

 UNIVERSITI MALAYSIA PAHANG

 BORANG PENGESAHAN STATUS TESIS

 JUDUL:

SESI PENGAJIAN:________________

Saya __

(HURUF BESAR)

 mengaku membenarkan tesis (Sarjana Muda/Sarjana /Doktor Falsafah)* ini disimpan di

 Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi

 pengajian tinggi.

4. **Sila tandakan ()

 (Mengandungi maklumat yang berdarjah keselamatan

 SULIT atau kepentingan Malaysia seperti yang termaktub

 di dalam AKTA RAHSIA RASMI 1972)

 TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan

 oleh organisasi/badan di mana penyelidikan dijalankan)

 TIDAK TERHAD

 Disahkan oleh:

 ___________________________ ___________________________

 (TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)

Alamat Tetap:

1764 BAGAN JERMAL, MOHD ASHRAF BIN AHMAD

12300 BUTTERWORTH, (Nama Penyelia)

PULAU PINANG

Tarikh: _____________ Tarikh: : ______________

CATATAN: * Potong yang tidak berkenaan.

 ** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak

 berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu

 dikelaskan sebagai atau TERHAD.

 Tesis dimaksudkan sebagai tesis bagi Ijazah doktor Falsafah dan Sarjana secara

Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan

penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

2007/2008

FAIZ BIN MOHD ZABRI (860209-43-5145)

COMPUTER BASED INSTRUMENTATION SYSTEM FOR

TEMPERATURE MEASUREMENT USING RTD IN MATLAB

APPLICATION

i

COMPUTER BASED INSTRUMENTATION SYSTEM FOR TEMPERATURE

MEASUREMENT USING RTD IN MATLAB APPLICATION

FAIZ BIN MOHD ZABRI

This thesis is submitted as partial fulfillment of the requirements for the award of the

Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2008

ii

DECLARATION

“All the trademark and copyrights use herein are property of their respective owner.

References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature : ______________________

Author : FAIZ BIN MOHD ZABRI

Date : ______________________

iii

DEDICATION

Specially dedicate to

My beloved family and those people who have guided and inspired me

throughout my journey of education.

iv

ACKNOWLEDGEMENT

 In the name of Allah S.W.T, the most Gracious, the ever Merciful, Praise is to

Allah, Lord of the universe and Peace and Prayers be upon His final Prophet and

Messenger Muhammad S.A.W.

First, I would like to express my acknowledgment and gratitude to my

supervisor, Miss Najidah Binti Hambali and also my co-supervisor, Mr Mohd Ashraf

Bin Ahmad for encouragement, advice, information, motivation, guidance and co-

operation that been given throughout the progress and to complete this project.

My sincere appreciation also extends to all my colleagues and others who have

provided assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space.

Finally, special thanks extended to my beloved family who had given me moral

support and prayed for my success.

Thank you,

Faiz Bin Mohd Zabri

v

ABSTRACT

This project present the computer based instrumentation system designed for

temperature measurement using Resistance Temperature Detector, RTD. This system

operated by using Matlab application. This project were consists of 3 parts that are for

instrument part, the hardware and the software. For instrument part, the Resistance

Temperature Detector, RTD is called temperature sensitive resistor. It is positive

temperature coefficient device which mean that the resistance increase with temperature.

The Digital Thermometer 7563 was used for read the input value of temperature and

also used as temperature reference. The function of Yokogawa Temperature Transmitter

PT 100 is to change the value of temperature to current and transmitted to ammeter. The

hardware used to interface the temperature instrumentation with the software (Matlab).

The Advantech PCI-1710HG was used as the hardware to interface from 2793 Decade

Resistance Box to the Matlab application for analysis the data and find the result. The

system will be operated by using GUI Matlab. Graphical User Interface, GUI is the type

of user interface which allows people to interact with electronic devices like computers.

This system is compatible software and can work with Advantech PCI-1710HG. The

user can use this system in two ways that in automatic function or in manual function.

This system was developed to find actual UUT output, output error, average, standard

deviation and uncertainty. It also can plot graph and save the picture.

vi

ABSTRAK

Projek ini memperkenalkan sistem peralatan berasaskan komputer direka untuk

mengukur suhu dengan menggunakan RTD. Sistem ini beroperasi dengan menggunakan

aplikasi Matlab. Projek ini terdiri daripada 3 bahagian iaitu bahagian peralatan, bahagian

perkakas dan bahagian perisian. Untuk bahagian peralatan, “Resistance Temperature

Detector”, RTD dikenali sebagai perintang peka suhu. Ia adalah alat pekali suhu yg jelas

di mana rintangan yang meningkat bersama suhu. Alat “Digital Thermometer 7563”

digunakan untuk membaca nilai data kemasukan suhu dan juga digunakan sebagai suhu

rujukan. Kegunaan “Yokogawa Temperature Transmitter PT 100” adalah untuk

menukar nilai suhu kepada nilai arus dan dipancarkan ke meter arus. Perkakas

digunakan untuk mengantaramuka di antara peralatan suhu dengan perisian Matlab.

Advantech PCI-1710HG digunakan sebagai perkakas mengantaramukakan daripada

“2793 Decade Resistance Box” ke aplikasi Matlab untuk menganalisis data dan

mendapatkan keputusan. Sistem ini boleh beroperasi dengan menggunakan GUI Matlab.

Grafikal Pengantaramuka Pengguna, GUI adalah sejenis pengantaramuka pengguna di

mana membenarkan manusia berinteraksi dengan peralatan elektronik seperti Komputer.

Sistem ini merupakan perisian yang bersesuaian dan boleh bekerja dengan Advantech

PCI-1710HG. Pengguna boleh menggunakan sistem ini dalam dua cara iaitu dengan

fungsi automatic atau fungsi manual. Sistem ini direka untuk mencari keluaran “actual

UUT”, keluaran ralat, purata, sisihan piawai dan ketidakpastian. Ia juga boleh memplot

graf dan menyimpan gambar graf.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

Declaration ii

Dedication iii

Acknowledgement iv

Abstract v

Abstrak vi

Table of contents vii

List of tables x

List of figures xi

List of abbreviations xiii

List of appendices xiv

1 INTRODUCTION 1

1.1 Overview 1

1.2 Problem statement 2

1.2.1 Current situation 2

1.2.2 Problem solution 2

1.3 Objective 3

1.4 Scope 4

viii

2 LITERATURE REVIEW 5

2.1 Resistance Temperature Detector, RTD 5

2.2 Continuous Resistance Temperature Detector 8

Calibration Using Johnson Noise Thermometry.

3 METHODOLOGY 9

3.1 Instrument part 9

3.1.1 ISOTECH Jupiter 650B 10

3.1.2 Digital Thermometer 7563 11

3.1.3 Yokogawa Temperature 11

Transmitter, PT100

3.1.4 HART 375 Field Communicator 12

3.1.5 Resistance Temperature 12

Detector, RTD

3.2 Hardware part 13

3.2.1 Advantech PCI-1710HG 13

3.2.2 Common specifications 13

3.2.3 Pin Assignment 14

3.3 Software part 15

3.3.1 Real Time Windows Target 15

 Setup

3.3.2 Installation and configuration 17

3.3.3 Procedure of Creating Real 21

Time Application

3.3.4 Creating Graphical User Interfaces 34

ix

4 RESULT AND DISCUSSION 39

4.1 Result 39

4.2 Calculations 40

4.2.1 Desired UUT output 40

4.2.2 Output error (%) 41

4.2.3 Average 42

4.2.4 Standard deviation 43

4.3 Uncertainty evaluation 44

4.3.1 Uncertainty due to repeatability 44

 Of the experiment

4.3.2 Uncertainty contribution due to 44

MSU error

4.3.3 Uncertainty due to UUT 45

Resolution/MSU resolution

4.3.4 Combined standard uncertainty 46

4.4 Result 47

4.4.1 Result from plotting graph 47

4.4.2 GUI Using Matlab 7.0 49

4.4.3 The Operation of system 52

5 CONCLUSION AND RECOMMENDATIONS 57

5.1 Conclusion 57

5.2 Recommendations 58

REFERENCES 59

x

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 Five-point calibration of temperature transmitter 39

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

 3.1 Instrumentation of temperature measurement 9

3.2 ISOTECH Jupiter 650B 10

3.3 Digital Thermometer 7563 11

3.4 Yokogawa Temperature Transmitter, PT100 11

3.5 HART 375 Field Communicator 12

3.6 Resistance Temperature Detector, RTD 12

3.7 Advantech PCI-1710HG 13

3.8 Pin Assignment for PCI-1710 HG 14

3.9 Required Products of Real Time Windows Target 16

3.10 Simulink Model rtvdp.mdl 20

3.11 Create a new model 22

3.12 Empty Simulink model 22

3.13 Block Parameters of Signal Generator 23

3.14 Block Parameters of Analog Output 25

3.15 Scope Parameters Dialog Box 26

3.16 Scope Properties: axis 1 27

3.17 Completed Simulink Block Diagram 28

3.18 Configuration Parameters – Solver 29

3.19 Configuration Parameters – Hardware Implementation 30

3.20 System Target File Browser 31

 3.21 Configuration Parameters – Real-Time Workshop 31

 3.22 Connect to target from the Simulation menu 33

 3.23 GUIDE Quick Start 36

 3.24 Layout Editor 37

 3.25 M-file Editor 38

xii

 4.1 Graph of MSU value (0C) vs. Actual UUT output (mA) 47

 4.2 Graph of MSU value (0C) vs. Output error (%) 48

4.3 The starting software 49

4.4 The Automatic section 50

4.5 The Manual section 51

4.6 To show the range MSU 52

4.7 Insert value of 1st Actual UUT output and find output error 53

4.8 Plotting Graph output 53

4.9 Plotting Graph output error 54

4.10 To calculate average and standard deviation 54

4.11 Uncertainty panel 55

4.12 Calculate uncertainty 56

xiii

LIST OF ABBREVIATIONS

Component The Description

RTD Resistance Temperature Detector

GUI Graphical User Interface

UUT Unit under Test

MSU Master Standard Unit

DAQ Data acquisition System

JNT Johnson noise thermometry

PRTs Platinum Resistance Thermometers

MATLAB Matrix Laboratory

CPU Central Processing Unit

vs. Versus

xiv

LIST OF APPENDIXES

APPENDIX TITLE PAGE

A T-distribution Curve Table 60

B PCI-1710 HG Datasheet 61

C Coding Program 64

1

CHAPTER 1

INTRODUCTION

1.1 Overview

As we know, the students for 4 BEC were doing the experiment for subject

Industrial Instrumentation (BEE 4523) at the lab manually. They need to start their

experiment from connecting the instruments, find the data of experiment, calculate data

and plot the graph for Point Calibration and Error Plot. So, they need more time to do

this analysis and many calculations like to calculate the desired Unit under Test (UUT)

output, actual Unit under Test output and the output error. Besides that, they need

perform the uncertainty of measurement evaluation for one equipment calibration. They

need calculate the uncertainty due to repeatability of the experiment, uncertainty

contribution due to MSU error, the uncertainty due to UUT resolution/MSU resolution

and combined standard uncertainty.

 The computer based instrumentation system will be designed for temperature

measurement using Resistance Temperature Detector, RTD. This system will be

operated by using Matlab application. This system used GUI Matlab that can show the

progress. It can use to solve these problems efficiently. This system developed for

educational purpose. It means the students can use this system for their analysis of

subject BEE 4523.

2

 As overall, this system can look as the communication between the user and the

instrument for finding the more accurate result and easy to plot the graph. This system

works fast without need to do more works. The user needs to set the Master Standard

Unit (MSU) value at the RTD and when values of temperatures reach at the MSU value

at Digital Thermometer. The user presses the set button. The all data will transfer

through the system to find the result and graph. This system also can calculate the

output error, average, standard deviation and uncertainty. So, we can use this program

to do the analysis.

1.2 Problem statement

1.2.1 Current situation

The students doing the experiment for subject Industrial Instrumentation in the

lab. However, the problems are:

(i) Doing experiment manually

 Firstly, they have more steps to setup the instruments. Then, they need to collect

the data from instrument for this analysis.

(ii) More time

 They need more times to do analysis for this experiment especially for

temperature measurement. They rushed to find the result to calculate for output error,

average, standard deviation and uncertainty. They also need to plot the graph.

3

1.2.2 Problem solution

This system can solve this situation and has advantages compare to another

program.

i. This system was developed for educational purpose. The student from 4 BEC

can use this system to do the analysis in lab. This system suitable to use for all computer

that have installed Matlab software.

ii. This system can make work faster and easier when doing the analysis. It can

calculate all calculations and plotting the graph.

1.3 Objective

The objectives of this project are:

i. Understanding about basic concept of temperature measurement

instrumentation. The function of each instrument must know and to find the reading of

temperature using RTD.

ii. Interface the temperature instrumentation with software using DAQ’s (Data

acquisition System) card. The PCI-1710HG is suggestion hardware that use for this

project.

iii. Developing the system using MATLAB application. The GUI Matlab was use

to show the progress of result and the graph efficiently. It also can calculate the output

error, average, standard deviation and uncertainty.

4

1.4 Scope

The scopes of the project are:

i. Study the function of each instrument and know to read the data measurement

from the instruments. The connection of each instrument are important because to avoid

from error when doing the experiment.

ii. Use the PCI-1710HG (suggestion hardware) as the medium between the

instrument and the software. This DAQ card is suitable for the MATLAB software.

iii. Choosing the MATLAB application for this project because there many features

that can apply for this system especially to plot the graph directly and compatible

software with DAQ board that can use for this system.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Resistance Temperature Detector, RTD

The research is about what is Resistance Temperature Detector, RTD. The

RTDs also called resistance thermometers are temperature sensors that exploit the

predictable change in electrical resistance of some materials with changing temperature.

As they are almost invariably made of platinum, they are often called platinum

resistance thermometers (PRTs). They are slowly replacing the use of thermocouples in

many industrial applications below 600 °C [1]. RTD sensors used to measure

temperature by correlating the resistance of the RTD element with temperature. Most

RTD elements consist of a length of fine coiled wire wrapped around a ceramic or glass

core. The element is usually quite fragile, so it is often placed inside a sheathed probe to

protect it. The RTD element is made from a pure material whose resistance at various

temperatures has been documented. The material has a predictable change in resistance

as the temperature changes; it is this predictable change that is used to determine

temperature [2].

 The Resistance Temperature Resistance is constructed in a number of forms and

offer greater stability, accuracy and repeatability in some cases than thermocouples.

While thermocouples use the Seebeck effect to generate a voltage, resistance

thermometers use electrical resistance and require a small power source to operate. The

resistance ideally varies linearly with temperature [2]. At low temperatures PVC, silicon

6

rubber or PTFE insulators are common to 250°C. Above this, glass fibre or ceramic are

used. The measuring point and usually most of the leads require a housing or protection

sleeve. This is often a metal alloy which is inert to a particular process. Often more

consideration goes in to selecting and designing protection sheaths than sensors as this

is the layer that must withstand chemical or physical attack and offer convenient

process attachment points [1].

 There are 3 type of resistance thermometer wiring configurations. They are two-

wire configuration, see figure 1.1, three-wire configuration, see figure 1.2 and four-wire

configuration, see figure 1.3. The simplest resistance thermometer configuration uses

two wires. It is only used when high accuracy is not required as the resistance of the

connecting wires is always included with that of the sensor leading to errors in the

signal. Using this configuration you will be able to use 100 meters of cable. This applies

equally to balanced bridge and fixed bridge system [1]. In order to minimize the effects

of the lead resistances a three wire configuration can be used. Using this method the two

leads to the sensor are on adjoining arms, there is a lead resistance in each arm of the

bridge and therefore the lead resistance is cancelled out. High quality connection cables

should be used for this type of configuration because an assumption is made that the

two lead resistances are the same. This configuration allows for up to 600 meters of

cable [1]. The four wire resistance thermometer configuration even further increases the

accuracy and reliability of the resistance being measured. In the diagram above a

standard two terminal RTD is used with another pair of wires to form an additional loop

that cancels out the lead resistance. The above Wheatstone bridge method uses a little

more copper wire and is not a perfect solution. Below is a better alternative

configuration four-wire Kelvin connection that should be used in all RTD. It provides

full cancellation of spurious effects and cable resistance of up to 15 Ω can be handled.

Actually in four wire measurement the resistance error due to lead wire resistance is

zero [1].

 The advantages using RTD are RTDs is one of the most accurate temperature

sensors. Not only does it provide good accuracy, it also provides excellent stability and

7

repeatability. RTDs are also relatively immune to electrical noise and therefore well

suited for temperature measurement in industrial environments, especially around

motors, generators and other high voltage equipment [2]. RTDs also stable output for

long period of time, ease of recalibration and accurate readings over relatively narrow

temperature spans. Their disadvantages, compared to the thermocouples, are: smaller

overall temperature range, higher initial cost and less rugged in high vibration

lenvironments. They are active devices requiring an electrical current to produce a

voltage drop across the sensor that can be then measured by a calibrated read out device

[3].

 Difference between RTDs and Thermocouple. The RTD sensing element

consists of a wire coil or deposited film of pure metal. The element's resistance

increases with temperature in a known and repeatable manner. RTD's exhibit excellent

accuracy over a wide temperature range and represent the fastest growing segment

among industrial temperature sensors [4]. A thermocouple consists of two wires of

dissimilar metals welded together into a junction. At the other end of the signal wires,

usually as part of the input instrument, is another junction called the reference junction.

Heating the sensing junction generates a thermoelectric potential (emf) proportional to

the temperature difference between the two junctions. This millivolt-level emf, when

compensated for the known temperature of the reference junction, indicates the

temperature at the sensing tip. Published millivolt tables assume the reference junction

is at 0°C. Thermocouples are simple and familiar. Designing them into systems

however is complicated by the need for special extension wires and reference junction

compensation [4]. The sensor comparison chart sees at Appendix A.

8

2.2 Continuous Resistance Temperature Detector Calibration Using Johnson

Noise Thermometry.

Johnson noise thermometry (JNT) is approaching a state of technological

development to where it may be practically applied to continuous recalibration of

resistance temperature detectors (RTDs) in industrial process environments. Johnson

noise arises from the motion of the electrons and protons in a resistor as they thermally

vibrate. Fundamentally, temperature is merely a convenient representation of the mean

translational kinetic energy of an atomic ensemble. Since Johnson noise is a

fundamental representation of temperature (rather than a response to temperature such

as electrical resistance or thermoelectric potential), Johnson noise is immune from

chemical and mechanical changes in the material properties of the sensor. As such, on-

line measurement of the Johnson noise of the resistive element may be used to

continuously recalibrate the RTD resistance-to-temperature relationship effectively

eliminating the requirement for periodic recalibration. Measuring the RTD resistance

continuously and quasi-continuously making corrections to the RTD resistance-to-

temperature relationship is central to the new JNT implementation. The new JNT

implementation incorporates amplifier design concepts from previous JNT

developments while employing modern digital signal processing technology to remove

spurious signals from the measured noise spectrum. [5]

9

CHAPTER 3

METHODOLOGY

3.1 Instrument Part

Figure 3.1 shows the block diagram for instrument of temperature measurement.

The instruments that apply for this system are:

Figure 3.1: Instrumentation of temperature measurement

10

3.1.1 ISOTECH Jupiter 650B

 The ISOTECH Jupiter 650B is designed for fast heating and cooling for suitable

use. It is offer industry-leading performance in an easy to use portable package. The

standard insert can hold up until six thermometers. The model includes a universal

sensor input allowing Resistance Temperature Detector, Thermocouples (K, N, R, S, L,

B, PL2, T, J & E) along with Linear Process Inputs including 4-20mA current

transmitters to be displayed on the built-in indicator.

The indicator is commonly used to display an external standard thermometer

giving greater accuracy by eliminating any temperature gradient and loading errors. The

indicator also can be programmed with up to five calibration points to provide high

accuracy digital probe matching.

The functions of this model are to set the value of temperature and read the

value of Resistance Temperature Detector, RTD as shown in Figure 3.2

Figure 3.2: ISOTECH Jupiter 650B

11

3.1.4 Digital Thermometer 7563

 The 7563 Digital Thermometer has 16 ranges of temperature sensors and DC, V,

and Ohm measuring functions as shown in Figure 3.3. It has features superior noise

immunity, stability and high-speed sampling. In addition, versatile functions are

suitable for system use and cover a wide variety of applications from test to R&D. For

this instrument part, the digital thermometer is use to read the input value of

temperature. It also use as the temperature reference.

Figure 3.3: Digital Thermometer 7563

3.1.3 Yokogawa Temperature Transmitter, PT100

 The temperature transmitter is use to transmit the data from RTD to the

ammeter. It also changed the value of temperature to current in range 4-20 mA. Figure

3.4 shown the Yokogawa Temperature Transmitter PT100

Figure 3.4: Yokogawa Temperature Transmitter, PT100

12

3.1.4 HART 375 Field Communicator

 The HART 375 Field Communicator is the new standard in handheld

communicator. The Hart 375 Field Communicator runs on Windows CE, a robust, real-

time, operating system. The display makes it easy to read in both bright sunlight and in

normal lighting. It also includes a multi-level backlight, allowing the display to be

viewed in those areas with dim light. The touch sensitive display and large physical

navigation buttons provide for efficient use in the field. Figure 3.5 shows the HART

375 Field Communicator.

Figure 3.5: HART 375 Field Communicator

3.1.5 Resistance Temperature Detector, RTD

 Resistance Temperature Detector is called resistance thermometers are

temperature sensors that exploit the predictable change in electrical resistance of some

materials with changing temperature. As they are almost invariably made of platinum,

they are often called platinum resistance thermometers (PRTs). Figure 3.6 shows the

Resistance Temperature Detector, RTD.

Figure 3.6: Resistance Temperature Detector, RTD

3.2 Har

3.2.1 Adv

 The

because it i

Acquisition

This custom

The size of

PCL from M

3.2.2 Com

a) Ana

- C

- R

- M

- I

- A

- I

- I

rdware Part

vantech PCI

Advantech

s low cost. T

System) ca

m gives high

f this hardwa

MATLAB. F

mmon Speci

log Input

Channels: 16

Resolution:

Max. Sampli

Input range s

Auto channe

Input impeda

Input overvo

t

I-1710HG

PCL-1710H

The budget

ard. It presen

her performa

are is half s

Figure 3.7 sh

Figure 3.7

ifications:

6, single-end

12 bits

ing Rate: 10

selection: (V

el/gain scann

ance: 1 G oh

oltage: +/-30

HG is the

will be savi

nt in the be

ance and rel

size DAS Ca

hows the Adv

7: Advantech

ded or 8 diffe

00kS/s

V, software p

ning

hms

0 VDC maxim

perfect cho

ing to buy th

st price and

liability with

ard. The sof

vantech PCI

h PCI-1710H

erential.

programmab

mum

oice to use

his multifun

d performanc

h lower pow

ftware is co

-1710HG.

HG

le)

for this pr

nction DAS (

ce in the ma

wer consump

mpatible for

13

roject

(Data

arket.

ption.

r this

14

b) Analog Output

- Channels: 2

- Resolution: 12-bits

- Output range: (V, software programmable)

3.2.3 Pin Assignments

 Figure 3.8 shows the Pin Assignment for PCI-1710 HG. It used to connect from

the I/O board to PC.

Figure 3.8: Pin Assignment for PCI-1710 HG

15

3.3 Software Part

The MATLAB software is use for this project because it allows one to perform

numerical calculations and visualize the result without need for complicated and time

consuming programming. This software provides an easy way to go directly from

collecting data to deriving informative result. It also accurately solves the problem, to

produce graphics easily and create the code efficiently.

 MATLAB software is compatible with the Advantech PCI-1710HG that will

work together in this project. It also supports the entire data acquisition and analysis

process, including interfacing with data acquisition devices and instruments, analyzing

and visualizing the data and producing presentation quality output.

3.3.1 Real Time Windows Target Setup

 Real Time Windows Target enables to run Simulink and Stateflow models in

real time on desktop or laptop PC for rapid prototyping or hardware-in-the-loop

simulation of control system and signal processing algorithms. A real-time execution

can be created and controlled entirely through Simulink. Using Real-Time Workshop, C

code can be generated, compiled and started real-time execution on Window PC while

interfacing to real hardware using PC I/O Board (PCL-818). I/O device drivers are

included to support an extensive selection of I/O Board, enabling to interface to other

devices for experimentation, development and testing real-time systems. Simulink block

diagram can be edited and Real-Time Workshop can be used to create a new real-time

binary file. This integrated environment would implement any designs quickly without

lengthy hand coding and debugging. Figure 3.9 shows the required product of Real

Time Windows Target.

16

Figure 3.9: Required Products of Real Time Windows Target

 Real Time Windows Target includes a set of I/O blocks that provide connections

between the physical I/O Board and real time model. Hardware-in-the-loop simulations

can be ran and quickly observed how Simulink model responds to real-world behavior.

I/O signals can be connected using the block library for operation with numerous I/O

boards.

The following types of blocks are included:

• Digital Input blocks : Connect digital input signals to Simulink block diagram

to provide logical inputs.

• Digital Output blocks : Connected logical signals from Simulink block diagram

to control external hardware.

• Analog Input blocks : Enable to use A/D converters that digitize analog signal

for use as input to Simulink block diagram.

• Analog Output blocks : Enable Simulink block diagram to use D/A converters to

output analog signal from Simulink model using I/O board(s).

• Counter Input blocks : Enable to count pulses or measure frequency using

hardware counters on I/O board(s).

• Encoder Input blocks : Enable to include feedback from optical encoders.

REAL TIME
WINDOWS TARGET

MATLAB
Command-line
interface for the Real
Time Windows Target

SIMULINK
Environment to model
physical systems and
controlled using block
diagrams

REAL TIME
WORKSHOP

Convert Simulink
blocks and code from
Stateflow Coder into
C code

17

3.3.2 Installation and Configuration

 The Real-Time Windows Target is a self-targeting system where the host and

the targeting computer are the same computer. It can be installed on a PC-compatible

computer running Windows NT 4.0, Windows 2000 or Windows XP.

3.3.2.1 C Compiler

 The Real-Time Windows Target requires one of following C compilers which

not included in with the Real Time Windows Target:

• Microsoft Visual C/C ++ compiler - - Version 5.0, 6.0 or 7.0

• Watcom C/C ++ compiler - - Version 10.6 and 11.0. During installation of

Watcom C/C ++ compiler, a DOS target is specified in addition to a windows

target to have necessary libraries available for linking.

After installation, the MEX utility is run to select compiler as the default

compiler for building real-time applications.

Real Time Workshop uses the default C compiler to generate executable code and the

MEX utility uses this compiler to create MEX-files.

This procedure is executed in order to select either a Microsoft Visual C/C ++ compiler

or a Watcom C/C ++ compiler before build an application. Note, the LCC compiler is

not supported:

1. mex –setup is typed in the MATLAB window

MATLAB will display the following message:

 Please choose your compiler for building eternal

 interface

(MEX) files. Would you like mex to locate

installed compilers? ([y] / n) :

18

Then a letter “y” is typed.

 MATLAB will display the following message:

 Select a compiler:

 [1]: WATCOM Compiler in c: \watcaom

 [2]: Microsoft compiler in c: \visual

 [0]: None

 Compiler:

Next, a number is typed. For example, number 2 is typed to select the Microsoft

compiler.

MATLAB will display the following message:

 Please verify your choices:

 Compiler: Microsoft 5.0

 Location: c: \visual

 Are these correct? ([y] / n)

Finally, a letter “y” is typed.

MATLAB will reset the default compiler and display the message:

 The default option file:

 “c:\WINNT\Profiles\username\Application

 Data\MathWorks\MATLAB\mexopts.bat” is being updated.

3.3.2.2 Installation the Kernel

 During installation, all software for the Real-Time Windows Target is copied

onto hard drive. The kernel is not automatically installed. Installing the kernel sets up

the kernel to start running in the background each time when the computer is started.

The kernel can be installed just after the Real-Time Windows Target has been installed.

The installation of the kernel is necessary before a Real-Time Windows Target can be

executed:

19

1. rtwintgt –install is typed in MATLAB window.

 MATLAB will display the following message:

You are going to install the Real-Time Windows

Target kernel.

 Do you want to proceed? [y] :

2. The kernel installation is continued by typing a letter “y”.

 MATLAB will install the kernel and display the following message:

The Real-Time Windows Target kernel has been

successfully installed.

 The computer has to be restart if a “restart” message being displayed.

3. The kernel should be checked whether it was correctly installed. Then, rtwho

is typed.

 MATLAB would display a message similar to

Real-Time Windows Target version 2.5.0 (C) The

MathWorks, Inc.

 1994-2003

 MATLAB performance = 100.0%

 Kernel timeslice period = 1ms

After the kernel being installed, it remains idle, which allows Window to control the

execution of any standard Windows application. Standard Windows applications

include internet browsers, word processors, MATLAB and so on. It is only during real-

time execution of model that the kernel intervenes to ensure that the model is given

priority to use the CPU to execute each model updating at the prescribed sample

intervals. Once the model update at a particular sample interval completed, the kernel

releases the CPU to run any other Windows application that might need servicing.

20

3.3.2.3 Testing the Installation

 The installation can be tested by running the model rtvdp.mdl. This model does

not have any I/O blocks, so that this model can be run regardless of the I/O boards in

computer. Running this model would test the installation by executing Real-Time

Workshop, Real-Time Windows Target and Real-Time Windows Target kernel. After

the Real-Time Windows Target kernel being installed, the entire installation can be

tested by building and running a real-time application. The Real-Time Windows Target

includes the model rtvdp.mdl, which already has the correct Real-Time Workshop

options selected for users:

1. rtvdp is typed in MATLAB window.

 The Simulink model rtvdp.mdl window will be opened as shown in Figure 3.10

Figure 3.10: Simulink Model rtvdp.mdl

2. From the Tools menu, it should be pointed to Real-Time Workshop, and then

clicked Build Model. The MATLAB window will display the following

messages:

21

 ### Starting Real-Time Workshop build for model:

rtvdp

 ### Invoking Target Language Compiler on rtvdp.rtw

 . . .

 ### Compiling rtvdp.c

 . . .

 ### Created Real-Time Windows Target module

rtvdp.rwd.

 ### Successful completion of Real-Time Workshop

build procedure for model: rtvdp

3. From the simulation menu, External should be clicked and followed by

clicking Connect to target.

 The MATLAB window displayed the following message:

 Model rtvdp loaded

4. Start Real-Time Code is clicked from Simulation menu.

 The Scope window will display the output signals. After the Real-Time

Windows Target has been successfully installed and the real-time application

has been run, Scope window should indicate such a figure.

5. From Simulation menu, after the Stop Real-Time Code is clicked. The real-

time application will stop running and then the Scope window will stop

displaying the output signals.

3.3.3 Procedures of Creating Real Time Applications

3.3.3.1 Creating a Simulink Model

 This procedure explains how to create a simple Simulink model. This model is

used as an example to learn other procedures in the Real-Time Windows Target. A

22

Simulink model has to be created before it can run a simulation or create a real-time

application:

1. Simulink is typed in the MATLAB Command Window.

 The Simulink Library Browser window is opened as shown in Figure 3.11.

2. From the toolbar, the Create a new model button is clicked.

Figure 3.11: Create a new model

An empty Simulink window is opened. With the toolbar and status bar disabled,

the window looks like following figure 3.12 (Figure).

Figure 3.12: Empty Simulink model

23

3. In the Simulink Library Browser window, Simulink is double-clicked and then

Sources is also doubled-clicked. Next, Signal Generator is clicked and dragged

to Simulink window.

 Sinks is clicked. Scope is clicked and dragged to the Simulink window. Real-

Time Windows Target is clicked. Analog Output is clicked and dragged to the

Simulink window.

4. The Signal Generator output is connected to the scope input by clicking-and-

dragging a line between the blocks. Likewise, the Analog Output input is

connected to the connection between Scope and Signal Generator.

5. The Signal Generator block is double clicked. The Block Parameters dialog

box opened. From the Wave form list, square is selected.

 In the Amplitude text box, 0.25 is entered.

 In the Frequency text box, 2.5 are entered.

 From the Units list, Hertz is selected.

 The Block Parameters dialog box is shown in Figure 3.13.

Figure 3.13: Block Parameters of Signal Generator

6. OK is clicked.

7. The analog output block is double clicked.

 The Block Parameters dialog box will open.

24

8. The Install new board button is clicked. From the list, it should be pointed to

manufacturer and then clicked a board name. For example, it should be pointed

to Advantech and then click PCL818.

9. One of the following is selected:

• For an ISA bus board, a base address is entered. This value must match

the base address switches or jumpers set on the physical board. For

example, to enter a base address of 0x300 in the address box, 300 is

typed. The base address also could be selected by selecting check boxes

A9 through A3.

• For a PCI bus board, the PCI slot is entered or the Auto-detect check

box is selected.

10. The Test button is clicked.

The Real-Time Windows Target tried to connect to the selected board and the

following message would display if successful.

11. On the message box, OK is clicked.

12. The same value as entered in the Fixed step size box from the Configuration

Parameters dialog box is entered in the Sample time box. For example, 0.001

is entered.

13. A channel vector that selected the analog input channels that are using on this

board is entered in the Output channels box. The vector can be any valid

MATLAB vector form. For example, to select analog output channel on

PCL818 board 1 is entered.

14. The input range for the entire analog input channel that has been entered in the

Input channels box is chosen from the Output range list. For example, with

the PCL818 board, 0 to 5V is chosen.

15. From the Block Input signal list, the following options is chosen:

• Volts – Expected a value equal to the analog output range.

• Normalized unipolar – Expected a value between 0 and +1 that is

converted to the full range of the output voltage regardless of the output

voltage range. For example, an analog output range of 0 to +5 volts and -

5 to +5 volts would both converted from values between 0 and +1.

25

• Normalized bipolar – Expected a value between -1 and +1 that is

converted to the full range of output voltage regardless of the output

voltage range.

• Raw – Expected a value of 0 to 2n-1. For example, a 12-bit A/D

converter would expected a value between 0 and 212 -1 (0 to 4095). The

advantage of this method is the expected value is always an integer with

no round off error.

16. The initial value is entered for each analog output channel that has been entered

in the Output Channels box. For example, if 1 is entered in the Output

Channels box and the initial value of 0 volts is needed, 0 is entered.

17. The final value is entered for each analog channel that has been entered in

Output Channels box. For example, if 1 is entered in the Output Channels

box and the final value of 0 volts is needed, 0 is entered.

 The dialog box would look similar to the Figure 3.14 if Volts is chosen.

Figure 3.14: Block Parameters of Analog Output

26

18. One of following is executed:

 Apply is clicked to apply the changes to the model and the dialog box is

left open.

 OK is clicked to apply the changes to the model and the Block

Parameters: Analog Output dialog box will close.

19. Parameters dialog box is closed and the parameter values are saved with the

Simulink model.

20. In the Simulink window, the Scope block is double clicked.

 A Scope window will open.

21. The Parameters button is clicked.

 A Scope parameters dialog box will open.

22. The General tab is clicked. The number of graphs that is needed in one Scope

window is entered in the Number of axes box. For example, 1 is entered for a

single graph. Do not select the floating scope check box. In the Time range

box, upper value the time range is entered. For example, 1 second is entered.

From the Tick labels list, bottom axis only is chosen.

 From the Sampling list, decimation is chosen and 1 is entered in the text

box.

 The Scope parameters dialog box would look like such a Figure 3.15 as shown.

Figure 3.15: Scope Parameters Dialog Box

27

23. One of following done:

 Apply is clicked to apply the changes to the model and the dialog box is

left open.

 OK is clicked to apply the changes to the model and the Scope

parameters dialog box is closed.

24. In the Scope window, it should be pointed to the y-axis and then right clicked.

25. Axes Properties is clicked from the pop-up menu.

26. The Scope properties: axis 1 dialog box is opened. In the Y-min and Y-max text

boxes, the range for the y-axis is entered in the Scope window. For example, -2

and 2 are entered as shown in the Figure 3.16

Figure 3.16: Scope Properties: axis 1

27. One of the following is done:

 Apply is clicked to apply the changes to the model and the dialog box is

left open.

 OK is clicked to apply the changes to the model and the Axes

Parameters dialog box is closed.

The completed Simulink block diagram is shown in Figure 3.17.

28

Figure 3.17: Completed Simulink Block Diagram

Save As is clicked from the File menu. The Save As dialog diagram box is

opened. In the File name text box, a filename for the Simulink model is entered

and Save is clicked. For example, rtwin_model is typed.

Simulink saved the model in the file rtwin_model.mdl.

3.3.3.2 Entering Configuration Parameters for Simulink

The configuration parameters give information to Simulink for running a simulation.

After create a Simulink model, the configuration parameters could be entered for

Simulink.

1. In the Simulink window, Configuration Parameters is clicked from the

Simulation menu. In the Configuration Parameters dialog box, the Solver tab

is clicked.

The Solver pane will open.

29

2. In the Start time box, 0.0 is entered. In the Stop time box, the amount of time

that the model needs to run is entered. For example, 99999 seconds is entered.

3. From the Type list, Fixed-step is chosen. Real-Time Workshop does not

support variable step solvers.

4. From the Solver list, a solver is chosen. For example, the general purpose solver

ode5 (Dormand-Prince) is chosen.

5. In the Fixed step size box, a sample time is entered. For example, 0.001

seconds is entered for the sample rate of 1000 samples/second.

6. From the Tasking Mode list, SingleTasking is chosen. Multitasking

is chosen for models with blocks that have different sample times.

 The Solver pane would look similar to the Figure 3.18.

Figure 3.18: Configuration Parameters – Solver

7. One of following is done:

 Apply is clicked to apply the changes to the model and the dialog box is

left open.

 OK is clicked to apply the changes to the model and the Configuration

Parameters dialog box is closed.

30

3.3.3.3 Entering Simulation Parameters for Real-Time Workshop

 The Simulation Parameters are used by Real-Time Workshop for generating C

code and building a real-time application.

1. In the Simulink window, Configuration Parameters is clicked from the

Simulation menu as shown in Figure 3.19.

2. The Hardware Implementation node is clicked.

3. From the Device type list, 32-bit Real-Time Windows Target is

chosen.

Figure 3.19: Configuration Parameters – Hardware Implementation

4. The Real-Time Workshop node is clicked.

 The Real-Time Workshop pane will open.

5. In the Target selection section, the Browse button is clicked at the RTW

system target file list. The System Target File Browser will open as shown in

Figure 3.20.

6. The system target file is selected for the Real-Time Windows Target and OK is

clicked.

31

Figure 3.20: System Target File Browser

 The system target file rtwin.tlc, the template makefile rtwin.tmf and the

make command make_rtw are automatically entered into the Real-Time

Workshop pane.

 Although not visible in the Real-Time Workshop pane, the external target

interface MEX file rtwinext is also configured after OK is clicked. This

allows external mode to pass new parameters to the real-time application and to

return signal data from the real-time application. The data is displayed in Scope

blocks or saved with signal logging.

 The Real-Time Workshop pane would look similar to the Figure 3.21.

Figure 3.21: Configuration Parameters – Real-Time Workshop

32

7. One of following is done:

 Apply is clicked to apply the changes to the model and the dialog box is

left open.

 OK is clicked to apply the changes to the model and the Configuration

Parameters dialog box is closed.

3.3.3.4 Creating a Real-Time Application

 Real-Time Workshop generates C code from the Simulink model and then the

Microsoft Visual Basic C++ compiler compiles and links that C code into a real-time

application. After parameters are entered into the Configuration Parameters dialog

box for Real-Time Workshop, a real-time application could be built.

1. In the Simulink window and from the Tools menu, it should be pointed to the

Real-Time Workshop and then clicked Build Model. The build process does the

following:

 Real-Time Workshop creates the C code source files rtwin_model.c

and rtwin_model.h.

 The make utility make_rtw.exe creates the makefile

rtwin_model.mk from the template makefile rtwin.tmf.

 The make utility make_rtw.exe builds the real-time application

rtwin_model.rwd using the makefile rtwin_model.mk created

above. The file rtwin_model.rwd is binary files that refer to as the

real-time application. The real-time application could be run with the

Real-Time Windows Target kernel.

2. The Simulink model is connected to real-time application.

After the real-time application is created, MATLAB could be closed and started

again later and then the executable is connected and run without having to

rebuild.

33

3.3.3.5 Running a Real-Time Application

The real-time application is run to observe the behavior of the model in real time

with the generated code.

The process of connecting consist of

 Establishing a connection between your Simulink model and the kernel to allow

exchange of commands, parameters and logged data.

 Running the application in real time.

After the real-time application is built, the model could be run in real time.

1. From the Simulation menu, External is clicked and then Connect To Target is

connected from the Simulation menu, Also, it could be connected to the target

from the toolbar by clicking . It can be seen I Figure 3.22.

Figure 3.22: Connect to target from the Simulation menu

 MATLAB will display the message

 Model rtwin_model loaded

34

2. In the Simulation window and from the Simulation menu, Start Real-Time

Code is clicked. The execution also could be started from the toolbar by clicking

Start icon.

 Simulink runs the execution and plots the signal data in the Scope window.

In the model, the Scope window displays 1000 samples in 1 second, increases

the time offset and then displays the samples for the next 1 second.

Note:

Transfer of data is less critical than calculating the signal output at the selected

sample interval. Therefore, data transfer runs at a lower priority in the

remaining CPU time after real-time application computations are performed

while waiting for another interrupt to trigger the next real-time application

update. The result may be a loss of data points displayed in the Scope window.

3. One of the following is done:

 The execution is let to be run until it reaches the stop time.

 Stop Real-Time Code is clicked from the Simulation menu.

The real-time application is stopped.

4. In the Simulation window, Disconnected From Target is clicked from the

Simulation menu.

5. From the Simulation menu, External is clicked

 MATLAB will display the message

 Model rtwin_model unloaded

3.3.4 Creating Graphical User Interfaces

MATLAB implements GUIs as figure windows containing various styles of uicontrol

objects. You must program each object to perform the intended action when activated

by the user of the GUI. In addition, you must be able to save and launch your GUI. All

of these tasks are simplified by GUIDE, MATLAB’s graphical user interface

development environment.

35

3.3.4.1 GUI Development Environment

The process of implementing a GUI involves two basic tasks:

(i) Laying out the GUI components

(ii) Programming the GUI components

GUIDE primarily is a set of layout tools. However, GUIDE also generates an M-file

that contains code to handle the initialization and launching of the GUI. This M-file

provides a framework for the implementation of the callbacks – the functions that

execute when users activate components in the GUI.

The Implementation of a GUI

While it is possible to write an M-file that contains all the commands to lay out a GUI,

it is easier to use GUIDE to lay out the components interactively and to generate two

files that save and launch the GUI:

(i) A FIG-file – contains a complete description of the GUI figure and all of its

children (uicontrols and axes), as well as the values of all object properties.

(ii) An M-file – contains the functions that launch and control the GUI and the

callbacks, which are defined as subfunctions. This M-file is referred to as the

application M-file in this documentation.

36

3.3.4.2 Starting Guide

Start GUIDE by typing guide at the MATLAB command prompt. This displays the

GUIDE Quick Start dialog, as shown in the following Figure 3.23.

Figure 3.23: GUIDE Quick Start

From the Quick Start dialog, the user can:

(i) Create a new GUI from one of the GUIDE templates.

(ii) Open an existing GUI.

37

3.3.4.3 The Layout Editor

When the user opened a GUI in GUIDE, it is displayed in the Layout Editor, which is

the control panel for all of the GUIDE tools. The following Figure 3.24 shows the

Layout Editor with a blank GUI template.

Figure 3.24: Layout Editor

The user can lay out the GUI by dragging components, such as panels, push buttons,

pop-up menus, or axes, from the component palette, at the left side of the Layout Editor,

into the layout area.

38

3.3.4.4 Programming a GUI

After laying out the GUI and setting component properties, the next step is to program

the GUI. The user programs the GUI by coding one or more callbacks for each of its

components. Callbacks are functions that execute in response to some action by the

user. A typical action is clicking a push button.

A GUI’s callbacks are found in an M-file that GUIDE generates automatically.

GUIDE adds templates for the most commonly used callbacks to this M-file, but the

user may want to add others. Use the M-file Editor to edit this file.

The following Figure 3.25 shows the Callback template for a push button.

Figure 3.25: M-file Editor

39

CHAPTER 4

RESULT AND DISCUSSIONS

4.1 Results

The Table 4.1 shows the result of experiment that using the Resistance

Temperature Detector, RTD. The results can show in the GUI Matlab that used in this

experiment.

Table 4.1: Five-point calibration of temperature transmitter

No

%

MSU

applied

value, (0C)

Desired

UUT

output,

(mA)

1st Actual

UUT

output,

(mA)

2nd Actual

UUT

output,

(mA)

Output

error %

Average Standard

deviation

0 50.0 4.0 3.8 3.89 5.00 3.845 0.00405

25 87.5 8.0 7.9 7.99 1.25 7.945 0.00405

50 125.0 12.0 12.0 11.98 0.00 11.99 0.0002

75 162.5 16.0 15.9 15.98 0.63 15.94 0.0032

100 200.0 20.0 19.9 19.89 0.50 19.895 5e-005

 The equation below shows how to find the value of Desired UUT output and

output error %.

40

Note: MSU = Master Standard Unit UUT = Unit under Test

Desired output =
100

x (URV – LRV) + LRV (1)

Where; x = ith point

 URV = Upper Range Value

 LRV = Lower Range Value

Output error % =
output UUTDesired

output UUTActual -output UUTDesired x 100% (2)

4.2 Calculation:

4.2.1 Desired UUT output:

a) 50.0 0C

 Desired output =
100

0 (20m – 4m) + 4m

 = 4mA

b) 87.5 0C

 Desired output =
100
25 (20m – 4m) + 4m

 = 8mA

c) 125.0 0C

 Desired output =
100
50 (20m – 4m) + 4m

 = 12mA

41

d) 162.5 0C

 Desired output =
100
75 (20m – 4m) + 4m

 = 16mA

e) 200.0 0C

 Desired output =
100
100 (20m – 4m) + 4m

 = 20mA

4.2.2 Output error (%)

a) 50.0 0C

 Output error % =
4.0m

3.8m - 4.0m x 100%

 = 5%

b) 87.5 0C

 Output error % =
8.0m

7.9m - 8.0m x 100%

 = 1.25%

c) 125.0 0C

 Output error % =
12.0m

12.0m - 12.0m x 100%

 = 0%

d) 162.5 0C

 Output error % =
16.0m

15.9m - 16.0m x 100%

 = 0.63%

e) 200.0 0C

 Output error % =
12.0m

19.9m - 20.0m x 100%

 = 0.5%

42

4.2.3 Average

a) 50.0 0C

 Average1 =
2
3.89m 3.8m +

 = 3.845

b) 87.5 0C

 Average2 =
2
7.99m 7.9m +

 = 7.945

c) 125.0 0C

 Average3 =
2
11.98m 12.0m +

 = 11.99

d) 162.5 0C

 Average4 =
2
15.98m 15.9m +

 = 15.94

e) 200.0 0C

 Average5 =
2
19.89m 19.9m +

 = 19.895

43

4.2.4 Standard Deviation

S(x k) =
)1(

1
−n

2
1

)(
−

=
−∑ xxk

j k (3)

a) 50.0 0C

 Standard deviation1 =
)12(

1
−

[]22)845.389.3()845.38.3(−+−

 = 0.00405

b) 87.5 0C

 Standard deviation2 =
)12(

1
−

[]22)945.799.7()945.79.7(−+−

 = 0.00405

c) 125.0 0C

 Standard deviation3 =
)12(

1
−

[]22)99.1198.11()99.110.12(−+−

 = 0.0002

d) 162.5 0C

 Standard deviation4 =
)12(

1
−

[]22)94.1598.15()94.159.15(−+−

 = 0.003

e) 200.0 0C

 Standard deviation5 =
)12(

1
−

[]22)895.1989.19()895.199.19(−+−

 = 0.00005

44

4.3 Uncertainty Evaluation

4.3.1 Uncertainty Due To Repeatability of the Experiment

For determining the uncertainty contribution due to repeatability of experiment,

we shall utilize the experiment results obtained for draft UUT calibration. Choose the

row having the highest deviation between the MSU value and the UUT value. We

calculate the standard deviation by using the formula.

S(x k) =
)1(

1
−n

2
1

)(
−

=
−∑ xxk

j k (4)

The results are collated from the data in Table 4.1. We choose the worst case

standard deviation. The u we are looking for the experimental standard deviation of the

mean s(
−

x). This s(
−

x) is the estimation of the spread of the distribution of the means.

We use a sample size n=2 the formula for standard deviation of mean is;

S(x) =
2

) S(xk =
2

00405.0 = 0.00286378

u1 = 0.00286378 kPa with a degree of freedom v1 = 2-1 =1

4.3.2 Uncertainty Contribution Due To MSU Error

The MSU used in this calibration is the Model: MT220, Digital Manometer

Standard. For the 700kPa range the accuracy specification for this instrument provided

by the manufacturer is the following:

± (0.01% of reading + 0.005% range) (5)

45

For a maximum reading of 200 V and a range of 700 V. Hence the error in MSU

= ± ((0.0001 x 200) + (0.00005 x 700)) V. Therefore the maximum error = a ≡

0.055kPa

The uncertainty contribution due to MSU error is defined as u2 and is given by

2a = 2055.0 = 0.0388909 kPa.

The degree of freedom γ 2
 for this assumed to be ∞ since the manufacturer is

expected to provide the error data transfer a large number of tests.

u2 = 0.0388909 kPa and γ 2
= ∞

4.3.3 Uncertainty Due To UUT Resolution/MSU resolution

For type B uncertainty, we can decide on resolution of MSU or resolution of

UUT. Generally, if the UUT is analog, we will use the resolution of the MSU. If the

UUT is digital, we will use the resolution of digital UUT. The resolution of the UUT

Model EJX110A is using METHOD 1.

Considering the worst case scenario the maximum resolution of EJX110A is

0.06 kPa. The uncertainty u3 is calculated as

u3 = 206.0 = 0.042426 kPa (6)

 We can consider the degree of freedom as ∞

u3 = 0.042426 kPa and γ 3
= ∞

46

4.3.4 Combined Standard Uncertainty, uc

The combined standard uncertainty uc is determined from individual

uncertainties u1 , u2 and u3 by following formula;

uc = ()uuu 2

3

2

2

2

1
++ (7)

 = ()042426.00388909.000286378.0 222 ++

 = 0.0576255

 The effective degree of freedom ve is given by,

ve =

v
u
uc

1

4

1

4

 (8)

ve = 163945.7714 = 163946

 The total uncertainty at any confident level is determined using Student t-

distribution. The coverage factor k is determined from students table. Referring to

Appendix A for value v = 163946≥ 100 and 95.45% confident interval k = 2.00

The confident limits are obtained by formula;

u = uc .k (9)

U = (0.057625) (2.00)

 = ± 0.11525 kPa

 The confident limits in a measurement are determined by the use of calibration

techniques together with statistical principles.

47

4.4 RESULT

4.4.1 Result from plotting graph

 Figure 4.1 shows the MSU value (oC) vs. Actual UUT output (mA). This graph

was plotted by using the five values of the 1st Actual UUT output (mA) with the five

values of the MSU value (oC). The graph was directly proportional.

Figure 4.1: Graph of MSU value (0C) vs. Actual UUT output (mA)

48

Figure 4.2 shows the MSU value (oC) vs. Output error (%). This graph was

plotted by using the five values of the output error (%) with the five values of the MSU

value (oC).The graph was plotted in smooth curve.

Figure 4.2: Graph of MSU value (0C) vs. Output error (%)

49

4.4.2 GUI Using Matlab 7.0

 The Graphical User Interface (GUI) is used as input to give instruction which

position has been selected. This design is focused to be a tool that user friendly. The

software was developed using Matlab application.

 Figure 4.3 shows the design of starting software for this experiment. It called as

Home. In this Home, there are five buttons that are Open Automatic, Open Manual,

Abstract, Credit and Exit. The “Open Automatic” button used to open the Automatic

section. The Automatic section is used when the user wanted to operate the system by

automatic function. The “Open Manual” button used to open the Manual section that

has the manual function. The “Abstract” button is used to open the abstract of this

experiment. It summarized the operation of this system and the equipment that used in

this experiment. The “Exit” button is used to exit this system.

Figure 4.3: The starting software

50

 For the Figure 4.4 shows the Automatic section. It used when the user wanted to

collect the data from the instrument by interface with DAQ card. For example, when the

temperature of RTD at 50oC. The user clicks the “Ok” button to get data from the

instrument. The data that we get in this experiment is the voltage value. The user clicks

the “Convert to Current” button to convert that value into the current. After this, the

“Output Error” button is click to find the output error and can plot the graph after click

the “Graph MSU” button and the “Graph Error” button. The graph also can be saving

after click the “Save Image” button. To find the average value and the standard

deviation, the user can click the “Open Manual” button to transfer the data into the

Manual section.

Figure 4.4: The Automatic section

51

 Figure 4.5 shows the Manual section. This section used when the user wanted to

analysis this experiment by manually. The user needs to enter the value of data in these

forms. Then, the user clicks the “Calculate” button to find the Output Error (%), the

Average (mA) and the standard deviation. After that, the user can plot the graph for the

graph of MSU value (0C) vs. Actual UUT output (mA) and the graph of MSU value

(0C) vs. Output error (%) by click the “Graph Output” button and the “Graph Error”

button.

Figure 4.5: The Manual section

52

4.4.3 The Operation of system

The user entered the values of temperature at lower range and the higher range

in the box “For MSU (oC)” and clicked the “Range MSU” button. The MSU Applied

Value (oC) showed the range of temperatures. Figure 4.6 shows the range MSU.

Figure 4.6: To show the range MSU

53

The user enters the values of 1st Actual UUT output and clicked the “Calculate”

button to find output error %. Figure 4.7 shows the insert of 1st Actual UUT output and

to find output error.

Figure 4.7: Insert value of 1st Actual UUT output and find output error

The user clicks the “Graph Output” button to plot graph 1st Actual UUT output

(mA). The graph shows the MSU value (0C) vs. Actual UUT output (mA). Figure 4.8

shows Plotting Graph output.

Figure 4.8: Plotting Graph output

54

The user clicks the “Graph Error” button to plot graph for Output Error %. The

graph shows the graph of MSU value (0C) vs. Output error (%). Figure 4.9 shows

Plotting Graph output.

Figure 4.9: Plotting Graph output error

The user inserts the 2nd Actual UUT Output and click the “Calculate” button

again to find the Average (mA) and Standard Deviation for this analysis. Figure 4.10

shows to calculate average and standard deviation.

Figure 4.10: To calculate average and standard deviation

55

The user click the Arrow button [>] for calculate the uncertainties of this

analysis. The panel shows the uncertainty panel. The user can enter the value to find the

result of the uncertainty. Figure 4.11 shows the uncertainty panel.

Figure 4.11: Uncertainty panel

56

The result get after the user inserts the data to find the uncertainty result. If the

user get problem for this panel, the user can click at the “info” button to find the

solution, there is some information that can use in this calculation. Figure 4.12 shows

the calculation uncertainty.

Figure 4.12: Calculate uncertainty

57

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

 The development software using Matlab application has been presented in this

project. The system for this experiment is work done and it can interface with the

Advantech PCL-1710HG properly.

 For the basic, the user can identify more about the function of each instrument

that use for this analysis and also know how to find the reading of temperature using

RTD. Otherwise, the user can interface the system with the instrument using DAQ card,

the Advantech PCL-1710HG.

 The system was developing for the educational purpose. So, the user can use this

system to do analysis in the lab. It also suitable uses for the all computer that installed

the Matlab software.

 This system was developed in two way functions. There are in automatic

function and the manual function. For the automatic function, the user can interface the

system with DAQ card to collect the data from the instrument. If the user have problem

with DAQ card, the user can use the manual function. The user need to enter the value

that get from the analysis and then the system will operated to find the result of this

analysis.

58

5.2 Recommendations

 This system recommended that the future development should be considering

for two things which are the instrument part and the software part, GUI Matlab. For this

system, it successful operated. Therefore, there are some add on enhancement for

improve the system. The suggestions that can apply in this system are:

• The software should be create creatively and more attractive ways. This system

will operate smoothly and working properly without any problem related to

instrument part.

• This system will develop for more efficiency and able to work with others

hardware. It can interface with the other DAQ card if the Advantech PCL-

1710HG have problem.

• The Graphical User Interface can be improved by adding many options such as

it can connect with the internet to upload the data in the website. The user can

get the data from the website to do the calculation at other places.

59

REFERENCE

[1] http://en.wikipedia.org/wiki/Resistance_temperature_detector

[2] What is a Resistance Temperature Detector (RTD)?

http://www.omega.com/rtd.html

[3] About Temperature Sensors
http://www.temperatures.com/rtds.html

[4] Application Note: RTD, Thermocouple or Thermistor?

http://www.microdaq.com/accessories/choosing.php

[5] Continuous Resistance Temperature Detector Calibration Using Johnson Noise

 Thermometry, September 2004

http://www.ornl.gov/sci/engineering_science_technology/msd/Personnel/cbritto

n/clb_papers/S47.pdf

60

APPENDIX A

T-distribution Curve Table

Degree of
Freedom

v

Fraction p in percent

68.27* 90.00 95.00 95.45 99.00 99.73*
1 1.84 6.31 12.71 13.97 63.66 235.8
2 1.32 2.92 4.30 4.53 9.92 19.21
3 1.20 2.35 3.18 3.31 5.84 9.92
4 1.14 2.13 2.78 2.87 4.60 6.62
5 1.11 2.02 2.57 2.65 4.03 5.51
6 1.09 1.94 2.45 2.52 3.71 4.90
7 1.08 1.89 2.36 2.43 3.50 4.53
8 1.07 1.86 2.31 2.37 3.36 4.28
9 1.06 1.83 2.26 2.32 3.25 4.09
10 1.05 1.81 2.23 2.28 3.17 3.96

11 1.05 1.80 2.20 2.25 3.11 3.85
12 1.04 1.78 2.18 2.23 3.05 3.76
13 1.04 1.77 2.16 2.21 3.01 3.69
14 1.04 1.76 2.14 2.20 2.98 3.64
15 1.03 1.75 2.13 2.18 2.95 3.59

16 1.03 1.75 2.12 2.17 2.92 3.54
17 1.03 1.74 2.11 2.16 2.90 3.51
18 1.03 1.73 2.10 2.15 2.88 3.48
19 1.03 1.73 2.09 2.14 2.86 3.45
20 1.03 1.72 2.09 2.13 2.85 3.42

25 1.02 1.71 2.06 2.11 2.79 3.33
30 1.02 1.70 2.04 2.09 2.75 3.27
35 1.01 1.70 2.03 2.07 2.72 3.23
40 1.01 1.68 2.02 2.06 2.70 3.20
45 1.01 1.68 2.01 2.06 2.69 3.18

50 1.01 1.68 2.01 2.05 2.68 3.16
100 1.005 1.660 1.984 2.025 2.262 3.077

 1.000 1.645 1.960 2.000 2.576 3.000
*For a quality Z described by a normal distribution with expectation µz and standard
deviation σ, the interval vz ± kσ encompasses ρ = 68.27, 95.45 AND 99.73 percent of
the distribution for k = 1, 2 and 3 respectively.

61

APPENDIX B

PCI-1710 HG Datasheet

62

63

64

APPENDIX C

Coding Program

For Automatic Section

function varargout = Automatic(varargin)
% AUTOMATIC M-file for Automatic.fig
% AUTOMATIC, by itself, creates a new AUTOMATIC or raises the existing
% singleton*.
%
% H = AUTOMATIC returns the handle to a new AUTOMATIC or the handle to
% the existing singleton*.
%
% AUTOMATIC('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in AUTOMATIC.M with the given input
arguments.
%
% AUTOMATIC('Property','Value',...) creates a new AUTOMATIC or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Automatic_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Automatic_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Automatic

% Last Modified by GUIDE v2.5 18-Sep-2008 01:35:45

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Automatic_OpeningFcn, ...

65

 'gui_OutputFcn', @Automatic_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Automatic is made visible.
function Automatic_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Automatic (see VARARGIN)

% Choose default command line output for Automatic
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Automatic wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Automatic_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in start2.
function start2_Callback(hObject, eventdata, handles)
% hObject handle to start2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

66

set(handles.stop2,'visible','on')
set(handles.start2,'visible','off')

% --- Executes on button press in stop2.
function stop2_Callback(hObject, eventdata, handles)
% hObject handle to stop2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.stop2,'visible','off')
set(handles.start2,'visible','on')

% --- Executes on button press in close2.
function close2_Callback(hObject, eventdata, handles)
% hObject handle to close2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close

function start3_Callback(hObject, eventdata, handles)
% hObject handle to start3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of start3 as text
% str2double(get(hObject,'String')) returns contents of start3 as a double

% --- Executes during object creation, after setting all properties.
function start3_CreateFcn(hObject, eventdata, handles)
% hObject handle to start3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in show2.
function show2_Callback(hObject, eventdata, handles)
% hObject handle to show2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get user input from GUI

67

st3 = str2double(get(handles.start3,'String'));
ed3 = str2double(get(handles.end3,'String'));

% Calculate data
v3 = (ed3-st3)/4;
Aa2 = st3+(0*v3);
set(handles.msu12,'string',Aa2);
Bb2 = st3+(1*v3);
set(handles.msu22,'string',Bb2);
Cc2 = st3+(2*v3);
set(handles.msu32,'string',Cc2);
Dd2 = st3+(3*v3);
set(handles.msu42,'string',Dd2);
Ee2 = st3+(4*v3);
set(handles.msu52,'string',Ee2);

function data12_Callback(hObject, eventdata, handles)
% hObject handle to data12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data12 as text
% str2double(get(hObject,'String')) returns contents of data12 as a double

% --- Executes during object creation, after setting all properties.
function data12_CreateFcn(hObject, eventdata, handles)
% hObject handle to data12 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data22_Callback(hObject, eventdata, handles)
% hObject handle to data22 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data22 as text
% str2double(get(hObject,'String')) returns contents of data22 as a double

68

% --- Executes during object creation, after setting all properties.
function data22_CreateFcn(hObject, eventdata, handles)
% hObject handle to data22 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data32_Callback(hObject, eventdata, handles)
% hObject handle to data32 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data32 as text
% str2double(get(hObject,'String')) returns contents of data32 as a double

% --- Executes during object creation, after setting all properties.
function data32_CreateFcn(hObject, eventdata, handles)
% hObject handle to data32 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data42_Callback(hObject, eventdata, handles)
% hObject handle to data42 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data42 as text
% str2double(get(hObject,'String')) returns contents of data42 as a double

% --- Executes during object creation, after setting all properties.
function data42_CreateFcn(hObject, eventdata, handles)

69

% hObject handle to data42 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in ok1.
function ok1_Callback(hObject, eventdata, handles)
% hObject handle to ok1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')
ok1=simout(10)
set(handles.data12,'String',ok1);

% --- Executes on button press in ok2.
function ok2_Callback(hObject, eventdata, handles)
% hObject handle to ok2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')
ok2=simout(10)

70

set(handles.data22,'String',ok2);

% --- Executes on button press in ok3.
function ok3_Callback(hObject, eventdata, handles)
% hObject handle to ok3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')
ok3=simout(10)
set(handles.data32,'String',ok3);

% --- Executes on button press in ok4.
function ok4_Callback(hObject, eventdata, handles)
% hObject handle to ok4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')
ok4=simout(10)
set(handles.data42,'String',ok4);

% --- Executes on button press in ok5.
function ok5_Callback(hObject, eventdata, handles)
% hObject handle to ok5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

71

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')
ok5=simout(10)
set(handles.data52,'String',ok5);

% --- Executes on button press in clear2.
function clear2_Callback(hObject, eventdata, handles)
% hObject handle to clear2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.start3,'string','');
set(handles.end3,'string','');

set(handles.msu12,'string','0');
set(handles.msu22,'string','0');
set(handles.msu32,'string','0');
set(handles.msu42,'string','0');
set(handles.msu52,'string','0');

% --- Executes on button press in error2.
function error2_Callback(hObject, eventdata, handles)
% hObject handle to error2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Data reading from automatic

value1d = str2double(get(handles.data12,'String'));
d1 = (value1d/250);
value2d = str2double(get(handles.data22,'String'));
d2 = (value2d/250);
value3d = str2double(get(handles.data32,'String'));
d3 = (value3d/250);
value4d = str2double(get(handles.data42,'String'));
d4 = (value4d/250);
value5d = str2double(get(handles.data52,'String'));
d5 = (value5d/250);

% Calculate percentage error2
total12 = ((0.004-d1)/(0.004))*100;
set(handles.error12,'string',total12);
total22 = ((0.008-d2)/(0.008))*100;

72

set(handles.error22,'string',total22);
total32 = ((0.012-d3)/(0.012))*100;
set(handles.error32,'string',total32);
total42 = ((0.016-d4)/(0.016))*100;
set(handles.error42,'string',total42);
total52 = ((0.020-d5)/(0.020))*100;
set(handles.error52,'string',total52);

% --- Executes on button press in graphmsu.
function graphmsu_Callback(hObject, eventdata, handles)
% hObject handle to graphmsu (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.graf2)
%Recall data from UUT
a2 = str2double(get(handles.data13,'String'));
b2 = str2double(get(handles.data23,'String'));
c2 = str2double(get(handles.data33,'String'));
d2 = str2double(get(handles.data43,'String'));
e2 = str2double(get(handles.data53,'String'));

st3 = str2double(get(handles.start3,'String'));
ed3 = str2double(get(handles.end3,'String'));

% Calculate data
v3 = (ed3-st3)/4;
Aa2 = st3+(0*v3);
set(handles.msu12,'string',Aa2);
Bb2 = st3+(1*v3);
set(handles.msu22,'string',Bb2);
Cc2 = st3+(2*v3);
set(handles.msu32,'string',Cc2);
Dd2 = st3+(3*v3);
set(handles.msu42,'string',Dd2);
Ee2 = st3+(4*v3);
set(handles.msu52,'string',Ee2);

% Create frequency plot

X = [Aa2 Bb2 Cc2 Dd2 Ee2];
Y = [a2 b2 c2 d2 e2]
plot(X,Y)
xlabel('MSU Value(oC)')
ylabel('Actual UUT Output(mA)')
title('5 Point Calibration')

73

grid on

% --- Executes on button press in Grapherror.
function Grapherror_Callback(hObject, eventdata, handles)
% hObject handle to Grapherror (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.graf2)
%Recall data from UUT
a2 = str2double(get(handles.data13,'String'));
b2 = str2double(get(handles.data23,'String'));
c2 = str2double(get(handles.data33,'String'));
d2 = str2double(get(handles.data43,'String'));
e2 = str2double(get(handles.data53,'String'));

st3 = str2double(get(handles.start3,'String'));
ed3 = str2double(get(handles.end3,'String'));

% Calculate data
v3 = (ed3-st3)/4;
Aa2 = st3+(0*v3);
set(handles.msu12,'string',Aa2);
Bb2 = st3+(1*v3);
set(handles.msu22,'string',Bb2);
Cc2 = st3+(2*v3);
set(handles.msu32,'string',Cc2);
Dd2 = st3+(3*v3);
set(handles.msu42,'string',Dd2);
Ee2 = st3+(4*v3);
set(handles.msu52,'string',Ee2);

% Calculate data

A2 = ((4.0-a2)/4.0)*100;
B2 = ((8.0-b2)/8.0)*100;
C2 = ((12.0-c2)/12.0)*100;
D2 = ((16.0-d2)/16.0)*100;
E2 = ((20.0-e2)/20.0)*100;

% Create frequency plot

%Points in each interval
divider = 20;
X = [Aa2 Bb2 Cc2 Dd2 Ee2];
Y = [A2 B2 C2 D2 E2]

74

%--
%do the magic
%--
m = size(X);
n = m(2);
o = n - 1;
xi = [];
for tel = 1:o
 interval = (X(tel + 1) - X(tel))/(divider);
 xintervals = [X(tel):interval:X(tel + 1)];
 xi = [xi xintervals];
end
%--
%plot the magic
%--
plottools off
yi = interp1(X,Y,xi,'cubic');
plot(X,Y,'o');
hold on;
plot(xi,yi,'r');
hold off;

xlabel('MSU Value(oC)')
ylabel('Error(%)')
title('Error Curve')
grid on

% --- Executes on button press in save2.
function save2_Callback(hObject, eventdata, handles)
% hObject handle to save2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

savePlotWithinGUI(handles.graf2)

% --- Executes on button press in clear3.
function clear3_Callback(hObject, eventdata, handles)
% hObject handle to clear3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

cla(handles.graf2,'reset')

% --- Executes during object creation, after setting all properties.
function mula_CreateFcn(hObject, eventdata, handles)
% hObject handle to mula (see GCBO)

75

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in sim.
function sim_Callback(hObject, eventdata, handles)
% hObject handle to sim (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%simulate the system
set_param(gcs,'Simulationmode','external')
set_param(gcs,'SimulationCommand','connect')
set_param(gcs,'SimulationCommand','start')
set_param(gcs,'SimulationCommand','stop')

function data33_Callback(hObject, eventdata, handles)
% hObject handle to data33 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data33 as text
% str2double(get(hObject,'String')) returns contents of data33 as a double

% --- Executes during object creation, after setting all properties.
function data33_CreateFcn(hObject, eventdata, handles)
% hObject handle to data33 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data43_Callback(hObject, eventdata, handles)
% hObject handle to data43 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data43 as text
% str2double(get(hObject,'String')) returns contents of data43 as a double

% --- Executes during object creation, after setting all properties.

76

function data43_CreateFcn(hObject, eventdata, handles)
% hObject handle to data43 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in convert.
function convert_Callback(hObject, eventdata, handles)
% hObject handle to convert (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Collect data(voltage)

value1d = str2double(get(handles.data12,'String'));
value2d = str2double(get(handles.data22,'String'));
value3d = str2double(get(handles.data32,'String'));
value4d = str2double(get(handles.data42,'String'));
value5d = str2double(get(handles.data52,'String'));

% Convert voltage to current

d1 = (value1d/250)*1000;
set(handles.data13,'string',d1);
d2 = (value2d/250)*1000;
set(handles.data23,'string',d2);
d3 = (value3d/250)*1000;
set(handles.data33,'string',d3);
d4 = (value4d/250)*1000;
set(handles.data43,'string',d4);
d5 = (value5d/250)*1000;
set(handles.data53,'string',d5);

function data13_Callback(hObject, eventdata, handles)
% hObject handle to data13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data13 as text

77

% str2double(get(hObject,'String')) returns contents of data13 as a double

%stores the figure handle of Manual's GUI here
ManualFigureHandle = Manual;

%stores the GUI data from Manual's GUI here
%now we can access any of the data from Manual's GUI!!!!
ManualData = guidata(ManualFigureHandle);

%store the input text from Daniel's GUI
%into the variable daniel_input
%daniel_input = get(danielData.editText_Daniel,'String');

%input text from Daniel's GUI
set(handles.data1,'String',data13);

% --- Executes on button press in save4.
function save4_Callback(hObject, eventdata, handles)
% hObject handle to save4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to specify where to save the settings file
[filename,pathname] = uiputfile('project','Save your GUI settings');

if pathname == 0 %if the user pressed cancelled, then we exit this callback
 return
end
%construct the path name of the save location
saveDataName = fullfile(pathname,filename);

%saves the gui data
hgsave(saveDataName);

% --- Executes on button press in load4.
function load4_Callback(hObject, eventdata, handles)
% hObject handle to load4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to choose which settings to load3
[filename, pathname] = uigetfile('*.fig', 'Choose the GUI settings file to load');

%construct the path name of the file to be loaded
loadDataName = fullfile(pathname,filename);

78

%this is the gui that will be closed once we load3 the new settings
theCurrentGUI = gcf;

%load3 the settings, which creates a new gui
hgload(loadDataName);

%closes the old gui
close(theCurrentGUI);

For Manual Section

function varargout = Manual(varargin)
% MANUAL M-file for Manual.fig
% MANUAL, by itself, creates a new MANUAL or raises the existing
% singleton*.
%
% H = MANUAL returns the handle to a new MANUAL or the handle to
% the existing singleton*.
%
% MANUAL('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in MANUAL.M with the given input arguments.
%
% MANUAL('Property','Value',...) creates a new MANUAL or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before Manual_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Manual_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Manual

% Last Modified by GUIDE v2.5 18-Sep-2008 01:33:55
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @Manual_OpeningFcn, ...
 'gui_OutputFcn', @Manual_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);

79

if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Manual is made visible.
function Manual_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to Manual (see VARARGIN)

% Choose default command line output for Manual
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Manual wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = Manual_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function data1_Callback(hObject, eventdata, handles)
% hObject handle to data1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data1 as text
% str2double(get(hObject,'String')) returns contents of data1 as a double
data1 = str2double(get(hObject, 'String'));

80

if isnan(data1)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data1_CreateFcn(hObject, eventdata, handles)
% hObject handle to data1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data2_Callback(hObject, eventdata, handles)
% hObject handle to data2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data2 as text
% str2double(get(hObject,'String')) returns contents of data2 as a double
data2 = str2double(get(hObject, 'String'));
if isnan(data2)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data2_CreateFcn(hObject, eventdata, handles)
% hObject handle to data2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

81

function data3_Callback(hObject, eventdata, handles)
% hObject handle to data3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data3 as text
% str2double(get(hObject,'String')) returns contents of data3 as a double
data3 = str2double(get(hObject, 'String'));
if isnan(data3)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data3_CreateFcn(hObject, eventdata, handles)
% hObject handle to data3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data4_Callback(hObject, eventdata, handles)
% hObject handle to data4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data4 as text
% str2double(get(hObject,'String')) returns contents of data4 as a double
data4 = str2double(get(hObject, 'String'));
if isnan(data4)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data4_CreateFcn(hObject, eventdata, handles)
% hObject handle to data4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

82

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data5_Callback(hObject, eventdata, handles)
% hObject handle to data5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data5 as text
% str2double(get(hObject,'String')) returns contents of data5 as a double
data5 = str2double(get(hObject, 'String'));
if isnan(data5)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data5_CreateFcn(hObject, eventdata, handles)
% hObject handle to data5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function start1_Callback(hObject, eventdata, handles)
% hObject handle to start1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of start1 as text
% str2double(get(hObject,'String')) returns contents of start1 as a double

start1 = str2double(get(hObject, 'String'));
if isnan(start1)
 set(hObject, 'String', '');

83

 errordlg(' Value Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function start1_CreateFcn(hObject, eventdata, handles)
% hObject handle to start1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function end1_Callback(hObject, eventdata, handles)
% hObject handle to end1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of end1 as text
% str2double(get(hObject,'String')) returns contents of end1 as a double

end1 = str2double(get(hObject, 'String'));
if isnan(end1)
 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function end1_CreateFcn(hObject, eventdata, handles)
% hObject handle to end1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in show1.

84

function show1_Callback(hObject, eventdata, handles)
% hObject handle to show1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI
f = str2double(get(handles.start1,'String'));
g = str2double(get(handles.end1,'String'));

% Calculate data

h = (g-f)/4;
Aa = f+(0*h);
set(handles.msu1,'string',Aa);
Bb = f+(1*h);
set(handles.msu2,'string',Bb);
Cc = f+(2*h);
set(handles.msu3,'string',Cc);
Dd = f+(3*h);
set(handles.msu4,'string',Dd);
Ee = f+(4*h);
set(handles.msu5,'string',Ee);

% --- Executes on button press in plot1.
function plot1_Callback(hObject, eventdata, handles)
% hObject handle to plot1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI
a = str2double(get(handles.data1,'String'));
b = str2double(get(handles.data2,'String'));
c = str2double(get(handles.data3,'String'));
d = str2double(get(handles.data4,'String'));
e = str2double(get(handles.data5,'String'));

% Recall data from MSU
f = str2double(get(handles.start1,'String'));
g = str2double(get(handles.end1,'String'));

h = (g-f)/4;
Aa = f+(0*h);
set(handles.msu1,'string',Aa);
Bb = f+(1*h);
set(handles.msu2,'string',Bb);
Cc = f+(2*h);

85

set(handles.msu3,'string',Cc);
Dd = f+(3*h);
set(handles.msu4,'string',Dd);
Ee = f+(4*h);
set(handles.msu5,'string',Ee);

% Calculate data

A = ((4.0-a)/4.0)*100;
B = ((8.0-b)/8.0)*100;
C = ((12.0-c)/12.0)*100;
D = ((16.0-d)/16.0)*100;
E = ((20.0-e)/20.0)*100;

% Create frequency plot

%Points in each interval
divider = 20;
X = [Aa Bb Cc Dd Ee];
Y = [A B C D E]
%--
%do the magic
%--
m = size(X);
n = m(2);
o = n - 1;
xi = [];
for tel = 1:o
 interval = (X(tel + 1) - X(tel))/(divider);
 xintervals = [X(tel):interval:X(tel + 1)];
 xi = [xi xintervals];
end
%--
%plot the magic
%--
plottools off
yi = interp1(X,Y,xi,'cubic');
plot(X,Y,'o');
hold on;
plot(xi,yi,'r');
hold off;

xlabel('MSU Value(oC)')
ylabel('Error(%)')
title('Error Curve')
grid on

86

% --- Executes on button press in cal1.
function cal1_Callback(hObject, eventdata, handles)
% hObject handle to cal1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user actual UUT from GUI

value1a = str2double(get(handles.uut1,'String'));
value1b = str2double(get(handles.data1,'String'));
value2a = str2double(get(handles.uut2,'String'));
value2b = str2double(get(handles.data2,'String'));
value3a = str2double(get(handles.uut3,'String'));
value3b = str2double(get(handles.data3,'String'));
value4a = str2double(get(handles.uut4,'String'));
value4b = str2double(get(handles.data4,'String'));
value5a = str2double(get(handles.uut5,'String'));
value5b = str2double(get(handles.data5,'String'));

% Calculate percentage error

total1 = ((value1a-value1b)/(value1a))*100;
set(handles.error1,'string',total1);
total2 = ((value2a-value2b)/(value2a))*100;
set(handles.error2,'string',total2);
total3 = ((value3a-value3b)/(value3a))*100;
set(handles.error3,'string',total3);
total4 = ((value4a-value4b)/(value4a))*100;
set(handles.error4,'string',total4);
total5 = ((value5a-value5b)/(value5a))*100;
set(handles.error5,'string',total5);

% Calculate average

value1b = str2double(get(handles.data1,'String'));
value1c = str2double(get(handles.data6,'String'));
total1bc = ((value1b+value1c)/2);
set(handles.ave1,'string',total1bc);
value2b = str2double(get(handles.data2,'String'));
value2c = str2double(get(handles.data7,'String'));
total2bc = ((value2b+value2c)/2);
set(handles.ave2,'string',total2bc);
value3b = str2double(get(handles.data3,'String'));
value3c = str2double(get(handles.data8,'String'));
total3bc = ((value3b+value3c)/2);

87

set(handles.ave3,'string',total3bc);
value4b = str2double(get(handles.data4,'String'));
value4c = str2double(get(handles.data9,'String'));
total4bc = ((value4b+value4c)/2);
set(handles.ave4,'string',total4bc);
value5b = str2double(get(handles.data5,'String'));
value5c = str2double(get(handles.data10,'String'));
total5bc = ((value5b+value5c)/2);
set(handles.ave5,'string',total5bc);

%calculate std

value1b = str2double(get(handles.data1,'String'));
value1c = str2double(get(handles.data6,'String'));
total1bc = ((value1b+value1c)/2);
standard1 = (value1b-total1bc)^2+(value1c-total1bc)^2;
set(handles.std1,'string',standard1);

value2b = str2double(get(handles.data2,'String'));
value2c = str2double(get(handles.data7,'String'));
total2bc = ((value2b+value2c)/2);
standard2 = (value2b-total2bc)^2+(value2c-total2bc)^2;
set(handles.std2,'string',standard2);

value3b = str2double(get(handles.data3,'String'));
value3c = str2double(get(handles.data8,'String'));
total3bc = ((value3b+value3c)/2);
standard3 = (value3b-total3bc)^2+(value3c-total3bc)^2;
set(handles.std3,'string',standard3);

value4b = str2double(get(handles.data4,'String'));
value4c = str2double(get(handles.data9,'String'));
total4bc = ((value4b+value4c)/2);
standard4 = (value4b-total4bc)^2+(value4c-total4bc)^2;
set(handles.std4,'string',standard4);

value5b = str2double(get(handles.data5,'String'));
value5c = str2double(get(handles.data10,'String'));
total5bc = ((value5b+value5c)/2);
standard5 = (value5b-total5bc)^2+(value5c-total5bc)^2;
set(handles.std5,'string',standard5);

function edit11_Callback(hObject, eventdata, handles)
% hObject handle to data2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

88

% Hints: get(hObject,'String') returns contents of data2 as text
% str2double(get(hObject,'String')) returns contents of data2 as a double

% --- Executes during object creation, after setting all properties.
function edit11_CreateFcn(hObject, eventdata, handles)
% hObject handle to data2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edit12_Callback(hObject, eventdata, handles)
% hObject handle to data3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data3 as text
% str2double(get(hObject,'String')) returns contents of data3 as a double

% --- Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)
% hObject handle to data3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edit13_Callback(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit13 as text

89

% str2double(get(hObject,'String')) returns contents of edit13 as a double

% --- Executes during object creation, after setting all properties.
function edit13_CreateFcn(hObject, eventdata, handles)
% hObject handle to edit13 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function edit14_Callback(hObject, eventdata, handles)
% hObject handle to data5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data5 as text
% str2double(get(hObject,'String')) returns contents of data5 as a double

% --- Executes during object creation, after setting all properties.
function edit14_CreateFcn(hObject, eventdata, handles)
% hObject handle to data5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in qt.
function qt_Callback(hObject, eventdata, handles)
% hObject handle to qt (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

% --- Executes on button press in cre1.

90

function cre1_Callback(hObject, eventdata, handles)
% hObject handle to cre1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.txt1,'string','Idea and progamming by Faiz EA05023');
pause(5);
set(handles.txt1,'string','');

function data6_Callback(hObject, eventdata, handles)
% hObject handle to data6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data6 as text
% str2double(get(hObject,'String')) returns contents of data6 as a double
data6 = str2double(get(hObject, 'String'));
if isnan(data6)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data6_CreateFcn(hObject, eventdata, handles)
% hObject handle to data6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data8_Callback(hObject, eventdata, handles)
% hObject handle to data8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data8 as text
% str2double(get(hObject,'String')) returns contents of data8 as a double
data8 = str2double(get(hObject, 'String'));
if isnan(data8)
 set(hObject, 'String', '');

91

 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data8_CreateFcn(hObject, eventdata, handles)
% hObject handle to data8 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data10_Callback(hObject, eventdata, handles)
% hObject handle to data10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data10 as text
% str2double(get(hObject,'String')) returns contents of data10 as a double
data10 = str2double(get(hObject, 'String'));
if isnan(data10)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function data10_CreateFcn(hObject, eventdata, handles)
% hObject handle to data10 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data7_Callback(hObject, eventdata, handles)
% hObject handle to data7 (see GCBO)

92

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data7 as text
% str2double(get(hObject,'String')) returns contents of data7 as a double
data7 = str2double(get(hObject, 'String'));
if isnan(data7)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

function data9_Callback(hObject, eventdata, handles)
% hObject handle to data9 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of data9 as text
% str2double(get(hObject,'String')) returns contents of data9 as a double
data9 = str2double(get(hObject, 'String'));
if isnan(data9)
 set(hObject, 'String', '');
 errordlg(' Input Must Be A Number !!','Error');
end

% --- Executes on button press in gra1.
function gra1_Callback(hObject, eventdata, handles)
% hObject handle to gra1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Recall data from UUT
a = str2double(get(handles.data1,'String'));
b = str2double(get(handles.data2,'String'));
c = str2double(get(handles.data3,'String'));
d = str2double(get(handles.data4,'String'));
e = str2double(get(handles.data5,'String'));

% Recall data from MSU
f = str2double(get(handles.start1,'String'));
g = str2double(get(handles.end1,'String'));

h = (g-f)/4;
Aa = f+(0*h);
set(handles.msu1,'string',Aa);
Bb = f+(1*h);
set(handles.msu2,'string',Bb);

93

Cc = f+(2*h);
set(handles.msu3,'string',Cc);
Dd = f+(3*h);
set(handles.msu4,'string',Dd);
Ee = f+(4*h);
set(handles.msu5,'string',Ee);

% Create frequency plot

X = [Aa Bb Cc Dd Ee];
Y = [a b c d e]
plot(X,Y)
xlabel('MSU Value(oC)')
ylabel('Actual UUT Output(mA)')
title('5 Point Calibration')
grid on

% --- Executes on button press in cal2.
function cal2_Callback(hObject, eventdata, handles)
% hObject handle to cal2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate u1
wstandard = str2double(get(handles.wstd,'String'));
uncert1 = (wstandard/sqrt(2));
set(handles.u1,'String',uncert1);

%Calculate DOF
dof1 = 2-1;
set(handles.dof1,'String',dof1);

% --- Executes on button press in cle2.
function cle2_Callback(hObject, eventdata, handles)
% hObject handle to cle2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.wstd,'String','');
set(handles.u1,'String','0');
set(handles.dof1,'String','0');

function read1_Callback(hObject, eventdata, handles)
% hObject handle to read1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

94

% Hints: get(hObject,'String') returns contents of read1 as text
% str2double(get(hObject,'String')) returns contents of read1 as a double

read1 = str2double(get(hObject, 'String'));
if isnan(read1)
 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function read1_CreateFcn(hObject, eventdata, handles)
% hObject handle to read1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function range1_Callback(hObject, eventdata, handles)
% hObject handle to range1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of range1 as text
% str2double(get(hObject,'String')) returns contents of range1 as a double

range1 = str2double(get(hObject, 'String'));
if isnan(range1)
 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function range1_CreateFcn(hObject, eventdata, handles)
% hObject handle to range1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

95

if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in calcu2.
function calcu2_Callback(hObject, eventdata, handles)
% hObject handle to calcu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in cleu2.
function cleu2_Callback(hObject, eventdata, handles)
% hObject handle to cleu2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in back.
function back_Callback(hObject, eventdata, handles)
% hObject handle to back (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.graf,'visible','on')
set(handles.uncpanel,'visible','off')

% --- Executes on button press in forward.
function forward_Callback(hObject, eventdata, handles)
% hObject handle to forward (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.graf,'visible','off')
set(handles.uncpanel,'visible','on')

function wmr_Callback(hObject, eventdata, handles)
% hObject handle to wmr (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of wmr as text
% str2double(get(hObject,'String')) returns contents of wmr as a double

wmr = str2double(get(hObject, 'String'));
if isnan(wmr)

96

 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

function un1_Callback(hObject, eventdata, handles)
% hObject handle to un1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of un1 as text
% str2double(get(hObject,'String')) returns contents of un1 as a double

un1 = str2double(get(hObject, 'String'));
if isnan(un1)
 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

function un2_Callback(hObject, eventdata, handles)
% hObject handle to un2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of un2 as text
% str2double(get(hObject,'String')) returns contents of un2 as a double

un2 = str2double(get(hObject, 'String'));
if isnan(un2)
 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

function un3_Callback(hObject, eventdata, handles)
% hObject handle to un3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'String') returns contents of un3 as text
% str2double(get(hObject,'String')) returns contents of un3 as a double

un3 = str2double(get(hObject, 'String'));
if isnan(un3)
 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

% --- Executes on button press in cal3.

97

function cal3_Callback(hObject, eventdata, handles)
% hObject handle to cal3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate u2
reading = str2double(get(handles.read1,'String'));
range = str2double(get(handles.range1,'String'));
maxerror = ((0.0001*reading)+(0.00005*range));
uncert2 = (maxerror/sqrt(2));
set(handles.u2,'String',uncert2);

%Calculate DOF
dof2 = 2/0;
set(handles.dof2,'String',dof2);

% --- Executes on button press in cle3.
function cle3_Callback(hObject, eventdata, handles)
% hObject handle to cle3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.read1,'String','');
set(handles.range1,'String','');
set(handles.u2,'String','0');
set(handles.dof2,'String','0');

% --- Executes on button press in cal4.
function cal4_Callback(hObject, eventdata, handles)
% hObject handle to cal4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate u3
wmaxres = str2double(get(handles.wmr,'String'));
uncert3 = (wmaxres/sqrt(2));
set(handles.u3,'String',uncert3);

%Calculate DOF
dof3 = 2/0;
set(handles.dof3,'String',dof3);

% --- Executes on button press in cle4.
function cle4_Callback(hObject, eventdata, handles)
% hObject handle to cle4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

98

% handles structure with handles and user data (see GUIDATA)

set(handles.wmr,'String','');
set(handles.u3,'String','0');
set(handles.dof3,'String','0');

% --- Executes on button press in cal5.
function cal5_Callback(hObject, eventdata, handles)
% hObject handle to cal5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate uc
unc1 = str2double(get(handles.un1,'String'));
unc2 = str2double(get(handles.un2,'String'));
unc3 = str2double(get(handles.un3,'String'));
cmb = sqrt((unc1^2)+(unc2^2)+(unc3^2));
set(handles.uc,'String',cmb);

%Calculate Ve

Ve = (cmb^4)/((unc1^4)/(2-1));
set(handles.ve,'String',Ve);

% --- Executes on button press in cle5.
function cle5_Callback(hObject, eventdata, handles)
% hObject handle to cle5 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.un1,'String','');
set(handles.un2,'String','');
set(handles.un3,'String','');
set(handles.uc,'String','0');
set(handles.ve,'String','0');

function K_Callback(hObject, eventdata, handles)
% hObject handle to K (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of K as text
% str2double(get(hObject,'String')) returns contents of K as a double

K = str2double(get(hObject, 'String'));
if isnan(K)

99

 set(hObject, 'String', '');
 errordlg(' Value Must Be A Number !!','Error');
end

% --- Executes during object creation, after setting all properties.
function K_CreateFcn(hObject, eventdata, handles)
% hObject handle to K (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
 set(hObject,'BackgroundColor','white');
else
 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in cle6.
function cle6_Callback(hObject, eventdata, handles)
% hObject handle to cle6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.K,'String','');
set(handles.u,'String','0');

% --- Executes on button press in cal6.
function cal6_Callback(hObject, eventdata, handles)
% hObject handle to cal6 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate U
unc1 = str2double(get(handles.un1,'String'));
unc2 = str2double(get(handles.un2,'String'));
unc3 = str2double(get(handles.un3,'String'));
cmb = sqrt((unc1^2)+(unc2^2)+(unc3^2));
k = str2double(get(handles.K,'String'));
U = cmb*k;
set(handles.u,'String',U);

% --- Executes on button press in save.
function save_Callback(hObject, eventdata, handles)
% hObject handle to save (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

100

% handles structure with handles and user data (see GUIDATA)

savePlotWithinGUI(handles.graf)

% --- Executes on button press in experiment.
function experiment_Callback(hObject, eventdata, handles)
% hObject handle to experiment (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in Save3.
function Save3_Callback(hObject, eventdata, handles)
% hObject handle to Save3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to specify where to save the settings file
[filename,pathname] = uiputfile('project','Save your GUI settings');

if pathname == 0 %if the user pressed cancelled, then we exit this callback
 return
end
%construct the path name of the save location
saveDataName = fullfile(pathname,filename);

%saves the gui data
hgsave(saveDataName);

% --- Executes on button press in Load3.
function Load3_Callback(hObject, eventdata, handles)
% hObject handle to Load3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to choose which settings to load3
[filename, pathname] = uigetfile('*.fig', 'Choose the GUI settings file to load');

%construct the path name of the file to be loaded
loadDataName = fullfile(pathname,filename);

%this is the gui that will be closed once we load3 the new settings
theCurrentGUI = gcf;

%load3 the settings, which creates a new gui
hgload(loadDataName);

101

%closes the old gui
close(theCurrentGUI);

% --- Executes on button press in dataA.
function dataA_Callback(hObject, eventdata, handles)
% hObject handle to dataA (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%stores the figure handle of Automatic's GUI here
AutomaticFigureHandle = Automatic;

%stores the GUI data from Automatic's GUI here
%now we can access any of the data from Automatic's GUI!!!!
AutomaticData = guidata(AutomaticFigureHandle);

%store the input text from Automatic's GUI
%into the variable Automatic_input
Automatic1_input = get(AutomaticData.data13,'String');
Automatic2_input = get(AutomaticData.data23,'String');
Automatic3_input = get(AutomaticData.data33,'String');
Automatic4_input = get(AutomaticData.data43,'String');
Automatic5_input = get(AutomaticData.data53,'String');
Automatic6_input = get(AutomaticData.start3,'String');
Automatic7_input = get(AutomaticData.end3,'String');

%set the static text on Manual's GUI to match the
%input text from Automatic's GUI
set(handles.data1,'String',Automatic1_input);
set(handles.data2,'String',Automatic2_input);
set(handles.data3,'String',Automatic3_input);
set(handles.data4,'String',Automatic4_input);
set(handles.data5,'String',Automatic5_input);
set(handles.start1,'String',Automatic6_input);
set(handles.end1,'String',Automatic7_input);

Features

DAQ Cards

Specifications
Analog Input

Channels	 16	single-ended/	8	differential	(SW	programmable)
Resolution	 12	bits
Max. Sampling Rate* 100	kS/s	
FIFO Size	 4096	samples
Overvoltage Protection ±30Vp-p
Input Impedance	 1	GΩ
Sampling Modes	 Software,	onboard	programmable	pacer,	or	external
Input Range	 (V, software programmable)

PCI-1710/1710L
Bipolar ±10 ±5 ±2.5	 ±1.25 ±0.625
Unipolar - 0	~	10 0	~	5 0	~	2.5 	0	~	1.25
Accuracy (% of FSR ±1LSB) 0.1 0.1 0.2 0.2 0.4

PCI-1710HG/1710HGL
Bipolar ±10 ±5 ±1	 ±0.5 ±0.1 ±0.05 ±0.01 ±0.005
Unipolar - 0	~	10 - 0	~	1 - 0	~	0.1 - 0	~	0.01
Accuracy
(% of FSR
±1LSB)

0.1 0.1 0.2	 0.2	 0.2	 0.2	 0.4 0.4

Maximum Sampling Rate	 (S/s,	depending	on	PGIA	setting	time)

Model Gain Max. Sampling Rate
PCI-1710/1710L 0.5,	1,	2,	4,	8 100	KS/s

PCI-1710HG/1710HGL

0.5,	1 100	KS/s
5,	10 35	KS/s

20,	100 7	KS/s
500,	1000 770	S/s

*Note:
The	sampling	rate	and	throughput	depends	on	the	computer	hardware	architecture	and	
software	environment.	The	rates	may	vary	due	to	programming	language,	code	efficiency,	
CPU	utilization	and	so	on.

PCI-1710
PCI-1710HG

16	single-ended	or	8	differential	or	a	combination	of	analog	inputs

12-bit	A/D	converter,	with	up	to	100	kHz	sampling	rate

Programmable	gain

Automatic	channel/gain	scanning

Onboard	FIFO	memory	(4096	samples)

Two	12-bit	analog	output	channels	(PCI-1710/1710HG	only)

16	digital	inputs	and	16	digital	outputs

Onboard	programmable	counter

BoardID™	switch

100 kS/s, 12-bit, 16-ch PCI Multifunction
Card
100 kS/s, 12-bit, 16-ch PCI Multifunction
Card with High Gain

Analog Output (PCI-1710/1710HG only)
Channels	 2
Resolution	 12	bits
Output Rate	 Static	update
Output Range	 (V, software programmable)

Internal Reference Unipolar
0	~	+5	V	@	-5	V

0	~	+10	V	@	-10	V
External Reference 0	~	+x	V	@	-x	V	(-10	≤	x	≤ 10)

Slew Rate	 10	V/ms
Driving Capability	 3	mA
Operation Mode	 Software	polling
Accuracy	 INLE:	±1/2	LSB,	DNLE:	±1/2	LSB

Digital Input
Channels	 16	
Compatibility	 5	V/TTL
Input Voltage	 Logic	0:	0.8	V	max.	

Logic	1:	2.0	V	min.

Digital Output
Channels	 16
Compatibility	 5	V/TTL
Output Voltage	 Logic	0:	0.4	V	max.	

Logic	1:	2.4	V	min.	
Output Capability	 Sink:	8.0	mA	@	0.8	V	

Source:	-0.4	mA	@	2.0	V

Pacer/Counter
Channels	 1
Resolution	 16	bits
Compatibility	 5	V/TTL
Max. Input Frequency	 1	MHz

Introduction
The	PCI-1710	Series	are	multifunction	cards	for	the	PCI	bus.	Their	advanced	circuit	design	provides	higher	quality	and	more	functions,	including	the	five	most	desired	measurement	
and	control	functions:	12-bit	A/D	conversion,	D/A	conversion,	digital	input,	digital	output,	and	counter/timer.

www.advantech.com/productsOnline Download

Specifications Continued
General

Bus Type	 PCI	V2.2
I/O Connector	 SCSI-68P	female	x	1
Dimensions (L x H)	 175	x	100	mm	(6.9"	x	3.9")
Power Consumption	 Typical:	5	V	@	850	mA	

Max:	5	V	@	1.0	A
Operating Temperature	 0	~	60°	C	(32	~	140°	F)	(refer	to	IEC	68-2-1,	2)
Storing Temperature	 -20	~	70°	C	(-4	~	158°	F)
Storing Humidity	 5	~	95%	RH	non-condensing	(refer	to	IEC	68-2-3)

Ordering Information
PCI-1710	 100	kS/s,	12-bit	multifunction	card
PCI-1710L	 100	kS/s,	12-bit	multifunction	card	without	AO
PCI-1710HG	 100	kS/s,	12-bit	high-gain	multifunction	card
PCI-1710HGL	 100	kS/s,	12-bit	high-gain	multifunction	card	without	

AO
PCLD-8710	 SCSI-68	wiring	terminal	w/CJC,	DIN-rail	mount
PCL-10168-1	 SCSI-68	Shielded	Cable,	1	m
PCL-10168-2	 SCSI-68	Shielded	Cable,	2	m
ADAM-3968	 SCSI-68	wiring	terminal,	DIN-rail	mount

PCI-1710
PCI-1710HG

Pin Assignments

