Figure 2.1 Selective Searching Process Figure

From figure 2.1, the process of selective searching is done by creating numerous

little windows or filters and then growing the region using the greedy algorithm. Then it

finds the colors that are similar across the regions and combines them. Then it will use

the formula below to calculate the similarity between regions:

10

S(a, b) = Stexture(a, b) + Ssize(a, b) 2.1

From formula 2.1, the Stexture(a,b) is visual similarity and Ssize(a,b) is the similarity

between the regions. The model keeps merging all the regions using this technique to

increase the size of the regions. Once all the selection of regions has been created, CNN

will take all the regions and create what’s called a feature vector which is all the image

regions in a much smaller dimension.

Figure 2.2 Convolutional Neural Network (CNN)

In figure 2.2, the images are extracted into smaller dimensions by using AlexNet as a

feature extractor. The fact that the AlexNet receives the same input every time is another

crucial consideration (227, 227, 3). However, the image suggestions have various shapes.

Numerous of them are either smaller or larger than what is needed. We must therefore

resize each region's proposals. Finally, it will use a Support Vector Machine (SVM)

classifier to determine the class of the objects in the region.

2.2.2 Faster Region-based Convolutional Neural Network (R-CNN)

Faster R-CNN is the project of evolution from R-CNN to fast R-CNN to create Faster R-

CNN, as the name stands it is the fastest of all of them (Ren et al., 2015). The main

difference between Faster R-CNN and R-CNN is a fully convolutional deep network

module that proposes regions. Faster R-CNN is separated into two parts, the first part is

to propose regions by using a deep fully convolutional network known as Region

Proposal Network (RPN), then the Fast-RCNN detector will use the proposed regions.

11

Figure 2.3 Faster R-CNN figure

In figure 2.3, the whole images function as an input into the convolutional layers where

it will create feature maps by applying a filter to the image input. Feature maps are images

that show patterns depending on the filter that is applied to the image. These papers show

how the image is visualized when we applied a filter to them (Zeiler & Fergus, 2014).

Figure 2.4 Feature Maps

Figure 2.4 shows the image output after going through the convolutional layer. By using

these feature maps, it will be sent to RPN to create a region proposal. Region Proposal

Network (RPN) will take feature maps input and give outputs of box and rectangle object

proposals, each box will have its objectness score means the score of how much the box

12

likeliness to have an object in it. Finally, all of them will be gathered in the Region of

Interest (ROI) pooling layer for the classification and identification process as how shown

in figure 2.3.

2.2.3 You Only Look Once (YOLO)

You Only Look Once (YOLO) is a one-stage detector object detection technique, the first

YOLO was released in 2015 introduced, until now there are several YOLO that has been

released and developed (Bochkovskiy et al., 2020; Redmon et al., 2015). The current

latest and newest official are YOLO v7 which many people consider as YOLO v5 because

the previous v5 and v6 aren’t been officially released (Hmrishav Bandyopadhyay, 2022).

You Only Look Once as the name suggests means that it only looks at the image provided

once and it will be able to detect the object available in the picture, this also enables it to

do real-time object detection.

The YOLO algorithm divides the image into N grids, each of which has an equal-sized

SxS region. These N grids are each in charge of finding and locating the thing they

contain. Accordingly, these grids forecast the object label, the likelihood that the object

will be present in the cell, and B bounding box coordinates relative to their cell

coordinates.

Figure 2.5 YOLO Grid divide process

In figure 2.5, the pictures are divided into several grids, then each grid will be used for

bounding box regression, each bounding box will have the score if there are objects in it

or not is represented as (Pc), the height (Bh), width (Bw), probability class of the object

(C), and the bounding box center (Bx, By).

13

Figure 2.6 Bounding Box Regression

Figure 2.6 shows the bounding box with its attributes. YOLO also applied

Intersection Over Union (IoU) formula. By using this formula, it will calculate how much

each box intersects with the other.

Figure 2.7 Intersection over Union Formula

Figure 2.7 shows the IoU formula where the intersection of the bounding box will

be divided by the whole union of the bounding box. This formula will be used to create

the output box that surrounds the object perfectly because if IoU equals one means that

the predicted box and the output box are perfectly aligned.

14

Figure 2.8 YOLO algorithm works

Figure 2.8 shows the ways the YOLO algorithm works in object detection. Firstly,

the image is first separated into grid cells. The B bounding boxes are predicted in each

grid cell, along with confidence ratings. To determine the class of each object, the cells

forecast the class probability. For instance, a bicycle, a dog, and a car are examples of at

least three different types of objects. A single convolutional neural network is used to

make all the detections concurrently. The projected bounding boxes are equal to the

actual boxes of the objects thanks to the intersection over the union. This phenomenon

gets rid of bounding boxes that aren't necessary or don't match the properties of the

objects (like height and width). The final detection will be made up of special bounding

boxes that precisely suit the objects (Grace Karimi, 2021).

2.3 Analysis/Comparison of Existing System

In this part, a comparison of Single Shot Detector (SSD) with Region-based

Convolutional Neural Network (R-CNN), Faster R-CNN, and YOLO will be done by

doing a table of comparison for between each algorithm in object detection.

15

2.3.1 Table of Comparison

The following table shows the comparison between three existing systems R-CNN, Faster

R-CNN, YOLO, and the chosen technique for this project SSD.

Table 2.1 Table of Comparison

Criteria R-CNN Faster R-CNN YOLO SSD (Chosen

Technique)

Type of

Detectors

Two Stage

Detectors

Two Stage

Detectors

One Stage

Detectors

One Stage

Detectors

Region Proposal

Method

Selective search Region proposal

network

Residual blocks,

Bounding box

regression,

Intersection over

Union (IoU)

Multi-box

Detectors

Detection Timing 40-50 sec 0.2 seconds Real-time Real-time

Computation

time

High Low Low Low

Mean Average

Precision on

Pascal VOC

2007 test dataset

(%)

58.5% 73.2% 78.6% 81.6%

Figure 2.9 Graph of Accuracy and speed for All techniques

16

Figure 2.10 Accuracy detection for a different size

All data from table 2.1 figures 2.9 and 2.10 are taken from these references

(PapersWithCode, 2022) (Ankit Sachan, 2017).

2.3.2 Analysis Review

From table 2.1, we could see that the only algorithm that couldn’t keep up is R-CNN

since it is the oldest among all of them. Region Convolutional Neural Network is a two-

stage detector, method that is used to create the region proposal is Selective searching.

Selective search requires a lot of time which increases the computation time from low to

high. It also produces a low mean average precision when tested with the Pascal Visual

Object Classes test dataset 2007, it measly scored a 58.5% accuracy. Thus, R-CNN could

not be used for this project where the final output will be used on a mobile phone.

Next, Faster R-CNN is the improved version of its R-CNN predecessor and is also a two

staged detectors similar to R-CNN. Faster R-CNN used Regional Proposal Network

(RPN) to create a proposal network for the bounding box of the objects, this is a faster

method compared to Selective searching in R-CNN. This reduced the computation time

by a lot and reduce the detection time from 40-50 seconds to 0.2 seconds. It also scored

quite a high mean average precision on the PASCAL VOC test dataset 2007 which is

73.2%. Figure 2.9 shows that Faster R-CNN is not as fast as YOLO and SDD, but it got

17

the highest accuracy score due to its slower speed. In figure 2.10, Faster R-CNN got the

best accuracy in all different sizes from small to large objects.

Next, YOLO is another algorithm for object detection that is a one-stage detector similar

to SSD. YOLO used residual blocks to create the bounding box for its objects, this

method can produce a box at a high speed, and this enables YOLO to be used in real-time

with a low computation time. YOLO v2 scores quite high mean average precision on the

PASCAL VOC test dataset 2007 which are 78.6%. From figure 2.9, YOLO can be seen

to be the fastest but got the lowest accuracy compared to Faster R-CNN and SSD. This

is also shown in figure 2.10 where YOLO v2 got the worse accuracy in all different sizes

from small to large objects.

Finally, SSD is a one-stage detector's deep learning technique. It could run the detection

in real time, which means that the detection and detection results are instant. The only

downside of SSD is that it falls a little bit short in terms of speed and a little bit lower in

accuracy compared to faster R-CNN as shown in figure 2.9. This also means that the SSD

is the most balance between the two since it still values accuracy over YOLO speed and

SSD is faster compared to R-CNN in terms of detection time. Similarly in figure 2.10,

SSD always falls between Faster R-CNN and YOLO in all different sizes. Thus it is safe

to conclude that SSD is a good choice for object detection techniques in this project.

2.3.3 Relevance of Comparison with project title

This comparison of the existing system will help to further understand how to choose the

correct technique for deep learning in object detection. R-CNN, Faster R-CNN, YOLO,

and SSD are good techniques for object detection, but all of them have their advantages

and disadvantages. The chosen Single Shot Detector (SSD) has been proven to be a good

technique after doing a comparison with other object detection algorithms, this also

means that SSD could be applied when doing sign language study using object detection.

18

2.4 Summary

In summary, this chapter has discussed the algorithm techniques that can be used for deep

learning object detection techniques. All the functionality and advantages of SSD will be

used to solve sign language study problems. In the next chapter, this report will cover the

methodology that will be used for this project.

19

CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter will describe the methodology that will be chosen to develop the model for

the Malay Sign Language study using Single Shot Detector (SDD) and MobileNet. Every

process that will be done will be described in detail, the project requirements, proposed

design, data design, and proof of initial concept will be provided in this chapter. Then,

the testing and validation plan will be constructed to test the functionality of the object

detection model in learning sign language. Next, the potential use of the proposed

solution will be discussed and finally, the Gantt chart planning of the whole project will

be provided.

20

3.2 Project Management Framework/Methodology

Figure 3.1 Flowchart of Model Development

21

Figure 3.1 shows the flowchart of all processes that will be done to develop the model

for Malay sign language object detection. In this project, nine steps need to be done to

achieve the target of this project. The nine steps are data capturing, data processing, data

organization, development, model training, model validation, model testing, deployment

model to mobile applications, and real-time testing.

3.2.1 Data Capturing

During the data capture process, a portion of the image dataset will be obtained from the

Kaggle website, which provides a variety of datasets in different fields that can be utilized

for machine learning and model training. For this project, the dataset will consist of signs

that are similar to the English Sign language, including letters and 27 signs commonly

used in Malay sign language. To facilitate data collection, the dataset for letters will be

obtained from Kaggle, as referenced (Mavi & Dikle, 2022). In addition to this, a desktop

camera attached to a personal computer and a personal phone camera will be used to

capture images of numbers, letters, and selected Malay words which are "Nama," "saya,"

and "umur." For each specific sign, approximately fifty to hundreds of images will be

collected, resulting in a dataset with images of each sign. It's worth noting that a large

dataset is crucial for effective model training, as insufficient data can lead to overfitting.

Table 3.1 Samples of Datasets

Label Signs

A

B

22

C

Table 3.1 shows the samples of datasets, where it has signs of A, B, and C and pictures

for each sign.

3.2.2 Data Processing

During the data processing stage, the images that have been collected will be labeled

using OpenLabeling software. This software is an open-source image annotation tool that

enables image labeling by drawing visual boxes around objects in images to identify and

label them (João Cartucho, 2018).

Figure 3.2 Labelling using OpenLabeling software

23

Figure 3.2 shows the process of image labeling using OpenLabeling software. For this

project, OpenLabeling will be used to draw visual boxes around signs inside the images

that have been collected, this will create an XML file of the labeled images.

annotation>

 <folder>collectedimages</folder>

 <filename>A.b5c4c267-57a4-11ed-ac87-f09e4a80946c.jpg</filename>

 <path>D:\RealTimeObjectDetection\Tensorflow\workspace\images\collecte

dimages\A.b5c4c267-57a4-11ed-ac87-f09e4a80946c.jpg</path>

 <source>

 <database>Unknown</database>

 </source>

 <size>

 <width>640</width>

 <height>480</height>

 <depth>3</depth>

 </size>

 <segmented>0</segmented>

 <object>

 <name>A</name>

 <pose>Unspecified</pose>

 <truncated>1</truncated>

 <difficult>0</difficult>

 <bndbox>

 <xmin>1</xmin>

 <ymin>327</ymin>

 <xmax>147</xmax>

 <ymax>480</ymax>

 </bndbox>

 </object>

</annotation>

Figure 3.3 XML File of labeled image

Figure 3.3 shows the XML file that is created from Lablelimg software which contains

the image of the signs with its label.

<name>A</name>

Figure 3.4 Line of label

Figure 3.4 shows that its name is ‘A’, which means that the sign is labeled as ‘A’. All the

images will be labeled using OpenLabeling software in the data processing phase.

24

3.2.3 Data Organization

In data organization, all the images and the XML files will be separated into two folders

called Images and annotations. In Images, all the images without a label will be stored

meanwhile annotations file will store the XML files which contains all the label for the

images.

Figure 3.5 Contents of the Images folder

Then, both the images and the annotations from Figures 3.5 will be compressed and

uploaded into Google Drive to ease data training during model training and testing. This

will store data in cloud storage so that will act as a backup if anything happens to the

local storage.

3.2.4 Development

Development of the model will be done in Google Colab notebooks where the codes will

be developed using python language. All the processes such as preparing the

environment, dataset retrieval from Google Drive, training data, testing data, and

converting the model into a Tensorflow lite model will be done in Google Colab. Google

Colab is a cloud-based notebook that allows people to write and run their python codes

without using their computer processor because it used cloud computing that allows it to

run in the server that is provided by Google.

25

3.2.5 Model Training

During the model training phase, the dataset will be split into training, validation and

testing data with a ratio of 8:1:1. The Malay sign language detection model will be trained

using Single Shot Detector (SSD) and MobileNet pre-trained model provided by the

Tensorflow detection model. Configuration settings such as the number of classes, batch

size, and the number of steps for training the detector will be done. Using Tensorflow

pre-trained models offers an advantage where a checkpoint is created every 1000 steps

of training, allowing the training to be resumed from the checkpoint if it gets interrupted.

Additionally, Tensorflow provides a Tensorboard that displays the current training

progress, including the learning rate, classification loss, localization loss, regularization

loss, and the total loss. The training will be stopped once it reaches 50,000 steps as

specified in the configuration file. If the training results do not meet the desired loss of

0.1, the training will be repeated with different batch sizes until the desired results are

achieved.

Figure 3.6 Tensorboard example

Figure 3.6 shows the example of Tensorboard that is provided by Tensorflow, the graph

will be updated from time to time during training depending on the batch size.

26

3.2.6 Model Validation

Once the training of the model is completed, it is essential to validate the model's

performance to ensure that it meets the desired level of accuracy. Python commands

provided by TensorFlow can be utilized to perform the validation of the model by using

the prepared validation data. The validation process involves calculating the average

precision and recall of the developed model. If the average precision and recall score

surpasses 0.8, it signifies that the model is capable of detecting and classify the signs

accurately within the validation data.

3.2.7 Model Testing

After the validation, the model will be tested in Google Colab, as it was trained there.

The prepared test images will be loaded into the model for testing purposes.

Figure 3.7 Model Testing

An example of the model's performance is shown in Figure 3.7, where it successfully

identified the Malay sign language object labeled as 'B' with a 100% confidence score.

The model drew boxes around the object and provided a confidence score for each sign.

All prepared images will be utilized to evaluate the model's performance.

3.2.8 Model Evaluation

The 'accuracy' metric is commonly used to evaluate the performance of object detection

models. However, in this project, in addition to accuracy, precision, recall, and F1-score

will also be calculated to evaluate the model's performance (Das et al., 2023). To

calculate these metrics, true positive (TP), true negative (TN), false positive (FP), and

27

false negative (FN) variables are required. A true positive occurs when the model

correctly classifies a test example for class A as class A, while a false negative occurs

when the model incorrectly classifies a test example of class A as some other class B. A

false positive occurs when a test example from class A is incorrectly classifies as some

other class B, whereas a true negative occurs when the model correctly classifies that a

test object from some other class B is not a test example from class A. The formulas for

calculating all these metrics are provided below, and they will be utilized to evaluate the

model's performance in this project:

Accuracy =
(TP + TN)

(TP + FN + FN + TN)
 (3.1)

Precision =
TP

(TP + FP)
 (3.2)

Recall =
TP

(TP + FN)
 (3.3)

F1 − Score =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙)

(Precision + Recall)
 (3.4)

3.2.9 Deploy Model to Mobile Apps

In this phase, the model that has been trained and tested needs to be converted from a

Tensorflow model (TF) to a Tensorflow Lite model to make it suitable for mobile

applications, embedded systems, and Internet of Things devices, as Tensorflow Lite is

optimized to run with less computing power. Once the conversion is done, the Tensorflow

Lite model will be downloaded and integrated into an Android application developed in

Android Studio. To simplify the process, Tensorflow provides its library and fully

developed mobile application code, and the downloaded model will be used to replace

the existing model in the mobile application.

28

3.2.10 Real-time Testing

After replacing the model, the mobile application can be installed on a virtual device or

an android phone through android studio. Once installed, the phone camera can be used

to capture a sign language pose, and the model will detect the sign and determine its

meaning.

Figure 3.8 Real-time testing

Figure 3.8 shows an example of real-time testing using the Malay sign language object

detection model. The figure shows the box around the sign with the ‘A’ label and the

confidence score of 0.95 for the sign.

3.3 Project Requirement

Sign languages are not an easy language that people could pick up and learn instantly, it

requires a lot of time to learn and correct teaching. Most people would appreciate learning

it by themselves without needing to hire a personal teacher or join a class because they

want to learn it without hindering their daily lives. In this project, the model that will be

created will help people to learn or test their sign language knowledge. This model should

be able to detect Malay sign languages that are posed in front of their phone camera and

give the meaning and confidence score of it.

Confidence Score

29

Developing this model requires a lot of Malay sign language image data, this data will be

required to train the model to study sign language. With all the data available, the model

for sign language object detection will be trained to learn Malay sign language and

produce a model that can detect and classify the signs inside images. The model will be

trained using a Single Shot Detector MobileNet pre-trained model developed by

Tensorflow for object detection.

This project focuses on one type of sign language, which is static signs, meaning it only

covers signs without any movement. Specifically, it covers the letters and numbers in

Malay sign language, as well as a few Malay words such as "Nama", "saya", and "umur".

It is important to note that this model does not include complex combinations of sign

language or non-manual gestures. Additionally, this model will only be available on

Android phones since the mobile application code is developed using the Android Studio

IDE.

This part will list all the software that will be used to develop the Malay Sign Language

object detection model:

Table 3.2 Software Items

Software Purpose

Microsoft Word 360 To create and compile all documents.

OpenLabeling Image processing and labeling.

Google browser To code in Google Colab notebooks for the development of

the model.

Android Studio To deploy object detection model and testing.

Table 3.3 Hardware Items

Hardware Purpose

Personal Desktop Computer To do all the processes related to the project.

Desktop Camera To collect images for the dataset.

Android ASUS ROG phone To install the mobile application for model testing.

30

3.4 Propose Design

In this project, the algorithm that will be used is Single Shot Detector (SSD) MobileNet-

V2 pre-trained model. This pre-trained model will be used to train our model for Malay

Sign Language object detection where it will use the architecture of SSD MobileNet.

Figure 3.9 Single Shot Detector (SSD) MobileNet-v2 Architecture

Figure 3.9 shows the Single Shot Detector (SSD) MobileNet-v2 architecture, this deep

convolutional neural network will be used to train our sign language detection model

(Estrada et al., 2022). In this project, MobileNet-V2 will be used to train and classified

images of Malay Sign Language. MobileNet-V2 is an inverted residual blocks with a

linear bottlenecks (Sandler et al., 2018). The arrangement of the blocks will follow a thin-

thick-thick-thin pattern. Point wise convolutional layers will be utilized to produce a

higher dimensional feature map. The Rectified Linear Unit (ReLU) will be used as the

activation function for the feature map to eliminate any values below 0, which would lead

to data loss. To reduce data loss, a higher dimension feature map will be created. Depth

wise convolutional layers with ReLU activation will then be applied to the features map.

Finally, a point wise convolutional layer will be implemented to the feature maps to create

a smaller dimension feature map. To prevent information loss, a linear activation function

will be used for the final activation function, hence the term "linear bottlenecks".

The next step in this project is to utilize the Single Shot Detector (SSD), also known as

the Single Shot Multibox Detector, which is capable of detecting multiple items in a

single shot. The SSD approach employs a feed-forward convolutional network that

31

produces a fixed-size set of bounding boxes and scores for object class instances within

those boxes. In this method, MobileNet-v2 is utilized as the backbone detection network

for multi-scale object recognition, providing a variety of feature maps with varying

dimensions. SSD applies a convolutional layer with small convolutional filters to gives

confidence scores and class offsets for a fixed set of standard bounding boxes. The non-

maximum suppression technique, which uses Intersection over Union, is subsequently

used to eliminate boxes with low probabilities of containing an object. MobileNet-SSDv2

will be utilized in this project due to its development specifically for mobile applications

and embedded devices with limited computing power while still achieving high

classification accuracy.

Figure 3.10 Mobile Application Flowchart

Figure 3.10 shows the flow of the mobile application with the Malay sign language object

detection model. The flowchart starts with the user giving input images, input images

here are live stream camera input which means that the user only poses in front of their

camera. Next, the mobile apps will search if there is any sign language available in the

picture, if there are sign images, it will classify it then draw boxes around it and show the

confidence score of it.

32

3.5 Data Design

Table 3.4 Samples of Datasets from Kaggle.com

Label Signs

A

B

C

Table 3.4 shows the sample of dataset that will be used for the letters of the sign language.

American sign language letters dataset that is available on Kaggle, this dataset consists

of images files for all the sign language letters except letters J and Z because those two

are dynamic signs which require motions (Ammar Alhaj Ali, 2020). This dataset has been

created for the purpose of studying sign language using machine learning and object

detection. Since Malay letters for sign language are similar to American sign language,

this dataset could be used to ease the process of data capturing. Next, all other data images

for the number signs will be created by capturing .jpg images using a camera and labeling

them using OpenLabeling software.

33

3.6 Proof of Initial Concept

Figure 3.11 Proof of Initial Concept

The initial concept for the Malay sign language object detection model using Single Shot

Detector MobileNet-v2 in an android mobile application is demonstrated in Figure 3.11.

This model was developed with a focus on detecting two classes of data, namely the

letters 'A' and 'B', indicating that the model has been trained to identify 'A' and 'B' signs

in images. As depicted in Figure 3.11, the model successfully detects the 'A' sign in the

image and draws bounding boxes around it with a confidence score of 0.95 along with its

label.Other than that, this method of using SSD-MobileNet V2 has been done before in a

paper where they develop a real-time sign language recognition for Macedonian Sign

language (Kralevska et al., 2022).

34

3.7 Testing/Validation Plan

To test the functionality of the model, the user can use signs language that has been

trained which are the letters and number from one to nine and chosen Malay words, if the

output given is the same as the sign that was shown, it means that the model has been

successfully trained to detect and classify Malay Sign Language. The result of the test

will be recorded in the test plan document below. Figure 3.12 and 3.13 shows the signs

that have been chosen for the model that will be developed respectively.

Figure 3.12 Malay Sign Language letters and numbers

Figure 3.13 Chosen Malay Words

35

Test Plan Document

Name : _______________________________________

Signature : _______________________________________

Date : _______________________________________

No. Sign Image Expected

Signs label

Output label Output

Confidence score

1

A

2

B

3

C

4

D

5

E

36

6

F

7

G

8

H

9

I

10

K

11

L

12

M

37

13

N

14

O

15

P

16

Q

17

R

18

S

19

T

38

20

U

21

V

22

W

23

X

24

Y

25

1

26

2

27

3

39

28

4

29

5

30

6

31

7

32

8

33

9

34

Nama

40

35

s

Saya

36

Umur

41

3.8 Potential Use of Proposed Solution

Although this proposed solution cannot fully facilitate communication for people who

rely on sign language in daily life as it only detects signs as objects within images and

not gestures or facial expressions, it can still be a useful tool for beginners in the learning

process. The model is particularly helpful for individuals who are learning letters,

numbers, and basic introductions to Malay Sign Language, but may not have access to a

teacher. By deploying this model as an android mobile application, it can serve as a

helpful starting point for those who wish to learn sign language. Furthermore, this

application can help raise awareness about the importance of sign language in Malaysia,

thereby increasing people's knowledge and appreciation of Malay sign language.

42

3.9 Gantt Chart

43

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Introduction

Chapter 4 discusses the development of a real-time object detection model for Malay

Sign Language using Single Shot Detector (SSD) MobileNet. The model is developed

using transfer learning, a method that involves using an existing model to solve another

problem in machine (Dianne Castillo, 2021). For this project, the pre-trained Single Shot

Detector-MobileNet object detection model developed by TensorFlow is trained to detect

images of Malay Sign Language.

The training process of the SSD-MobileNet model using the Python programming

language is explained in detail. Python is a flexible programming language that can

import many libraries and extensions used in machine learning. The TensorFlow library

is used to train this object detection model as it provides functionality that facilitates the

training and monitoring process of the model. The chapter also presents and discusses the

accuracy and testing of the developed model.

The evaluation, model testing, and real-time testing have yielded conclusive results

regarding the suitability of the SSD-MobileNet model for sign language detection in

images. Through comparisons of the models' capabilities in detecting signs, it is evident

that the SSD-MobileNet model outperformed the others. Following closely behind is the

SSD-Resnet50 model, while the SSD-Efficientdet-d0 model lagged significantly behind.

The SSD-MobileNet model showcased remarkable performance after 20,000 training

steps, consistently achieving over 90% accuracy in all conducted tests.

44

4.2 Implementation Process

As explained in the previous chapter, the goal of implementing the Single Shot Detector-

MobileNet object detection model is to develop a model that can detect Malay Sign

Language in real-time video capture. The development environment for training the pre-

trained SSD-MobileNet model is created using Python programming language in Google

Colab Notebook.

4.2.1 Data Description and Analysis

The datasets that have been collected using desktop camera and Kaggle contain 2083

images of numbers, letters and basic introduction for Malay Sign Language, the dataset

have been split into 8:1:1 ratio for training, validation, and testing which means 1666

images for training, 208 images for validation and 209 images for testing. Table 4.1

shows the sample of the collected dataset.

Table 4.1 Sample of Datasets

No. Signs Labels Quantity

1

1 50

2

2 50

45

3

3 50

4

4 50

5

5 50

6

6 50

7

7 50

46

8

8 50

9

9 50

10

A 62

11

B 60

12

C 60

47

13

D 60

14

E 60

15

F 60

16

G 60

17

H 60

48

18

I 60

19

K 60

20

L 60

21

M 60

22

N 60

49

23

O 60

24

P 60

25

Q 60

26

R 60

27

S 60

50

28

T 60

29

U 60

30

V

60

31

W 60

32

X 60

51

33

Y 60

34

Nama 84

35

Saya 50

36

Umur 57

52

4.2.2 Data Labelling

To train SSD-MobileNet model, the image datasets need to be labelled so the model will

know the parts that it needs to focus on. In this project, the images have been labelled

using Software OpenLabeling.

Figure 4.1 Labelling using OpenLabeling

For this project, the images were labeled using OpenLabeling software, which involved

drawing visual boxes around the signs within the collected images. This process creates

an XML file of the labeled images, as shown in Figure 4.1.

Figure 4.2 Annotations files

Figure 4.2 shows the collections of annotations that were created using OpenLabeling

software. Each image in the dataset has been annotated with visual boxes that indicate

the location of signs in the image. These annotations were saved as corresponding XML

files and will be used to train the SSD-MobileNet model.

53

annotation>

 <folder>collectedimages</folder>

 <filename>A.b5c4c267-57a4-11ed-ac87-f09e4a80946c.jpg</filename>

 <path>D:\RealTimeObjectDetection\Tensorflow\workspace\images\collecte

dimages\A.b5c4c267-57a4-11ed-ac87-f09e4a80946c.jpg</path>

 <source>

 <database>Unknown</database>

 </source>

 <size>

 <width>640</width>

 <height>480</height>

 <depth>3</depth>

 </size>

 <segmented>0</segmented>

 <object>

 <name>A</name>

 <pose>Unspecified</pose>

 <truncated>1</truncated>

 <difficult>0</difficult>

 <bndbox>

 <xmin>1</xmin>

 <ymin>327</ymin>

 <xmax>147</xmax>

 <ymax>480</ymax>

 </bndbox>

 </object>

</annotation>

Figure 4.3 XML File of labeled image

Figure 4.3 shows the XML file contents that is created from OpenLabeling software

which contains the image of the signs with its label.

<name>A</name>

Figure 4.4 Line of label

Figure 4.4 shows that its name is ‘A’, which means that the sign is labeled as ‘A’. All the

images will be labeled using OpenLabeling software in the data processing phase.

54

4.2.3 Development of SSD-MobileNet model

First, the dataset is uploaded and stored in Google Drive to prevent any problems and act

as backup from the local drive. The dataset will be loaded into the python Google Colab

notebook by connecting it to Google Drive. Figure 4.5 shows the codes to connect Google

Drive to Google Colab.

Figure 4.5 Connect Colab to Drive python code

!git clone --depth 1 https://github.com/tensorflow/models

Figure 4.6 Clone Object Detection API

After connecting Google Drive to Google Colab, the next step is to clone the Tensorflow

models repository from Github in order to use the object detection API. Figure 4.6

displays the Python codes required to clone the SSD-MobileNet model from Tensorflow

object detection API and import it into the Colab Virtual Machine. Utilizing this API and

its function is necessary for developing any Python libraries for object detection model

development. These lines of code will install all necessary libraries and verify their

compatibility and functionality for this model development.

!pip install tensorflow==2.8.0

Figure 4.7 Install Tensorflow

To proceed, Tensorflow needs to be installed in the Google Colab environment. This

installation will provide access to the Tensorflow libraries and functions necessary for

object detection model training. Figure 4.7 depicts the Python code utilized to install

Tensorflow 2.8 in Google Colab.

55

!python3 create_tfrecord.py

--csv_input=/mydrive/customtf/train_labels.csv

--labelmap=labelmap.txt

--image_dir=/mydrive/customtf/train

--output_path=train.tfrecord

!python3 create_tfrecord.py

--csv_input=/mydrive/customtf/validation_labels.csv

--labelmap=labelmap.txt

--image_dir=/mydrive/customtf/validation

--output_path=val.tfrecord

Figure 4.8 Create Training and testing record

In object detection training, the training and testing record are files that contain

information about the annotated images used to train and test the model. The training

record is a file that contains a list of images with their corresponding annotations, which

is used to train the model. The testing record, on the other hand, contains a separate list

of images with their annotations that are not used in training, but rather for testing the

accuracy and performance of the trained model. Displayed in Figure 4.8 are the Python

codes to generate the training and testing records using the datasets that have been split

into training and testing. As highlighted in the red box of Figure 4.8, the generated files

are labeled as "train.tfrecord" for training and "val.tfrecord" for testing the model.

chosen_model = 'ssd-mobilenet-v2-fpnlite-320'

MODELS_CONFIG = {

 'ssd-mobilenet-v2-fpnlite-320': {

 'model_name': 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8',

 'base_pipeline_file': 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.config',

 'pretrained_checkpoint': 'ssd_mobilenet_v2_fpnlite_320x320_coco17_tpu-8.tar.gz',

 },

}

model_name = MODELS_CONFIG[chosen_model]['model_name']

pretrained_checkpoint = MODELS_CONFIG[chosen_model]['pretrained_checkpoint']

base_pipeline_file = MODELS_CONFIG[chosen_model]['base_pipeline_file']

Figure 4.9 Configure chosen Model SSD

The Python code displayed in Figure 4.9 sets the SSD-Mobilenet model as the chosen

model for object detection training. The subsequent line of code specifies the

configuration file name for the SSD-Mobilenet model.

56

Download pre-trained model weights

import tarfile

download_tar = 'http://download.tensorflow.org/models/object_detection/tf2/20200711/' +

pretrained_checkpoint

!wget {download_tar}

tar = tarfile.open(pretrained_checkpoint)

tar.extractall()

tar.close()

Download training configuration file for model

download_config = 'https://raw.githubusercontent.com/tensorflow/models/master/research/o

bject_detection/configs/tf2/' + base_pipeline_file

!wget {download_config}

Figure 4.10 Download SSD-MobileNet model file

The Python code in Figure 4.10 demonstrates the process of downloading the

configuration files required for the SSD-MobileNet model. As can be seen in the figure,

the filename that will be downloaded is specified in the last line of the code, using the

"!wget" function.

Figure 4.11 Configure num_class

Once the configuration files have been downloaded, they must be modified to suit the

dataset. The initial modification involves changing the number of classes. As indicated

in the figure, the number of classes has been adjusted to 36, which corresponds to the

number of signs that will be used for object detection training.

57

Figure 4.12 Configure file

In object detection model training, the batch size and number of steps are important

parameters to configure. The batch size refers to the number of images that the model

processes in each iteration of the training process. Larger batch sizes can lead to faster

training times but require more memory. Smaller batch sizes can slow down training but

require less memory. The number of steps, on the other hand, refers to the total number

of iterations that the training process runs for. Each step involves processing one batch

of images through the model. The number of steps required depends on the model's

complexity and the dataset's size. Both batch size and number of steps are

hyperparameters that need to be tuned for optimal training and best results. Figure 4.12

shows that the batch size is set to 16, and the number of steps is set to 40,000.

Figure 4.13 Configure model learning rate

Additionally, in order to achieve optimal results, the learning rate has been set to 0.08 as

depicted in figure 4.13. The learning rate is a hyperparameter that determines the step

size at which the model weights are adjusted during the training process. A higher

learning rate can result in faster convergence but may also cause the model to overshoot

the optimal weights, resulting in poorer performance. Conversely, a lower learning rate

can slow down the training process but may result in a more accurate model. Therefore,

choosing the right learning rate is crucial for achieving the best results in object detection

model training.

58

#load tensorboard

%load_ext tensorboard

%tensorboard --logdir '/content/gdrive/MyDrive/customTF2/training'

Figure 4.14 Load Tensorboard

Figure 4.14 shows the line of code to load Tensorboard in a Google Colab Notebook.

Figure 4.15 Tensorboard interface

In Figure 4.15, the Tensorboard interface is displayed during the training of the SSD-

MobileNet model. Tensorboard is a visualization tool that comes with Tensorflow to help

monitor the progress of the training process. It provides graphs and metrics that allow

you to visualize the performance of the model over time, including accuracy and loss

values. The precision and recall graphs for the mean average precision of the model are

also displayed in the Tensorboard interface.

Run training!

!python /content/models/research/object_detection/model_main_tf2.py \

 --pipeline_config_path={pipeline_file} \

 --model_dir={model_dir} \

 --alsologtostderr \

 --num_train_steps={num_steps} \

 --sample_1_of_n_eval_examples=1

Figure 4.16 Train model command

Figure 4.16 displays the command to initiate the training of the ssd-mobilenet model

using the "model_main_tf2.py" script file. This script file is responsible for training the

SSD-MobileNet model based on the configuration set in the configuration file. It will

also save model checkpoints after every 1000 steps, enabling training to be stopped and

continued from the last saved checkpoint. However, it is important to note that if the

model continues to be trained past the optimal point, it may start to overfit the training

59

data, which means it becomes too specialized and fails to generalize well to new data.

Hence, it is recommended to stop the training earlier to avoid overfitting of the model.

%cd /content/models/research/object_detection

##Export inference graph

!python exporter_main_v2.py --

trained_checkpoint_dir=/mydrive/customtf/training2 \

 --pipeline_config_path={pipeline_file} \

 --output_directory /mydrive/customtf/data/inference_graph

Figure 4.17 Validation during training

While training is ongoing, the "export_main_v2.py" Python script shown in Figure 4.17

can be used in another Google Colab notebook to validate the current status of the model

using the validation datasets and record.

Figure 4.18 Evaluation result

The evaluation of the model using evaluation data at step 22,000 is presented in Figure

4.18, which displays the average precision and recall for different Intersection over Union

sizes. The average precision refers to the percentage of correctly detected objects among

all detected objects, while the average recall refers to the percentage of correctly detected

objects among all actual objects. Therefore, a high average precision means that the

model has a low number of false positives, while a high average recall means that the

60

model has a low number of false negatives. The model achieved an average precision of

0.91 and an average recall of 0.93, indicating that it has a high accuracy in detecting

objects in images. Figure 4.18 highlights the low total loss of the model during its

evaluation, which was 0.14.

Figure 4.19 Stop model training

At step 22,000 of the training, the model loss and its learning rate are depicted in Figure

4.19. The figure illustrates that the total loss of the model during training has decreased

to 0.09, which is considered relatively low as it is below 0.1. Furthermore, the decrease

in learning rate to 0.04 suggests that the model is now learning at a slower pace. This

could lead to overfitting if the training is continued further. As a result, the training

process was stopped at step 22,000 to prevent overfitting of the model.

Make a directory to store the trained TFLite model

!mkdir /mydrive/customtf/custom_model_lite/

!mkdir /mydrive/customtf/custom_model_lite/ssd

output_directory = '/mydrive/customtf/custom_model_lite/ssd'

Path to training directory (the conversion script automatically chooses the highest ch

eckpoint file)

last_model_path = '/mydrive/customtf/training3'

!python /content/models/research/object_detection/export_tflite_graph_tf2.py \

 --trained_checkpoint_dir {last_model_path} \

 --output_directory {output_directory} \

 --pipeline_config_path {pipeline_file}

Figure 4.20 Export Inference Graph

Once the training has been stopped, the next step is to convert the model into an inference

graph, which is a representation of the trained model that can be used for detection or

inference. This can be done by exporting the inference graph and storing it in a new

directory. In Figure 4.20, this is achieved using the "!mkdir" command to create the

directory, and the "export_tflite_graph_tf2.py" script to export the inference graph to that

directory. The inference graph is important because it allows the model to be used in a

61

production environment, such as a mobile application, where it can make detections on

new data.

Convert exported graph file into TFLite model file

import tensorflow as tf

converter = tf.lite.TFLiteConverter.from_saved_model('/mydrive/customtf/custom_model_lit

e/ssd/saved_model')

tflite_model = converter.convert()

with open('/mydrive/customtf/custom_model_lite/ssd/detect_ssd.tflite', 'wb') as f:

 f.write(tflite_model)

Figure 4.21 Create tflite file

The highlighted command in Figure 4.21 demonstrates the process of creating a TFLite

file from the imported inference graph. The TensorFlow function called

"TFLiteConverter" is utilized to perform this conversion, resulting in a new TFLite file

named "detect_ssd.tflite".

Set up variables for running user's model

PATH_TO_IMAGES='/mydrive/customtf/test' # Path to test images folder

PATH_TO_MODEL='/mydrive/customtf/custom_model_lite/ssd/detect_ssd.tflite'

Path to .tflite model file

PATH_TO_LABELS='/mydrive/customtf/labelmap.txt' # Path to labelmap.txt file

min_conf_threshold=0.5

Confidence threshold(try changing this to 0.01 if you don't see any detection results)

images_to_test = 10 # Number of images to run detection on

Run inferencing function!

tflite_detect_images(PATH_TO_MODEL, PATH_TO_IMAGES, PATH_TO_LABELS, min_conf_threshold,

images_to_test)

Figure 4.22 Model testing command

The command displayed in Figure 4.22 demonstrates how to test the model

"detect_ssd.tflite" using images from the test folder. To perform the detection, the

"tflite_detect_images" command provided by TensorFlow will be used to load the model

and the images.

62

Figure 4.23 Testing model

The output of the SSD-MobileNet model detection is displayed in Figure 4.23. The model

was able to accurately detect the class label, which in this case is "Nama," with a

confidence score of 100%. This detection process was repeated for all the classes that

were trained in the model.

files.download('/mydrive/customtf/custom_model_lite.zip')

Figure 4.24 Download TFlite file

The TFLite file can be downloaded by executing the command shown in Figure 4.24 once

the training and testing results are deemed satisfactory.

Figure 4.25 Downloaded TFLite model

Figure 4.25 displayed the “detect_ssd.tflite” file that has been downloaded. This file will

be used for real-time testing in android mobile application.

63

4.2.4 Real-time testing

Figure 4.26 Tensorflow Mobile apps Github

The GitHub page for the Tensorflow Lite object detection Android mobile application is

displayed in Figure 4.26. Cloning the repository allows for the replacement of the pre-

existing model in the Tensorflow mobile application with the newly trained SSD model.

Figure 4.27 Copy model into android asset

64

After opening the cloned Tensorflow mobile application project in Android Studio. The

"detect_ssd.tflite" model was copied into the assets folder of the Android studio project

as depicted in figure 4.27. By copying the model into the assets folder, the application

can access the model to perform real-time object detection using the trained SSD-

MobileNet model. This process is a crucial step towards deploying the trained model for

detecting objects in real-time images captured using a mobile device.

Figure 4.28 Change model name

Figure 4.28 illustrates how the name of the tflite model is set as "detect_ssd.tflite" in the

"ObjectDetectorHelper.kt" file. By modifying the model name, the application can utilize

the trained SSD model for real-time detection of Malay Sign language.

Figure 4.29 Install mobile application

Upon clicking the "run" button as shown in Figure 4.29, the mobile application will be

installed onto the selected mobile phone.

65

Figure 4.30 Real-time Testing in mobile apps

The real-time testing of the installed mobile application on an Android phone is depicted

in Figure 4.30. The figure shows that the trained model was able to accurately detect the

"L" sign with a high confidence score of 0.99 and drew a bounding box perfectly around

it. The testing results will be recorded in the test plan document that have been prepared.

66

4.3 Result

The developed object detection model of SSD MobileNet was be tested and compared

with other models that have been developed using the same method and same number of

training steps which are 20,000. The result of the SSD-MobileNet testing is evaluated

and recorded for analysis.

4.3.1 Model evaluations

Figure 4.31 Total loss graph SSD-MobileNet model

Figure 4.31 displayed the graph of total loss versus number of steps for SSD-MobileNet

model during training. Based on the figure, the model able to achieve a relatively low

total loss of below 0.14 at the 20,000 steps when the model stopped training.

Figure 4.32 Average Precision result after training

Figure 4.33 Average Recall result after training

Figure 4.34 Total loss result after training

Once the training process is completed, the model can be evaluated using the prepared

evaluation data. The evaluation is carried out using the Python script provided by

TensorFlow. Figures 4.32, 4.33, and 4.34 present the evaluation results obtained from the

evaluation data.

67

In Figure 4.32, the model achieved an average precision score of 0.908, indicating its

ability to accurately detect and classify objects. Figure 4.33 demonstrates that the model

achieved an average precision of 0.931, further confirming its effectiveness in object

detection. Additionally, Figure 4.34 highlights the low total loss value of 0.147027,

indicating that the model has effectively learned from the training data.

Table 4.2 Model evaluation result

Model SSD-MobileNet-v2 SSD-Efficientdet-d0 SSD-Resnet50

Average Precision 0.908 0.411 0.906

Average Recall 0.931 0.680 0.904

Total loss 0.147027 0.911097 0.203545

Table 4.2 shows the results of evaluation for all the object detection model that have been

developed. Average precision is a measure of the quality of the detection algorithm, based

on the precision and recall of the algorithm over a range of threshold values. Precision is

the fraction of true positives out of all detected positives, while recall is the fraction of

true positives out of all actual positives. A high average precision indicates that the model

is able to correctly identify objects with minimal false positives.

Out of the three models, SSD-MobileNet-v2 achieved the highest average precision of

0.908. This indicates that the model is able to detect objects accurately with minimal false

positives, resulting in high precision and recall. This is because SSD-MobileNet-v2 uses

a lightweight MobileNet-v2 architecture for feature extraction, making it more efficient

and faster than other models.SSD-Efficientdet-d0 had the lowest average precision of

0.411, indicating that it performed poorly compared to the other models. This could be

due to the fact that it uses a complex architecture that requires more computational

resources and longer training time. SSD-Resnet50 achieved an average precision of

0.906, which is slightly lower than SSD-MobileNet-v2 but still a good performance.

However, SSD-Resnet50 requires more computational resources and longer training time

compared to SSD-MobileNet-v2.

When it comes to object detection models, average recall is an important metric to

consider because it indicates how well the model is able to correctly detect objects in the

input data. Recall measures the proportion of actual positive instances that are correctly

identified by the model. In other words, it represents the model's ability to identify all

68

relevant objects in the image. In this comparison, we can see that the SSD-MobileNet-v2

has the highest average recall score of 0.931, followed by SSD-Resnet50 at 0.904, and

SSD-Efficientdet-d0 with 0.680 This means that the SSD-MobileNet-v2 model is able to

detect a higher proportion of the relevant objects in the input data compared to the other

models.

Total loss is a commonly used evaluation metric in object detection models that indicates

the overall loss of the model during training. The lower the total loss, the better the model

performs during training. A high total loss means the model is struggling to learn and is

not able to accurately detect objects in the images. In terms of the listed models, SSD-

MobileNet-v2 has the lowest total loss of 0.147027, which indicates that it performed

better during training than the other models. On the other hand, SSD-Efficientdet-d0 has

a significantly higher total loss of 0.911097, indicating that the model had more difficulty

learning during the training process. SSD-Resnet50 has a total loss of 0.203545, which

is higher than SSD-MobileNet-v2 but lower than SSD-Efficientdet-d0. This suggests that

the model was able to learn and perform reasonably well during training, but not as well

as the SSD-MobileNet-v2.

Overall, the evaluation and comparison of the three object detection models - SSD-

MobileNet-v2, SSD-Efficientdet-d0, and SSD-Resnet50 - show that SSD-MobileNet-v2

performs the best in terms of both precision and recall, while also having the lowest total

loss. This suggests that SSD-MobileNet-v2 is the most accurate and efficient model for

detecting sign language gestures in real-time images captured using a mobile device.

However, it is important to note that further research and optimization may be needed to

improve the performance of the models in different environments and with different types

of sign language gestures.

69

4.3.2 Model Testing

Once the model was converted into TFlite type, it underwent testing using the Mean

Average Precision (mAP) formula on the prepared test data. Converting the model to

TFLite type result in a slight decrease in its performance, as TFLite is designed to be

lightweight and requires less computational power with higher latency.

Figure 4.35 Model Evaluation result after TFlite conversion

The evaluation results after converting the model to the TFlite format are presented in

Figure 4.35. This figure displays the mAP scores for each class at various Intersection

over Union (IoU) thresholds. Notably, the highlighted section indicates that the model

achieved a significantly high mAP score of 91.63%. The achieved mAP score of 91.63%

emphasizes the model's effectiveness in accurately detecting and classifying objects in

the evaluation dataset.

70

Table 4.3 Model testing result

Model SSD-MobileNet-v2 SSD-Efficientdet-d0 SSD-Resnet50

Mean Average

Precision (mAP)
91.63% 62.45% 85.34%

Table 4.3 displays the mAP score for each model during the testing phase. mAP is the

metric used to evaluate object detection models. It is the average of the precision values

at different levels of recall. In other words, mAP measures how well the model can detect

and localize objects of interest. The higher the mAP score, the better the model's

performance.

In the comparison of the three models, SSD-MobileNet-v2 has the highest mAP score of

91.63%, indicating that it is the best model in terms of object detection performance.

SSD-Resnet50 comes in second with an mAP score of 85.34%, while SSD-Efficientdet-

d0 has the lowest mAP score of 62.45%. This suggests that SSD-MobileNet-v2 and SSD-

Resnet50 are more suitable for real-world applications that require high accuracy in

object detection, while SSD-Efficientdet-d0 may be more appropriate for applications

where computational resources are limited.

71

4.3.3 Real-Time testing

Table 4.4 presented below displays the outcomes of the real-time testing, including the

detected labels and their corresponding confidence scores. It is important to note that the

table solely includes the results for three letters, three numbers, and three Malay phrases.

For the complete set of testing results, please refer to Appendix A.

Table 4.4 Real-time testing result

No. Sign Image Expected

Signs label

Output Image Output label Output

Confidence

score

1

 A

A 0.84

2

 B

B 0.87

72

3

 C

C 0.89

4

 1

1 0.63

5

2

V 0.99

73

6

3

W 0.81

7

Nama

Nama 0.99

8

Saya

Saya 0.85

74

9

 Umur

E 0.83

Based on the outcomes of the real-time testing, a corresponding confusion matrix

(Table 4.5) has been generated.

Table 4.5 Real-time Testing result

 Actually Positive Actually Negative

Detected Positive TP=29 FP=0

Detected Negative FN=1 TN=7

TP= true positive, FP=false positive, FN=false negative, TN= true negative

Table 4.5 shows the confusion matrix from the real-time testing, this result was used to

calculate the accuracy, recall, precision, and F1-score of the developed SSD-MobileNet

model.

Table 4.6 Evaluation matrix result

Model SSD-MobileNet-v2 SSD-Efficientdet-d0 SSD-Resnet50

Accuracy 0.97 0.68 0.86

Precision 1 0.63 0.83

Recall 0.96 0.67 0.85

F1-Score 0.97 0.64 0.83

Table 4.6 presents the computed accuracy, precision, recall, and F1-score obtained from

real-time testing on Android mobile applications. In terms of accuracy, SSD-MobileNet-

v2 achieved the highest accuracy score of 0.97, indicating its ability to correctly classify

objects in the evaluation dataset. SSD-Resnet50 followed closely behind with an

accuracy of 0.86, while SSD-Efficientdet-d0 lagged behind with an accuracy of 0.68.

This suggests that SSD-MobileNet-v2 outperforms the other models in accurately

identifying objects.

75

Precision measures the model's ability to correctly identify positive instances among all

the instances it detects as positive. Here, SSD-MobileNet-v2 achieved a perfect precision

score of 1, indicating that all its positive detections were indeed correct. SSD-Resnet50

achieved a precision score of 0.83, while SSD-Efficientdet-d0 had the lowest precision

score of 0.63. This suggests that SSD-MobileNet-v2 excels in making precise detections.

Recall measures the model's ability to identify all positive instances among all the actual

positive instances. SSD-MobileNet-v2 achieved a recall score of 0.96, indicating its

capability to capture a high proportion of positive instances. SSD-Resnet50 followed

closely with a recall score of 0.85, while SSD-Efficientdet-d0 had a recall score of 0.67.

This indicates that SSD-MobileNet-v2 has a higher sensitivity in identifying positive

instances.

The F1-score combines both precision and recall into a single metric, providing an overall

assessment of the model's performance. SSD-MobileNet-v2 achieved the highest F1-

score of 0.97, indicating a harmonious balance between precision and recall. SSD-

Resnet50 had an F1-score of 0.83, while SSD-Efficientdet-d0 had the lowest F1-score of

0.64. This suggests that SSD-MobileNet-v2 is the most balanced model in terms of

precision and recall.

Overall, based on the comparison and analysis of accuracy, precision, recall, and F1-

score, SSD-MobileNet-v2 emerges as the superior model in object detection. It achieves

high accuracy, perfect precision, high recall, and a balanced F1-score. These results

highlight the model's robustness and effectiveness in accurately detecting and classifying

objects. Therefore, SSD-MobileNet-v2 is recommended for applications that require high

precision and recall in object detection tasks.

76

4.4 Discussion

The SSD-MobileNet model has shown promising results in sign language detection,

achieving a high average precision, recall, and mAP score. The model has been

implemented in real-time detection of Malay sign language by converting the model to

TFLite type for deployment on mobile devices with limited computational power.

However, to make the model more accurate and effective in detecting Malay sign

language, the model could be trained with a larger dataset of Malay sign language

gestures. This will ensure that the model can detect and recognize a wide range of gestures

in Malay sign language, leading to higher accuracy and precision. In conclusion, SSD-

MobileNet-v2 is the suitable model for sign language detection based on its high average

precision and recall scores, low total loss, accuracy, F1-score, and high mAP score. The

model's performance is critical for accurate detection of sign language, which is essential

for effective communication for the hearing-impaired community.

77

CHAPTER 5

CONCLUSION

5.1 Introduction

In this research, a sign language object detection model was developed using transfer

learning. The SSD-MobileNet-v2 model was trained on sign language datasets to enable

real-time detection. The training process involved utilizing Python and Android Studio

to achieve a high accuracy score. The performance of the SSD-MobileNet-v2 model was

compared with two other models, namely SSD-Resnet50 and SSD-Efficientdet-D0. The

development process for these models followed a similar methodology as that of the SSD-

MobileNet-v2 model. The evaluation and testing results were analyzed and compared to

gain a deeper understanding. The findings indicate that the SSD-MobileNet-v2 method

is the most effective for real-time detection and classification of sign languages, as it

achieves the highest accuracy and precision.

5.2 Objective Revisited

As discussed in chapter 1, there are three objectives that need to be achieved at the end

of this research. The first objective is to study the usage of object detection using Single

Shot Detect (SSD) and MobileNet in studying sign language. This objective was achieved

by developing an SSD-MobileNet model capable of real-time sign language detection, as

discussed in detail in Chapter 4.

The second objective involved designing and training an object detection model using

Single Shot Detector and MobileNet architectures to study sign language. This objective

was accomplished by setting up the environment in Google Colab using Python and

utilizing a pre-trained SSD-MobileNet model provided by TensorFlow. The process of

designing and training the model was elaborated upon in Chapter 4.

78

The final objective focused on evaluating the functionality of the developed object

detection model in studying and detecting sign language. This evaluation was conducted

using evaluation metrics discussed in Chapter 3, which included multiple tests to assess

the performance of the developed SSD-MobileNet model by analyzing its accuracy,

precision, recall, and F1-score compared to other models. Further details regarding the

evaluation results were extensively discussed in Chapter 4.

In conclusion, this research successfully achieved all stated objectives. The

implementation of an object detection model for real-time sign language detection

demonstrated the superiority of the SSD-MobileNet model, as it exhibited the highest

precision, accuracy, F1-score, and recall scores when compared to other models.

5.3 Limitation

The testing results presented in Chapter 4 demonstrated promising outcomes, surpassing

a satisfactory accuracy threshold of 90%. Furthermore, the comparison with other models

highlighted the potential of real-time sign language detection. However, a notable

limitation in this research is the scarcity of available datasets for various signs beyond

numbers and letters. Consequently, the model's training was constrained to only three

phrases, namely "Nama," "Saya," and "Umur." These signs were manually collected,

resulting in reduced data diversity and volume.

Another constraint of the model is its inability to detect dynamic sign languages, which

involve hand movements in combination. Presently, the model is only capable of

detecting static signs, thereby limiting its ability to learn and recognize a broader range

of sign languages. One additional limitation is the latency exhibited by the models,

despite the developed model being considered lightweight. It is important to note that

TensorFlow is continuously working on enhancing and optimizing the capabilities of

TensorFlow Lite models to improve efficiency and reduce computational requirements.

During real-time testing on an Android phone, the observed latency typically fluctuates

between 70 ms to 80 ms. Moreover, it is worth mentioning that prolonged usage of the

application on the phone may lead to increased heat generation.

79

5.4 Future Work

For future work, it is crucial to prioritize the inclusion of a more diverse dataset in the

study, encompassing a wide range of signs with variations in hand size, shape, and color.

This approach ensures that the model learns and detects signs accurately across different

variations. However, it should be noted that the data collection process is laborious and

time-consuming, requiring significant effort to manually curate a large and diverse

dataset of high quality.

Furthermore, future models should be designed to address the detection of dynamic sign

language, which is commonly used in everyday communication. Consideration should

also be given to factors such as hand positioning and facial expressions, as they play vital

roles in sign language. Developing a new model that can facilitate real-time

communication between hearing individuals and the deaf community would require

incorporating these aspects into the model's training process.

ii

REFERENCES

Ammar Alhaj Ali. (2020). American Sign Language Letters | Kaggle.

https://www.kaggle.com/datasets/ammarnassanalhajali/american-sign-language-letters

Ankit Sachan. (2017). Zero to Hero: Guide to Object Detection using Deep Learning: Faster R-

CNN,YOLO,SSD – CV-Tricks.com. https://cv-tricks.com/object-detection/faster-r-cnn-

yolo-ssd/

Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and

Accuracy of Object Detection. http://arxiv.org/abs/2004.10934

Capilla, D. M. (2012). Sign Language Translator using Microsoft Kinect XBOX 360 TM.

Darus, N. M., Abdullah, N. T., & Mutalib, A. A. (2012). iMSL: Malay Sign Language for the

Deaf and Hearing-impaired. 4–6.

Das, S., Imtiaz, M. S., Neom, N. H., Siddique, N., & Wang, H. (2023). A hybrid approach for

Bangla sign language recognition using deep transfer learning model with random forest

classifier. Expert Systems with Applications, 213, 118914.

https://doi.org/10.1016/J.ESWA.2022.118914

DAYAS, I. A. (2019). The history of sign language.

https://www.nationalgeographic.com/history/history-magazine/article/creation-of-sign-

language

Dianne Castillo. (2021). Transfer Learning for Machine Learning - Seldon.

https://www.seldon.io/transfer-learning

Estrada, J., Paheding, S., Yang, X., & Niyaz, Q. (2022). Deep-Learning-Incorporated

Augmented Reality Application for Engineering Lab Training. Applied Sciences

(Switzerland), 12(10). https://doi.org/10.3390/APP12105159

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate

object detection and semantic segmentation Tech report (v5).

http://www.cs.berkeley.edu/˜rbg/rcnn.

Grace Karimi. (2021). Introduction to YOLO Algorithm for Object Detection | Engineering

Education (EngEd) Program | Section. https://www.section.io/engineering-

education/introduction-to-yolo-algorithm-for-object-detection/

iii

Hmrishav Bandyopadhyay. (2022). YOLO: Real-Time Object Detection Explained.

https://www.v7labs.com/blog/yolo-object-detection

Jamie Berke. (2020, April 20). Challenges of Learning Sign Language.

https://www.verywellhealth.com/challenges-of-learning-sign-language-1049296

Jason Brownlee. (2021). A Gentle Introduction to Object Recognition With Deep Learning.

https://machinelearningmastery.com/object-recognition-with-deep-learning/

João Cartucho. (2018). Cartucho/OpenLabeling: Label images and video for Computer Vision

applications. João Cartucho. https://github.com/Cartucho/OpenLabeling

Kralevska, A., Trajanov, R., & Gievska, S. (2022). Real-time Macedonian Sign Language

Recognition System by using Transfer Learning. 2022 45th Jubilee International

Convention on Information, Communication and Electronic Technology, MIPRO 2022 -

Proceedings, 906–911. https://doi.org/10.23919/MIPRO55190.2022.9803692

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2015). SSD:

Single Shot MultiBox Detector. https://doi.org/10.1007/978-3-319-46448-0_2

Mavi, A., & Dikle, Z. (2022). A New 27 Class Sign Language Dataset Collected from 173

Individuals. /datasets/ardamavi/27-class-sign-language-dataset

Mittal, P., Singh, R., & Sharma, A. (2020). Deep learning-based object detection in low-altitude

UAV datasets: A survey. In Image and Vision Computing (Vol. 104). Elsevier Ltd.

https://doi.org/10.1016/j.imavis.2020.104046

PapersWithCode. (2022). PASCAL VOC 2007 Benchmark (Object Detection) | Papers With

Code. https://paperswithcode.com/sota/object-detection-on-pascal-voc-2007

Pathak, A. R., Pandey, M., & Rautaray, S. (2018). Application of Deep Learning for Object

Detection. Procedia Computer Science, 132, 1706–1717.

https://doi.org/10.1016/J.PROCS.2018.05.144

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified,

Real-Time Object Detection. http://arxiv.org/abs/1506.02640

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks. http://image-

net.org/challenges/LSVRC/2015/results

iv

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). MobileNetV2:

Inverted Residuals and Linear Bottlenecks. Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 4510–4520.

https://doi.org/10.1109/CVPR.2018.00474

Shafi, I., Mazahir, A., Fatima, A., & Ashraf, I. (2022). Internal defects detection and

classification in hollow cylindrical surfaces using single shot detection and MobileNet.

Measurement, 202, 111836. https://doi.org/10.1016/j.measurement.2022.111836

Sharif Elfouly. (2019). R-CNN (Object Detection). A beginners guide to one of the most… | by

Sharif Elfouly | shafu.eth | Medium. https://medium.com/@selfouly/r-cnn-3a9beddfd55a

Sharrab, Y. O., Alsmirat, M., Dwekat, Z., Alsmadi, I., & Al-Khasawneh, A. (2021).

Performance Comparison of Several Deep Learning-Based Object Detection Algorithms

Utilizing Thermal Images; Performance Comparison of Several Deep Learning-Based

Object Detection Algorithms Utilizing Thermal Images. 2021 Second International

Conference on Intelligent Data Science Technologies and Applications (IDSTA).

https://doi.org/10.1109/IDSTA53674.2021.9660820

Siti Hajar, J. (2019, May 3). Dua juta rakyat Malaysia ada masalah pendengaran - Kajian |

Astro Awani. https://www.astroawani.com/gaya-hidup/dua-juta-rakyat-malaysia-ada-

masalah-pendengaran-kajian-206706

Subbiah, U., Parameswaran, L., Kavin Kumar, D., & Kumar Thangavel, S. (2020). An

Extensive Study and Comparison of the Various Approaches to Object Detection using

Deep Learning; An Extensive Study and Comparison of the Various Approaches to Object

Detection using Deep Learning.

Tan, L., Huangfu, T., & Wu, L. (2021). Comparison of YOLO v3, Faster R-CNN, and SSD for

Real-Time Pill Identiication. https://doi.org/10.21203/rs.3.rs-668895/v1

Tensorflow. (2015). TensorFlow.

https://www.tensorflow.org/?gclid=Cj0KCQjwk5ibBhDqARIsACzmgLRe4HS39LgxE2J

TTHzfJAscSDuLW_5L4kr8P0qX5G02OvEcPZ_VAfIaAvd4EALw_wcB

Zeiler, M. D., & Fergus, R. (2014). LNCS 8689 - Visualizing and Understanding Convolutional

Networks.

v

APPENDIX A

No. Sign Image Expected

Signs label

Output Image Output label Output

Confidence

score

1

 A

A 0.84

2

 B

B 0.87

3

 C

C 0.89

vi

4

D

D 0.94

5

E

E 0.83

6

F

F 1.00

vii

7

 G

G 0.76

8

H

H 0.94

9

 I

I 1.00

viii

10

 K

K 0.95

11

L

L 0.99

12

M

M 0.95

ix

13

 N

N 1.00

14

O

O 0.95

15

P

P 0.88

x

16

 Q

Q 0.93

17

 R

R 0.98

18

 S

S 0.98

xi

19

 T

T 1.00

20

 U

U 0.97

21

 V

V 0.99

xii

22

 W

W 0.88

23

X

X 0.91

24

 Y

Y 0.95

xiii

25

 1

1 0.63

26

2

V 0.99

27

3

W 0.81

xiv

28

4

4 0.53

29

5

F 0.82

30

6

W 0.86

xv

1

7

W 0.70

32

8

8 0.96

33

9

F 0.95

xvi

Nama

Nama 0.99

35

Saya

Saya 0.85

36

Umur

E 0.83

