
 211

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

How to cite this article:
Amelia, T., & Mohamed, R. (2024). Reprocolla: Requirements prioritisation
model with collaboration perspectives based on cost-value approach. Journal of
Information and Communication Technology, 23(2), 211-252. https://doi.org/10.32890/
jict2024.23.2.3

Reprocolla: Requirements Prioritisation Model with
Collaboration Perspectives Based on Cost-Value Approach

1Tan Amelia & 2Rozlina Mohamed
1&2Faculty of Computing,

Universiti Malaysia Pahang Al-Sultan Abdullah, Malaysia
1Department of Information System – Faculty

of Technology and Informatics,
Universitas Dinamika, Indonesia

*1meli@dinamika.ac.id
2rozlina@umpsa.edu.my
*Corresponding author

Received: 1/1/2024 Revised: 7/4/2024 Accepted: 15/4/2024 Published: 30/4/2024

ABSTRACT

The process of ranking requirements in software development is made
up of various criteria and numerous stakeholders, which are properly
selected for the effective prioritisation of software requirements.
These requirements have encountered several challenges, including
lack of scalability, complexity of pairwise comparisons and biases due
to the cognitive load on stakeholders. Therefore, this research aimed
to investigate and find solutions to improve the software prioritisation
process using the Reprocolla model. The model was built by weighing
the criteria in terms of benefits, opportunities, costs,

https://e-journal.uum.edu.my/index.php/jict

JOURNAL OF INFORMATION AND
COMMUNICATION TECHNOLOGY

212

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

and risks (BOCR) classification, which were then calculated using the
fuzzy analytic hierarchy process (FAHP) method. Furthermore, the
selection of alternatives was computed using the fuzzy technique for
order preference using the similarity to an ideal solution (FTOPSIS)
method. The success of Reprocolla was evaluated using seven datasets
based on real projects and compared with the two existing methods
for prioritising requirements, FAHP and FTOPSIS. The experiment
results used inferential and descriptive statistics approaches with
three indicators: accuracy, time consumption, and ease of use. Based
on the three indicators mentioned above, the inferential statistics
showed no significant difference between the perspectives of clients
and developers. Whereas, descriptive statistics found that Reprocolla
is more accurate, consumes less time, and has the highest ease of use
percentage. The result showed that as stakeholders’ satisfaction level
increases, the software development process becomes more accurate,
thereby leading to a decrease in time consumption and a rise in ease of
usage. The result also showed that the development of the Reprocolla
tool, a collaboration between humans and machines, enhanced the
effectiveness of the requirements prioritisation process.

Keywords: Requirements prioritisation, BOCR, perspectives, FAHP,
FTOPSIS.

INTRODUCTION

Effective prioritisation of requirements in software development
is essential, because it ensures that limited resources, such as time,
budget, and manpower, are allocated to meet the most critical needs
and deliver maximum value to stakeholders (Digital.ai, 2022; Trimble
& Webster, 2013). Collaborative communication among stakeholders
is considered the best practice in this process (Gupta & Gupta,
2022b; Heikkilä et al., 2015; Schön et al., 2015), facilitating the
implementation of high-value-added functionality and clear directives
for development. However, one of the barriers to successful software
development is the lack of clear priorities and directives (Devulapalli
et al., 2016; Digital.ai, 2022).

The requirements prioritisation process comprised several critical
aspects, namely absolute, such as Moscow and $100-scale (Albuga
& Odeh, 2018), and relative priorities, including Cost-Value and

 213

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Analytical Hierarchy Process (AHP) (Karlsson & Ryan, 1997; Khan
et al., 2016), as well as various measurement scales, typically nominal,
ordinal, ratio, interval (Aurum & Wohlin, 2005). Additionally,
prioritisation strategies, namely scoping and ordering play a significant
role (Viswanathan et al., 2016), alongside considering perspectives
from both clients and developers (Sheemar & Kour, 2017; Sufian et
al., 2018), including evaluating beneficial and non-beneficial criteria
(Santos et al., 2016). Common criteria for prioritising software
features comprise business value, development cost, risk and time
to market, which are frequently used (Amelia & Mohamed, 2022;
Hujainah et al., 2018; Sher et al., 2019).

This research developed Reprocolla, a model designed for prioritising
software construction requirements. It adopted the cost-value method
while increasing collaboration, aimed at overcoming three significant
problems in requirements prioritisation, namely scalability, reduced
pairwise comparisons and stakeholder bias. Scalability ensures
accurate prioritisation despite increasing numbers of requirements
and criteria. Minimising pairwise comparisons simplifies processes
and improves time efficiency significantly. Furthermore, user-friendly
prioritisation methods influence stakeholders’ engagement, reduce
biases, and ensure fairness in decision-making.

The ability of the prioritisation method to handle the increasing
number of requirements effectively is termed scalability (Hujainah
et al., 2018, 2021). A method is scalable, assuming it remains user-
friendly despite increasing requirements. Berander et al. (2006)
introduced two classification procedures for categorising prioritisation
methods. The first classification is based on a method that assigns
stakeholder weights to each requirement, enabling the description of
the respective relative importance examples, such as AHP, planning
game, cumulative voting, numerical assignment, and Wieger method.
The second classification is a negotiation method, where agreements
are reached among subjective evaluations provided by stakeholders,
such as the Win-Win model and multi-criteria Preference Analysis
Requirements Negotiation (MPARN) method. However, the method
in each category faces certain limitations, including accommodating
increasing requirements and depicting a lack of scalability. This
implies that the methods are not practical or user-friendly enough to
handle increasing demands. In AHP, as the number of requirements
increases, the number of comparisons also rises, calculated as n*(n

214

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

-1)/2 (Philips Achimugu et al., 2016; Ibriwesh, Ho, & Chai, 2018).
For example, ten requirements would require 10*(10-1)/2= 45
comparisons, while 20 needs 20*(20-1)/2=190 comparisons. Majority
of requirements prioritisation methods encounter scalability problems
(Babar et al., 2015; Bukhsh et al., 2020; Frota Dos Santos et al., 2016;
Gambo et al., 2018; Hujainah et al., 2021).

Reducing pairwise comparisons aims to minimise user effort and time
consumption by adopting strategies such as hierarchical dependencies
(Alawneh, 2017) and grouping requirements (Ibriwesh et al., 2018).
In addition, the number of criteria used in requirements prioritisation
directly affects the comparison. Therefore, efforts to reduce pairwise
comparisons should consider the number of requirements and criteria
used because feature prioritisation includes comparisons between
criteria and requirements.

Stakeholders’ bias occurs during the requirements prioritisation
process, as these parties play a critical role in assigning value to
requirements. It is essential for stakeholders to maintain transparency
and avoid hidden agendas to ensure the accuracy of the assigned
values. Much research focused on incorporating client and developer
input in the prioritisation process (Alawneh, 2017; Gupta & Gupta,
2022a; Sheemar & Kour, 2017; Sufian et al., 2018). Therefore, the
success of requirements prioritisation depends on the ability to provide
accurate analysis from the respective perspectives.

Recent research, including stakeholders and multi-criteria decision-
making, is mainly conceptual (AL-Ta’ani & Razali, 2013; Arshad et
al., 2023; Hujainah et al., 2020; Pamučar et al., 2018; Sheemar &
Kour, 2017). This research focused on empirical evaluation due to the
need for the growing recognition of related assessment, particularly
in comparing the effectiveness of requirements prioritisation
methods with respect to accuracy, time consumption, and ease of
use (Borhan et al., 2019; Hujainah et al., 2021; Khalid & Qamar,
2019). Furthermore, the proposed model was based on the cost-
value method and stakeholder collaboration. The contribution of this
research includes identifying essential criteria from both client and
developer perspectives, grouping criteria based on BOCR (Benefits,
Opportunities, Costs, Risks) and developing Reprocolla, a new model
that uses cost-value method and stakeholder collaboration.

 215

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

This research is structured as follows: the next section reviews the
existing literature, then details phases for each phase in the proposed
Reprocolla model. After that, the following section describes
the experimental preparation for the conducted case studies. The
subsequent section focuses on the analysis and evaluation of the
results. The last two sections address the potential validity threats and
conclusions and suggest future research directives.

RELATED WORK

Requirements Prioritisation

In requirements development, there are four main activities:
elicitation, analysis, specification, and validation (Rasheed et al.,
2021). According to Wiegers (2009), requirements represent the
values that stakeholders must receive. The requirements specification
of a system must be complete and consistent. Completeness means
that all relevant user benefits and information are defined, while
consistency ensures that requirements are coherent and accessible
to contradictions (Sommerville, 2016). Requirements prioritisation
includes systematically identifying, evaluating, and ranking software
requirements based on predefined criteria. System stakeholders,
such as individuals or organisations, may directly or indirectly
influence system requirements, and they play an important role.
Besides documents and operational systems, these parties are an
essential source of needs (Pohl & Rupp, 2015). Stakeholders, such
as clients, prioritise software features based on business value, while
developers estimate the time needed to implement the requirements,
thereby contributing various viewpoints of the system.

Requirements prioritisation comprised two main categories: the
first focuses on the order of task implementation, while the second
considers stakeholder interests across dimensions, such as business
value, implementation cost, risk, and personal preference (Firesmith,
2004). Prioritisation typically considers three main perspectives:
business, customer, and implementation. From a business perspective,
it addresses financial benefits, source importance, competitive factors,
and regulatory compliance. The customer perspective focuses on
customer needs, user requirements, and contractual agreements.
Meanwhile, the implementation perspective focuses on the logical

216

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

arrangement of requirements, order of implementation, associated
costs, potential costs when not implemented, and available resources
(Lehtola et al., 2004).

The adopted methods aim to enhance business success by maximising
value. Several methods, including Numerical Assignment (NA),
AHP, Cost-Value, $100-Test, etc., are used for this purpose (Philip
Achimugu et al., 2014). Despite the availability of multiple methods,
practical methods for achieving requirements prioritisation are scarce
due to their various strengths and weaknesses. These methods should
inherently incorporate cost to retain the values that enhance business
success. Prioritising requirements mainly focuses on assessing cost
and value, with due attention to addressing implementation risk
when necessary (Amelia & Mohamed, 2018; Ibriwesh et al., 2018;
Mougouei & Powers, 2017; Rida et al., 2016; Sie & Alami, 2016).

Cost-Value Method

Karlsson and Ryan (1997) proposed a cost-value method for
prioritising requirements based on relative cost and value. In this
method, the value is assessed in terms of how candidate requirements
contribute to customer satisfaction, while cost represents the
expenses associated with the successful implementation. Candidate
requirements are identified using AHP, which calculates the relative
value and implementation costs. Subsequently, the cost-value diagram
serves as a conceptual map, assisting software managers in analysing
and discussing candidate requirements (Sie & Alami, 2016).

Examining the cost and value aspects in requirement prioritisation
depicts the shared interest of both entrepreneurs and developers.
The success of prioritising requirements depends on effective
collaboration between these two parties. However, obstacles arise in
reducing pairwise comparisons to maintain measurability and prevent
excessive time consumption (Amelia & Mohamed, 2018).

Requirements Prioritisation Criteria

The factors or criteria used are fundamental for determining priorities.
These criteria are categorised into beneficial and non-beneficial in
Multi-Criteria Decision-Making (MCDM) methods. Non-beneficial
and beneficial criteria should ideally have lower and higher values,
respectively. Additionally, various literature classify criteria based

 217

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

on project constraints (AL-Ta’ani & Razali, 2013; Alkandari &
Al-Shammeri, 2017; Nurdiani et al., 2016). These refer to specific
parameters that impose limitations and influence expected outcomes
(Thakurta, 2016).

Amelia and Mohamed (2022), conducted a literature review which
categorised criteria for requirements prioritisation into beneficial
and non-beneficial factors. The criteria were then grouped based on
project constraints.

1) Beneficial Attributes

 a. Project Constraints (No): Business Value, Importance,
 Stakeholder Satisfaction, Authority, Knowledge, Strategic
 Considerations, Usability, Customer Input, Performance,
 Easy Use, Accuracy, Visibility, Sales, Marketing,
 Applicability, Reliability, Urgency.

 b. Project Constraints (Yes): Quality, Impact, Scalability,
 Trust.

2) Non-Beneficial Attributes

 a. Project Constraints (No): Effort Estimation or Size
 Measurement, Penalty, Learning Experience, External
 Change, Technical Feasibility, Uncertainties, Developers
 Input, Negative Value.

 b. Project Constraints (Yes): Development Cost, Risk, Time
 to Market, Dependencies, Availability of Resources,
 Schedule, Volatility, Implementation Effort, Complexity.

In the process of acquiring requirements, stakeholders are essential
alongside documents and operational systems (Pohl & Rupp,
2015). Recognising relevant stakeholders is crucial in requirements
engineering. This research categorises stakeholders based on diverse
perspectives, as the respective viewpoints complexly influence the
criteria used in the requirements prioritisation process. The perspective
classification includes both the viewpoints of clients and developers.

Stakeholders Collaborative

Effective collaboration among stakeholders is crucial for selecting
requirements that ensure high user satisfaction levels. However,

218

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

as stakeholder participation increases, achieving user satisfaction
becomes more challenging due to diverse perspectives. Establishing
collaboration between clients and developers is a significant challenge
in prioritisation technologies that can be difficult to attain (El Bakly
& Darwish, 2017). The gap between clients and developers in
determining priorities is influenced by the perceptions of the necessity
of these requirements. Clients may struggle to assess the costs and
technical difficulties associated with specific requirements, while
developers do not understand which requirements are most important
to clients all the time (Wiegers, 1999). Successful software systems
require collaboration between clients and developers to prioritise
requirements. However, most prioritisation methods lack support
for effective communication between stakeholders (Gupta & Gupta,
2018).

Weighting of Criteria

Generating a priority list requires weighting the criteria to calculate
the value of the requirements. Ensuring transparent and holistic
weighting enhances stakeholder satisfaction (Shukla & Auriol, 2013).
The objective factors influencing the weight of the criteria require
special attention. The literature review stated that weights derived
from specific methods are more accurate than those based solely on
expert understanding of criteria importance (Ng & Mohamed, 2022;
Pamučar et al., 2018).

Weighted Sum Model (WSM) is the most frequently used method,
specifically in addressing one-dimensional problems. Equation 1 is
the objective function of WSM (Triantaphyllou et al., 1998):

(1)

Where:
n = Number of criteria

m = Number of alternatives
Wj = Weighted of the importance of each criterion

Xij = Matrix value of X

Data normalisation is essential for decision-making methods because
it ensures that the information obtained is numeric and comparable,
enabling the combination into a single score for each alternative. When

1

Reprocolla: Requirements Prioritisation Model with Collaboration Perspectives

Based on Cost-Value Approach

Ai
WSM = ∑ WjXij for i = 1,2,3, … , m

n

j=1

(1)

Where:

n = Number of criteria

m = Number of alternatives

Wj = Weighted of the importance of each criterion

Xij = Matrix value of X

Benefit Criteria: X̅ij =
Xij

Xj
max

(2)

Cost Criteria:
 X̅ij =

Xj
min

Xij

(3)

Where:

Xij = Matrix value of X, where i = 1,2,3…, m and j = 1,2,3,…n

n = Number of criteria

m = Number of alternatives

 219

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

selecting a normalisation method, it is crucial to ensure an appropriate
representation of the model’s broad scale and comparability of the
aggregated criteria to obtain alternative ratings.

Equation 2 and Equation 3 are used for performing linear normalisation:

(2)

(3)

Where:
Xij = Matrix value of X, where i = 1,2,3…, m and j = 1,2,3,…n

n = Number of criteria
m = Number of alternatives

Weighting the criteria and alternatives by decision-makers can often
be ambiguous, uncertain, and subjective. The use of fuzzy numbers
helps reduce these uncertainties and conflicting requirements, leading
to more reliable outcomes (Nazim et al., 2022). The fuzzy logic method
was calculated based on the degree of truth rather than a binary true or
false value, providing a conceptual framework to address uncertainties
in knowledge representation (Ruby & Balkishan, 2015).

Fuzzy Analytic Hierarchy Process (FAHP)

AHP is a potent method for resolving complex decision-making
problems. In decision-making, it is essential to identify, analyse, and
compare alternatives to achieve the desired objectives (Adepoju et al.,
2020). The effectiveness of this analysis directly influences the level
of success. However, some drawbacks are associated with the AHP
pairwise comparison method, such as its reliance on expert judgment,
which leads to imprecision. Using specific numerical values for
experts’ preferences can be limited by inadequate information or
expertise. To overcome this challenge, a fusion of fuzzy set theory
with AHP, known as fuzzy AHP or FAHP, allows for accommodating
subjective impressions and judgments. Constructing the FAHP
model includes creating a comparison matrix, consolidating multiple
assessments, evaluating consistency, and refining fuzzy weights (Liu
et al., 2020).

1

Reprocolla: Requirements Prioritisation Model with Collaboration Perspectives

Based on Cost-Value Approach

Ai
WSM = ∑ WjXij for i = 1,2,3, … , m

n

j=1

(1)

Where:

n = Number of criteria

m = Number of alternatives

Wj = Weighted of the importance of each criterion

Xij = Matrix value of X

Benefit Criteria: X̅ij =
Xij

Xj
max

(2)

Cost Criteria:
 X̅ij =

Xj
min

Xij

(3)

Where:

Xij = Matrix value of X, where i = 1,2,3…, m and j = 1,2,3,…n

n = Number of criteria

m = Number of alternatives

1

Reprocolla: Requirements Prioritisation Model with Collaboration Perspectives

Based on Cost-Value Approach

Ai
WSM = ∑ WjXij for i = 1,2,3, … , m

n

j=1

(1)

Where:

n = Number of criteria

m = Number of alternatives

Wj = Weighted of the importance of each criterion

Xij = Matrix value of X

Benefit Criteria: X̅ij =
Xij

Xj
max

(2)

Cost Criteria:
 X̅ij =

Xj
min

Xij

(3)

Where:

Xij = Matrix value of X, where i = 1,2,3…, m and j = 1,2,3,…n

n = Number of criteria

m = Number of alternatives

220

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Fuzzy Technique for Order Preference by Similarity to an Ideal
Solution (FTOPSIS)

The Technique for Order of Preference by Similarity to Ideal Solution
(TOPSIS), proposed by Hwang and Yoon (1981), is a widely recognised
method in Multi-Criteria Decision Analysis (MCDA). Several
research extensively explored the application in various scenarios
(Abu-Shareha, 2022; Palczewski & Sałabun, 2019). TOPSIS operates
on the fundamental principle that the selected alternative should be
closest to the ideal solution, with the aim to maximise profits and
minimise total costs (Pourjavad & Mayorga, 2016; Srisawat &
Payakpate, 2016). The merits of this method lie in the simplicity,
computational efficiency, and comprehensive mathematical concepts,
contributing to the widespread adoption. Furthermore, the classical
TOPSIS has evolved into FTOPSIS, incorporating fuzzy logic to
address MCDM problems in uncertain situations (Nazim et al., 2022).

An interesting fact is the widespread adoption of the FAHP method to
establish criteria weights used in the FTOPSIS method. While every
practical implementation of FTOPSIS consists of different criteria
and alternatives, some may be combined.

THE PROPOSED METHOD

Selecting the criteria for the requirements prioritisation process is a
complex process, which includes selecting the wrong ones, thereby
complicating the process and leading to uncertainty about preferring
the appropriate criteria. The literature review reported the use of many
criteria, and adopted excessive number without precision for decision-
makers to select the process efficiently. This research used the BOCR
method developed by Saaty (2005).

The criteria outlined in the literature review were grouped into four
categories: Benefits, Opportunities, Costs, and Risks, collectively
referred to as BOCR. Benefits (B) and Opportunities (O) pertain to
factors expected from selecting priority requirements, while Costs
(C) and Risks (R) are associated with meeting these requirements.
The decision tree method was used to classify the criteria into BOCR
categories (Amelia & Mohamed, 2023).

After determining the criteria, it becomes crucial to consider the
stakeholders’ perspectives in the requirements prioritisation process.

 221

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Collaboration between clients and developers is essential for effective
prioritisation. From the perspective of clients, stakeholders comprise
individuals with roles such as customers, users, top managers, and
businesses. The developers’ perspectives include the roles associated
with software architects, analysts, designers, technicians, builders,
testers, and financial representatives.

The relationship between criteria and perspective is evident in the cost-
value method formulated by Karlsson and Ryan (1997). This method,
which focuses on cost (non-beneficial) and value (beneficial), appeals
to entrepreneurs and software developers. Considering the four BOCR
merits, incorporating the perspective of clients and developers ensures
that the decision-makers are well-equipped for the tasks. The phases
of the proposed model are depicted in the hierarchical structure in
Figure 1.

Figure 1

Hierarchical Structure of the Proposed Model

2

Figure 1

Hierarchical Structure of the Proposed Model

222

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

The proposed model consists of the following detailed phases:
Phase 1: Identify correo each criterion using FAHP
Phase 4: Evaluate the prioritisation using FTOPSIS

1) Identify correlation attributes

The analysis conducted based on previous research including 44
respondents (Amelia & Mohamed, 2023) shows a correlation between
attributes and criteria in requirement prioritisation. From the 38
criteria identified in the literature review by Amelia and Mohammed
(2023), the top ten include business value, development cost, risk,
time to market, dependencies, effort estimation or size measurement,
schedule, volatility, implementation effort, and stakeholder
satisfaction. However, among the criteria, those selected by a high
percentage of respondents are business value (27%), stakeholder
satisfaction (21%) and schedule (12%).

An analysis was conducted on the relationship between client and
developer perspectives, as well as the correlation among criteria used
in requirements prioritisation based on previous research. The results
showed that perspectives of clients and developers must be consistent,
while considering the viewpoints, interests, and experiences of the
respective stakeholders. Certain criteria such as business value,
dependencies, effort estimation, schedule, and volatility show a
consistent direction with the percentage of criteria, reflecting the
level of importance. However, criteria such as risk, time to market,
implementation effort, development cost, and stakeholder satisfaction
show an opposing direction. The correlation coefficient quantifies the
strength of the relationship among the criteria used in the requirements
process, all of which show a positive association, depicting the
tendency to move in the same direction.

2) Classify criteria into BOCR categories

To classify the 38 criteria outlined in the literature review (Amelia
& Mohamed, 2022) into BOCR categories, questionnaires and
interviews were conducted with nine experts. Experts with extensive
software engineering experience from both perspectives of clients
and developers held positions such as program and product managers,
including system analysts. Using the decision tree method, experts

 223

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

grouped the criteria into BOCR. The results obtained from the
questionnaires and interviews confirmed that all criteria could be
effectively classified into BOCR classification, as shown in Figure 2.

Figure 2

The Criteria Based on BOCR

3) Assign weights to each criterion using FAHP

Requirements prioritisation starts with calculating the weights of
Benefits, Opportunities, Costs, and Risks using FAHP. This requires
clients and developers conducting pairwise comparisons to assess the
relative importance of attributes using fuzzy linguistic terms. The
resulting weights assigned to each criterion, are then obtained from
these comparisons.

Chang (1996) extended method was the most popular fuzzy AHP
due to the thorough examination of each criterion. The widespread
application across various real-life problems further depicts the
reliability (Mangla et al., 2017; Nazim et al., 2022; Tan et al., 2014).

The following are the phases outlined in the AHP fuzzy process based
on the method proposed by Chang (Prakash & Barua, 2016).
a. Calculate the fuzzified pairwise comparison matrix using Equation 4

3

Figure 2

The Criteria Based on BOCR

a.

A̅ = [
1 a̅12 … a̅1n

�̅�𝑎21 1 … a̅2n
⋮
�̅�𝑎n1

⋮
�̅�𝑎n2

⋱ ⋯ 1
] =

[

 1 a̅12 … a̅1n
1 �̅�𝑎21⁄ 1 … a̅2n
⋮

1 �̅�𝑎⁄
̅̅ ̅̅ ̅

1𝑛𝑛

⋮
1 �̅�𝑎⁄
̅̅ ̅̅ ̅

n2
⋱ ⋯ 1

]

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative using Equations 5-8.

𝑆𝑆𝑆𝑆 = ∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
[∑∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
]
−1

(5)

�̃�𝐴1 ⊕ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊕ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 + 𝑚𝑚2, 𝑢𝑢1 + 𝑢𝑢2) (6)

(𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1)−1 = (1
𝑢𝑢1

, 1
𝑚𝑚1

, 1𝑙𝑙1
) (7)

�̃�𝐴1 ⊗ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊗ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2, 𝑢𝑢1𝑢𝑢2) (8)

c. Calculate the degree of possibility for a convex fuzzy number to be greater than k using Equations

9-11

B
•Business Value
•Importance
•Stakeholder

Satisfaction
•Quality
•Impact
•Knowledge
•Strategic
•Usability
•Technical

Feasibility
•Customer Input
•Performance
•Easy of Use
•Accuracy
•Trust
•Applicability
•Reliability
•Urgency

O
•Available of

Resources
•Authority
•Scalability
•Developers' Input
•Visibility
•Sales
•Marketing

C
•Developmet Cost
•Effort Estimation/

Size Measurement
•Implementation

Effort

R
•Risk
•Time To Market
•Dependencies
•Schedule
•Volatility
•Complexity
•Penalty
•Learning Experince
•External Change
•Uncertainties
•Negative Value

224

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative
using Equations 5-8.

(5)

(6)

(7)

(8)

c. Calculate the degree of possibility for a convex fuzzy number to be
greater than k using Equations 9-11

(9)

(10)

(11)

d. Calculate the weight vector and then normalise the non-fuzzy
using Equations 12-13

(12)

(13)

In a fuzzy logic system, initialisation requires defining the linguistic
variables. These variable serve to describe the degrees or levels of a
criterion value in both natural and artificial languages. It enables the
comparisons of each criterion in a fuzzy environment. Table 1 shows
the linguistic terms used to assess the weight criteria in FAHP.

3

Figure 2

The Criteria Based on BOCR

a.

A̅ = [
1 a̅12 … a̅1n

�̅�𝑎21 1 … a̅2n
⋮
�̅�𝑎n1

⋮
�̅�𝑎n2

⋱ ⋯ 1
] =

[

 1 a̅12 … a̅1n
1 �̅�𝑎21⁄ 1 … a̅2n
⋮

1 �̅�𝑎⁄
̅̅ ̅̅ ̅

1𝑛𝑛

⋮
1 �̅�𝑎⁄
̅̅ ̅̅ ̅

n2
⋱ ⋯ 1

]

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative using Equations 5-8.

𝑆𝑆𝑆𝑆 = ∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
[∑∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
]
−1

(5)

�̃�𝐴1 ⊕ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊕ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 + 𝑚𝑚2, 𝑢𝑢1 + 𝑢𝑢2) (6)

(𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1)−1 = (1
𝑢𝑢1

, 1
𝑚𝑚1

, 1𝑙𝑙1
) (7)

�̃�𝐴1 ⊗ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊗ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2, 𝑢𝑢1𝑢𝑢2) (8)

c. Calculate the degree of possibility for a convex fuzzy number to be greater than k using Equations

9-11

B
•Business Value
•Importance
•Stakeholder

Satisfaction
•Quality
•Impact
•Knowledge
•Strategic
•Usability
•Technical

Feasibility
•Customer Input
•Performance
•Easy of Use
•Accuracy
•Trust
•Applicability
•Reliability
•Urgency

O
•Available of

Resources
•Authority
•Scalability
•Developers' Input
•Visibility
•Sales
•Marketing

C
•Developmet Cost
•Effort Estimation/

Size Measurement
•Implementation

Effort

R
•Risk
•Time To Market
•Dependencies
•Schedule
•Volatility
•Complexity
•Penalty
•Learning Experince
•External Change
•Uncertainties
•Negative Value

3

Figure 2

The Criteria Based on BOCR

a.

A̅ = [
1 a̅12 … a̅1n

�̅�𝑎21 1 … a̅2n
⋮
�̅�𝑎n1

⋮
�̅�𝑎n2

⋱ ⋯ 1
] =

[

 1 a̅12 … a̅1n
1 �̅�𝑎21⁄ 1 … a̅2n
⋮

1 �̅�𝑎⁄
̅̅ ̅̅ ̅

1𝑛𝑛

⋮
1 �̅�𝑎⁄
̅̅ ̅̅ ̅

n2
⋱ ⋯ 1

]

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative using Equations 5-8.

𝑆𝑆𝑆𝑆 = ∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
[∑∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
]
−1

(5)

�̃�𝐴1 ⊕ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊕ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 + 𝑚𝑚2, 𝑢𝑢1 + 𝑢𝑢2) (6)

(𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1)−1 = (1
𝑢𝑢1

, 1
𝑚𝑚1

, 1𝑙𝑙1
) (7)

�̃�𝐴1 ⊗ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊗ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2, 𝑢𝑢1𝑢𝑢2) (8)

c. Calculate the degree of possibility for a convex fuzzy number to be greater than k using Equations

9-11

B
•Business Value
•Importance
•Stakeholder

Satisfaction
•Quality
•Impact
•Knowledge
•Strategic
•Usability
•Technical

Feasibility
•Customer Input
•Performance
•Easy of Use
•Accuracy
•Trust
•Applicability
•Reliability
•Urgency

O
•Available of

Resources
•Authority
•Scalability
•Developers' Input
•Visibility
•Sales
•Marketing

C
•Developmet Cost
•Effort Estimation/

Size Measurement
•Implementation

Effort

R
•Risk
•Time To Market
•Dependencies
•Schedule
•Volatility
•Complexity
•Penalty
•Learning Experince
•External Change
•Uncertainties
•Negative Value

3

Figure 2

The Criteria Based on BOCR

a.

A̅ = [
1 a̅12 … a̅1n

�̅�𝑎21 1 … a̅2n
⋮
�̅�𝑎n1

⋮
�̅�𝑎n2

⋱ ⋯ 1
] =

[

 1 a̅12 … a̅1n
1 �̅�𝑎21⁄ 1 … a̅2n
⋮

1 �̅�𝑎⁄
̅̅ ̅̅ ̅

1𝑛𝑛

⋮
1 �̅�𝑎⁄
̅̅ ̅̅ ̅

n2
⋱ ⋯ 1

]

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative using Equations 5-8.

𝑆𝑆𝑆𝑆 = ∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
[∑∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
]
−1

(5)

�̃�𝐴1 ⊕ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊕ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 + 𝑚𝑚2, 𝑢𝑢1 + 𝑢𝑢2) (6)

(𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1)−1 = (1
𝑢𝑢1

, 1
𝑚𝑚1

, 1𝑙𝑙1
) (7)

�̃�𝐴1 ⊗ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊗ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2, 𝑢𝑢1𝑢𝑢2) (8)

c. Calculate the degree of possibility for a convex fuzzy number to be greater than k using Equations

9-11

B
•Business Value
•Importance
•Stakeholder

Satisfaction
•Quality
•Impact
•Knowledge
•Strategic
•Usability
•Technical

Feasibility
•Customer Input
•Performance
•Easy of Use
•Accuracy
•Trust
•Applicability
•Reliability
•Urgency

O
•Available of

Resources
•Authority
•Scalability
•Developers' Input
•Visibility
•Sales
•Marketing

C
•Developmet Cost
•Effort Estimation/

Size Measurement
•Implementation

Effort

R
•Risk
•Time To Market
•Dependencies
•Schedule
•Volatility
•Complexity
•Penalty
•Learning Experince
•External Change
•Uncertainties
•Negative Value

3

Figure 2

The Criteria Based on BOCR

a.

A̅ = [
1 a̅12 … a̅1n

�̅�𝑎21 1 … a̅2n
⋮
�̅�𝑎n1

⋮
�̅�𝑎n2

⋱ ⋯ 1
] =

[

 1 a̅12 … a̅1n
1 �̅�𝑎21⁄ 1 … a̅2n
⋮

1 �̅�𝑎⁄
̅̅ ̅̅ ̅

1𝑛𝑛

⋮
1 �̅�𝑎⁄
̅̅ ̅̅ ̅

n2
⋱ ⋯ 1

]

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative using Equations 5-8.

𝑆𝑆𝑆𝑆 = ∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
[∑∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
]
−1

(5)

�̃�𝐴1 ⊕ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊕ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 + 𝑚𝑚2, 𝑢𝑢1 + 𝑢𝑢2) (6)

(𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1)−1 = (1
𝑢𝑢1

, 1
𝑚𝑚1

, 1𝑙𝑙1
) (7)

�̃�𝐴1 ⊗ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊗ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2, 𝑢𝑢1𝑢𝑢2) (8)

c. Calculate the degree of possibility for a convex fuzzy number to be greater than k using Equations

9-11

B
•Business Value
•Importance
•Stakeholder

Satisfaction
•Quality
•Impact
•Knowledge
•Strategic
•Usability
•Technical

Feasibility
•Customer Input
•Performance
•Easy of Use
•Accuracy
•Trust
•Applicability
•Reliability
•Urgency

O
•Available of

Resources
•Authority
•Scalability
•Developers' Input
•Visibility
•Sales
•Marketing

C
•Developmet Cost
•Effort Estimation/

Size Measurement
•Implementation

Effort

R
•Risk
•Time To Market
•Dependencies
•Schedule
•Volatility
•Complexity
•Penalty
•Learning Experince
•External Change
•Uncertainties
•Negative Value

3

Figure 2

The Criteria Based on BOCR

a.

A̅ = [
1 a̅12 … a̅1n

�̅�𝑎21 1 … a̅2n
⋮
�̅�𝑎n1

⋮
�̅�𝑎n2

⋱ ⋯ 1
] =

[

 1 a̅12 … a̅1n
1 �̅�𝑎21⁄ 1 … a̅2n
⋮

1 �̅�𝑎⁄
̅̅ ̅̅ ̅

1𝑛𝑛

⋮
1 �̅�𝑎⁄
̅̅ ̅̅ ̅

n2
⋱ ⋯ 1

]

(4)

b. Calculate the fuzzy synthetic extent with respect to ith alternative using Equations 5-8.

𝑆𝑆𝑆𝑆 = ∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1
[∑∑�̃�𝑎𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1
]
−1

(5)

�̃�𝐴1 ⊕ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊕ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1 + 𝑙𝑙2,𝑚𝑚1 + 𝑚𝑚2, 𝑢𝑢1 + 𝑢𝑢2) (6)

(𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1)−1 = (1
𝑢𝑢1

, 1
𝑚𝑚1

, 1𝑙𝑙1
) (7)

�̃�𝐴1 ⊗ �̃�𝐴2 = (𝑙𝑙1,𝑚𝑚1, 𝑢𝑢1) ⊗ (𝑙𝑙2,𝑚𝑚2, 𝑢𝑢2) = (𝑙𝑙1𝑙𝑙2,𝑚𝑚1𝑚𝑚2, 𝑢𝑢1𝑢𝑢2) (8)

c. Calculate the degree of possibility for a convex fuzzy number to be greater than k using Equations

9-11

B
•Business Value
•Importance
•Stakeholder

Satisfaction
•Quality
•Impact
•Knowledge
•Strategic
•Usability
•Technical

Feasibility
•Customer Input
•Performance
•Easy of Use
•Accuracy
•Trust
•Applicability
•Reliability
•Urgency

O
•Available of

Resources
•Authority
•Scalability
•Developers' Input
•Visibility
•Sales
•Marketing

C
•Developmet Cost
•Effort Estimation/

Size Measurement
•Implementation

Effort

R
•Risk
•Time To Market
•Dependencies
•Schedule
•Volatility
•Complexity
•Penalty
•Learning Experince
•External Change
•Uncertainties
•Negative Value

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

 225

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Table 1

Fuzzy Linguistic Terms and Correspondent Numbers for Each
Criterion

Importance Abbreviation Fuzzy Number
Very Low VL (0, 0, 0.2)
Low L (0.05, 0.2, 0.35)
Medium Low ML (0.2, 0.35, 0.5)
Medium ML (0.35, 0.5, 0.65)
Medium High MH (0.5, 0.65, 0.8)
High H (0.65, 0.8, 0.95)
Very High VH (0.8, 1, 1)

Triangular Fuzzy Number (TFN) is defined by three parameters
(column): the left, middle, and right boundaries. These parameters are
used to represent the membership functions of expression values. For
example, in the first row (0, 0, 0.2), TFN represents a fuzzy number
with the left, middle, and right boundaries of 0, 0, and 0.2, respectively.
This implies that the degree of membership starts to increase from 0,
reaches the maximum at 0, and then gradually declines at 0.2.

4) Evaluate the prioritisation using FTOPSIS

After obtaining the criteria weights, the prioritisation process
compares alternatives with these criteria using fuzzy linguistic terms,
based on FTOPSIS method. The process results in establishing the
priority order for all existing alternatives. The following FTOPSIS
phases guide this procedure (Kore et al., 2017; Ouma et al., 2015):

a. Decision makers assign ratings to both criteria and alternatives.
b. Fuzzy numbers are used to rate alternatives and assign criteria

weights.
c. Formulation of a collected fuzzy decision matrix comprising

alternative and criteria weights using Equations 14-17.

(14)

(15)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

226

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

(16)

(17)

d. Compute fuzzy decision matrix using Equations 18-19.

(18)

(19)

e. Normalise fuzzy decision matrix and compute the weighted
normalised matrix using Equations 20-23.

(20)

(21)

(22)

(23)

f. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative
ideal solution (FNIS) using Equations 24-25

(24)

(25)

g. Compute the distance of each alternative from FPIS and FNIS
using Equations 26-27.

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

4

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) = [min (𝜇𝜇𝑆𝑆2(𝑥𝑥), 𝜇𝜇𝑆𝑆1(𝑦𝑦)]𝑦𝑦≥𝑥𝑥
𝑠𝑠𝑠𝑠𝑠𝑠) (9)

𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) =
{

 1, 𝑖𝑖𝑖𝑖 𝑚𝑚2 ≥ 𝑚𝑚1
0, 𝑖𝑖𝑖𝑖 𝑙𝑙1 ≥ 𝑢𝑢2
(𝑙𝑙1 − 𝑢𝑢2)

(𝑚𝑚2 − 𝑢𝑢2) − (𝑚𝑚1 − 𝑙𝑙1)
= 𝜇𝜇d, otherwise

(10)

𝑉𝑉(𝑆𝑆 ≥ 𝑆𝑆1, 𝑆𝑆2,… , 𝑆𝑆𝑘𝑘) = min𝑉𝑉 (𝑆𝑆 ≥ 𝑆𝑆𝑖𝑖), 𝑖𝑖 = 1,2,… , 𝑘𝑘 (11)

d. Calculate the weight vector and then normalise the non-fuzzy using Equations 12-13

𝑊𝑊′ = (𝑑𝑑′(𝐴𝐴1), 𝑑𝑑′(𝐴𝐴2),… , 𝑑𝑑′(𝐴𝐴𝑚𝑚))𝑇𝑇 (12)

𝑊𝑊 = (𝑑𝑑(𝐴𝐴1), 𝑑𝑑(𝐴𝐴2), … , 𝑑𝑑(𝐴𝐴𝑚𝑚))𝑇𝑇 (13)

x̅ijk = (aijk , bijk, cijk) (14)

wjk = (wj1k ,wj2k ,wj3k) (15)

aij = mink {aijk}, bij =
1
K∑bijk

K

k=1
, cij = maxk {cijk}

(16)

wj1 = mink {wj k1}, wj2 =
1
K∑wj k2

K

k=1
, wj3 = maxk {wj k3}

(17)

a. Compute fuzzy decision matrix using Equations 18-19.

 C1 C2 … Cn

D̅ =
A1
A2
⋮
Am

[
x̅11 x̅12 … x̅1n
x̅21 x̅22 … x̅2n
⋮
x̅m1

⋮
x̅m2 ⋱ ⋯

⋮
x̅mn

]

(18)

W̅ = (w̅1, w̅2,… , w̅n) (19)

b. Normalise fuzzy decision matrix and compute the weighted normalised matrix using Equations

20-23.

R̅ = [r̅ij]mxn, i = 1, 2, … ,m; j = 1, 2,… , n (20)

r̅ij = (aij cj∗⁄ , bij cj∗⁄ , cij cj∗⁄) and cj∗ = maxi cij (benefit criteria) (21)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

 227

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

(26)

(27)

h. Compute the closeness coefficient (CCi) of each alternative using
Equation 28.

(28)

5) Ranking the alternatives

In the final phase, diverse alternatives were ranked based on the
decreasing order of the closeness coefficient (CCi). The optimal
alternative was characterised by the distance from FNIS to FPIS.
Table 2 shows an overview of the linguistic terms used for evaluating
alternatives in FTOPSIS.

Table 2

Fuzzy Linguistic Terms and Correspondent Numbers for Each
Alternative

Importance Abbreviation Fuzzy Number
Very Poor VP (0, 0, 0.2)
Poor P (0.05, 0.2, 0.35)
Medium Poor MP (0.2, 0.35, 0.5)
Fair F (0.35, 0.5, 0.65)
Medium Good MG (0.5, 0.65, 0.8)
Good G (0.65, 0.8, 0.95)
Very Good VG (0.8, 1, 1)

REPROCOLLA TOOL

Reprocolla is a web-based software designed to support the
automation of requirements prioritisation, aimed at improving
the validation process of the proposed model. Figure 3 shows a

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

5

r̅ij = (a̅j cij⁄ , a̅j bij⁄ , a̅j aij⁄) and a̅j = min
i

aij (cost criteria) (22)

P̅ = [p̅ij] where p̅ij = r̅ij x w̅j (23)

c. Compute fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) using

Equations 24-25

A+ = (p1
+, p2

+, … , pn
+) where

pj
+ = max

i
{pij3} , i = 1, 2, … , m; j = 1, 2, … , n

(24)

A− = (p1
−, p2

−, … , pn
−) where

pj
− = min

i
{pij1} , i = 1, 2, … , m; j = 1, 2, … , n

(25)

d. Compute the distance of each alternative from FPIS and FNIS using Equations 26-27.

di
+ = ∑ d

n

j=1
(p̅ij, pj

+) = [1
3 ∑(p̅ij, pj

+)2
n

j=1
]

1 2⁄

i = 1, 2, … , m

(26)

di
− = ∑ d

n

j=1
(p̅ij, pj

−) = [1
3 ∑(p̅ij, pj

−)2
n

j=1
]

1 2⁄

i = 1, 2, … , m
(27)

e. Compute the closeness coefficient (CCi) of each alternative using Equation 28.

𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑑𝑑𝑖𝑖
−

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+ = (1 − 𝑑𝑑𝑖𝑖
+

𝑑𝑑𝑖𝑖
− + 𝑑𝑑𝑖𝑖

+) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, 2, … , 𝑚𝑚
(28)

228

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

visualisation of the system flow and interface of this tool. During
the experiment, Reprocolla website was used by stakeholders for
requirements prioritisation, promoting collaboration between clients
and developers.

Figure 3

Reprocolla Process Flowchart and Website Interface

Process Flowchart

6

Figure 3

Reprocolla Process Flowchart and Website Interface

Process Flowchart

Phase 1 Phase 4

 229

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

The implementation of the proposed model using the developed
Reprocolla software consists of five distinct phases. In addition, a
detailed explanation of each phase is provided below.

Phase 1. Stakeholder Demographics. Stakeholders enter the
respective email as a unique code to access the application, name,
organisation name, and location (city), Perspectives (client or
developer), and years of experience.

Phase 2. BOCR Descriptions. The first screen, shown after logging
in, provides an explanation of BOCR criteria, which ensures that
stakeholders understand BOCR clearly.

Phase 3. The Weighting of Criteria with FAHP. Pairwise
comparisons were made for each BOCR criterion by selecting the

7

Phase 2 & Phase 3 Phase 5

230

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

respective importance level. Subsequently, the system automatically
calculates the weight for each criterion using FAHP. In the third phase,
phases 1, 2, 3, 4, and 5 use formulations 4, 5 to 8, 9 to 11, 12, and 5
to 13, respectively.

Phase 4. Calculation of Alternative with FTOPSIS. The next phase
is to assess the importance level of each alternative relative to BOCR
criteria. Furthermore, the system automatically generates alternative
rankings using FTOPSIS. Stakeholders are not required to input
alternatives for sorting, as the system administrator has already entered
them. In the fourth phase, Phases 1, 2, 3, 4, 5, and 6 use Equations 14
to 19, 20 to 22, 23, 24 to 27, 25 to 27, and 28, respectively.

Phase 5. Results of Requirements Prioritisation. The system
showed a ranked list of requirements on the screen, saved as a pdf,
and exported to Excel.

The developed semi-automated Reprocolla enables all stakeholders,
including clients and developers, to easily carry out the requirements
prioritisation process.

EXPERIMENTAL SETUP

The proposed prioritisation model aims to address essential issues
in ranking requirements at the start of software development,
focusing on accuracy, time consumption, and ease of use. Empirical
experiments, drawn from 189 data analyses, were selected to evaluate
the proposed model. This research used two datasets, including real
project applications developed by the Department of Information
System Solutions at Universitas Dinamika and the benchmark dataset
from previous investigations. The first dataset includes a three-project
application, namely RFID card application (ITCoPS Application),
Parking Information (PARIS Application), and Knowledge
Management Systems (KRESNA Application). The second dataset
comprised benchmark projects, such as (i) Replacement Access,
Library and ID Card (RALIC) thesis by Lim (2010), (ii) Online
Car Show Room (OCSR), (iii) Hospital Management (HMS), and
(iv) Restaurant Management Systems (RMS) (Babar, 2014). The
proposed model was designed for medium-sized software project
development, needing between 15 to 50 requirements (Hujainah et
al., 2018). Therefore, 20 out of 73 specific requirements were derived
from RALIC project.

 231

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Ground truth was unavailable for OCSR, HMS, and RMS projects.
The case study of bespoke development, which adhered to the
software criteria with a minimum of 15 requirements, was available
for clients, and comprehensive project documentation was used. The
specific number of requirements from each project is shown in Table 3.

Table 3

List of Number of Requirements

Project Number of Requirements

1 ITCoPS Application 20
2 PARIS Application 20
3 KRESNA Application 20
4 RALIC Application 20
5 OCSR Application 16
6 HMS Application 22
7 RMS Application 17

This experiment used a repeated measure design, incorporating
counterbalancing methods to minimise confounding variables.
Counterbalancing is a method used to control the effects of interfering
variables in a design when the same subject is exposed to multiple
conditions, treatments, or stimuli. The experiment included two
respondent groups, namely clients and developers, comprising various
software development roles such as product owner, system analyst,
programmer, and operator. There was a total of 87 respondents, with
55 clients and 32 developers. The following are the step-by-step
process of the experiment.

a. Respondents participated in the pre-test, which consisted of a
questionnaire survey. Each respondent filled out the demographic
questions, followed by inquiries related to requirements
prioritisation.

b. Based on the counterbalancing design scenario, 87 respondents
alternated between the existing and proposed models. Each
respondent sequence of case studies included both similarities and
differences.

c. Respondents participated in the post-test, which included the use
of a survey questionnaire. Each respondent was assigned a specific
requirements prioritisation model to use. After completing the

232

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

prioritisation task, questions related to requirements prioritisation
in the post-test survey form were answered.

After obtaining the experimental results, the model is validated using
statistical analysis. Further information regarding the model validation
will be provided in the next section.

RESULT ANALYSIS

This research evaluated the performance of Reprocolla by comparing
it with existing requirements prioritisation methods, namely FAHP
and FTOPSIS. Accuracy was measured by comparing these methods
with the ground truth data. Time consumption was determined by
measuring the processing time required for each method to complete
the requirements prioritisation process. Additionally, ease of use
was evaluated by comparing the opinions of respondents on certain
factors such as easy to understand, use, and learn with a Likert
scale for agreement measurement. Respondents provided feedback
through pre and post-test questionnaires, using a five-point Likert
scale the following values (1) strongly disagree/very dissatisfied, (2)
disagree/dissatisfied, (3) neutral/unsure, (4) agree/satisfied, and (5)
strongly agree/very satisfied. Experimental data were processed using
inferential and descriptive statistics methods.

Result of Accuracy

Accuracy was measured in two ways: firstly, it was calculated based
on the correlation of priority results among respondents, and secondly,
by satisfaction levels of respondents with the outcome obtained.

1) Based on Correlation

Figure 4 shows the accuracy results, calculated using the Pearson
Correlation Coefficient, which compares the priority results obtained
by each respondent to the ground truth. Reprocolla achieved the highest
correlation coefficient of 0.09, followed by FAHP and FTOPSIS
at 0.05 and 0.04, respectively. In this context, the measurement of
accuracy refers to the consistency of rankings. A high correlation
suggests agreement among stakeholders, while a lesser one depicts
discrepancies that must be addressed. Analysing the correlation
coefficient based on perspectives, developers and clients had 0.12,
and 0.0, respectively.

 233

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Figure 4

Comparison Accuracy Based on Correlation

To determine whether there is a significant difference in accuracy
between the perspectives of clients and developers, Normality in
variables was assessed using Kolmogorov-Smirnova and Shapiro-
Wilk tests. Table 4 shows the P-value using Kolmogorov-Smirnov
and Shapiro-Wilk tests = 0.2 and 0.406, respectively, both greater than
the value α = 0.05. This depicts a normal distribution at a significance
level of 5 percent, which led to the conduction of a parametric analysis,
namely the t-test.

Table 4

Tests of Normality for Accuracy

Tests of Normality
Kolmogorov-Smirnova Shapiro-Wilk
Statistic Df P-Value Statistic df P-Value

Accuracy .067 120 .200* .988 120 .406

The hypotheses to be tested in the t-test are as follows:
H0: The accuracy of results is equal for clients and developers.
H1: The accuracy of results differs between clients and developers.8

Figure 4

Comparison Accuracy Based on Correlation

(0.10)

0.01

0.09

0.21

0.07

0.08

 (0.15)

 (0.10)

 (0.05)

 -

 0.05

 0.10

 0.15

 0.20

 0.25

FAHP FTOPSIS ReprocollaNu
m

be
r o

f C
or

re
la

tio
n

Accuracy

Client Developer

234

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Ta
bl

e
5

T-
te

st
 fo

r A
cc

ur
ac

y

L
ev

en
e’

s T
es

t f
or

E

qu
al

ity
 o

f V
ar

ia
nc

es
t-

te
st

 fo
r

E
qu

al
ity

 o
f M

ea
ns

F
P

Va
lu

e
T

df
P

Va
lu

e
(2

-t
ai

le
d)

M
ea

n
D

iff
er

en
ce

St
d.

 E
rr

or

D
iff

er
en

ce

95
%

 C
on

fid
en

ce

In
te

rv
al

 o
f t

he

D
iff

er
en

ce

L
ow

er
U

pp
er

A
cc

ur
ac

y
Eq

ua
l v

ar
ia

nc
es

as

su
m

ed
.5

94
.4

43
-2

.4
28

11
8

.0
17

-.1
17

81
.0

48
51

-.2
13

88
-.0

21
74

Eq
ua

l v
ar

ia
nc

es

ar
e

no
t a

ss
um

ed
.

-2
.4

23
11

6.
07

9
.0

17
-.1

17
81

.0
48

61
-.2

14
09

-.0
21

53

 235

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Table 5 shows that the two-tailed P-value is 0.017, which is less than
the value α = 0.05. Therefore, H0 was rejected, indicating that the
accuracy of results differs between clients and developers. The results
of the descriptive analysis are stated as follows.

Table 6

Analysis Descriptive for Accuracy

Group Statistics
Perspective N Mean Std. Deviation Std. Error Mean

Accuracy Client 62 .0032 .25753 .03271
Developer 58 .1210 .27390 .03596

Table 6 shows that the mean correlation for clients’ perspective is
less (0.0032), while for developers, it is higher (0.1210). It depicts
a significant difference in terms of accuracy between the two
perspectives. However, in the t-test conducted for each method, only
FAHP led to the rejection of the null hypothesis (p-value FAHP=0.001,
FTOPSIS=0.517, Reprocolla=0.936), depicting that the accuracy of
the proposed model was consistent across both perspectives of clients
and developers.

2) Based on Respondent Satisfaction

In the Respondent Accuracy section, satisfaction levels were examined
after reviewing each method’s priority results, as shown in Figure 5.
The most satisfied model was Reprocolla, followed by FTOPSIS and
FAHP, with 12 (19%), 6 (10%) and 5 (8%) respondents. Regarding the
satisfied options, FTOPSIS was the most frequently selected option,
followed by FAHIP and Reprocolla with 43 (68%), 35 (56%) and
34 (54%) respondents, respectively. Therefore, Reprocolla attained
an overall satisfaction rate of 78 percent, followed by FTOPSIS and
FAHP at 77 percent and 71 percent, respectively.

236

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Figure 5

Comparison Accuracy Based on Respondent Satisfaction

The chi-square test was used to determine whether there was a
difference in satisfaction levels between clients and developers. It
was selected for the suitability of ordinal scale data in a 2-sample
independent or non-parametric test, which helped to determine
whether there was a significant difference. The hypotheses formulated
to evaluate the significance of the respondent-satisfied indicator are
stated as follows:

H0: The accuracy of results is equal for clients and developers
H1: The accuracy of results differs between clients and developers

Table 7

Chi-Square Tests for Respondent Accuracy

Value Df P-Value
Pearson Chi-Square 4.019a 4 .403
Likelihood Ratio 4.775 4 .311
Linear-by-Linear Association .013 1 .909
N of Valid Cases 189

9

Figure 5

Comparison Accuracy Based on Respondent Satisfaction

Figure 6

Comparison Time-Consumption

3
8

22

2

10

18

5
10

20

8
2

2

8

13

3

4

25

1

7

14

4

0

5

10

15

20

25

30

35

40

45

50
Ve

ry
 D

iss
at

isf
ie

d

Di
ss

at
isf

ie
d

Un
su

re

Sa
tis

fie
d

Ve
ry

 S
at

isf
ie

d

Un
su

re

Sa
tis

fie
d

Ve
ry

 S
at

isf
ie

d

Un
su

re

Sa
tis

fie
d

Ve
ry

 S
at

isf
ie

d
FAHP FTOPSIS Reprocolla

Nu
m

be
r o

f R
es

po
nd

en
ts

Respondent Accuracy

Client Developer

38 33
18

33
23

19

0

20

40

60

80

FAHP FTOPSIS Reprocolla

Ti
m

e
(m

in
ut

es
)

Average of Time (minutes)

Client Developer

 237

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Table 7 showed that the P-value for the Pearson Chi-Square statistical
test was 0.403, greater than the value α= 0.05, meaning H0 was
accepted. Therefore, in this case, it was concluded that the accuracy
of results was equal for both clients and developers.

Result of Time-Consumption

Figure 6 shows the time required to use the model, with Reprocolla
depicting the shortest duration at 18 minutes, followed by FTOPSIS
and FAHP at 28 and 35 minutes, respectively. The graphic box plots in
Figure 7 show that FTOPSIS has a shorter distribution of values than
Reprocolla and FAHP. However, the median value of the Reprocolla
dataset is the lowest (14 minutes) compared to FTOPSIS (22 minutes)
and FAHP (35 minutes), depicting that it takes less time to complete
on average.

Figure 6

Comparison Time-Consumption

9

Figure 5

Comparison Accuracy Based on Respondent Satisfaction

Figure 6

Comparison Time-Consumption

3
8

22

2

10

18

5
10

20

8
2

2

8

13

3

4

25

1

7

14

4

0

5

10

15

20

25

30

35

40

45

50

Ve
ry

 D
iss

at
isf

ie
d

Di
ss

at
isf

ie
d

Un
su

re

Sa
tis

fie
d

Ve
ry

 S
at

isf
ie

d

Un
su

re

Sa
tis

fie
d

Ve
ry

 S
at

isf
ie

d

Un
su

re

Sa
tis

fie
d

Ve
ry

 S
at

isf
ie

d

FAHP FTOPSIS Reprocolla

Nu
m

be
r o

f R
es

po
nd

en
ts

Respondent Accuracy

Client Developer

38 33
18

33
23

19

0

20

40

60

80

FAHP FTOPSIS Reprocolla

Ti
m

e
(m

in
ut

es
)

Average of Time (minutes)

Client Developer

238

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Figure 7

Box Plots of Time Consumption

To determine whether there is a significant difference in the time
required to complete priority tasks between client and developer
perspectives, normality in variables was examined using both
Kolmogorov-Smirnova and Shapiro-Wilk tests. The resulting
P-value from either test, as shown in Table 8, is 0.0001, depicting
a value smaller than the α = 0.05. At a significance level of 5%, it
was concluded that the data did not follow a normal distribution.
Therefore, a non-parametric difference analysis, namely the Mann-
Whitney U Test, was conducted.

Table 8

Tests of Normality for Time-Consumption

Tests of Normality
Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.
Time .153 189 .000 .789 189 .000

The hypotheses to be evaluated in the Mann-Whitney U Test are:

H0: There is no significant difference between clients and developers
with regard to the average actual time consumption to complete
the prioritisation task.

10

Figure 7

Box Plots of Time Consumption

Figure 8

Comparison Ease of Use

1
10 12 12 9 7

15

2 2 3
11

20

22

3
6

17

1
15

13

1 1 3

6

12

3
0
5

10
15
20
25
30
35

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

FAHP FTOPSIS Reprocolla

Nm
be

r o
f R

es
po

nd
en

ts

Easy to Understand

Client Developer

 239

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

H1: There is a significant difference between clients and developers
with regard to the average actual time consumption to complete
the prioritisation task.

Table 9

Mann-Whitney U Tests for Time-Consumption

Independent-Samples Mann-Whitney U Test Summary
Total N 189
Mann-Whitney U 4266.500
Wilcoxon W 7836.500
Test Statistic 4266.500
Standard Error 373.552
Standardised Test Statistic -.384
P-Value .701

Table 9 showed that the two-tailed P-value was 0.701, greater than the
value α = 0.05, meaning H0 was accepted. Therefore, it was concluded
that there was no significant difference between clients and developers
in the average actual time consumption to complete the prioritisation
task.

Result of Ease of Use

Figure 8 shows three aspects associated with the ease of use for each
model. Firstly, regarding ease of understanding, Reprocolla model
had the highest number of respondents who selected strongly agree
and agree (37, 59%), followed by FTOPSIS (31, 49%) and FAHP (29,
46%). Secondly, regarding the ease of use, Reprocolla had the highest
number of respondents who strongly agreed and agreed (37, 59%),
followed closely by FTOPSIS and FAHP, with 35 (56%) and 55%.
Thirdly, concerning easy-to-learn, Reprocolla had the highest number
of respondents (33, 52%) who strongly agreed and agreed, followed
by FTOPSIS (31, 49%) and FAHP (28, 45%). Generally, Reprocolla
was considered the easiest to use, followed by FTOPSIS and FAHP.

240

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Figure 8

Comparison Ease of Use

10

Figure 7

Box Plots of Time Consumption

Figure 8

Comparison Ease of Use

1
10 12 12 9 7

15

2 2 3
11

20

22

3
6

17

1
15

13

1 1 3

6

12

3
0
5

10
15
20
25
30
35

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

FAHP FTOPSIS Reprocolla

Nm
be

r o
f R

es
po

nd
en

ts

Easy to Understand

Client Developer

11

6
13 12

4 8 8 13
4 5 10

21

21
1

7
19

1
11

17

1
1

1

9

10

4
0
5

10
15
20
25
30
35

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

FAHP FTOPSIS Reprocolla

Nu
m

be
r o

f R
es

po
nd

en
ts

Easy to Use

Client Developer

7
14 12

2
9 9

13

2
8 10

17

3

4

10 13

1

1

15
14

1

1

10

9

4

0

5

10

15

20

25

30

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

FAHP FTOPSIS Reprocolla

Nu
m

be
r o

f R
es

po
nd

en
ts

Ease to Learning

Client Developer

11

6
13 12

4 8 8 13
4 5 10

21

21
1

7
19

1
11

17

1
1

1

9

10

4
0
5

10
15
20
25
30
35

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

FAHP FTOPSIS Reprocolla

Nu
m

be
r o

f R
es

po
nd

en
ts

Easy to Use

Client Developer

7
14 12

2
9 9

13

2
8 10

17

3

4

10 13

1

1

15
14

1

1

10

9

4

0

5

10

15

20

25

30

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

St
ro

ng
ly

 D
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 A
gr

ee

FAHP FTOPSIS Reprocolla

Nu
m

be
r o

f R
es

po
nd

en
ts

Ease to Learning

Client Developer

 241

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

The overall ease of use results are then calculated using a weighting
value of 1 to 5 (ranging from strongly disagree to strongly agree). As
shown in Table 10, Reprocolla obtained the highest average of 3.50,
followed by FTOPSIS and FAHP at 3.43 and 3.32, respectively.

Table 10

Average Score for Ease of Use

Method Easy to Understand Easy to Use Ease to Learning Average
FAHP 3.16 3.48 3.32 3.32

FTOPSIS 3.38 3.49 3.41 3.43
Reprocolla 3.48 3.56 3.46 3.50

The chi-square test was used to determine whether there was a
difference between clients and developers on ease of use. This
evaluation, selected for suitability with ordinal scale data in a 2-sample
independent test, is non-parametric in nature. The formulated
hypotheses to evaluate the significance of the ease of use indicator are
stated as follows:

1) Easy to Understand

H0easy-to-understand: There is no significant difference between
clients and developers in terms of easy to
understand.

H1easy-to-understand: There is a significant difference between
clients and developers in terms of easy to
understand.

Table 11

Chi-Square Tests for Easy-to-Understand

Value Df P-Value
Pearson Chi-Square .338a 4 .987
Likelihood Ratio .339 4 .987
Linear-by-Linear Association .000 1 .986
N of Valid Cases 189

Table 11 showed that the P-value for the Pearson Chi-Square statistical
test was 0.987, greater than the value α = 0.05, and H0 was accepted.

242

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Therefore, no significant difference existed between clients and
developers in terms of ease of understanding.

2) Easy to Use

H0easy-to-use: There is no significant difference between clients and
developers regarding ease of use.

H1easy-to-use: There is a significant difference between clients and
developers regarding ease of use.

Table 12

Chi-Square Tests for Easy-to-Use

Value df P-Value
Pearson Chi-Square 5.001a 4 .287
Likelihood Ratio 5.735 4 .220
Linear-by-Linear Association .447 1 .504
N of Valid Cases 189

Table 12 showed that the P-value for the Pearson Chi-Square
statistical test was 0.287, greater than the value of α = 0.05, and H0
was accepted. Therefore, no significant difference existed between
clients and developers in terms of ease of use.

3) Easy to Learn

H0easy-to-learn: There is no significant difference between clients
and developers regarding easy-to-learn.

H1easy-to-learn: There is a significant difference between clients and
developers regarding easy-to-learn.

Table 13

Chi-Square Tests for Easy-to-Learn

Value df P-Value
Pearson Chi-Square 4.775a 4 .311
Likelihood Ratio 5.153 4 .272
Linear-by-Linear Association 1.180 1 .277
N of Valid Cases 189

 243

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Table 13 showed that the P-value for the Pearson Chi-Square
statistical test was 0.311, greater than the value α = 0.05, and H0 was
accepted. Therefore, no significant difference existed between clients
and developers in terms of ease of learning.

This research identified several challenges associated with validity and
limitations, and among the most relevant threats to internal validity are
the number of respondents, low concentration and potential selection
bias. However, with 89 respondents and 189 generated experimental
data, the sample size was sufficient for this experiment. The use
of a prioritisation tool reduced time consumption, with an average
completion time of 27 minutes per method, ensuring respondents
were not exhausted. Moreover, the counterbalancing design, which
determined the order of treatment, was implemented to minimise the
risk of decision-making bias due to previous evaluations.

A pilot experiment was conducted to reduce potential threats to
construct validity and to refine measurement instruments. Furthermore,
clear descriptions were provided in the tool to guide users through
each procedure. The experiments were monitored to ensure accurate
completion of the questionnaire and user input. Conclusion Validity
evaluates the accuracy and support of inferences derived from
gathered data. This research used inferential and descriptive statistics
to reduce the threat to conclusion validity.

External validity refers to generalising research results to the broader
population and different settings. In this research, a potential threat
to external validity arises from the type of respondents selected
and the dataset used for testing. The knowledge and experience of
the respondents could influence the results when determining the
importance level of alternatives based on prioritisation criteria.
Respondents included software developers, system information
students, and product owners with relevant expertise. To ensure
replicability across different contexts, this research used seven datasets
from three real project applications and four benchmark information.

CONCLUSION AND FUTURE WORK

In conclusion, the proposed model addressed scalability issues,
reduced the need for pairwise comparisons, and minimised stakeholder

244

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

bias. The phases in implementing the model included collecting
correlation attributes, classifying criteria in BOCR, weighing criteria
using FAHP, and evaluating through FTOPSIS. After synthesising
literature reviews and survey findings, it was evident that both clients
and developers frequently prioritised three criteria, namely business
value, stakeholder satisfaction, and schedule. These criteria were
identified as having significant potentials or crucial alternatives for
inclusion in the requirements prioritisation process. The classification
of all criteria under BOCR framework effectively conformed with
cost-value method, and beneficial criteria such as Benefits and
Opportunities including non-beneficial namely Costs and Risks.

The accuracy indicator of ground truth was assessed using Pearson
Correlation and t-test, which showed differences in accuracy
results between clients and developers. Only FAHP had different
result accuracy based on the perspectives of clients and developers,
while FTOPSIS and Reprocolla obtained equal results. In terms of
the average accuracy based on ground truth, Reprocolla obtained
the highest value, followed by FAHP and FTOPSIS. The accuracy
level of the questionnaire using Chi-Square showed no disparity
between clients and developers. However, Reprocolla had the highest
percentage for the average level of respondent satisfaction with the
results obtained. The Mann-Whitney U Test was used for the time-
consumption indicator, showing no significant difference between
clients and developers. The average results (in minutes) of Reprocolla
were \lower than FAHP and FTOPSIS. For the last indicator, there
was no significant difference between clients and developers in
Chi-Square ease of use. However, Reprocolla achieved the highest
percentage of ease level.

The proposed model provided valuable insights by considering the
significance of the criteria and enhancing stakeholders’ collaboration
for prioritisation in the solution, which was essential for making
strategic decisions about prioritising requirements. Diversifying
stakeholder representation using structured decision-making methods
and implementing transparent and accountable prioritisation processes
was accommodated in the proposed model.

Reducing user intervention in requirements prioritisation was a
challenging but promising area for future work, as it aimed to simplify
and automate the process while preserving or even enhancing the

 245

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

quality of prioritisation outcomes. Further work should include
improving a reference model, refining it to capture stakeholders needs,
objectives, and constraints, as well as enhancing the effectiveness in
guiding the prioritisation process. In addition, issues such as changes
and the increasing number of requirements continued to be faced by
software developers and remained open for future research.

ACKNOWLEDGEMENT

The authors are grateful to The Center for Research and Community
Service of Universitas Dinamika for supporting this research.

REFERENCES

Abu-Shareha, A. A. (2022). TOPSIS-based regression algorithms
evaluation. Journal of Information and Communication
Technology, 21(4), 513–547. https://doi.org/10.32890/
jict2022.21.4.3

Achimugu, Philip, Selamat, A., Ibrahim, R., & Mahrin, M. N. (2014).
A systematic literature review of software requirements
prioritisation research. Information and Software Technology,
56(6), 568–585. https://doi.org/10.1016/j.infsof.2014.02.001

Achimugu, Philips, Selamat, A., & Ibrahim, R. (2016). ReproTizer:
A fully implemented software requirements prioritisation tool.
Transactions on Computational Collective Intelligence XXII,
80–105. https://doi.org/10.1007/978-3-662-49619-0_5

Adepoju, S. A., Oyefolahan, I. O., Abdullahi, M. B., & Mohammed, A.
A. (2020). Multi-criteria decision making based approaches in
website quality and usability evaluation: A systematic review.
Journal of Information and Communication Technology, 19(3),
399–436. https://doi.org/10.32890/jict2020.19.3.5

AL-Ta’ani, R. H., & Razali, R. (2013). Prioritising requirements in agile
development: A conceptual framework. Procedia Technology,
11, 733–739. https://doi.org/10.1016/j.protcy.2013.12.252

Alawneh, L. (2017). Requirements prioritisation using hierarchical
dependencies. In Information Technology - New Generations
(pp. 459–464). https://doi.org/10.1007/978-3-319-54978-1_59

Albuga, S., & Odeh, Y. (2018). Towards prioritising software business
requirements in startups. 2018 8th International Conference on
Computer Science and Information Technology (CSIT), 257–
265. https://doi.org/10.1109/csit.2018.8486216

246

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Alkandari, M., & Al-Shammeri, A. (2017). Enhancing the process of
requirements prioritisation in agile software development - A
proposed model. Journal of Software, 12(6), 439–453. https://
doi.org/10.17706/jsw.12.6.439-453

Amelia, T., & Mohamed, R. (2022). A review: Requirements
prioritisation criteria within collaboration perspective.
Pertanika Journal of Science and Technology, 31(1), 161–185.
https://doi.org/10.47836/pjst.31.1.11

Amelia, T., & Mohamed, R. (2023). A decision tree approach based
on BOCR for minimising criteria in requirements prioritisation.
Indonesian Journal of Electrical Engineering and Computer
Science, 32(2), 1094–1104. https://doi.org/10.11591/ijeecs.
v32.i2.pp1094-1104

Amelia, T., & Mohamed, R. B. (2018). Review on cost-value
approach for requirements prioritisation techniques. 2018
5th International Conference on Information Technology,
Computer, and Electrical Engineering (ICITACEE), 310–314.
https://doi.org/10.1109/icitacee.2018.8576908

Arshad, H., Shaheen, S., Khan, J. A., Anwar, M. S., Aurangzeb,
K., & Alhussein, M. (2023). A novel hybrid requirement’s
prioritisation approach based on critical software project
factors. Cognition, Technology and Work, 25(2–3), 305–324.
https://doi.org/10.1007/s10111-023-00729-3

Aurum, A., & Wohlin, C. (Eds). (2005). Engineering and managing
software requirements. Springer-Verlag. https://doi.
org/10.1007/3-540-28244-0

Babar, M. I. (2014). Framework for stakeholder quantification
and requirements prioritisation for value-based software
development. Universiti Teknologi Malaysia.

Babar, M. I., Ghazali, M., Jawawi, D. N. A., Shamsuddin, S. M., &
Ibrahim, N. (2015). PHandler: An expert system for a scalable
software requirements prioritisation process. Knowledge-
Based Systems, 84, 179–202. https://doi.org/10.1016/j.
knosys.2015.04.010

Berander, P., Khan, K. A., & Lehtola, L. (2006). Towards a research
framework on requirements prioritisation. Sixth Conference
on Software Engineering Research and Practice in Sweden
(SERPS’06).

Borhan, N. H., Zulzalil, H., Hassan, S., & Ali, N. M. (2019).
Requirements prioritisation techniques focusing on agile
software development: A systematic literature review.

 247

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

International Journal of Scientific and Technology Research,
8(11), 2118–2125.

Bukhsh, F. A., Bukhsh, Z. A., & Daneva, M. (2020). A systematic
literature review on requirement prioritisation techniques and
their empirical evaluation. Computer Standards and Interfaces,
69, 103389. https://doi.org/10.1016/j.csi.2019.103389

Chang, D.-Y. (1996). Applications of the extent analysis method on
fuzzy AHP. European Journal of Operational Research, 95(3),
649–655. https://doi.org/10.1016/0377-2217(95)00300-2

Devulapalli, S., Rao, O., & Khare, A. (2016). Requirements prioritisation:
Parameters of relevance -- An empirical study across 3 datasets.
Proceedings of the Second International Conference on
Information and Communication Technology for Competitive
Strategies. https://doi.org/10.1145/2905055.2905340

Digital.ai. (2022). State of agile report. In Annual Report for the
State of Agile (Vol. 16). https://info.digital.ai/rs/981-LQX-968/
images/AR-SA-2022-16th-Annual-State-Of-Agile-Report.pdf

El Bakly, A. H., & Darwish, N. R. (2017). A fuzzy approach for
Wieger’s method to rank priorities in requirement engineering.
CIIT, November.

Firesmith, D. (2004). Prioritising requirements. Journal of
Object Technology, 3(8), 35–47. https://doi.org/10.5381/
jot.2004.3.8.c4

Frota Dos Santos, J. R., Albuquerque, A. B., & Pinheiro, P. R. (2016).
Requirements prioritisation in market-driven software: A survey
based on large numbers of stakeholders and requirements. 2016
10th International Conference on the Quality of Information
and Communications Technology (QUATIC). https://doi.
org/10.1109/QUATIC.2016.020

Gambo, I. P., Ikono, R. N., Achimugu, P. O., & Iroju, O. G. (2018). A
ranking model for software requirements prioritisation during
requirements engineering: A case study. International Journal
of Computer Science and Information Security (IJCSIS), 16(4),
255–268.

Gupta, A., & Gupta, C. (2018). A collaborative approach for
improvisation and refinement of requirement prioritisation
process. Journal of Information Technology Research, 11(2),
128–149. https://doi.org/10.4018/JITR.2018040108

Gupta, A., & Gupta, C. (2022a). A novel collaborative requirement
prioritisation approach to handle priority vagueness and inter-
relationships. Journal of King Saud University - Computer

248

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

and Information Sciences, 34(5), 2288–2297. https://doi.
org/10.1016/j.jksuci.2019.12.002

Gupta, A., & Gupta, C. (2022b). CDBR: A semi-automated
collaborative execute-before-after dependency-based
requirement prioritisation approach. Journal of King Saud
University - Computer and Information Sciences, 34(2), 421–
432. https://doi.org/10.1016/j.jksuci.2018.10.004

Heikkilä, V. T., Paasivaara, M., Rautiainen, K., Lassenius, C., Toivola,
T., & Järvinen, J. (2015). Operational release planning in
large-scale scrum with multiple stakeholders - A longitudinal
case study at F-secure corporation. Information and
Software Technology, 57, 116–140. https://doi.org/10.1016/j.
infsof.2014.09.005

Hujainah, F., Bakar, R. A., Alhroob, E., Al-haimi, B., & Nasser,
A. B. (2020). Interrelated elements in formulating an
efficient requirements prioritisation technique: Review. 2020
10th IEEE International Conference on Control System,
Computing and Engineering, 97–101. https://doi.org/10.1109/
ICCSCE50387.2020.9204955

Hujainah, F., Bakar, R. B. A., Abdulgabber, M. A., & Zamli, K. Z.
(2018). Software requirements prioritisation: A systematic
literature review on significance, stakeholders, techniques
and challenges. IEEE Access, 6, 71497–71523. https://doi.
org/10.1109/ACCESS.2018.2881755

Hujainah, F., Bakar, R. B. A., Nasser, A. B., Al-haimi, B., & Zamli,
K. Z. (2021). SRPTackle: A semi-automated requirements
prioritisation technique for scalable requirements of software
system projects. Information and Software Technology, 131,
106501. https://doi.org/10.1016/j.infsof.2020.106501

Hwang, C.-L., & Yoon, K. (1981). Multiple attribute decision making:
Methods and applications a state-of-the-art survey. Springer-
Verlag Berlin Heidelberg.

Ibriwesh, I., Ho, S.-B., & Chai, I. (2018). Overcoming scalability
issues in Analytic Hierarchy Process with ReDCCahp: An
empirical investigation. Arabian Journal for Science and
Engineering, 43(12), 7995–8011. https://doi.org/10.1007/
s13369-018-3283-2

Ibriwesh, I., Ho, S.-B., Chai, I., & Tan, C.-H. (2018). Prioritising solution-
oriented software requirements using the multiple perspective
prioritisation technique algorithm: An empirical investigation.
Concurrent Engineering: Research and Applications, 27(1),
68–79. https://doi.org/10.1177/1063293X18808559

 249

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritising
requirements. IEEE Software, 14(5), 67–74. https://doi.
org/10.1109/52.605933

Khalid, Z., & Qamar, U. (2019). Weight and cluster based test case
prioritisation technique. 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication
Conference (IEMCON), 1013–1022. https://doi.org/10.1109/
IEMCON.2019.8936202

Khan, S. U. R., Lee, S. P., Dabbagh, M., Tahir, M., Khan, M., &
Arif, M. (2016). RePizer: A framework for prioritisation of
software requirements. Frontiers of Information Technology
& Electronic Engineering, 17(8), 750–765. https://doi.
org/10.1631/FITEE.1500162

Kore, N. B., Ravi, K., & Patil, S. B. (2017). A simplified description
of FUZZY TOPSIS method for multi criteria decision making.
International Research Journal of Engineering and Technology
(IRJET), 4(5), 2047–2050.

Lehtola, L., Kauppinen, M., & Kujala, S. (2004). Requirements
prioritisation challenges in practice. In Lecture Notes in
Computer Science (pp. 497–508). https://doi.org/10.1007/978-
3-540-24659-6_36

Lim, S. L. (2010). Social networks and collaborative filtering for
large-scale requirements elicitation [Doctoral dissertation,
University of New South Wales]. http://discovery.ucl.
ac.uk/1329883/

Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP
methods for decision-making with subjective judgements.
Expert Systems with Applications, 161, 113738. https://doi.
org/10.1016/j.eswa.2020.113738

Mangla, S. K., Govindan, K., & Luthra, S. (2017). Prioritising the
barriers to achieve sustainable consumption and production
trends in supply chains using fuzzy Analytical Hierarchy
Process. Journal of Cleaner Production, 151, 509–525. https://
doi.org/10.1016/j.jclepro.2017.02.099

Mougouei, D., & Powers, D. M. W. (2017). Modeling and selection
of interdependent software requirements using fuzzy graphs.
International Journal of Fuzzy Systems, 19(6), 1812–1828.
https://doi.org/10.1007/s40815-017-0364-4

Nazim, M., Wali Mohammad, C., & Sadiq, M. (2022). A comparison
between fuzzy AHP and fuzzy TOPSIS methods to
software requirements selection. Alexandria Engineering
Journal, 61(12), 10851–10870. https://doi.org/10.1016/j.
aej.2022.04.005

250

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Ng, S. Y., & Mohamed, R. (2022). Feasibility study on using MCDM
for E-Voting. International Journal of Software Engineering
and Computer Systems, 8(2), 1–9. https://doi.org/10.15282/
ijsecs.8.2.2022.1.0098

Nurdiani, I., Börstler, J., & Fricker, S. A. (2016). The impacts of
agile and lean practices on project constraints: A tertiary study.
Journal of Systems and Software, 119, 162–183. https://doi.
org/10.1016/j.jss.2016.06.043

Ouma, Y. O., Opudo, J., & Nyambenya, S. (2015). Comparison of
fuzzy AHP and fuzzy TOPSIS for road pavement maintenance
prioritisation: Methodological exposition and case study.
Advances in Civil Engineering, 2015, 1–17. https://doi.
org/10.1155/2015/140189

Palczewski, K., & Sałabun, W. (2019). The fuzzy TOPSIS applications
in the last decade. Procedia Computer Science, 159, 2294–
2303. https://doi.org/10.1016/j.procs.2019.09.404

Pamučar, D., Stević, Ž., & Sremac, S. (2018). A new model for
determining weight coefficients of criteria in MCDM models:
Full consistency method (FUCOM). Symmetry, 10(9), 393.
https://doi.org/10.3390/sym10090393

Pohl, K., & Rupp, C. (2015). Requirements engineering fundamentals:
A study guide for the certified professional for requirements
engineering exam foundation level / IREB compliant (2nd ed.).
Santa Barbara, CA: Rocky Nook, Inc.

Pourjavad, E., & Mayorga, R. V. (2016). A hybrid approach integrating
AHP and TOPSIS for sustainable end-of-life vehicle strategy
evaluation under fuzzy environment. WSEAS Transactions on
Circuits and Systems, 15, 216–223.

Prakash, C., & Barua, M. K. (2016). A multi-criteria decision-
making approach for prioritising reverse logistics adoption
barriers under fuzzy environment: Case of Indian electronics
industry. Global Business Review, 17(5), 1107–1124. https://
doi.org/10.1177/0972150916656667

Rasheed, A., Zafar, B., Shehryar, T., Aslam, N. A., Sajid, M.,
Ali, N., Dar, S. H., & Khalid, S. (2021). Requirement
engineering challenges in agile software development.
Mathematical Problems in Engineering, 2021, 1–18. https://
doi.org/10.1155/2021/6696695

Rida, A., Nazir, S., Tabassum, A., Sultan, Z., & Abbas, R. (2016).
Role of requirements elicitation & prioritisation to optimise
quality in scrum agile development. International Journal of
Advanced Computer Science and Applications, 7(12), 300–
306. https://doi.org/10.14569/IJACSA.2016.071239

 251

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Ruby, & Balkishan. (2015). Role of fuzzy logic in requirement
prioritisation. International Journal of Innovative Research in
Science, Engineering and Technology, 4(6), 4290–4297.

Saaty, T. L. (2005). The analytic hierarchy and analytic network
processes for the measurement of intagible criteria and for
decision-making. In Multiple Criteria Decision Analysis: State
of the Art Surveys. International Series in Operations Research
& Management Science (pp. 345–405). Springer, New York,
NY. https://doi.org/10.1007/0-387-23081-5_9

Santos, R., Albuquerque, A., & Pinheiro, P. R. (2016). Towards the
applied hybrid model in requirements prioritisation. Procedia
Computer Science, 91, 909–918. https://doi.org/10.1016/j.
procs.2016.07.109

Schön, E. M., Escalona, M., & Thomaschewski, J. (2015). Agile
values and their implementation in practice. International
Journal of Interactive Multimedia and Artificial Intelligence,
3(5), 61. https://doi.org/10.9781/ijimai.2015.358

Sheemar, H., & Kour, G. (2017). Enhancing user-stories
prioritisation process in agile environment. 2017 International
Conference on Innovations in Control, Communication
and Information Systems (ICICCI). https://doi.org/10.1109/
ICICCIS.2017.8660760

Sher, F., Jawawi, D. N. A., & Mohammad, R. (2019). Requirements
prioritisation aspects quantification for value-based software
developments. Journal of Theoretical and Applied Information
Technology, 97(14), 3969–3979.

Shukla, V., & Auriol, G. (2013). Methodology for determining
stakeholders’ criteria weights in systems engineering.
Proceedings of the Posters Workshop at CSD&M, 1–12.

Sie, A., & Alami, D. (2016). Cost-value requirements prioritisation in
requirements engineering. IEEE Software, 1–12.

Sommerville, I. (2016). Software engineering (10th ed.). Pearson
Education Limited.

Srisawat, C., & Payakpate, J. (2016). Comparison of MCDM methods
for intercrop selection in rubber plantations. Journal of
Information and Communication Technology, 15(1), 165–182.
https://doi.org/10.32890/jict2016.15.1.8

Sufian, M., Khan, Z., Rehman, S., & Haider Butt, W. (2018).
A systematic literature review: Software requirements
prioritisation techniques. 2018 International Conference on
Frontiers of Information Technology (FIT), 35–40. https://doi.
org/10.1109/FIT.2018.00014

252

Journal of ICT, 23, No. 2 (April) 2024, pp: 211-252

Tan, R. R., Aviso, K. B., Huelgas, A. P., & Promentilla, M. A. B.
(2014). Fuzzy AHP approach to selection problems in process
engineering involving quantitative and qualitative aspects.
Process Safety and Environmental Protection, 92(5), 467–475.
https://doi.org/10.1016/j.psep.2013.11.005

Thakurta, R. (2016). Understanding requirement prioritisation artifacts:
A systematic mapping study. Requirements Engineering, 22(4),
491–526. https://doi.org/10.1007/s00766-016-0253-7

Triantaphyllou, E., Shu, B., Sanchez, S. N., & Ray, T. (1998). Multi-
criteria decision making: An operations research approach.
Encyclopedia of Electrical and Electronics Engineering, 15,
175–186.

Trimble, J., & Webster, C. (2013). From traditional, to lean, to
agile development: Finding the optimal software engineering
cycle. 2013 46th Hawaii International Conference on System
Sciences, 4826–4833. https://doi.org/10.1109/HICSS.2013.237

Viswanathan, A., Nair, S. R., & Krishnan, S. M. (2016). Solution
model for requirement prioritisation. International Journal of
Control Theory and Applications, 9(15), 7489–7496.

Wiegers, K. E. (1999). First things first: Prioritising requirements.
Software Development, 7(9), 48–53.

Wiegers, K. E. (2009). Software requirements (2nd ed.). Microsoft
Press.

