UNIVERSITI MALAYSIA PAHANG

BORANG PENGESAHAN STATUS TESIS*

COMPUTER BASED INSTRUMENTATION SYSTEM FOR

TEMPERATURE MEASUREMENT USING RTD IN MATLAB
SESI PENGAJIAN:__2007/2008

Saya FAIZ BIN MOHD ZABRI (860209-43-5145)
(HURUF BESAR)

mengaku membenarkan tesis (Sarjana Muda/Sarjana /BektorFalsafah)* ini disimpan di
Perpustakaan dengan syarat-syarat kegunaan seperti berikut:

1. Tesis adalah hakmilik Universiti Malaysia Pahang (UMP).

2. Perpustakaan dibenarkan membuat salinan untuk tujuan pengajian sahaja.

3. Perpustakaan dibenarkan membuat salinan tesis ini sebagai bahan pertukaran antara institusi
pengajian tinggi.
**Sjla tandakan (V)

(Mengandungi maklumat yang berdarjah keselamatan
SULIT atau kepentingan Malaysia seperti yang termaktub
di dalam AKTA RAHSIA RASMI 1972)

TERHAD (Mengandungi maklumat TERHAD yang telah ditentukan
oleh organisasi/badan di mana penyelidikan dijalankan)

TIDAK TERHAD

Disahkan oleh:

(TANDATANGAN PENULIS) (TANDATANGAN PENYELIA)
Alamat Tetap:
1764 BAGAN JERMAL, MOHD ASHRAF BIN AHMAD

12300 BUTTERWORTH, (Nama Penyelia)
PULAU PINANG

Tarikh: Tarikh: :

CATATAN: * Potong yang tidak berkenaan.

** Jika tesis ini SULIT atau TERHAD, sila lampirkan surat daripada pihak
berkuasa/organisasi berkenaan dengan menyatakan sekali tempoh tesis ini perlu
dikelaskan sebagai atau TERHAD.

. Tesis dimaksudkan sebagai tesis bagi ljazah doktor Falsafah dan Sarjana secara
Penyelidikan, atau disertasi bagi pengajian secara kerja kursus dan
penyelidikan, atau Laporan Projek Sarjana Muda (PSM).

COMPUTER BASED INSTRUMENTATION SYSTEM FOR TEMPERATURE
MEASUREMENT USING RTD IN MATLAB APPLICATION

FAIZ BIN MOHD ZABRI

This thesis is submitted as partial fulfillment of the requirements for the award of the
Bachelor of Electrical Engineering (Hons.) (Electronics)

Faculty of Electrical & Electronics Engineering

Universiti Malaysia Pahang

NOVEMBER, 2008

DECLARATION

“All the trademark and copyrights use herein are property of their respective owner.
References of information from other sources are quoted accordingly; otherwise the

information presented in this report is solely work of the author.”

Signature

Author : EAIZ BIN MOHD ZABRI

Date

DEDICATION

Specially dedicate to
My beloved family and those people who have guided and inspired me

throughout my journey of education.

ACKNOWLEDGEMENT

In the name of Allah S.W.T, the most Gracious, the ever Merciful, Praise is to
Allah, Lord of the universe and Peace and Prayers be upon His final Prophet and

Messenger Muhammad S.A.W.

First, 1 would like to express my acknowledgment and gratitude to my
supervisor, Miss Najidah Binti Hambali and also my co-supervisor, Mr Mohd Ashraf
Bin Ahmad for encouragement, advice, information, motivation, guidance and co-

operation that been given throughout the progress and to complete this project.
My sincere appreciation also extends to all my colleagues and others who have
provided assistance at various occasions. Their views and tips are useful indeed.

Unfortunately, it is not possible to list all of them in this limited space.

Finally, special thanks extended to my beloved family who had given me moral

support and prayed for my success.

Thank you,

Faiz Bin Mohd Zabri

ABSTRACT

This project present the computer based instrumentation system designed for
temperature measurement using Resistance Temperature Detector, RTD. This system
operated by using Matlab application. This project were consists of 3 parts that are for
instrument part, the hardware and the software. For instrument part, the Resistance
Temperature Detector, RTD is called temperature sensitive resistor. It is positive
temperature coefficient device which mean that the resistance increase with temperature.
The Digital Thermometer 7563 was used for read the input value of temperature and
also used as temperature reference. The function of Yokogawa Temperature Transmitter
PT 100 is to change the value of temperature to current and transmitted to ammeter. The
hardware used to interface the temperature instrumentation with the software (Matlab).
The Advantech PCI-1710HG was used as the hardware to interface from 2793 Decade
Resistance Box to the Matlab application for analysis the data and find the result. The
system will be operated by using GUI Matlab. Graphical User Interface, GUI is the type
of user interface which allows people to interact with electronic devices like computers.
This system is compatible software and can work with Advantech PCI-1710HG. The
user can use this system in two ways that in automatic function or in manual function.
This system was developed to find actual UUT output, output error, average, standard

deviation and uncertainty. It also can plot graph and save the picture.

Vi

ABSTRAK

Projek ini memperkenalkan sistem peralatan berasaskan komputer direka untuk
mengukur suhu dengan menggunakan RTD. Sistem ini beroperasi dengan menggunakan
aplikasi Matlab. Projek ini terdiri daripada 3 bahagian iaitu bahagian peralatan, bahagian
perkakas dan bahagian perisian. Untuk bahagian peralatan, “Resistance Temperature
Detector”, RTD dikenali sebagai perintang peka suhu. la adalah alat pekali suhu yg jelas
di mana rintangan yang meningkat bersama suhu. Alat “Digital Thermometer 7563”
digunakan untuk membaca nilai data kemasukan suhu dan juga digunakan sebagai suhu
rujukan. Kegunaan “Yokogawa Temperature Transmitter PT 100" adalah untuk
menukar nilai suhu kepada nilai arus dan dipancarkan ke meter arus. Perkakas
digunakan untuk mengantaramuka di antara peralatan suhu dengan perisian Matlab.
Advantech PCI-1710HG digunakan sebagai perkakas mengantaramukakan daripada
“2793 Decade Resistance Box” ke aplikasi Matlab untuk menganalisis data dan
mendapatkan keputusan. Sistem ini boleh beroperasi dengan menggunakan GUI Matlab.
Grafikal Pengantaramuka Pengguna, GUI adalah sejenis pengantaramuka pengguna di
mana membenarkan manusia berinteraksi dengan peralatan elektronik seperti Komputer.
Sistem ini merupakan perisian yang bersesuaian dan boleh bekerja dengan Advantech
PCI-1710HG. Pengguna boleh menggunakan sistem ini dalam dua cara iaitu dengan
fungsi automatic atau fungsi manual. Sistem ini direka untuk mencari keluaran “actual
UUT?”, keluaran ralat, purata, sisihan piawai dan ketidakpastian. la juga boleh memplot

graf dan menyimpan gambar graf.

CHAPTER

TABLE OF CONTENTS
TITLE
Declaration
Dedication

Acknowledgement
Abstract

Abstrak

Table of contents
List of tables

List of figures

List of abbreviations

List of appendices

INTRODUCTION

1.1 Overview
1.2 Problem statement
1.2.1 Current situation
1.2.2 Problem solution
1.3 Objective
1.4 Scope

PAGE

Vi

vii

Xi
Xiii

Xiv

A oW NN DD DN

vii

LITERATURE REVIEW

2.1 Resistance Temperature Detector, RTD
2.2 Continuous Resistance Temperature Detector

Calibration Using Johnson Noise Thermometry.

METHODOLOGY

3.1 Instrument part
3.1.1 ISOTECH Jupiter 650B
3.1.2 Digital Thermometer 7563
3.1.3 Yokogawa Temperature
Transmitter, PT100
3.1.4 HART 375 Field Communicator
3.1.5 Resistance Temperature
Detector, RTD
3.2 Hardware part
3.2.1 Advantech PCI-1710HG
3.2.2 Common specifications
3.2.3 Pin Assignment
3.3 Software part
3.3.1 Real Time Windows Target
Setup
3.3.2 Installation and configuration
3.3.3 Procedure of Creating Real
Time Application
3.3.4 Creating Graphical User Interfaces

e}

10
11
11

12
12

13
13
13
14
15
15

17
21

34

viii

RESULT AND DISCUSSION

4.1 Result
4.2 Calculations
4.2.1 Desired UUT output
4.2.2 Output error (%)
4.2.3 Average
4.2.4 Standard deviation
4.3 Uncertainty evaluation
4.3.1 Uncertainty due to repeatability
Of the experiment
4.3.2 Uncertainty contribution due to
MSU error
4.3.3 Uncertainty due to UUT
Resolution/MSU resolution
4.3.4 Combined standard uncertainty
4.4 Result
4.4.1 Result from plotting graph
4.4.2 GUI Using Matlab 7.0
4.4.3 The Operation of system

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

39

39
40
40
41
42
43
44
44

44

45

46

47

47

49
52

57

57
58

59

TABLE NO.

4.1

LIST OF TABLES

TITLE

Five-point calibration of temperature transmitter

PAGE

39

FIGURE NO.

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

LIST OF FIGURES

TITLE

Instrumentation of temperature measurement
ISOTECH Jupiter 650B

Digital Thermometer 7563

Yokogawa Temperature Transmitter, PT100
HART 375 Field Communicator

Resistance Temperature Detector, RTD
Advantech PCI-1710HG

Pin Assignment for PCI-1710 HG

Required Products of Real Time Windows Target
Simulink Model rtvdp.mdl

Create a new model

Empty Simulink model

Block Parameters of Signal Generator

Block Parameters of Analog Output

Scope Parameters Dialog Box

Scope Properties: axis 1

Completed Simulink Block Diagram
Configuration Parameters — Solver

Configuration Parameters — Hardware Implementation
System Target File Browser

Configuration Parameters — Real-Time Workshop
Connect to target from the Simulation menu
GUIDE Quick Start

Layout Editor

M-file Editor

PAGE

10
11
11
12
12
13
14
16
20
22
22
23
25
26
27
28
29
30
31
31
33
36
37
38

Xi

Xii

4.1 Graph of MSU value (°C) vs. Actual UUT output (mA) 47
4.2 Graph of MSU value (°C) vs. Output error (%) 48
4.3 The starting software 49
4.4 The Automatic section 50
4.5 The Manual section 51
4.6 To show the range MSU 52
4.7 Insert value of 1% Actual UUT output and find output error 53
4.8 Plotting Graph output 53
4.9 Plotting Graph output error 54
4.10 To calculate average and standard deviation 54
411 Uncertainty panel 55

4.12 Calculate uncertainty 56

Xiii

LIST OF ABBREVIATIONS

Component The Description
RTD Resistance Temperature Detector
GUI Graphical User Interface
uuT Unit under Test
MSU Master Standard Unit
DAQ Data acquisition System
IJNT Johnson noise thermometry
PRTs Platinum Resistance Thermometers
MATLAB Matrix Laboratory
CPU Central Processing Unit

VS.

Versus

APPENDIX

w

LIST OF APPENDIXES

TITLE

T-distribution Curve Table
PCI-1710 HG Datasheet
Coding Program

Xiv

PAGE

60
61
64

CHAPTER 1

INTRODUCTION

1.1 Overview

As we know, the students for 4 BEC were doing the experiment for subject
Industrial Instrumentation (BEE 4523) at the lab manually. They need to start their
experiment from connecting the instruments, find the data of experiment, calculate data
and plot the graph for Point Calibration and Error Plot. So, they need more time to do
this analysis and many calculations like to calculate the desired Unit under Test (UUT)
output, actual Unit under Test output and the output error. Besides that, they need
perform the uncertainty of measurement evaluation for one equipment calibration. They
need calculate the uncertainty due to repeatability of the experiment, uncertainty
contribution due to MSU error, the uncertainty due to UUT resolution/MSU resolution

and combined standard uncertainty.

The computer based instrumentation system will be designed for temperature
measurement using Resistance Temperature Detector, RTD. This system will be
operated by using Matlab application. This system used GUI Matlab that can show the
progress. It can use to solve these problems efficiently. This system developed for
educational purpose. It means the students can use this system for their analysis of
subject BEE 4523.

As overall, this system can look as the communication between the user and the
instrument for finding the more accurate result and easy to plot the graph. This system
works fast without need to do more works. The user needs to set the Master Standard
Unit (MSU) value at the RTD and when values of temperatures reach at the MSU value
at Digital Thermometer. The user presses the set button. The all data will transfer
through the system to find the result and graph. This system also can calculate the
output error, average, standard deviation and uncertainty. So, we can use this program

to do the analysis.

1.2 Problem statement

1.2.1 Current situation

The students doing the experiment for subject Industrial Instrumentation in the

lab. However, the problems are:

Q) Doing experiment manually
Firstly, they have more steps to setup the instruments. Then, they need to collect

the data from instrument for this analysis.

(i) More time
They need more times to do analysis for this experiment especially for
temperature measurement. They rushed to find the result to calculate for output error,

average, standard deviation and uncertainty. They also need to plot the graph.

1.2.2 Problem solution

This system can solve this situation and has advantages compare to another

program.

I. This system was developed for educational purpose. The student from 4 BEC
can use this system to do the analysis in lab. This system suitable to use for all computer

that have installed Matlab software.

ii. This system can make work faster and easier when doing the analysis. It can

calculate all calculations and plotting the graph.

1.3 Objective

The objectives of this project are:

. Understanding about basic concept of temperature measurement
instrumentation. The function of each instrument must know and to find the reading of

temperature using RTD.

ii. Interface the temperature instrumentation with software using DAQ’s (Data
acquisition System) card. The PCI-1710HG is suggestion hardware that use for this

project.

iii. Developing the system using MATLAB application. The GUI Matlab was use
to show the progress of result and the graph efficiently. It also can calculate the output

error, average, standard deviation and uncertainty.

14 Scope

The scopes of the project are:

i. Study the function of each instrument and know to read the data measurement
from the instruments. The connection of each instrument are important because to avoid

from error when doing the experiment.

ii. Use the PCI-1710HG (suggestion hardware) as the medium between the
instrument and the software. This DAQ card is suitable for the MATLAB software.

iii. Choosing the MATLAB application for this project because there many features
that can apply for this system especially to plot the graph directly and compatible

software with DAQ board that can use for this system.

CHAPTER 2

LITERATURE REVIEW

2.1 Resistance Temperature Detector, RTD

The research is about what is Resistance Temperature Detector, RTD. The
RTDs also called resistance thermometers are temperature sensors that exploit the
predictable change in electrical resistance of some materials with changing temperature.
As they are almost invariably made of platinum, they are often called platinum
resistance thermometers (PRTs). They are slowly replacing the use of thermocouples in
many industrial applications below 600 °C [1]. RTD sensors used to measure
temperature by correlating the resistance of the RTD element with temperature. Most
RTD elements consist of a length of fine coiled wire wrapped around a ceramic or glass
core. The element is usually quite fragile, so it is often placed inside a sheathed probe to
protect it. The RTD element is made from a pure material whose resistance at various
temperatures has been documented. The material has a predictable change in resistance
as the temperature changes; it is this predictable change that is used to determine

temperature [2].

The Resistance Temperature Resistance is constructed in a number of forms and
offer greater stability, accuracy and repeatability in some cases than thermocouples.
While thermocouples use the Seebeck effect to generate a voltage, resistance
thermometers use electrical resistance and require a small power source to operate. The

resistance ideally varies linearly with temperature [2]. At low temperatures PVC, silicon

rubber or PTFE insulators are common to 250°C. Above this, glass fibre or ceramic are
used. The measuring point and usually most of the leads require a housing or protection
sleeve. This is often a metal alloy which is inert to a particular process. Often more
consideration goes in to selecting and designing protection sheaths than sensors as this
is the layer that must withstand chemical or physical attack and offer convenient

process attachment points [1].

There are 3 type of resistance thermometer wiring configurations. They are two-
wire configuration, see figure 1.1, three-wire configuration, see figure 1.2 and four-wire
configuration, see figure 1.3. The simplest resistance thermometer configuration uses
two wires. It is only used when high accuracy is not required as the resistance of the
connecting wires is always included with that of the sensor leading to errors in the
signal. Using this configuration you will be able to use 100 meters of cable. This applies
equally to balanced bridge and fixed bridge system [1]. In order to minimize the effects
of the lead resistances a three wire configuration can be used. Using this method the two
leads to the sensor are on adjoining arms, there is a lead resistance in each arm of the
bridge and therefore the lead resistance is cancelled out. High quality connection cables
should be used for this type of configuration because an assumption is made that the
two lead resistances are the same. This configuration allows for up to 600 meters of
cable [1]. The four wire resistance thermometer configuration even further increases the
accuracy and reliability of the resistance being measured. In the diagram above a
standard two terminal RTD is used with another pair of wires to form an additional loop
that cancels out the lead resistance. The above Wheatstone bridge method uses a little
more copper wire and is not a perfect solution. Below is a better alternative
configuration four-wire Kelvin connection that should be used in all RTD. It provides
full cancellation of spurious effects and cable resistance of up to 15 Q can be handled.
Actually in four wire measurement the resistance error due to lead wire resistance is

zero [1].

The advantages using RTD are RTDs is one of the most accurate temperature

sensors. Not only does it provide good accuracy, it also provides excellent stability and

repeatability. RTDs are also relatively immune to electrical noise and therefore well
suited for temperature measurement in industrial environments, especially around
motors, generators and other high voltage equipment [2]. RTDs also stable output for
long period of time, ease of recalibration and accurate readings over relatively narrow
temperature spans. Their disadvantages, compared to the thermocouples, are: smaller
overall temperature range, higher initial cost and less rugged in high vibration
lenvironments. They are active devices requiring an electrical current to produce a

voltage drop across the sensor that can be then measured by a calibrated read out device

[3].

Difference between RTDs and Thermocouple. The RTD sensing element
consists of a wire coil or deposited film of pure metal. The element's resistance
increases with temperature in a known and repeatable manner. RTD's exhibit excellent
accuracy over a wide temperature range and represent the fastest growing segment
among industrial temperature sensors [4]. A thermocouple consists of two wires of
dissimilar metals welded together into a junction. At the other end of the signal wires,
usually as part of the input instrument, is another junction called the reference junction.
Heating the sensing junction generates a thermoelectric potential (emf) proportional to
the temperature difference between the two junctions. This millivolt-level emf, when
compensated for the known temperature of the reference junction, indicates the
temperature at the sensing tip. Published millivolt tables assume the reference junction
is at 0°C. Thermocouples are simple and familiar. Designing them into systems
however is complicated by the need for special extension wires and reference junction

compensation [4]. The sensor comparison chart sees at Appendix A.

2.2 Continuous Resistance Temperature Detector Calibration Using Johnson

Noise Thermometry.

Johnson noise thermometry (JNT) is approaching a state of technological
development to where it may be practically applied to continuous recalibration of
resistance temperature detectors (RTDs) in industrial process environments. Johnson
noise arises from the motion of the electrons and protons in a resistor as they thermally
vibrate. Fundamentally, temperature is merely a convenient representation of the mean
translational kinetic energy of an atomic ensemble. Since Johnson noise is a
fundamental representation of temperature (rather than a response to temperature such
as electrical resistance or thermoelectric potential), Johnson noise is immune from
chemical and mechanical changes in the material properties of the sensor. As such, on-
line measurement of the Johnson noise of the resistive element may be used to
continuously recalibrate the RTD resistance-to-temperature relationship effectively
eliminating the requirement for periodic recalibration. Measuring the RTD resistance
continuously and quasi-continuously making corrections to the RTD resistance-to-
temperature relationship is central to the new JNT implementation. The new JNT
implementation incorporates amplifier design concepts from previous JNT
developments while employing modern digital signal processing technology to remove

spurious signals from the measured noise spectrum. [5]

CHAPTER 3

METHODOLOGY

3.1 Instrument Part

Figure 3.1 shows the block diagram for instrument of temperature measurement.

The instruments that apply for this system are:

Ammeter Power supply

— 4-20mA 4V 2500
Digital Thermometer 7563
] Ca L oaaa
O T[] 2793 Decade
OO Resistance Bo

Yokogawa Temperature

; Transmitter, PT100
.
RIR WW A|BB
RTD RTD
ISOTECH Jupiter . HART 375 Field
6308 Communicator

Figure 3.1: Instrumentation of temperature measurement

10

3.1.1 ISOTECH Jupiter 650B

The ISOTECH Jupiter 650B is designed for fast heating and cooling for suitable
use. It is offer industry-leading performance in an easy to use portable package. The
standard insert can hold up until six thermometers. The model includes a universal
sensor input allowing Resistance Temperature Detector, Thermocouples (K, N, R, S, L,
B, PL2, T, J & E) along with Linear Process Inputs including 4-20mA current
transmitters to be displayed on the built-in indicator.

The indicator is commonly used to display an external standard thermometer
giving greater accuracy by eliminating any temperature gradient and loading errors. The
indicator also can be programmed with up to five calibration points to provide high
accuracy digital probe matching.

The functions of this model are to set the value of temperature and read the

value of Resistance Temperature Detector, RTD as shown in Figure 3.2

Figure 3.2: ISOTECH Jupiter 650B

11

3.1.4 Digital Thermometer 7563

The 7563 Digital Thermometer has 16 ranges of temperature sensors and DC, V,
and Ohm measuring functions as shown in Figure 3.3. It has features superior noise
immunity, stability and high-speed sampling. In addition, versatile functions are
suitable for system use and cover a wide variety of applications from test to R&D. For
this instrument part, the digital thermometer is use to read the input value of

temperature. It also use as the temperature reference.

— = = |l ¥
it_l-ul.-: § == !ﬂ:j
= =

Figure 3.3: Digital Thermometer 7563

3.1.3 Yokogawa Temperature Transmitter, PT100

The temperature transmitter is use to transmit the data from RTD to the
ammeter. It also changed the value of temperature to current in range 4-20 mA. Figure

3.4 shown the Yokogawa Temperature Transmitter PT100

Figure 3.4: Yokogawa Temperature Transmitter, PT100

12

3.1.4 HART 375 Field Communicator

The HART 375 Field Communicator is the new standard in handheld
communicator. The Hart 375 Field Communicator runs on Windows CE, a robust, real-
time, operating system. The display makes it easy to read in both bright sunlight and in
normal lighting. It also includes a multi-level backlight, allowing the display to be
viewed in those areas with dim light. The touch sensitive display and large physical
navigation buttons provide for efficient use in the field. Figure 3.5 shows the HART

375 Field Communicator.

st EqEpment Corp © 2005

Figure 3.5: HART 375 Field Communicator

3.1.5 Resistance Temperature Detector, RTD

Resistance Temperature Detector is called resistance thermometers are
temperature sensors that exploit the predictable change in electrical resistance of some
materials with changing temperature. As they are almost invariably made of platinum,
they are often called platinum resistance thermometers (PRTs). Figure 3.6 shows the
Resistance Temperature Detector, RTD.

Figure 3.6: Resistance Temperature Detector, RTD

13

3.2 Hardware Part

3.2.1 Advantech PCI-1710HG

The Advantech PCL-1710HG is the perfect choice to use for this project

because it is low cost. The budget will be saving to buy this multifunction DAS (Data

Acquisition System) card. It present in the best price and performance in the market.

This custom gives higher performance and reliability with lower power consumption.

The size of this hardware is half size DAS Card. The software is compatible for this
PCL from MATLAB. Figure 3.7 shows the Advantech PCI-1710HG.

Figure 3.7: Advantech PCI-1710HG

3.2.2 Common Specifications:

a) Analog Input

Channels: 16, single-ended or 8 differential.
Resolution: 12 bits

Max. Sampling Rate: 100kS/s

Input range selection: (V, software programmable)
Auto channel/gain scanning

Input impedance: 1 G ohms

Input overvoltage: +/-30 VDC maximum

b) Analog Output
- Channels: 2
- Resolution: 12-bits

- Output range: (V, software programmable)

3.2.3 Pin Assignments

Figure 3.8 shows the Pin Assignment for PCI-1710 HG

the 1/0 board to PC.

Al0

L2

Ald

AlE

AlB

ANO

Az

Altd

AIGND

*AD0_REF

*A00_OUT

ADGND

=1}

Di2

D4

DG

Dis

([} [

o2

14

DEND

Doa

Doz

Do4

o6

DOB

Doia

Do12

DO14

DGND

CNTO_CLK

CNTO_OUT
CNTO_GAT

12

= o &

Al

Al3

A5

A7

AlD

A1

Al13

Al1S
AIGND
MO1_REF®
AO1_OUT
ADGND
Di

DI

s

or

(5]

D11

i3

DI85
DGHD
Dot

Do3

DOos

DoT

[alel:]
oo
Dot3
DO1S
DD
PACER_OUT
TRG_GATE
EXT_TRG
L1t

14

. It used to connect from

“: Pins 23~25 and pina 57-5% are not defined for FC-1710LM 7T10HGL

Figure 3.8: Pin Assignment for PCI-1710 HG

15

3.3 Software Part

The MATLAB software is use for this project because it allows one to perform
numerical calculations and visualize the result without need for complicated and time
consuming programming. This software provides an easy way to go directly from
collecting data to deriving informative result. It also accurately solves the problem, to

produce graphics easily and create the code efficiently.

MATLAB software is compatible with the Advantech PCI-1710HG that will
work together in this project. It also supports the entire data acquisition and analysis
process, including interfacing with data acquisition devices and instruments, analyzing

and visualizing the data and producing presentation quality output.

3.3.1 Real Time Windows Target Setup

Real Time Windows Target enables to run Simulink and Stateflow models in
real time on desktop or laptop PC for rapid prototyping or hardware-in-the-loop
simulation of control system and signal processing algorithms. A real-time execution
can be created and controlled entirely through Simulink. Using Real-Time Workshop, C
code can be generated, compiled and started real-time execution on Window PC while
interfacing to real hardware using PC 1/0 Board (PCL-818). 1/0 device drivers are
included to support an extensive selection of I/0O Board, enabling to interface to other
devices for experimentation, development and testing real-time systems. Simulink block
diagram can be edited and Real-Time Workshop can be used to create a new real-time
binary file. This integrated environment would implement any designs quickly without
lengthy hand coding and debugging. Figure 3.9 shows the required product of Real
Time Windows Target.

REAL TIME

WINDOWS TARGET

16

-

-

MATLAB N (SIMULINK N (REAL TIME
Command-line Environment to model WORKSHOP
interface for the Real physical systems and Convert Simulink
Time Windows Target controlled using block blocks and code from

diagrams Stateflow Coder into
C code
O\ AN

\

J

Figure 3.9: Required Products of Real Time Windows Target

Real Time Windows Target includes a set of 1/0O blocks that provide connections

between the physical 1/0 Board and real time model. Hardware-in-the-loop simulations

can be ran and quickly observed how Simulink model responds to real-world behavior.

1/0 signals can be connected using the block library for operation with numerous 1/0

boards.

The following types of blocks are included:

e Digital Input blocks

to provide logical inputs.

: Connect digital input signals to Simulink block diagram

e Digital Output blocks : Connected logical signals from Simulink block diagram

to control external hardware.

e Analog Input blocks

for use as input to Simulink block diagram.

: Enable to use A/D converters that digitize analog signal

e Analog Output blocks : Enable Simulink block diagram to use D/A converters to

output analog signal from Simulink model using I/O board(s).

e Counter Input blocks :

Enable to count pulses or measure frequency using

hardware counters on 1/O board(s).

e Encoder Input blocks : Enable to include feedback from optical encoders.

17

3.3.2 Installation and Configuration

The Real-Time Windows Target is a self-targeting system where the host and
the targeting computer are the same computer. It can be installed on a PC-compatible

computer running Windows NT 4.0, Windows 2000 or Windows XP.

3.3.2.1 C Compiler

The Real-Time Windows Target requires one of following C compilers which
not included in with the Real Time Windows Target:
e Microsoft Visual C/C ++ compiler - - Version 5.0, 6.0 or 7.0
e Watcom C/C ++ compiler - - Version 10.6 and 11.0. During installation of
Watcom C/C ++ compiler, a DOS target is specified in addition to a windows

target to have necessary libraries available for linking.

After installation, the MEX utility is run to select compiler as the default

compiler for building real-time applications.

Real Time Workshop uses the default C compiler to generate executable code and the
MEX utility uses this compiler to create MEX-files.
This procedure is executed in order to select either a Microsoft Visual C/C ++ compiler
or a Watcom C/C ++ compiler before build an application. Note, the LCC compiler is
not supported:
1. mex —setup is typed in the MATLAB window
MATLAB will display the following message:
Please choose your compiler for building eternal
interface
(MEX) files. Would you 1like mex to locate
installed compilers? ([y] /7 n) :

18

Then a letter “y” is typed.
MATLAB will display the following message:
Select a compiler:
[1]: WATCOM Compiler in c: \watcaom
[2]: Microsoft compiler in c: \visual
[O]: None
Compiler:
Next, a number is typed. For example, number 2 is typed to select the Microsoft
compiler.
MATLAB will display the following message:
Please verify your choices:
Compiler: Microsoft 5.0
Location: c: \visual
Are these correct? ([y] 7 n)
Finally, a letter “y” is typed.
MATLAB will reset the default compiler and display the message:
The default option file:
“C:\WINNT\Profiles\username\Application
Data\MathWorks\MATLAB\mexopts.bat” is being updated.

3.3.2.2 Installation the Kernel

During installation, all software for the Real-Time Windows Target is copied
onto hard drive. The kernel is not automatically installed. Installing the kernel sets up
the kernel to start running in the background each time when the computer is started.
The kernel can be installed just after the Real-Time Windows Target has been installed.
The installation of the kernel is necessary before a Real-Time Windows Target can be

executed:

19

1. rtwintgt —install istyped in MATLAB window.
MATLAB will display the following message:
You are going to install the Real-Time Windows
Target kernel.
Do you want to proceed? [vy]
2. The kernel installation is continued by typing a letter “y”.
MATLAB will install the kernel and display the following message:
The Real-Time Windows Target kernel has been
successftully installed.
The computer has to be restart if a “restart” message being displayed.
3. The kernel should be checked whether it was correctly installed. Then, rtwho
is typed.
MATLAB would display a message similar to
Real-Time Windows Target version 2.5.0 (C) The
MathWorks, Inc.
1994-2003
MATLAB performance = 100.0%
Kernel timeslice period = 1ms

After the kernel being installed, it remains idle, which allows Window to control the
execution of any standard Windows application. Standard Windows applications
include internet browsers, word processors, MATLAB and so on. It is only during real-
time execution of model that the kernel intervenes to ensure that the model is given
priority to use the CPU to execute each model updating at the prescribed sample
intervals. Once the model update at a particular sample interval completed, the kernel

releases the CPU to run any other Windows application that might need servicing.

20

3.3.2.3 Testing the Installation

The installation can be tested by running the model rtvdp.mdl. This model does
not have any 1/0O blocks, so that this model can be run regardless of the 1/0 boards in
computer. Running this model would test the installation by executing Real-Time
Workshop, Real-Time Windows Target and Real-Time Windows Target kernel. After
the Real-Time Windows Target kernel being installed, the entire installation can be
tested by building and running a real-time application. The Real-Time Windows Target
includes the model rtvdp.mdl, which already has the correct Real-Time Workshop

options selected for users:

1. rtvdp is typed in MATLAB window.

The Simulink model rtvdp.mdl window will be opened as shown in Figure 3.10

v AE5
File Edit %iew Simulation Format Tools Help
R == F 00 [Edemal -] & B EE

wan der Pol Equation

2o

xl . =1 o Lt
1- 0"y Ll I a2 xl) C ‘:;
Feon w2 # +
L Outt
hlu
Mz o
= L
i > >
Saturation
Scope
Ready 100%: oded

Figure 3.10: Simulink Model rtvdp.mdl

2. From the Tools menu, it should be pointed to Real-Time Workshop, and then
clicked Build Model. The MATLAB window will display the following

mesSsages:

21

Starting Real-Time Workshop build for model:
rtvdp
Invoking Target Language Compiler on rtvdp.rtw

Compiling rtvdp.c

Created Real-Time Windows Target module
rtvdp.rwd.
Successful completion of Real-Time Workshop
build procedure for model: rtvdp

3. From the simulation menu, External should be clicked and followed by
clicking Connect to target.
The MATLAB window displayed the following message:

Model rtvdp loaded

4. Start Real-Time Code is clicked from Simulation menu.
The Scope window will display the output signals. After the Real-Time
Windows Target has been successfully installed and the real-time application
has been run, Scope window should indicate such a figure.

5. From Simulation menu, after the Stop Real-Time Code is clicked. The real-
time application will stop running and then the Scope window will stop

displaying the output signals.

3.3.3 Procedures of Creating Real Time Applications

3.3.3.1 Creating a Simulink Model

This procedure explains how to create a simple Simulink model. This model is
used as an example to learn other procedures in the Real-Time Windows Target. A

22

Simulink model has to be created before it can run a simulation or create a real-time

application:

1. Simulink is typed in the MATLAB Command Window.
The Simulink Library Browser window is opened as shown in Figure 3.11.
2. From the toolbar, the Create a new model button is clicked.

L Simaling IS T TS eT i_i ”I %

| File Edit View Help e Nl
0= o ¢ |

[Create & new model |K"’I:':'r"t'r""":"'JS

i W Simulink [~ . u:u:ummu:-rlﬁ* E':'mén':'nly =]
- W@l Aerospace Blockset [] [[M==d Blocks] Hiee
[+ Blocks

[+ §gh| COMA Reference Blockset
+ B Communications Elockset
B control Systern Toolbox

=

A=
Figure 3.11: Create a new model

An empty Simulink window is opened. With the toolbar and status bar disabled,
the window looks like following figure 3.12 (Figure).

oL R titled Jdg‘
File Edit Wiew Simulation Format Tools Help
O|edHS| BB <z floo [Momal = £
Feady 100% i i i :Dde‘is

Figure 3.12: Empty Simulink model

7.

23

In the Simulink Library Browser window, Simulink is double-clicked and then
Sources is also doubled-clicked. Next, Signal Generator is clicked and dragged
to Simulink window.

Sinks is clicked. Scope is clicked and dragged to the Simulink window. Real-
Time Windows Target is clicked. Analog Output is clicked and dragged to the
Simulink window.

The Signal Generator output is connected to the scope input by clicking-and-
dragging a line between the blocks. Likewise, the Analog Output input is
connected to the connection between Scope and Signal Generator.

The Signal Generator block is double clicked. The Block Parameters dialog
box opened. From the Wave form list, square is selected.

In the Amplitude text box, 0. 25 is entered.

In the Frequency text box, 2.5 are entered.

From the Units list, Hertz is selected.

The Block Parameters dialog box is shown in Figure 3.13.

'Ei"l e Paras eters: Sienal Generator: || e
L OCH Farameiers: signal benerator 3K

Signal Generator

Output varnous wave forms:
] = Amp™wf aveform(Freq, t]

Parameters

Wwiave form: | guare ﬂ
Time [t): | e sirmulation time ﬂ
Arnplitude:

[0.25

Frequency:

24

Uitz | Hertz j

¥ Interpret vector parameters s 1-D

Ok | LCancel | Help | Apply |

Figure 3.13: Block Parameters of Signal Generator

OK is clicked.
The analog output block is double clicked.

The Block Parameters dialog box will open.

10.

11.
12.

13.

14.

15.

24

The Install new board button is clicked. From the list, it should be pointed to
manufacturer and then clicked a board name. For example, it should be pointed
to Advantech and then click PCL818.

One of the following is selected:

e For an ISA bus board, a base address is entered. This value must match
the base address switches or jumpers set on the physical board. For
example, to enter a base address of 0x300 in the address box, 300 is
typed. The base address also could be selected by selecting check boxes
A9 through A3.

e For a PCI bus board, the PCI slot is entered or the Auto-detect check
box is selected.

The Test button is clicked.

The Real-Time Windows Target tried to connect to the selected board and the
following message would display if successful.

On the message box, OK is clicked.

The same value as entered in the Fixed step size box from the Configuration
Parameters dialog box is entered in the Sample time box. For example, 0.001
is entered.

A channel vector that selected the analog input channels that are using on this
board is entered in the Output channels box. The vector can be any valid
MATLAB vector form. For example, to select analog output channel on
PCL818 board 1 is entered.

The input range for the entire analog input channel that has been entered in the
Input channels box is chosen from the Output range list. For example, with
the PCL818 board, O to 5V is chosen.

From the Block Input signal list, the following options is chosen:

e Volts — Expected a value equal to the analog output range.

e Normalized unipolar — Expected a value between 0 and +1 that is
converted to the full range of the output voltage regardless of the output
voltage range. For example, an analog output range of 0 to +5 volts and -

5 to +5 volts would both converted from values between 0 and +1.

25

e Normalized bipolar — Expected a value between -1 and +1 that is
converted to the full range of output voltage regardless of the output
voltage range.

e Raw — Expected a value of 0 to 2n-1. For example, a 12-bit A/D
converter would expected a value between 0 and 212 -1 (0 to 4095). The
advantage of this method is the expected value is always an integer with
no round off error.

The initial value is entered for each analog output channel that has been entered

in the Output Channels box. For example, if 1 is entered in the Output

Channels box and the initial value of 0 volts is needed, O is entered.

The final value is entered for each analog channel that has been entered in

Output Channels box. For example, if 1 is entered in the Output Channels

box and the final value of 0 volts is needed, O is entered.

The dialog box would look similar to the Figure 3.14 if Volts is chosen.
[!I el M=t g N B R _.J_] Q1

— RTwWin Analog Output Crask) Clink)
Real-Time Windows Target analog output unit.

— Data acquisition board

Install neww board] [Delete current board]
Advantech PCL-515 [300h] j Board setup
— Parameters
Sample time:

1

Cutput channels:
1

Ctput range: Otos j
EBlock input sighal: Wolts j
Initial walue:

1]
Final value:

o
[Ok] [Cancel] [Help] [Apply]

Figure 3.14: Block Parameters of Analog Output

18.

19.

20.

21.

22,

26

One of following is executed:
= Apply is clicked to apply the changes to the model and the dialog box is
left open.
= OK is clicked to apply the changes to the model and the Block
Parameters: Analog Output dialog box will close.
Parameters dialog box is closed and the parameter values are saved with the
Simulink model.
In the Simulink window, the Scope block is double clicked.
A Scope window will open.
The Parameters button is clicked.
A Scope parameters dialog box will open.
The General tab is clicked. The number of graphs that is needed in one Scope
window is entered in the Number of axes box. For example, 1 is entered for a
single graph. Do not select the floating scope check box. In the Time range
box, upper value the time range is entered. For example, 1 second is entered.
From the Tick labels list, bottom axis only is chosen.
From the Sampling list, decimation is chosen and 1 is entered in the text
box.
The Scope parameters dialog box would look like such a Figure 3.15 as shown.

[S EOPESIarameierns -..,__j '@1
General | | Data histary Tip: try right clicking on axes

Axes

Mumber of axes: | 1 [] flosting =cope
Titne range: |1

Tick labels: | bottom axis only j

Sarmpling
Decimation j q

| 8].4 | |Cann::el | | Help | | Apply |

Figure 3.15: Scope Parameters Dialog Box

27

23. One of following done:
= Apply is clicked to apply the changes to the model and the dialog box is
left open.
= OK is clicked to apply the changes to the model and the Scope
parameters dialog box is closed.
24, In the Scope window, it should be pointed to the y-axis and then right clicked.
25. Axes Properties is clicked from the pop-up menu.
26. The Scope properties: axis 1 dialog box is opened. In the Y-min and Y-max text
boxes, the range for the y-axis is entered in the Scope window. For example, -2
and 2 are entered as shown in the Figure 3.16

[m SEIPE PIOPETESS XIS | __J JQT
Yemin: | -2 Yomax: 2

Title ("=SignalLakel=' replaced_ by signal name);
Yo=Sighallabel=

[O][Cancel][Apply]

Figure 3.16: Scope Properties: axis 1

27. One of the following is done:
= Apply is clicked to apply the changes to the model and the dialog box is
left open.
= OK is clicked to apply the changes to the model and the Axes
Parameters dialog box is closed.
The completed Simulink block diagram is shown in Figure 3.17.

28

L infitEdE JJQ

File Edit Yiew Simulation Format Tools Help

O EEES &8 L) [3 |1D.EI |anmal || Hig 0%

E!}D{EU Analog
Output

B
L

Signal

Analog Output
Generator 2 g

Adwartech
FCL-21% [300h]

]

Scope

B
L

Ready 100%: odeds

Figure 3.17: Completed Simulink Block Diagram

Save As is clicked from the File menu. The Save As dialog diagram box is
opened. In the File name text box, a filename for the Simulink model is entered
and Save is clicked. For example, rtwin_model is typed.

Simulink saved the model in the file rtwin_model.mdl.

3.3.3.2 Entering Configuration Parameters for Simulink

The configuration parameters give information to Simulink for running a simulation.
After create a Simulink model, the configuration parameters could be entered for
Simulink.

1. In the Simulink window, Configuration Parameters is clicked from the

Simulation menu. In the Configuration Parameters dialog box, the Solver tab
is clicked.

The Solver pane will open.

29

2. In the Start time box, 0.0 is entered. In the Stop time box, the amount of time
that the model needs to run is entered. For example, 99999 seconds is entered.

3. From the Type list, Fixed-step is chosen. Real-Time Workshop does not
support variable step solvers.

4. From the Solver list, a solver is chosen. For example, the general purpose solver
ode5 (Dormand-Prince) is chosen.

5. In the Fixed step size box, a sample time is entered. For example, 0.001
seconds is entered for the sample rate of 1000 samples/second.

6. From the Tasking Mode list, SingleTasking is chosen. Multitasking
is chosen for models with blocks that have different sample times.

The Solver pane would look similar to the Figure 3.18.

Ll o hEIa L et e L e O ra o _j in1
Select: Simulation time
il Start time: [0.0 Stop time: (33339
- D ata [mport/E xport
iU !Jtlmlzat_mn Solver options
=I- Diagnostics
- Sample Time Type: | Fixed-step ﬂ Salver: | odeh [Daomand-Prince] j
- [ata | ntedrity
. Canversion Perniodic zample time constraint: | Unconstrained ﬂ
Connec_tl\.ﬂty Fixed-step size (fundamental sample time): |0.001
- Compatibility
- b ndel Referencing T azking mode for periodic sample times: | SingleT asking ﬂ
uHaidyare Implernentatmn [Higher priority value indicates higher task pricrity
- M odel Referencing
=I- Real-Time “Woarkshop
- Commerts
- Symbols
- Custom Code
- Debug
- | terface
ok I LCancel | Help Apply
Figure 3.18: Configuration Parameters — Solver
7. One of following is done:

= Apply is clicked to apply the changes to the model and the dialog box is
left open.
= OK is clicked to apply the changes to the model and the Configuration

Parameters dialog box is closed.

3.3.3.3 Entering Simulation Parameters for Real-Time Workshop

30

The Simulation Parameters are used by Real-Time Workshop for generating C

code and building a real-time application.

1.

2.
3.

In the Simulink window, Configuration Parameters is clicked from the

Simulation menu as shown in Figure 3.19.

The Hardware Implementation node is clicked.

From the Device type list, 32-bit Real-Time Windows Target is

chosen.
L) Eonligurationaramelenssnm i ediGomnBuyat oo _} @
Select: Embedded hardware [zsimulation and code generation)
- Solver Device type: | 32-bit Real-Time Windows Tanget ﬂ
- ata Import/E sport 5 g
.. Optimization Mumber of bits: char: B short: 16 int: 32
—I- Diagnostics long: i) native word size: H
- Sample Time 5 = =
.. Data Integrity Byte ordering: | Litthe Endiary J
- Converzsion Signed integer division rounds to; | Zern J
-~ Connectivity ¥ Shift right an a signed inteqer as arthmetic shift
.. Campatibility
-Maodel HE_fEijl’?Cile ___ | Emulation hardware [code generation arly]
- Model A eferencing M Hone
= Real-Time Workshop
- Commerits
. Symbaols
- Custom Code
.. Debug
- |nterface
0K Lancel | Help | Apply |

Figure 3.19: Configuration Parameters — Hardware Implementation

The Real-Time Workshop node is clicked.

The Real-Time Workshop pane will open.

In the Target selection section, the Browse button is clicked at the RTW

system target file list. The System Target File Browser will open as shown in

Figure 3.20.

The system target file is selected for the Real-Time Windows Target and OK is

clicked.

31

proosek_tlc O08EE Target for 38%cft Pro0S5EE Iwplementat
rsim.tlc

Papid Simulation Target

S R

e :
= Taroet

rtwsfon . tlc S-function Target
ti_cZ000 ert.tle Embhedded Target for TI CzZ0OO00 DEP (ERT)
ti_cZ000 grt.tle Embhedded Target for TI Cz0OO00 DEP (GRT)

Figure 3.20: System Target File Browser
The system target file rtwin. tlc, the template makefile rtwin. tm¥ and the
make command make_rtw are automatically entered into the Real-Time
Workshop pane.
Although not visible in the Real-Time Workshop pane, the external target
interface MEX file rtwinext is also configured after OK is clicked. This
allows external mode to pass new parameters to the real-time application and to
return signal data from the real-time application. The data is displayed in Scope
blocks or saved with signal logging.
The Real-Time Workshop pane would look similar to the Figure 3.21.

L Conhintration P areme ey s it e a GO nTiEavatioN: J g
Select Target selection
~ Solver AT system target file: |rtwintc
- D ata Import/Export S))
.. Dptiriz atior Description: Real-Time ‘Windows Target
£+ Diagnostice) Documentation
- 5 ample Time
. Diata | nteqrity [Generate HTML report
- Corwerzion ™ Launch report after code generation completes
- Connectivity
- Compatibility Build process
- hodel Hefelencmg e |
-~ Hardware Implementation
- Madel Referencing Make command: |make_rtw
R

-Real-Time Workshop

- Comments

- Sumbolz

- Custamn Code

- Debug

- Fieal-Time Windows Ta...

Tenplate: akefile: |rtwintrof

[Generate code anly Build

ar. | LCancel | Help | Apply

Figure 3.21: Configuration Parameters — Real-Time Workshop

32

7. One of following is done:

Apply is clicked to apply the changes to the model and the dialog box is
left open.

OK is clicked to apply the changes to the model and the Configuration
Parameters dialog box is closed.

3.3.3.4 Creating a Real-Time Application

Real-Time Workshop generates C code from the Simulink model and then the

Microsoft Visual Basic C++ compiler compiles and links that C code into a real-time

application. After parameters are entered into the Configuration Parameters dialog

box for Real-Time Workshop, a real-time application could be built.

1. In the Simulink window and from the Tools menu, it should be pointed to the

Real-Time Workshop and then clicked Build Model. The build process does the

following:

Real-Time Workshop creates the C code source files rtwin_model .c
and rtwin_model _h.

The make utility make rtw.exe creates the makefile
rtwin_model .mk from the template makefile rtwin.tmf.

The make utility make_rtw.exe builds the real-time application
rtwin_model . rwd using the makefile rtwin_model .mk created
above. The file rtwin_model . rwd is binary files that refer to as the
real-time application. The real-time application could be run with the

Real-Time Windows Target kernel.

2. The Simulink model is connected to real-time application.

After the real-time application is created, MATLAB could be closed and started

again later and then the executable is connected and run without having to
rebuild.

33

3.3.3.5 Running a Real-Time Application

The real-time application is run to observe the behavior of the model in real time
with the generated code.
The process of connecting consist of
= Establishing a connection between your Simulink model and the kernel to allow
exchange of commands, parameters and logged data.
= Running the application in real time.
After the real-time application is built, the model could be run in real time.
1. From the Simulation menu, External is clicked and then Connect To Target is
connected from the Simulation menu, Also, it could be connected to the target

—5
from the toolbar by clicking ¥ . It can be seen | Figure 3.22.

Wil i j its‘i
File Edit Yiew h ' Formak Tools Help
D= e . 899 [Ewtemal ~|| OF 4 (9] <8 [| B
G rget .
Canfiguration Parameters,,. Ckrl+E
Mormal
Accelerator
v‘_ External) . : - Analog
G Output
Signal Analog Output
Generator Advartech
PCL-212 [200h]
[
Scope
Conneck ko real-time target 100% T=0.00 odeS

Figure 3.22: Connect to target from the Simulation menu

MATLAB will display the message
Model rtwin_model loaded

34

2. In the Simulation window and from the Simulation menu, Start Real-Time
Code is clicked. The execution also could be started from the toolbar by clicking
Start icon.
Simulink runs the execution and plots the signal data in the Scope window.
In the model, the Scope window displays 1000 samples in 1 second, increases
the time offset and then displays the samples for the next 1 second.
Note:
Transfer of data is less critical than calculating the signal output at the selected
sample interval. Therefore, data transfer runs at a lower priority in the
remaining CPU time after real-time application computations are performed
while waiting for another interrupt to trigger the next real-time application
update. The result may be a loss of data points displayed in the Scope window.
3. One of the following is done:
= The execution is let to be run until it reaches the stop time.
= Stop Real-Time Code is clicked from the Simulation menu.
The real-time application is stopped.
4, In the Simulation window, Disconnected From Target is clicked from the
Simulation menu.
5. From the Simulation menu, External is clicked
MATLAB will display the message
Model rtwin_model unloaded

3.3.4 Creating Graphical User Interfaces

MATLAB implements GUIs as figure windows containing various styles of uicontrol
objects. You must program each object to perform the intended action when activated
by the user of the GUI. In addition, you must be able to save and launch your GUI. All
of these tasks are simplified by GUIDE, MATLAB’s graphical user interface

development environment.

35

3.3.4.1 GUI Development Environment

The process of implementing a GUI involves two basic tasks:

(i) Laying out the GUI components
(if) Programming the GUI components

GUIDE primarily is a set of layout tools. However, GUIDE also generates an M-file
that contains code to handle the initialization and launching of the GUI. This M-file
provides a framework for the implementation of the callbacks — the functions that

execute when users activate components in the GUI.

The Implementation of a GUI

While it is possible to write an M-file that contains all the commands to lay out a GUI,
it is easier to use GUIDE to lay out the components interactively and to generate two

files that save and launch the GUI:

(i) A FIG-file — contains a complete description of the GUI figure and all of its
children (uicontrols and axes), as well as the values of all object properties.

(i) An M-file — contains the functions that launch and control the GUI and the
callbacks, which are defined as subfunctions. This M-file is referred to as the
application M-file in this documentation.

36

3.3.4.2 Starting Guide

Start GUIDE by typing guide at the MATLAB command prompt. This displays the
GUIDE Quick Start dialog, as shown in the following Figure 3.23.

GUIDE Quick Start

Create New GUI | Open Existing GUI |

GLIDE templates

A\ Blank GUI (Default)

ol GUI with Uicontrals

ol GUI with Axes and Menu
41 Modal Guestion Dialog

Fresi e

BLANK

[] Save on startup as: |© 1

’]34 ” Cancel ” Help

Figure 3.23: GUIDE Quick Start

From the Quick Start dialog, the user can:

(i) Create a new GUI from one of the GUIDE templates.
(i) Open an existing GUI.

37

3.3.4.3 The Layout Editor

When the user opened a GUI in GUIDE, it is displayed in the Layout Editor, which is
the control panel for all of the GUIDE tools. The following Figure 3.24 shows the
Layout Editor with a blank GUI template.

Alignment Tool Menu Editor Property Inspector Object Browser Figure Activator

-} untitled.fig
Eile i

Redo #"’”LJ[WECT

Fush Button
& Toggle Button
@ Radio Button

[Checkbox Layput Area
Component | | i Edit Text
Palette j . Static Text
e Slider

|_| Frame
Listhiox

== Popup Menu

i/ Aes

Figure Resize Tab
Figure 3.24: Layout Editor

The user can lay out the GUI by dragging components, such as panels, push buttons,
pop-up menus, or axes, from the component palette, at the left side of the Layout Editor,
into the layout area.

38

3.3.4.4 Programming a GUI

After laying out the GUI and setting component properties, the next step is to program
the GUI. The user programs the GUI by coding one or more callbacks for each of its
components. Callbacks are functions that execute in response to some action by the

user. A typical action is clicking a push button.
A GUI’s callbacks are found in an M-file that GUIDE generates automatically.
GUIDE adds templates for the most commonly used callbacks to this M-file, but the

user may want to add others. Use the M-file Editor to edit this file.

The following Figure 3.25 shows the Callback template for a push button.

B Editor - D\ Work',Guide'untitled2.m* A~ =10l x|
Filz Edit Text Cell Tools Debug Deskbop wWindow Help ? X
NEHE| 2l e«|Gldar|@RBalE - »B08 S0
[d
a0 % ——— Executes on button press in pushbuttonl.
g1 function pushbuttonl Callback(hObject, ewventdata, handles)
g2 % hobject handle to pushbuttonl [(see GCZEBEOD) =
53 % ewentdata reserved - to be defined in a future wversion of MATLLE
54 % handle=s structure with handles and user data (See GUIDLTAL)
g5 | .
4 | of

|untitled2 pushbutton!_Callback |Ln 85 Cal 1 |OvE g

Figure 3.25: M-file Editor

39

CHAPTER 4

RESULT AND DISCUSSIONS

4.1 Results

The Table 4.1 shows the result of experiment that using the Resistance
Temperature Detector, RTD. The results can show in the GUI Matlab that used in this

experiment.

Table 4.1: Five-point calibration of temperature transmitter

No MSU Desired 1% Actual | 2" Actual | Output | Average | Standard
% applied UuT uuT uuT error % deviation
value, (°C) output, output, output,
(MA) (MA) (mA)

0 50.0 4.0 3.8 3.89 5.00 3.845 0.00405
25 87.5 8.0 7.9 7.99 1.25 7.945 0.00405
50 125.0 12.0 12.0 11.98 0.00 11.99 0.0002
75 162.5 16.0 15.9 15.98 0.63 15.94 0.0032
100 200.0 20.0 19.9 19.89 0.50 19.895 5e-005

The equation below shows how to find the value of Desired UUT output and

output error %.

Note: MSU = Master Standard Unit UUT = Unit under Test

Desired output = ﬁ(URV _LRV) + LRV)
Where; x = ith point

URV = Upper Range Value

LRV = Lower Range Value

Desired UUT output - Actual UUT output
Desired UUT output

Output error % = x 100% 2

4.2 Calculation:

4.2.1 Desired UUT output:

a) 50.0 °C
Desired output _0 (20m —4m) + 4m
100
=4mA
b) 87.5°C
: 25
Desired output = —(20m -4m) + 4m
100
=8mA
c) 125.0°C
: 50
Desired output = 100 (20m —4m) + 4m

=12mA

40

d) 162.5°C
. 75
Desired output = —(20m -4m) + 4m
100
= 16mA
e) 200.0 °C
_ 100

Desired output (20m —4m) + 4m

© 100
= 20mA

4.2.2 Output error (%)

a) 50.0°C
Outputerror % = 4.0m-3.8m » 1509
4.0m
=5%
b) 87.5°C
Outputerror % = 8.0m-7.9m 1000
8.0m
=1.25%
c) 125.0°C
Output error % = Mx 100%
12.0m
= 0%
d) 162.5°C
Output error % = Mx 100%
16.0m
=0.63%
e) 200.0 °C
Output error % = 20.0m -19.9m x 100%
12.0m

=0.5%

41

4.2.3 Average

a) 50.0°C
Averagel _ 3.8m+3.8m
2
=3.845
b) 87.5°C
Average? _ 79m+7.99m
2
=7.945
c) 125.0°C
Average3 _ 12.0m+11.98m
2
=11.99
d) 162.5°C
Averaged _ 15.9m +15.98m
2
=15.94
e) 200.0 °C

=19.895

43

4.2.4 Standard Deviation

S03) =gy S0’ 3
a) 50.0°C
Standard deviation1 = \/E |(3.8-3.845) + (3.89-3.845)° |
= 0.00405
b) 87.5°C
Standard deviation2 \/g |(7.9-7.945)? + (7.99 - 7.945)? |
= 0.00405
c) 125.0°C
Standard deviation3 = \/E [(12 0-11.99)° +(11.98-11.99)*]
= 0.0002
d) 162.5 °C
Standard deviation4 \/E |(15.9-15.94)? + (15.98 -15.94)? |
=0.003
e) 200.0 °C
Standard deviation5 = \/g |(19.9-19.895)? + (19.89 -19.895)?

= 0.00005

44

4.3 Uncertainty Evaluation
4.3.1 Uncertainty Due To Repeatability of the Experiment

For determining the uncertainty contribution due to repeatability of experiment,
we shall utilize the experiment results obtained for draft UUT calibration. Choose the
row having the highest deviation between the MSU value and the UUT value. We
calculate the standard deviation by using the formula.

— 1 k w2
S(xy) = m ijl(xk - X) (4)

The results are collated from the data in Table 4.1. We choose the worst case

standard deviation. The u we are looking for the experimental standard deviation of the

mean s(;<). This s(;<) is the estimation of the spread of the distribution of the means.

We use a sample size n=2 the formula for standard deviation of mean is;

S
S = oK) 000405 aaa7g
2 2
U, = 0.00286378 kPa with a degree of freedom y/, =2-1=1

4.3.2 Uncertainty Contribution Due To MSU Error

The MSU used in this calibration is the Model: MT220, Digital Manometer
Standard. For the 700kPa range the accuracy specification for this instrument provided
by the manufacturer is the following:

+ (0.01% of reading + 0.005% range) (5)

45

For a maximum reading of 200 V and a range of 700 V. Hence the error in MSU
= + ((0.0001 x 200) + (0.00005 x 700)) V. Therefore the maximum error = a
0.055kPa

The uncertainty contribution due to MSU error is defined as |y, and is given by

a/+/2 = 0.055/+/2 =0.0388909 kPa.

The degree of freedom V, for this assumed to be oo since the manufacturer is

expected to provide the error data transfer a large number of tests.

u, = 0.0388909 kPa and y,=®

4.3.3 Uncertainty Due To UUT Resolution/MSU resolution

For type B uncertainty, we can decide on resolution of MSU or resolution of
UUT. Generally, if the UUT is analog, we will use the resolution of the MSU. If the
UUT is digital, we will use the resolution of digital UUT. The resolution of the UUT
Model EJX110A is using METHOD 1.

Considering the worst case scenario the maximum resolution of EJX110A is

0.06 kPa. The uncertainty |y, is calculated as

U, = 0.06/v2 =0.042426 kPa (6)
We can consider the degree of freedom as «

Us =0.042426 kPa and 7/3 = o

46

4.3.4 Combined Standard Uncertainty, |,

The combined standard uncertainty . is determined from individual

uncertainties J, , |y, and y, by following formula;

u = Juuiud) (7)

/0.00286378 +0.0388909" +0.042426')

0.0576255

The effective degree of freedom y/_ is given by,

v, =k ®)

V., =163945.7714 = 163946

The total uncertainty at any confident level is determined using Student t-
distribution. The coverage factor k is determined from students table. Referring to
Appendix A for value v = 163946> 100 and 95.45% confident interval k = 2.00

The confident limits are obtained by formula;

u = U,k)

U =(0.057625) (2.00)
= + 0.11525 kPa

The confident limits in a measurement are determined by the use of calibration

techniques together with statistical principles.

47

44 RESULT

4.4.1 Result from plotting graph

Figure 4.1 shows the MSU value (0C) vs. Actual UUT output (mA). This graph
was plotted by using the five values of the 1*' Actual UUT output (mA) with the five
values of the MSU value (0C). The graph was directly proportional.

5 Paoint Calibration

20

— — = — —
o}] - o o

o

Actual UUT Output(ms)

50 100 150 200
WS Walue(oC)

Figure 4.1: Graph of MSU value (°C) vs. Actual UUT output (mA)

48

Figure 4.2 shows the MSU value (oC) vs. Output error (%). This graph was
plotted by using the five values of the output error (%) with the five values of the MSU

value (0C).The graph was plotted in smooth curve.

Errar Cune

Error(%)

a0 100 150 200
ML Value(ol)

Figure 4.2: Graph of MSU value (°C) vs. Output error (%)

49

4.4.2 GUI Using Matlab 7.0

The Graphical User Interface (GUI) is used as input to give instruction which
position has been selected. This design is focused to be a tool that user friendly. The

software was developed using Matlab application.

Figure 4.3 shows the design of starting software for this experiment. It called as
Home. In this Home, there are five buttons that are Open Automatic, Open Manual,
Abstract, Credit and Exit. The “Open Automatic” button used to open the Automatic
section. The Automatic section is used when the user wanted to operate the system by
automatic function. The “Open Manual” button used to open the Manual section that
has the manual function. The “Abstract” button is used to open the abstract of this
experiment. It summarized the operation of this system and the equipment that used in
this experiment. The “Exit” button is used to exit this system.

BHone BEx]

Universiti
Malaysia
PAHANQ

Engineering +

Title :
Computer Based Instrumentation System

for Temperature Measurement Using RTD Open Automatic
in Matlab Application

Open Manual

Name : Faiz Binh Mohd Zabri A
EA05023
Supervisor : Miss Najidah Binti Hambali Credit
Co-Supervisor . Mr Mohd Ashraf Bin Ahmad

Ext

Figure 4.3: The starting software

50

For the Figure 4.4 shows the Automatic section. It used when the user wanted to

collect the data from the instrument by interface with DAQ card. For example, when the

temperature of RTD at 50°C. The user clicks the “Ok” button to get data from the

instrument. The data that we get in this experiment is the voltage value. The user clicks

the “Convert to Current” button to convert that value into the current. After this, the

“Qutput Error” button is click to find the output error and can plot the graph after click

the “Graph MSU” button and the “Graph Error” button. The graph also can be saving

after click the “Save Image” button. To find the average value and the standard

deviation, the user can click the “Open Manual” button to transfer the data into the

Manual section.

Autumatic E] @
Qutput Error %
For WiSU 13t Reading |
0 ot g
Start 0 o - ;
2nd Reading - ol
0 o
End 0 mé i
rd Reading ol
L Lo :
4th Reading al
Show Range MS
02r
Gth Reading
0 o i
mA -“ i} 0 ; ‘ | | |
Load Praject : = o - . ;
I Clear] IOpen Manuall l Simulate [Cunventu Currem] l Output Errar] [Grapgh MSU] I Graph Error I l Save Image ‘ I Clear Plot]

Figure 4.4: The Automatic section

o1

Figure 4.5 shows the Manual section. This section used when the user wanted to

analysis this experiment by manually. The user needs to enter the value of data in these
forms. Then, the user clicks the “Calculate” button to find the Output Error (%), the

Average (mA) and the standard deviation. After that, the user can plot the graph for the
graph of MSU value (°C) vs. Actual UUT output (mA) and the graph of MSU value
(°C) vs. Output error (%) by click the “Graph Output” button and the “Graph Error”

button.

Manual

=]

‘

Mo %

]

i)

50

s
100

MSU Applied Value oC

]

o o o o

Desired UUT output mA,

1st Actual UUT Output m& | 2nd Actual UUT Output mA Qutput Error %

o o o o o

Average mA

0

o o o o

STD Deviation

]

oo o o

For MSL (oC)

| [Range MSU l IData Aummat\cl

i [Calculate

l Save Project]

Eni!

l Graph Output l [Load Project]

I Graph Errar

l Resat

|

Save Image Gluit

Credit

09

08

07

0.6

05

0.4

0.3

02

0.1

01 0.2 03 0.4 05 0B

0.7

09

Figure 4.5: The Manual section

4.4.3 The Operation of system

52

The user entered the values of temperature at lower range and the higher range
in the box “For MSU (°C)” and clicked the “Range MSU” button. The MSU Applied

Value (°C) showed the range of temperatures. Figure 4.6 shows the range MSU.

al - [B][x]
Mo % MSU Applied Value oC | Desgired UUT output ma 1st Actual UUT Output ma 2Znd Actual UUT Output maA, Output Error % Average mb STD Deviation
a0 4 o o o
875 8 a a a
25 12 a a a
1625 16 a o o
200 20 a 0 a
1~
[Range MSU] [Data Automatic I
Far MSU (oC) I
St I Calculate [Save Project]
DB
50
o { Graph Output l I Load Project] 07 -
200 06~
[Graph Error I Reset l
05
Save Image Quit o4l
03
About Me Apout Experiment 02
[0
Open Automatic Cradit
a I I ! I I ! I ! 1
o 01 0.2 03 04 05 0B 07 08 1

Figure 4.6: To show the range MSU

53

The user enters the values of 1* Actual UUT output and clicked the “Calculate”

button to find output error %. Figure 4.7 shows the insert of 1* Actual UUT output and

to find output error.

3

gl - E
Mo % MSU Applied Value oC | Desired UUT output mé, Tst Actual UUT Output ma 2nd Actual UUT Output maA Output Error % Ayerage mdb STD Deviation
a a0 4 38 a Mah MNah
25 875 8 78 125 Mal Mahl
50 126 12 12 o Mak Nal
75 162.6 16 159 0B25 Mahl Mahl
100 200 20 T 05 Nall Mall
1
l Range MSU I I Data Automatic l
For MSU (oC) sl
S | Calculate ‘ I Save Project]
08—
50
E [Graph Cutput [Load Project 07 -
200 06~
[Graph Errar [Reset l
05—
Save Image Quit o4l
03
About Me About Experiment 021
01+
Open Automatic Credit
0 1 1 | | 1 1 1 |)
o 0.1 02 0.3 0.4 0.8 06 07 0.9 1

[

Figure 4.7: Insert value of 1% Actual UUT output and find output error

The user clicks the “Graph Output” button to plot graph 1% Actual UUT output
(mA). The graph shows the MSU value (°C) vs. Actual UUT output (mA). Figure 4.8
shows Plotting Graph output.

|
|
(X]i

I’
Mo % MSU Applied Yalue oC Desired UUT output ma 1st Actual UUT Output maA 2nd Actual UUT Output mb, Output E Vo A s STO Deviatio
a 50 4 Er) 5 [Nal
25 875 = 79 G EeR. M Mah!
50 126 Hz 12 a Nal Mah!
75 162.5 18 1538 0.625 Mal Mall
100 200 20 199 as Nal Nah!
5 Paoint Calibrati
20
I Range MSU] [Da(a Automatic]
For MSU [(oC) ;| N A |
S I Caloulate I [Save Project I
- i, | TS U U P o O O — —
—_ ‘ Graph Output } I Load Project] g
200 £
[Graph Error] I Reset] =
3
5
l Save Image | I Quit] [e e e *
s e cenn B L e s s el e e st s e s —
roni e [roonstprren]
| Ot _
Open Automatic Credit
=
50 100 150

MSU Value(oG)

Figure 4.8: Plotting Graph output

54

The user clicks the “Graph Error” button to plot graph for Output Error %. The

graph shows the graph of MSU value (°C) vs. Output error (%). Figure 4.9 shows
Plotting Graph output.

E Manual J =) 52
Mo % MSU Applied Value oC | Desired UUT output mA | 1st Actual UUT Output m& | 2nd Actual UUT Output mA Output Errar % Average ma STD Deviation
o 50 4 38 5 Man Man
25 875 8 73 1.25 Nan Nahl
50 125 12 12 o Nan Nahl
75 162.5 1B 158 0.625 Mahl Manl
100 200 20 199 0.5 Mak Mal
Error Curve
B
I Range MSU] [Da(a Automatic]
For MSU (aC)
Sk l Calculate I [Save Project I -- =
50
. [Graph Output] I Load Project] __ |
200
[Graph Error] I Reset]
[seroimase [ast |
Ahout e IAhuul Experimen || 77 _
e 4
Open Autornatic Credit
0
50 100 150 200

MSU Value(aC)

Figure 4.9: Plotting Graph output error

The user inserts the 2" Actual UUT Output and click the “Calculate” button

again to find the Average (mA) and Standard Deviation for this analysis. Figure 4.10
shows to calculate average and standard deviation.

MSU Value(oC)

=E=E)
No % MSU Applied Value oG | Desired UUT output ma | 1st Actual UUT Output mA | 2nd Actual UUT Qutput mA Output Error % Average ma STD Deviation
] 50 4 38) 5 3.845 0.00405
25 875 8 73 739 1.25 7.945 0.00405
&0 125 12 12 1188 0 11.99 0.0002
75 162.5 18 158 1598 0625 15.94 0.0032
100 200 20 198 1988 0.5 19.895 5e-005
Error Curve
[
I Range MSU I [Data Autormnatic]
For MSU (oC)
S I Calculate I [Save Project I —— —
50
et [Graph Output] l Load Project] 77 |
200
[Graph Error] I Reset]
Save Image Quit
russvis [son e
Open Automatic Credit
o]
50 100 150 200

Figure 4.10: To calculate average and standard deviation

55

The user click the Arrow button [>] for calculate the uncertainties of this

analysis. The panel shows the uncertainty panel. The user can enter the value to find the

result of the uncertainty. Figure 4.11 shows the uncertainty panel.

luu]:uu;w‘ .‘j J@
Mo % MSU Applied Value o€ | Desired UUT output m& 1st Actual UUT Output A 2Znd Actual UUT Output ma QOutput Error % Average mh STO Deviation
o 50 4 38 389] 3.845 0.00405
25 875 8 73 799 126 7.945 0.00405
50 126 12 12 1138 a 11.99 0.0002
75 162.5 16 1583 1588 0625 1594 0.0032
100 200 20 183 19.89 05 19.895 Se-005

For MSU (oC)

I Range M3U I [Data Automatic]

Sl I Calculate l [Save Project l
50
End [Graph Output ‘ I Load Project]
200
{ Graph Errar I Resst l
Save Image GQuit
l Ahout e] [AhnutEXpeMmam

Open Automatic Credit

1) Uncertainty Due To Repeatability of The Experiment
Insert the worst case standard deviation
Infa

= Calculate

DOF = a Clear

2) Uncertainty Contribution Due To MSU Eror

(0.01% of +0.005% A
reading range
uz= 0 Calcuiate
DOF = 0 Clear

3) Uncertainty Due To UUT Resolution
Insert the resolution of Recorder

Info

el il Caloulate

DOF = a Clear

4) Combined Standard Uncertainty, uc

Insert ul, u2 and u3
ul =
uz=
u3=

uc = 0

Effective degrees of freedam, Ve

Ve= 0

The coverage factor k is determined from t-distribution.

Refer to Appendix
k=

u=uc l (kPa)
U= n}

Appendix

Info

Calculate

Clear

Info

Calculate bl

Clear

Figure 4.11: Uncertainty panel

56

The result get after the user inserts the data to find the uncertainty result. If the

user get problem for this panel, the user can click at the “info” button to find the

solution, there is some information that can use in this calculation. Figure 4.12 shows

the calculation uncertainty.

fﬂ Manual J
Mo % MSU Applied Value o | Desired UUT output mA | 1st Actual UUT Output mA | 2nd Actual UUT Output mA Output Errar % Average mA STD Deviation
] 50 4 38 389 5 3.845 (0.00405
25 B75 B 74 Taa 125 7.945 0.00405
50 125 12 12 1188 0 11.99 0.0002
78 1625 16 1549 15.88 0B25 1694 0.0032
100 200 20 193 19.89 05 19,895 Se-005
1y Uncertainty Due To Repeatability of The Experiment 4) Combined Standard Uncertainty, uc Agpendix
[Range M5U I I Data Automatic l Insert the worst case standard deviation Ingert ut, u2 and u3
Faor M3U (oC)
ul =
- { Calculate] I Save Project ‘ 0.00405 0.00286378
@ ul = 000286378 2o 0.0388908
DOF = 1 u3= 0.0707 107
Enal I Graph Output { Load Project] ==
= 0.0807509
200 I 2) Uncertainty Contribution Due To MSU Error ol
Graph Errar l Resset l
(001%of ogg +0008% 7gg)V Effective degrees of freedom, Ve
readin range
a- oo
DOF = Inf The coverage factor k is determined from t-distribution.
Refer to Appendix
About Me] {Ahuut et 3) Uncertainty Due To UUT Resolution o 196
Insert the resolution of Recorder lapC
o | - u=uek(e) >
Open Automatic Credit 0]
s oo = T
boF- w

Figure 4.12: Calculate uncertainty

=lE3

57

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

51 Conclusion

The development software using Matlab application has been presented in this
project. The system for this experiment is work done and it can interface with the
Advantech PCL-1710HG properly.

For the basic, the user can identify more about the function of each instrument
that use for this analysis and also know how to find the reading of temperature using
RTD. Otherwise, the user can interface the system with the instrument using DAQ card,
the Advantech PCL-1710HG.

The system was developing for the educational purpose. So, the user can use this
system to do analysis in the lab. It also suitable uses for the all computer that installed
the Matlab software.

This system was developed in two way functions. There are in automatic
function and the manual function. For the automatic function, the user can interface the
system with DAQ card to collect the data from the instrument. If the user have problem
with DAQ card, the user can use the manual function. The user need to enter the value
that get from the analysis and then the system will operated to find the result of this

analysis.

58

5.2 Recommendations

This system recommended that the future development should be considering
for two things which are the instrument part and the software part, GUI Matlab. For this
system, it successful operated. Therefore, there are some add on enhancement for

improve the system. The suggestions that can apply in this system are:

e The software should be create creatively and more attractive ways. This system
will operate smoothly and working properly without any problem related to
instrument part.

e This system will develop for more efficiency and able to work with others
hardware. It can interface with the other DAQ card if the Advantech PCL-
1710HG have problem.

e The Graphical User Interface can be improved by adding many options such as
it can connect with the internet to upload the data in the website. The user can
get the data from the website to do the calculation at other places.

59

REFERENCE

[1] http://en.wikipedia.org/wiki/Resistance temperature_detector

[2] What is a Resistance Temperature Detector (RTD)?
http://www.omega.com/rtd.html

[3] About Temperature Sensors
http://www.temperatures.com/rtds.html

[4] Application Note: RTD, Thermocouple or Thermistor?
http://www.microdag.com/accessories/choosing.php

[5] Continuous Resistance Temperature Detector Calibration Using Johnson Noise

Thermometry, September 2004
http://www.ornl.gov/sci/engineering_science_technology/msd/Personnel/cbritto
n/clb_papers/S47.pdf

APPENDIX A

T-distribution Curve Table

60

Degree of Fraction p in percent
Freedom
v 68.27* 90.00 95.00 95.45 99.00 99.73*
1 1.84 6.31 12.71 13.97 63.66 235.8
2 1.32 2.92 4.30 4.53 9.92 19.21
3 1.20 2.35 3.18 3.31 5.84 9.92
4 1.14 2.13 2.78 2.87 4.60 6.62
5 1.11 2.02 2.57 2.65 4.03 5.51
6 1.09 1.94 2.45 2.52 3.71 4.90
7 1.08 1.89 2.36 2.43 3.50 4.53
8 1.07 1.86 2.31 2.37 3.36 4.28
9 1.06 1.83 2.26 2.32 3.25 4.09
10 1.05 1.81 2.23 2.28 3.17 3.96
11 1.05 1.80 2.20 2.25 3.11 3.85
12 1.04 1.78 2.18 2.23 3.05 3.76
13 1.04 1.77 2.16 2.21 3.01 3.69
14 1.04 1.76 2.14 2.20 2.98 3.64
15 1.03 1.75 2.13 2.18 2.95 3.59
16 1.03 1.75 2.12 2.17 2.92 3.54
17 1.03 1.74 2.11 2.16 2.90 3.51
18 1.03 1.73 2.10 2.15 2.88 3.48
19 1.03 1.73 2.09 2.14 2.86 3.45
20 1.03 1.72 2.09 2.13 2.85 3.42
25 1.02 1.71 2.06 2.11 2.79 3.33
30 1.02 1.70 2.04 2.09 2.75 3.27
35 1.01 1.70 2.03 2.07 2.72 3.23
40 1.01 1.68 2.02 2.06 2.70 3.20
45 1.01 1.68 2.01 2.06 2.69 3.18
50 1.01 1.68 2.01 2.05 2.68 3.16
100 1.005 1.660 1.984 2.025 2.262 3.077
1.000 1.645 1.960 2.000 2.576 3.000

*For a quality Z described by a normal distribution with expectation yz and standard
deviation 0, the interval vz * ko encompasses p = 68.27, 95.45 AND 99.73 percent of
the distribution for k = 1, 2 and 3 respectively.

APPENDIX B

PCI1-1710 HG Datasheet

61

62

63

64

APPENDIX C

Coding Program

For Automatic Section

function varargout = Automatic(varargin)

% AUTOMATIC M-file for Automatic.fig

% AUTOMATIC, by itself, creates a new AUTOMATIC or raises the existing
% singleton*.

%

% H=AUTOMATIC returns the handle to a new AUTOMATIC or the handle to
% the existing singleton*.

%

% AUTOMATIC('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in AUTOMATIC.M with the given input
arguments.

%

% AUTOMATIC('Property','Value',...) creates a new AUTOMATIC or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Automatic_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application

% stop. Allinputs are passed to Automatic_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Automatic
% Last Modified by GUIDE v2.5 18-Sep-2008 01:35:45

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

'gui_Singleton’, gui_Singleton, ...
'gui_OpeningFcn', @Automatic_OpeningFcn, ...

65

'gui_OutputFen', @Automatic_OutputFcn, ...
'gui_LayoutFcen',], ...
'gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Automatic is made visible.

function Automatic_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Automatic (see VARARGIN)

% Choose default command line output for Automatic
handles.output = hObiject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Automatic wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = Automatic_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in start2.

function start2_Callback(hObiject, eventdata, handles)

% hObject handle to start2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

66

set(handles.stop2,'visible','on’)
set(handles.start2,'visible','off")

% --- Executes on button press in stop2.

function stop2_Callback(hObject, eventdata, handles)

% hObject handle to stop2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.stop2,'visible','off")

set(handles.start2,'visible','on’)

% --- Executes on button press in close2.

function close2_Callback(hObject, eventdata, handles)

% hObject handle to close2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close

function start3_Callback(hObject, eventdata, handles)

% hObject handle to start3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of start3 as text
% str2double(get(hObject,'String')) returns contents of start3 as a double

% --- Executes during object creation, after setting all properties.
function start3_CreateFcn(hObject, eventdata, handles)

% hObject handle to start3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in show?2.

function show?2_Callback(hObject, eventdata, handles)

% hObject handle to show2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

67

st3 = str2double(get(handles.start3,'String'));
ed3 = str2double(get(handles.end3,'String’));

% Calculate data

v3 = (ed3-st3)/4;

Aa2 = st3+(0*v3);
set(handles.msul2,'string',Aa2);
Bb2 = st3+(1*v3);
set(handles.msu22,'string',Bb2);
Cc2 = st3+(2*v3);
set(handles.msu32,'string',Cc2);
Dd2 = st3+(3*v3);
set(handles.msu42,'string',Dd2);
Ee2 = st3+(4*v3);
set(handles.msu52,'string',Ee2);

function datal2_Callback(hObject, eventdata, handles)

% hObject handle to datal2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of datal2 as text
% str2double(get(hObject,'String')) returns contents of datal2 as a double

% --- Executes during object creation, after setting all properties.
function datal2_CreateFcn(hObject, eventdata, handles)

% hObject handle to datal2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function data22_Callback(hObject, eventdata, handles)

% hObject handle to data22 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data22 as text
% str2double(get(hObject,'String')) returns contents of data22 as a double

68

% --- Executes during object creation, after setting all properties.
function data22_CreateFcn(hObject, eventdata, handles)

% hObject handle to data22 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function data32_Callback(hObject, eventdata, handles)

% hObject handle to data32 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data32 as text
% str2double(get(hObject,'String')) returns contents of data32 as a double

% --- Executes during object creation, after setting all properties.
function data32_CreateFcn(hObject, eventdata, handles)

% hObject handle to data32 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function data42_Callback(hObject, eventdata, handles)

% hObject handle to data42 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data42 as text
% str2double(get(hObject,'String')) returns contents of data42 as a double

% --- Executes during object creation, after setting all properties.
function data42_CreateFcn(hObject, eventdata, handles)

69

% hObject handle to data42 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in ok1.

function ok1_Callback(hObject, eventdata, handles)

% hObject handle to okl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')

ok1=simout(10)
set(handles.datal2,'String',0k1);

% --- Executes on button press in ok2.

function ok2_Callback(hObject, eventdata, handles)

% hObject handle to ok2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')
ok2=simout(10)

70

set(handles.data22,'String',0k2);

% --- Executes on button press in ok3.

function ok3_Callback(hObject, eventdata, handles)

% hObject handle to ok3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat’)

ok3=simout(10)
set(handles.data32,'String',0k3);

% --- Executes on button press in ok4.

function ok4_Callback(hObject, eventdata, handles)

% hObject handle to ok4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat')

ok4=simout(10)
set(handles.data42,'String',0k4);

% --- Executes on button press in ok5.

function ok5_Callback(hObject, eventdata, handles)

% hObject handle to ok5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%clear the workspace
clear

71

%make the handles structures available to the main workspace
h =gcf;
handles = guidata(h);

%To display data from workspace to GUI
load('simout.mat’)

ok5=simout(10)
set(handles.data52,'String',0k5);

% --- Executes on button press in clear2.

function clear2_Callback(hObject, eventdata, handles)

% hObject handle to clear2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
set(handles.start3,'string’,");

set(handles.end3,'string',");

set(handles.msul2,'string’,'0");
set(handles.msu22,'string’,'0");
set(handles.msu32,'string’,'0");
set(handles.msu42,'string','0");
set(handles.msu52,'string’,'0");

% --- Executes on button press in error2.

function error2_Callback(hObject, eventdata, handles)

% hObject handle to error2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Data reading from automatic

valueld = str2double(get(handles.datal2,'String"));
d1 = (valueld/250);
value2d = str2double(get(handles.data22,'String"));
d2 = (value2d/250);
value3d = str2double(get(handles.data32,'String’));
d3 = (value3d/250);
value4d = str2double(get(handles.data42,'String"));
d4 = (value4d/250);
value5d = str2double(get(handles.data52,'String'));
d5 = (value5d/250);

% Calculate percentage error2

total12 = ((0.004-d1)/(0.004))*100;
set(handles.errorl2,'string',total12);
total22 = ((0.008-d2)/(0.008))*100;

set(handles.error22,'string',total22);
total32 = ((0.012-d3)/(0.012))*100;
set(handles.error32,'string',total32);
total42 = ((0.016-d4)/(0.016))*100;
set(handles.error42,'string',total42);
total52 = ((0.020-d5)/(0.020))*100;
set(handles.error52,'string',total52);

% --- Executes on button press in graphmsu.

function graphmsu_Callback(hObject, eventdata, handles)

% hObject handle to graphmsu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.graf2)

%Recall data from UUT

a2 = str2double(get(handles.datal3,'String'));
b2 = str2double(get(handles.data23,'String’));
c2 = str2double(get(handles.data33,'String'));
d2 = str2double(get(handles.data43,'String"));
e2 = str2double(get(handles.data53,'String'));

st3 = str2double(get(handles.start3,'String"));
ed3 = str2double(get(handles.end3,'String’));

% Calculate data

v3 = (ed3-st3)/4;

Aa2 = st3+(0*v3);
set(handles.msul2,'string',Aa2);
Bb2 = st3+(1*v3);
set(handles.msu22,'string',Bb2);
Cc2 = st3+(2*v3);
set(handles.msu32,'string',Cc2);
Dd2 = st3+(3*v3);
set(handles.msu42,'string',Dd2);
Ee2 = st3+(4*v3);
set(handles.msu52,'string',Ee2);

% Create frequency plot

X = [Aa2 Bb2 Cc2 Dd2 Ee2];

Y =[a2 b2 c2 d2 e2]

plot(X,Y)

xlabel('MSU Value(oC)")
ylabel('Actual UUT Output(mA)")
title('5 Point Calibration’)

grid on

% --- Executes on button press in Grapherror.

function Grapherror_Callback(hObject, eventdata, handles)

% hObject handle to Grapherror (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

axes(handles.graf2)

%Recall data from UUT

a2 = str2double(get(handles.datal3,'String'));
b2 = str2double(get(handles.data23,'String’));
c2 = str2double(get(handles.data33,'String'));
d2 = str2double(get(handles.data43,'String"));
e2 = str2double(get(handles.data53,'String'));

st3 = str2double(get(handles.start3,'String"));
ed3 = str2double(get(handles.end3,'String’));

% Calculate data

v3 = (ed3-st3)/4;

Aa2 = st3+(0*v3);
set(handles.msul2,'string',Aa2);
Bb2 = st3+(1*v3);
set(handles.msu22,'string',Bb2);
Cc2 = st3+(2*v3);
set(handles.msu32,'string',Cc2);
Dd2 = st3+(3*v3);
set(handles.msu42,'string',Dd2);
Ee2 = st3+(4*v3);
set(handles.msu52,'string',Ee2);

% Calculate data

A2 = ((4.0-a2)/4.0)*100;
B2 = ((8.0-b2)/8.0)*100;
C2 = ((12.0-¢2)/12.0)*100;
D2 = ((16.0-d2)/16.0)*100;
E2 = ((20.0-62)/20.0)*100;

% Create frequency plot

%Points in each interval
divider = 20;

X =[Aa2 Bb2 Cc2 Dd2 Ee2];
Y =[A2 B2 C2 D2 E2]

73

m = size(X);

n=m(2);

o=n-1;

xi=1I;

for tel = 1:0
interval = (X(tel + 1) - X(tel))/(divider);
xintervals = [X(tel):interval: X(tel + 1)];
Xi = [Xi xintervals];

end

plottools off

yi = interp1(X,Y xi,'cubic’);
plot(X,Y,'0";

hold on;

plot(xi,yi,'r");

hold off;

xlabel('MSU Value(oC)")
ylabel(‘'Error(%)")
title('Error Curve')

grid on

% --- Executes on button press in save2.

function save2_Callback(hObject, eventdata, handles)

% hObject handle to save2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

savePlotWithinGUI(handles.graf2)

% --- Executes on button press in clear3.

function clear3_Callback(hObject, eventdata, handles)

% hObject handle to clear3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

cla(handles.graf2,reset’)
% --- Executes during object creation, after setting all properties.

function mula_CreateFcn(hObject, eventdata, handles)
% hObject handle to mula (see GCBO)

74

75

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% --- Executes on button press in sim.

function sim_Callback(hObject, eventdata, handles)

% hObject handle to sim (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%simulate the system

set_param(gcs, Simulationmode','external’)
set_param(gcs,'SimulationCommand','connect’)
set_param(gcs,' SimulationCommand','start’)
set_param(gcs,'SimulationCommand'’,'stop’)

function data33_Callback(hObject, eventdata, handles)

% hObject handle to data33 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data33 as text
% str2double(get(hObject,'String')) returns contents of data33 as a double

% --- Executes during object creation, after setting all properties.
function data33_CreateFcn(hObject, eventdata, handles)

% hObject handle to data33 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function data43_Callback(hObject, eventdata, handles)

% hObject handle to data43 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of data43 as text
% str2double(get(hObject,'String')) returns contents of data43 as a double

% --- Executes during object creation, after setting all properties.

76

function data43_CreateFcn(hObject, eventdata, handles)

% hObject handle to data43 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

% --- Executes on button press in convert.

function convert_Callback(hObject, eventdata, handles)

% hObject handle to convert (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Collect data(voltage)

valueld = str2double(get(handles.datal2,'String"));
value2d = str2double(get(handles.data22,'String'));
value3d = str2double(get(handles.data32,'String"));
value4d = str2double(get(handles.data42,'String'));
value5d = str2double(get(handles.data52,'String'));

% Convert voltage to current

d1 = (value1d/250)*1000;
set(handles.datal3,'string',d1);
d2 = (value2d/250)*1000;
set(handles.data23,'string',d2);
d3 = (value3d/250)*1000;
set(handles.data33,'string',d3);
d4 = (value4d/250)*1000;
set(handles.data43,'string',d4);
d5 = (value5d/250)*1000;
set(handles.data53,'string',d5);

function datal3_Callback(hObiject, eventdata, handles)

% hObject handle to datal3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of datal3 as text

7

% str2double(get(hObject,'String')) returns contents of datal3 as a double

%stores the figure handle of Manual's GUI here
ManualFigureHandle = Manual;

%stores the GUI data from Manual's GUI here
%now we can access any of the data from Manual's GUI!!!!
ManualData = guidata(ManualFigureHandle);

%store the input text from Daniel's GUI
%into the variable daniel_input
%daniel_input = get(danielData.editText_Daniel,'String’);

%input text from Daniel's GUI
set(handles.datal,'String',datal3);

% --- Executes on button press in save4.

function save4_Callback(hObject, eventdata, handles)

% hObject handle to save4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to specify where to save the settings file
[filename,pathname] = uiputfile('project’,'Save your GUI settings");

if pathname == 0 %if the user pressed cancelled, then we exit this callback
return

end

%construct the path name of the save location

saveDataName = fullfile(pathname,filename);

%saves the gui data
hgsave(saveDataName);

% --- Executes on button press in load4.

function load4_Callback(hObject, eventdata, handles)

% hObject handle to load4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to choose which settings to load3
[filename, pathname] = uigetfile("*.fig', 'Choose the GUI settings file to load’);

%construct the path name of the file to be loaded
loadDataName = fullfile(pathname,filename);

78

%this is the gui that will be closed once we load3 the new settings
theCurrentGUI = gcf;

%load3 the settings, which creates a new gui
hgload(loadDataName);

%closes the old gui
close(theCurrentGUI);

For Manual Section

function varargout = Manual(varargin)

% MANUAL M-file for Manual.fig

% MANUAL, by itself, creates a new MANUAL or raises the existing

% singleton*.

%

% H=MANUAL returns the handle to a new MANUAL or the handle to
% the existing singleton*.

%

% MANUAL('CALLBACK'hObject,eventData,handles,...) calls the local
% function named CALLBACK in MANUAL.M with the given input arguments.
%

% MANUAL('Property','VValue',...) creates a new MANUAL or raises the
% existing singleton*. Starting from the left, property value pairs are

% applied to the GUI before Manual_OpeningFunction gets called. An

% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to Manual_OpeningFcn via varargin.

%

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".

%

% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.
% Edit the above text to modify the response to help Manual

% Last Modified by GUIDE v2.5 18-Sep-2008 01:33:55
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton’, gui_Singleton, ...
‘gui_OpeningFcn', @Manual_OpeningFcn, ...
'gui_OutputFen’, @Manual_OutputFcn, ...
'gui_LayoutFen',], ...
'gui_Callback’, []);

79

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before Manual is made visible.

function Manual_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to Manual (see VARARGIN)

% Choose default command line output for Manual
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Manual wait for user response (see UIRESUME)
% uiwait(handles.figurel);

% --- Outputs from this function are returned to the command line.
function varargout = Manual_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function datal_Callback(hObject, eventdata, handles)

% hObject handle to datal (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of datal as text
% str2double(get(hObject,'String")) returns contents of datal as a double
datal = str2double(get(hObject, 'String’));

80

if isnan(datal)

set(hObject, 'String’, ");

errordlg(" Input Must Be A Number !'''Error’);
end

% --- Executes during object creation, after setting all properties.
function datal_CreateFcn(hObject, eventdata, handles)

% hObject handle to datal (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data2_Callback(hObject, eventdata, handles)

% hObject handle to data2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data2 as text
% str2double(get(hObject,'String')) returns contents of data2 as a double
data2 = str2double(get(hObject, 'String'));
if isnan(data2)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !'''Error’);
end

% --- Executes during object creation, after setting all properties.
function data2_CreateFcn(hObject, eventdata, handles)

% hObject handle to data2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

81

function data3_Callback(hObject, eventdata, handles)

% hObject handle to data3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of data3 as text
% str2double(get(hObject,'String')) returns contents of data3 as a double
data3 = str2double(get(hObject, 'String’));
if isnan(datad)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !'''Error);
end

% --- Executes during object creation, after setting all properties.
function data3_CreateFcn(hObiject, eventdata, handles)

% hObject handle to data3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function data4_Callback(hObject, eventdata, handles)

% hObject handle to data4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of data4 as text
% str2double(get(hObject,'String')) returns contents of data4 as a double
data4 = str2double(get(hObject, 'String'));
if isnan(data4)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !'''Error’);
end

% --- Executes during object creation, after setting all properties.
function data4_CreateFcn(hObject, eventdata, handles)

% hObject handle to data4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor’,get(0,'defaultUicontrolBackgroundColor"));
end

function data5_Callback(hObject, eventdata, handles)

% hObject handle to data5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of data5 as text
% str2double(get(hObject,'String')) returns contents of data5 as a double
data5 = str2double(get(hObject, 'String’));
if isnan(datab)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !'''Error’);
end

% --- Executes during object creation, after setting all properties.
function data5_CreateFcn(hObject, eventdata, handles)

% hObject handle to data5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function startl_Callback(hObiject, eventdata, handles)

% hObject handle to startl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of startl as text
% str2double(get(hObject,'String')) returns contents of startl as a double

startl = str2double(get(hObject, 'String’));
if isnan(startl)
set(hObject, 'String’, ");

82

83

errordlg(" Value Must Be A Number !!''Error’);
end

% --- Executes during object creation, after setting all properties.
function startl_CreateFcn(hObject, eventdata, handles)

% hObject handle to startl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function endl_Callback(hObiject, eventdata, handles)

% hObject handle to end1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of end1 as text
% str2double(get(hObject,'String')) returns contents of end1 as a double

endl = str2double(get(hObject, 'String"));
if isnan(endl)

set(hObject, 'String’, ");

errordlg(" Value Must Be A Number !!''Error");
end

% --- Executes during object creation, after setting all properties.
function endl_CreateFcn(hObiject, eventdata, handles)

% hObject handle to endl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in showl.

function showl_Callback(hObject, eventdata, handles)

% hObject handle to showl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI
f = str2double(get(handles.startl,'String'));
g = str2double(get(handles.endl,'String"));

% Calculate data

h = (g-f)/4;

Aa = f+(0*h);
set(handles.msul,'string’,Aa);
Bb = f+(1*h);
set(handles.msu2,'string’,Bb);
Cc = f+(2*h);
set(handles.msu3,'string’,Cc);
Dd = f+(3*h);
set(handles.msu4,'string’,Dd);
Ee = f+(4*h);
set(handles.msub,'string’,Ee);

% --- Executes on button press in plotl.

function plotl_Callback(hObject, eventdata, handles)

% hObject handle to plotl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

a = str2double(get(handles.datal,'String"));
b = str2double(get(handles.data2,'String'));
¢ = str2double(get(handles.data3,'String"));
d = str2double(get(handles.data4,'String'));
e = str2double(get(handles.data5,'String"));

% Recall data from MSU
f = str2double(get(handles.startl,'String’));
g = str2double(get(handles.endl,'String"));

h = (g-f)/4;

Aa = f+(0*h);
set(handles.msul,'string',Aa);
Bb = f+(1*h);
set(handles.msu2,'string’,Bb);
Cc = f+(2*h);

84

set(handles.msu3,'string’,Cc);
Dd = f+(3*h);
set(handles.msu4,'string’,Dd);
Ee = f+(4*h);
set(handles.msu5,'string’,Ee);

% Calculate data

A = ((4.0-2)/4.0)*100;
B = ((8.0-b)/8.0)*100;
C = ((12.0-¢)/12.0)*100;
D = ((16.0-d)/16.0)*100;
E = ((20.0-€)/20.0)*100:

% Create frequency plot

%Points in each interval
divider = 20;

X =[AaBb Cc Dd Ee];
Y=[ABCDE]

m = size(X);

n=m(2);

o=n-1;

xi=[l;

fortel =1:0
interval = (X(tel + 1) - X(tel))/(divider);
xintervals = [X(tel):interval:X(tel + 1)];
Xi = [xi xintervals];

end

plottools off

yi = interp1(X,Y xi,'cubic');
plot(X,Y,'0");

hold on;

plot(xi,yi,'r);

hold off;

xlabel('MSU Value(oC)")
ylabel('Error(%)")
title('Error Curve")

grid on

% --- Executes on button press in call.

function call_Callback(hObject, eventdata, handles)

% hObject handle to call (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get user actual UUT from GUI

valuela = str2double(get(handles.uutl,'String"));
valuelb = str2double(get(handles.datal,'String"));
value2a = str2double(get(handles.uut2,'String"));
value2b = str2double(get(handles.data2,'String"));
value3a = str2double(get(handles.uut3,'String’));
value3b = str2double(get(handles.data3,'String"));
valueda = str2double(get(handles.uut4,'String’));
valuedb = str2double(get(handles.data4,'String"));
valueba = str2double(get(handles.uut5,'String’));
value5b = str2double(get(handles.data5,'String’));

% Calculate percentage error

totall = ((valuela-valuelb)/(valuela))*100;
set(handles.errorl,'string',total1);
total2 = ((value2a-value2b)/(value2a))*100;
set(handles.error2,'string',total2);
total3 = ((value3a-value3b)/(value3a))*100;
set(handles.error3,'string',total3);
total4 = ((valueda-value4b)/(value4a))*100;
set(handles.error4,'string',total4);
total5 = ((value5a-value5b)/(value5a))*100;
set(handles.error5,'string',total5);

% Calculate average

valuelb = str2double(get(handles.datal,'String'));
valuelc = str2double(get(handles.data6,'String'));
totallbc = ((valuelb+valuelc)/2);
set(handles.avel,'string',total1bc);
value2b = str2double(get(handles.data2,'String'));
value2c = str2double(get(handles.data7,'String'));
total2bc = ((value2b+value2c)/2);
set(handles.ave2,'string',total2bc);
value3b = str2double(get(handles.data3,'String'));
value3c = str2double(get(handles.data8,'String'));
total3bc = ((value3b+value3c)/2);

set(handles.ave3,'string’,total3bc);

value4b = str2double(get(handles.data4,'String’));
value4c = str2double(get(handles.data9,'String'));
totaldbc = ((valuedb+value4c)/2);
set(handles.ave4,'string’,total4bc);

value5b = str2double(get(handles.data5,'String’));
value5c = str2double(get(handles.datal0,'String"));
total5bc = ((valueSb+value5sc)/2);
set(handles.ave5,'string’,total5hc);

%ocalculate std

valuelb = str2double(get(handles.datal,'String"));
valuelc = str2double(get(handles.data6,'String'));
totallbc = ((valuelb+valuelc)/2);

standardl = (valuelb-totallbc)*2+(valuelc-totallbc)"2;
set(handles.std1,'string',standard1l);

value2b = str2double(get(handles.data2,'String"));
value2c = str2double(get(handles.data7,'String’));
total2bc = ((value2b+value2c)/2);

standard2 = (value2b-total2bc)"2+(value2c-total2bc)"2;
set(handles.std2,'string',standard?2);

value3b = str2double(get(handles.data3,'String"));
value3c = str2double(get(handles.data8,'String'));
total3bc = ((value3b+value3c)/2);

standard3 = (value3b-total3bc)"2+(value3c-total3bc)"2;
set(handles.std3,'string',standard3);

value4b = str2double(get(handles.data4,'String"));
value4c = str2double(get(handles.data9,'String’));
totaldbc = ((valuedb+value4c)/2);

standard4 = (value4b-total4bc)*2+(value4c-total4bc)"2;
set(handles.std4,'string',standard4);

value5b = str2double(get(handles.data5,'String"));
value5c¢ = str2double(get(handles.datal0,'String"));
total5bc = ((valueSb+value5sc)/2);

standard5 = (value5b-total5hc)*2+(valuebc-total5bc)™2;
set(handles.std5,'string',standard5);

function editl1l_Callback(hObiject, eventdata, handles)

% hObject handle to data2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

87

88

% Hints: get(hObject,'String’) returns contents of data2 as text
% str2double(get(hObject,'String')) returns contents of data2 as a double

% --- Executes during object creation, after setting all properties.
function editl1l_CreateFcn(hObject, eventdata, handles)

% hObject handle to data2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function edit12_Callback(hObiject, eventdata, handles)

% hObject handle to data3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of data3 as text
% str2double(get(hObject,'String')) returns contents of data3 as a double

% --- Executes during object creation, after setting all properties.
function edit12_CreateFcn(hObject, eventdata, handles)

% hObject handle to data3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function edit13_Callback(hObiject, eventdata, handles)

% hObject handle to edit13 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of edit13 as text

89

% str2double(get(hObject,'String')) returns contents of edit13 as a double

% --- Executes during object creation, after setting all properties.
function edit13_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit13 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function edit14_Callback(hObject, eventdata, handles)

% hObject handle to data5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data5 as text
% str2double(get(hObject,'String')) returns contents of data5 as a double

% --- Executes during object creation, after setting all properties.
function edit14_CreateFcn(hObject, eventdata, handles)

% hObject handle to data5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in gt.

function gt_Callback(hObject, eventdata, handles)

% hObject handle to gt (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close all

% --- Executes on button press in crel.

90

function crel_Callback(hObject, eventdata, handles)

% hObject handle to crel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.txtl,'string’,'ldea and progamming by Faiz EA05023");
pause(b);
set(handles.txtl,'string’,");

function data6_Callback(hObject, eventdata, handles)

% hObject handle to data6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data6 as text
% str2double(get(hObject,'String')) returns contents of data6 as a double
data6 = str2double(get(hObject, 'String'));
if isnan(data6)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !''Error’);
end

% --- Executes during object creation, after setting all properties.
function data6_CreateFcn(hObject, eventdata, handles)

% hObject handle to data6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function data8_Callback(hObject, eventdata, handles)

% hObject handle to data8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data8 as text
% str2double(get(hObject,'String")) returns contents of data8 as a double
data8 = str2double(get(hObject, 'String’));
if isnan(data8)
set(hObject, 'String’, ");

91

errordlg(" Input Must Be A Number !!''Error’);
end

% --- Executes during object creation, after setting all properties.
function data8 CreateFcn(hObiject, eventdata, handles)

% hObject handle to data8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

function datal0_Callback(hObject, eventdata, handles)

% hObject handle to datal0 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of datal0 as text
% str2double(get(hObject,'String')) returns contents of datal0 as a double
datal0 = str2double(get(hObject, 'String"));
if isnan(datal0)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !''Error’);
end

% --- Executes during object creation, after setting all properties.
function datal0_CreateFcn(hObject, eventdata, handles)

% hObject handle to datalO (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function data7_Callback(hObject, eventdata, handles)
% hObject handle to data7 (see GCBO)

92

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of data7 as text
% str2double(get(hObject,'String')) returns contents of data7 as a double
data7 = str2double(get(hObject, 'String’));
if isnan(data7)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !'''Error’);
end

function data9_Callback(hObject, eventdata, handles)

% hObject handle to data9 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of data9 as text
% str2double(get(hObject,'String')) returns contents of data9 as a double
data9 = str2double(get(hObject, 'String'));
if isnan(data9)
set(hObject, 'String’, ");
errordlg(" Input Must Be A Number !''Error’);
end

% --- Executes on button press in gral.

function gral_Callback(hObject, eventdata, handles)

% hObject handle to gral (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Recall data from UUT

a = str2double(get(handles.datal,'String"));
b = str2double(get(handles.data2,'String"));
c = str2double(get(handles.data3,'String"));
d = str2double(get(handles.data4,'String"));
e = str2double(get(handles.data5,'String"));

% Recall data from MSU
f = str2double(get(handles.startl,'String'));
g = str2double(get(handles.endl,'String"));

h=(g-f)/4;

Aa = f+(0*h);
set(handles.msul,'string',Aa);
Bb = f+(1*h);
set(handles.msu2,'string’,Bb);

Cc = f+(2*h);
set(handles.msu3,'string’,Cc);
Dd = f+(3*h);
set(handles.msu4,'string’,Dd);
Ee = f+(4*h);
set(handles.msub,'string’,Ee);

% Create frequency plot

X =[Aa Bb Cc Dd Ee];
Y=[abcde]

plot(X,Y)

xlabel('MSU Value(oC)")
ylabel("‘Actual UUT Output(mA)’)
title('5 Point Calibration')

grid on

% --- Executes on button press in cal2.

function cal2_Callback(hObject, eventdata, handles)

% hObject handle to cal2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate ul

wstandard = str2double(get(handles.wstd,'String'));
uncertl = (wstandard/sqrt(2));
set(handles.ul,'String',uncertl);

%Calculate DOF
dofl = 2-1;
set(handles.dofl,'String',dof1);

% --- Executes on button press in cle2.

function cle2_Callback(hObject, eventdata, handles)

% hObject handle to cle2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.wstd,'String',");
set(handles.ul,'String','0");
set(handles.dofl,'String','0");

function read1_Callback(hObiject, eventdata, handles)

% hObject handle to readl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

93

94

% Hints: get(hObject,'String") returns contents of readl as text
% str2double(get(hObject,'String')) returns contents of readl as a double

readl = str2double(get(hObject, 'String"));
if isnan(readl)

set(hObject, 'String’, ");

errordlg(" Value Must Be A Number !!''Error");
end

% --- Executes during object creation, after setting all properties.
function readl_CreateFcn(hObject, eventdata, handles)

% hObject handle to readl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

function rangel Callback(hObiject, eventdata, handles)

% hObject handle to rangel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of rangel as text
% str2double(get(hObject,'String')) returns contents of rangel as a double

rangel = str2double(get(hObject, 'String’));
if isnan(rangel)

set(hObject, 'String’, ");

errordlg(" Value Must Be A Number !'''Error’);
end

% --- Executes during object creation, after setting all properties.
function rangel_CreateFcn(hObject, eventdata, handles)

% hObject handle to rangel (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

95

if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in calcu?2.

function calcu2_Callback(hObject, eventdata, handles)

% hObject handle to calcu2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in cleu2.

function cleu2_Callback(hObject, eventdata, handles)

% hObject handle to cleu2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in back.

function back_Callback(hObject, eventdata, handles)

% hObject handle to back (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.graf, 'visible','on’)
set(handles.uncpanel,'visible','off")

% --- Executes on button press in forward.

function forward_Callback(hObject, eventdata, handles)

% hObject handle to forward (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.graf,'visible','off")
set(handles.uncpanel,'visible','on")

function wmr_Callback(hObject, eventdata, handles)

% hObject handle to wmr (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of wmr as text
% str2double(get(hObject,'String')) returns contents of wmr as a double

wmr = str2double(get(hObject, 'String"));
if isnan(wmr)

96

set(hObject, 'String’, ");
errordlg(" Value Must Be A Number !!''Error");
end

function unl_Callback(hObject, eventdata, handles)

% hObject handle to unl (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of unl as text
% str2double(get(hObject,'String')) returns contents of unl as a double

unl = str2double(get(hObject, 'String’));
if isnan(unl)

set(hObject, 'String’, ");

errordlg(" Value Must Be A Number !!''Error");
end

function un2_Callback(hObject, eventdata, handles)

% hObject handle to un2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of un2 as text
% str2double(get(hObject,'String')) returns contents of un2 as a double

un2 = str2double(get(hObiject, 'String"));
if isnan(un2)

set(hObject, 'String’, ");

errordlg(" Value Must Be A Number !!''Error");
end

function un3_Callback(hObiject, eventdata, handles)

% hObject handle to un3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String") returns contents of un3 as text

% str2double(get(hObject,'String')) returns contents of un3 as a double

un3 = str2double(get(hObject, 'String’));
if isnan(un3)

set(hObject, 'String’, ");

errordlg(" Value Must Be A Number !!''Error");
end

% --- Executes on button press in cal3.

97

function cal3_Callback(hObject, eventdata, handles)

% hObject handle to cal3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate u2

reading = str2double(get(handles.readl,'String"));
range = str2double(get(handles.rangel,'String’));
maxerror = ((0.0001*reading)+(0.00005*range));
uncert2 = (maxerror/sqrt(2));
set(handles.u2,'String’,uncert2);

%Calculate DOF
dof2 = 2/0;
set(handles.dof2,'String',dof2);

% --- Executes on button press in cle3.

function cle3_Callback(hObiject, eventdata, handles)

% hObject handle to cle3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.readl,'String',");
set(handles.rangel,'String',");
set(handles.u2,'String’,'0");
set(handles.dof2,'String’,'0");

% --- Executes on button press in cal4.

function cal4_Callback(hObiject, eventdata, handles)

% hObject handle to cal4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate u3

wmaxres = str2double(get(handles.wmr,'String’));
uncert3 = (wmaxres/sqrt(2));
set(handles.u3,'String’,uncert3);

%Calculate DOF
dof3 = 2/0;
set(handles.dof3,'String',dof3);

% --- Executes on button press in cle4.

function cle4_Callback(hObject, eventdata, handles)

% hObject handle to cle4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

98

% handles structure with handles and user data (see GUIDATA)

set(handles.wmr,'String',");
set(handles.u3,'String’,'0");
set(handles.dof3,'String’,'0");

% --- Executes on button press in calb5.

function cal5_Callback(hObject, eventdata, handles)

% hObject handle to cal5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate uc

uncl = str2double(get(handles.unl,'String’));
unc2 = str2double(get(handles.un2,'String"));
unc3 = str2double(get(handles.un3,'String’));
cmb = sqrt((unc1”*2)+(unc2/2)+(unc3”2));
set(handles.uc,'String',cmb);

%Calculate Ve

Ve = (cmb”™4)/((uncl™4)/(2-1));
set(handles.ve,'String',Ve);

% --- Executes on button press in cleb.

function cle5_Callback(hObiject, eventdata, handles)

% hObject handle to cle5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.unl,'String',");
set(handles.un2,'String',");
set(handles.un3,'String',");
set(handles.uc,'String','0");
set(handles.ve,'String','0");

function K_Callback(hObject, eventdata, handles)

% hObject handle to K (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String’) returns contents of K as text
% str2double(get(hObject,'String')) returns contents of K as a double

K = str2double(get(hObject, 'String’));
if isnan(K)

99

set(hObject, 'String’, ");
errordlg(" Value Must Be A Number !!''Error");
end

% --- Executes during object creation, after setting all properties.
function K_CreateFcn(hObject, eventdata, handles)

% hObject handle to K (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc
set(hObject,'BackgroundColor','white");
else
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor"));
end

% --- Executes on button press in cle6.

function cle6_Callback(hObiject, eventdata, handles)

% hObject handle to cle6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

set(handles.K,'String',");
set(handles.u,'String’,'0");

% --- Executes on button press in cal6.

function cal6_Callback(hObiject, eventdata, handles)

% hObject handle to cal6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%Calculate U

uncl = str2double(get(handles.unl,'String");
unc2 = str2double(get(handles.un2,'String"));
unc3 = str2double(get(handles.un3,'String"));
cmb = sgrt((unc1”2)+(unc272)+(unc3”2));

k = str2double(get(handles.K,'String'));

U = cmb*k;

set(handles.u,'String',U);

% --- Executes on button press in save.

function save_Callback(hObject, eventdata, handles)

% hObject handle to save (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)
savePlotWithinGUI(handles.graf)

% --- Executes on button press in experiment.

function experiment_Callback(hObject, eventdata, handles)

% hObject handle to experiment (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% --- Executes on button press in Save3.

function Save3_Callback(hObject, eventdata, handles)

% hObject handle to Save3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to specify where to save the settings file
[filename,pathname] = uiputfile('project’,'Save your GUI settings");

if pathname == 0 %if the user pressed cancelled, then we exit this callback
return

end

%construct the path name of the save location

saveDataName = fullfile(pathname,filename);

%saves the gui data
hgsave(saveDataName);

% --- Executes on button press in Load3.

function Load3_Callback(hObject, eventdata, handles)

% hObject handle to Load3 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%allow the user to choose which settings to load3
[filename, pathname] = uigetfile("*.fig', 'Choose the GUI settings file to load’);

%construct the path name of the file to be loaded
loadDataName = fullfile(pathname,filename);

%this is the gui that will be closed once we load3 the new settings
theCurrentGUI = gcf;

%Iload3 the settings, which creates a new gui
hgload(loadDataName);

100

101

%closes the old gui
close(theCurrentGUI);

% --- Executes on button press in dataA.

function dataA_Callback(hObject, eventdata, handles)

% hObject handle to dataA (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%stores the figure handle of Automatic's GUI here
AutomaticFigureHandle = Automatic;

%stores the GUI data from Automatic's GUI here
%now we can access any of the data from Automatic's GUI!!I!
AutomaticData = guidata(AutomaticFigureHandle);

%store the input text from Automatic's GUI

%into the variable Automatic_input

Automaticl_input = get(AutomaticData.datal3,'String’);
Automatic2_input = get(AutomaticData.data23,'String’);
Automatic3_input = get(AutomaticData.data33,'String’);
Automatic4_input = get(AutomaticData.data43,'String’);
Automatic5_input = get(AutomaticData.data53,'String’);
Automatic6_input = get(AutomaticData.start3,'String’);
Automatic7_input = get(AutomaticData.end3,'String’);

%set the static text on Manual's GUI to match the
%input text from Automatic's GUI
set(handles.datal,'String’,Automaticl_input);
set(handles.data2,'String’,Automatic2_input);
set(handles.data3,'String’,Automatic3_input);
set(handles.data4,'String’,Automatic4_input);
set(handles.data5,'String',Automatic5_input);
set(handles.startl,'String',Automatic6_input);
set(handles.endl,'String',Automatic7_input);

PCI-1710
PCI-1710HG

100 kS/s, 12-hit, 16-ch PCI Multifunction
Card

100 kS/s, 12-bit, 16-ch PCI Multifunction
Card with High Gain

Introduction

€

Features

= 16 single-ended or 8 differential or a combination of analog inputs
= 12-bit A/D converter, with up to 100 kHz sampling rate

= Programmable gain

= Automatic channel/gain scanning

= (Onboard FIFO memory (4096 samples)

= Two 12-bit analog output channels (PCI-1710/1710HG only)

= 16 digital inputs and 16 digital outputs

= Onboard programmable counter

= BoardID™ switch

The PCI-1710 Series are multifunction cards for the PCI bus. Their advanced circuit design provides higher quality and more functions, including the five most desired measurement
and control functions: 12-bit A/D conversion, D/A conversion, digital input, digital output, and counter/timer.

oge (]
Specifications
Analog Input
= Channels 16 single-ended/ 8 differential (SW programmable)
= Resolution 12 bits
= Max. Sampling Rate* 100 kS/s
= FIFO Size 4096 samples
= (Qvervoltage Protection +30Vp-p
= Input Impedance 16Q
= Sampling Modes Software, onboard programmable pacer, or external
= Input Range (V, software programmable)
PCI-1710/1710L
Bipolar 10 +5 +25 | +1.25 +0.625
Unipolar - |0~10]0~5] 0~25 | 0~125
Accuracy (% of FSR +1LSB) 0.1 0.1 0.2 0.2 0.4

PCI-1710HG/1710HGL

Bipolar +10 +5 1 | 05 | 01 | +£0.05 | +0.01 | +0.005
Unipolar - |0~10) - |0~1) - |0~01 - 1 0~001
Accuracy
(% of FSR | 0.1 0.1 0.2 02 | 02 0.2 04 04

+1LSB)
= Maximum Sampling Rate (S/s, depending on PGIA setting time)

Model Gain Max. Sampling Rate
PCI-1710/1710L 05,1,2,4,8 100 KS/s
0.5,1 100 KS/s
5,10 35KS/s
PCI-1710HG/1710HGL 20,100 7KS/s
500, 1000 770 S/s

*Note:

The sampling rate and throughput depends on the computer hardware architecture and
software environment. The rates may vary due to programming language, code efficiency,
CPU utilization and so on.

Analog Output (PCI-1710/1710HG only)

= Channels 2
= Resolution 12 bits
= Qutput Rate Static update
= Qutput Range (V, software programmable)
. 0~+5V@-5V
Internal Reference Unipolar 0-+10V@-10V

External Reference 0~+xV@-xV(-10<x<10)
= Slew Rate 10 V/ms
= Driving Capability 3mA
= QOperation Mode Software polling
= Accuracy INLE: +1/2 LSB, DNLE: +1/2 LSB
Digital Input
= Channels 16
= Compatibility 5V/TTL
= Input Voltage Logic 0: 0.8 V max.

Logic 1: 2.0 V min.
Digital Qutput
= Channels 16
= Compatibility SV/TTL
= Qutput Voltage Logic 0: 0.4 V max.

Logic 1: 2.4 V min.
= Qutput Capability Sink: 8.0mA@0.8V
Source: -04mA@2.0V

Pacer/Gounter

= Channels 1

= Resolution 16 bits
= Compatibility SV/TTL

= Max. Input Frequency 1 MHz

ADVANTECH DAQ Cards

PCI-1710
PCI-1710HG

Specifications Continved

General
= Bus Type

= 1/0 Connector
= Dimensions (L x H)
= Power Consumption

= QOperating Temperature
= Storing Temperature
= Storing Humidity

PCIV2.2
SCSI-68P female x 1
175x100 mm (6.9" x 3.9")

Typical: 5V @ 850 mA
Max:5V@1.0A

0~60° C (32 ~ 140° F) (refer to IEC 68-2-1, 2)
-20~70°C (-4 ~158°F)
5 ~95% RH non-condensing (refer to IEC 68-2-3)

Ordering Information

= PCI-1710

= PCI-1710L

= PCI-1710HG
= PCI-1710HGL

= PCLD-8710
= PCL-10168-1
= PCL-10168-2
= ADAM-3968

100 kS/s, 12-bit multifunction card
100 kS/s, 12-bit multifunction card without AO
100 kS/s, 12-bit high-gain multifunction card

100 kS/s, 12-bit high-gain multifunction card without
AO

SCSI-68 wiring terminal w/CJC, DIN-rail mount
SCSI-68 Shielded Cable, T m

SCSI-68 Shielded Cable, 2 m

SCSI-68 wiring terminal, DIN-rail mount

Pin Assignments

AlD

A2

Al4

Al6

Al8

A0

A2

Al4
AIGND
*AO0_REF
*AC0_OUT
AOGND
DIO

DI2

DI4

DI6

DI8

DI10

DI2

D4
DGND
DOO

D02

DO4

DO6

DO8
DO10
DO12
DO14
DGND
CNTO_CLK
CNTO_OUT
CNTO_GATE
+12V

67 33
66 32
65 31
64 30
63 29
62 28
61 27
60 26
59 25
58 24
57 23
56 22
55 21
54 20
53 19
52 18
51 17
50 16
49 15
48 14
47 13
46 12
45 "

44 10
43 9

42 8

41 7

40 6

39 5

38 4

37 3

36 2

Al
A3

Al5

A7

A9

A1

A3

A5
AIGND
AO1_REF*
AO1_OUT*
AOGND
DI

DI3

DI5

DI7

DI9

DI

DI3

DI5
DGND
DO1

D03

DO5

[plel4

D09
DO
DO13
DO15
DGND
PACER_OUT
TRG_GATE
EXT_TRG
+5V

*: Pins 23~25 and pins 57~59 are not defined for PCI-1710L/1710HGL

WOITEIOGTLIGELE www.advantech.com/products

| [AbvANTECH

