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G R A P H I C A L A B S T R A C T
� An approach utilizing Random Forest for
accurate state of charge estimation for
electric vehicle.

� The model leverages real driving trips
from a BMW i3 EV as training and
testing data.

� Comparative analysis demonstrates the
superior performance of RF model in
addressing SOC estimation.
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This paper introduces an innovative approach to addressing a critical challenge in the electric vehicle (EV)
industry—the accurate estimation of the state of charge (SOC) of EV batteries under real-world operating con-
ditions. The electric mobility landscape is rapidly evolving, demanding more precise SOC estimation methods to
improve range prediction accuracy and battery management. This study applies a Random Forest (RF) machine
learning algorithm to improve SOC estimation. Traditionally, SOC estimation has posed a formidable challenge,
particularly in capturing the complex dependencies between various parameters and SOC values during dynamic
driving conditions. Previous methods, including the Extreme Learning Machine (ELM), have exhibited limitations
in providing the accuracy and robustness required for practical EV applications. In contrast, this research in-
troduces the RF model, for SOC estimation approach that excels in real-world scenarios. By leveraging decision
trees and ensemble learning, the RF model forms resilient relationships between input parameters, such as
voltage, current, ambient temperature, and battery temperatures, and SOC values. This unique approach em-
powers the model to deliver precise and consistent SOC estimates across diverse driving conditions. Compre-
hensive comparative analyses showcase the superiority of the RF over ELM. The RF model not only outperforms in
accuracy but also demonstrates exceptional robustness and reliability, addressing the pressing needs of the EV
industry. The results of this study not only underscore the potential of RF in advancing electric mobility but also
suggest a promising integration of the SOC estimation approach into the battery management system of BMW i3.
This integration holds the key to more efficient and dependable electric vehicle operations, marking a significant
milestone in the ongoing evolution of EV technology. Importantly, the RF model demonstrates a lower Root Mean
Squared Error (RMSE) of 5.902,8% compared to 6.312,7% for ELM, and a lower Mean Absolute Error (MAE) of
ulaiman).
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4.432,1% versus 5.111,2% for ELM across rigorous k-fold cross-validation testing, reaffirming its superiority in
quantitative SOC estimation.
1. Introduction

The accurate estimation of the State of Charge (SOC) is crucial for the
efficient and reliable operation of electric vehicles (EVs). Notably, the
increased utilization of electrified vehicles can be attributed to several
contributing factors. These encompass government policies, emissions-
reduction legislation, rising fuel costs, heightened environmental
awareness, and tax credits for electric vehicle manufacturers and users.
As these factors synergistically shape the landscape of electrified trans-
portation, the necessity of precise state of charge estimation in EV battery
systems becomes paramount [1]. SOC estimation refers to determining
the remaining energy in the battery, which is essential for optimizing
battery usage, range estimation, and ensuring the longevity of the bat-
tery. However, SOC estimation is a challenging task due to the complex
and nonlinear nature of battery behavior [2]. Specifically, the electro-
chemical reactions within lithium-ion batteries exhibit hysteresis,
meaning the voltage-SOC relationship depends on the direction of cur-
rent flow, i.e. charging vs discharging [3]. The operating temperature
also significantly impacts the open circuit voltage, further complicating
the correlation between measured voltage and SOC [4]. Additionally,
lithium-ion batteries possess a flat open circuit voltage plateau region
from 10% to 90% SOC where the voltage remains nearly constant,
making it difficult to precisely distinguish SOC in this range [5]. More-
over, as the battery ages, its capacity degrades which must be tracked to
maintain accuracy [6]. These multifaceted factors have hindered the
development of robust and reliable SOC estimation techniques that can
deliver high accuracy across the wide array of EV operating conditions.

Ref. [7] introduces advanced modeling methods such as an improved
anti-noise adaptive long short-term memory (LSTM) neural network to
predict the remaining useful life of lithium-ion batteries. An improved
robust multi-time scale singular filtering-Gaussian process
regression-long short-term memory (SF-GPR-LSTM) remaining capacity
estimation has been proposed in Ref. [8]. These methods employ inno-
vative techniques to enhance the accuracy and robustness of the rapid
battery performance evaluation, especially for lithium-ions batteries.
While these innovative techniques have enhanced battery modeling,
their ability to provide highly accurate SOC estimates under dynamic
real-world driving conditions has yet to be determined.

In recent years, machine learning approaches have garnered sub-
stantial attention for SOC as well as in state of health (SOH) estimation in
EVs [2,9]. Data-driven models have proven powerful for extracting
intricate relationships between battery parameters critical to SOC esti-
mation. Meanwhile, techniques like gradual decreasing current, double
correlation analysis, and gated recurrent units (GRU) show promise for
enhancing SOH estimation performance. The complementary nature of
these approaches highlights the potential of machine learning to uncover
insights needed to advance both SOC and SOH estimation for electric
vehicle batteries. The insights gained from Ref. [10], which focuses on
the importance of sensing systems in accurately monitoring parameters
in new energy storage devices, and Ref. [11], which delves into the
relationship between electrochemical impedance spectroscopy and the
mechanism of capacity decline in lithium-ion batteries, further support
the exploration of advanced methodologies and technologies. These will
enhance the understanding of energy storage devices and their applica-
tions in the context of electric vehicle systems. Within the realm of ma-
chine learning algorithms, deep learning techniques [12–18] and
Random Forest (RF) [19,20] have emerged as promising candidates,
effectively addressing numerous real-world challenges [21–26].

Deep learning algorithms, such as deep neural networks, have been
prominently featured in SOC estimation. For instance, Zhang et al. [27]
proposed a deep neural network-based approach for SOC estimation in
2

Li-ion batteries, showcasing its prowess in capturing intricate battery
dynamics and achieving remarkable accuracy. SOC estimation also has
been solved by using the well-known Kalman Filter (KF) approaches with
various adaptive and variants of KF that have been presented in literature
such as Adaptive Extended Kalman Filter (AEKF) [28], square root un-
scented KF [29], modified extended KF (MEKF) [30], and Affine Iterative
Adaptive Extended Kalman Filter (AIAEKF) [31]. However, KF and its
variants excel in pattern recognition for estimation and prediction by
relying on any particular model definition of a process and measurement
model that fail to capture complex relationships within the data. In
contrast to Kalman filter (KF) approaches, deep learning algorithms, such
as artificial neural networks (ANNs) and LSTM networks, have demon-
strated exceptional promise in SOC estimation for EV batteries. Their
ability to discern intricate relationships between input parameters and
SOC values positions them as invaluable tools in tackling the non-linear
and dynamic nature of SOC estimation, particularly in complex driving
conditions [32,33]. While deep learning algorithms often surpass KF
methods in terms of accuracy, it is important to note that they may
require more computational resources and training data [34]. A
compelling avenue for improvement lies in hybrid approaches that
combine the strengths of both deep learning algorithms and Kalman
filters to enhance SOC estimation accuracy and robustness [35]. The
choice between these techniques depends on the specific application and
available resources.

On the other hand, RF, classified as an ensemble learning algorithm
that combines multiple decision trees to make predictions [36], has
earned recognition for its versatility across various domains, including
battery SOC estimation. Researchers have extensively explored the
implementation of RF in SOC estimation for EV batteries. A notable
example is found in Ref. [37], where a random forest regression tech-
nique was proposed for real-time capacity estimation of Li-ion batteries.
This work underscored the potential of RF in concurrent SOC and battery
capacity estimation.

The use of RF in SOC estimation is motivated by its ability to handle
large datasets, robustness to noise, and feature importance analysis. RF
can effectively capture the nonlinear relationships between battery pa-
rameters and SOC, leading to accurate estimation results. Moreover, RF
offers interpretability, allowing researchers to analyze the importance of
different features in the estimation process. It is important to emphasize
that the utilization of RF in various applications makes it a promising
approach to consider for addressing the SOC estimation problem. RF has
been utilized in energy consumption prediction [38], electricity theft
detection [39], season-based occupancy prediction problems [40],
geochemical anomalies [41], internet of things (IoT) [42], hydro-
geochemical and sediment parameters prediction [43], determination of
key factors affecting the substructure of ballast-less railway track under
moving load [44], predicting the utilization factor of blasthole in rock
roadways [45], CO2 emission forecasting [46], milling chatter identifi-
cation [47], demand forecasting of spare parts [48] and many more.

In this paper, the application of RF in the estimation of SOC for BMW
i3 electric vehicles is presented. This paper aims to address the challenges
associated with SOC estimation and leverage the capabilities of RF to
achieve accurate and reliable results. By utilizing real-world data from
the measurement of 70 trips of BMW i3 EV [49,50], the performance of
RF in SOC estimation will be investigated. Additionally, in order to show
the effectiveness of the developed RF model, the comparison with other
machine learning approach, namely Extreme Learning Machines (ELM)
also will be performed. Overall, this paper aims to contribute to the field
of SOC estimation in EVs by exploring the application of RF and
comparing it with other machine learning approach. The findings will
provide insights into the performance and suitability of RF for SOC
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estimation in BMW i3 electric vehicles, contributing to the development
of efficient and reliable battery management systems.

The remaining sections of the paper are structured as follows: Section
2 provides a concise overview of RF, while Section 3 explores the
application of RF for the SOC estimation model. Section 4 presents the
results and subsequent discussion, and lastly, Section 5 presents the pa-
per's conclusion.

2. Random Forest (RF)

RF represents a versatile machine learning algorithm widely
employed for classification and regression tasks. In this study, the
exceptional capability of RF model for regression is leveraged to estimate
the SOC of electric vehicle batteries accurately. RF, introduced by Leo
Breiman in 2001 [36], stands as an ensemble method that combines
multiple decision trees to yield robust and precise predictions. Each de-
cision tree is trained on a distinct subset of the training data, and the final
prediction results from aggregating the outputs of all individual trees.

RF employs the bagging method, which entails training each decision
tree on a random subset of the training data with replacement. This
strategy effectively reduces overfitting and enhances model generaliza-
tion [51]. RF boasts several advantages, making it well-suited for the SOC
estimation task at hand. It excels with large, high-dimensional datasets,
handles noisy data, and exhibits robustness to outliers and missing
values. The algorithm's ability to rank feature importance aids in iden-
tifying crucial parameters for prediction.

One of the critical hyperparameters of RF is the number of trees in the
forest, which significantly impacts model performance. For the SOC
estimation task, hyperparameter tuning was conducted to select the
optimal configuration. While there is no one-size-fits-all answer for
choosing the number of trees, it is recommended to consider factors such
as training data size and feature dimensions when making this choice.

3. Application of RF for SOC estimation problem

This paper introduces an approach to estimate the SOC of an electric
vehicle battery in real-world conditions, utilizing the ensembledmachine
learning method known as RF. The quality of data used to train the RF
model is crucial in assessing its effectiveness. The dataset should contain
relevant domain information and avoid noise or irrelevant data, as RF is a
data-driven technique. However, measurement noise and errors are often
unavoidable and should be considered during the training and testing of
the RF model. It is important to acknowledge that these factors can affect
the accuracy of the model and should be taken into account.

In this research, the simulation experiments will make use of an actual
dataset comprising 70 journeys made by a BMW i3 electric vehicle [50],
which is equipped with a 60 Ah battery pack. This data has been gathered
using electric vehicle sensors installed on the car and is sampled at a 1Hz
rate through theOBDport. It is important tomention that this datasetmight
contain missing values (NaN) due to measurement errors or other factors.
Consequently, preliminary processing steps are imperative to purify the
original data. Within the dataset, two distinct State of Charge (SOC) attri-
butes are present: one estimated by the electric vehicle manufacturer and
the other directly displayed to the end user. For the purposes of this
research, the SOCestimated by the electric vehiclemanufacturer is selected
as the target variable for training and evaluating the RFmodel. This choice
alignswith the commitment to closely replicate themanufacturer's insights,
effectively mirroring their estimations. It is essential to highlight that the
manufacturer's estimated SOC, employed as the target variable, corre-
sponds to the real SOC recorded for all trips, serving as a validated and
trusted reference point within the electric vehicle domain. On the other
hand, the measured voltage, current, temperature of the battery pack, and
ambient temperature are used as input for the RF.

To ensure accurate and reliable SOC estimation, thorough data pre-
processing will be conducted to handle missing values (NaN) and elim-
inate any potential noise or inconsistencies in the dataset. The utilization
3

of real-world data from the BMW i3 EV, coupled with the ability of RF to
adapt the varying data characteristics, is expected to yield robust and
meaningful SOC predictions, contributing to the advancement of battery
state estimation in electric vehicles.

In the development of the SOC estimation model, a deliberate choice
was made to incorporate ambient temperature as one of the input vari-
ables. This decision was motivated by the recognition of the critical role
that temperature plays in the behavior and performance of lithium-ion
batteries, which are widely used in electric vehicles. Ambient tempera-
ture is a pivotal factor that influences battery capacity, charge/discharge
rates, and overall health. In real-world electric vehicle applications,
temperature variations are common, and vehicles are exposed to diverse
environmental conditions. By including ambient temperature in the
model, the aim is to account for these temperature-related variations and
create a robust SOC estimation framework that can adapt to different
climates and scenarios. Furthermore, this choice aligns with the practi-
cality of electric vehicle operations, as ambient temperature is a
parameter readily available for measurement or estimation. In essence,
the decision to consider ambient temperature as an input variable stems
from its substantial impact on battery performance and its importance in
enhancing the accuracy and reliability of SOC estimation in the context of
electric mobility. Fig. 1 illustrates the SOC estimation using RF, and the
specific processes of the RF application in SOC estimation are as follows.

Step 1. Data collection and preprocessing
Gather real-world driving trip profiles and record relevant data:

Voltage (V), current (A), battery temperature (ºC), and ambient tem-
perature (ºC).

Combine the data into a single dataset, ensuring proper alignment of
corresponding readings.

Step 2. Data splitting
Divide the dataset into training and testing sets. For instance, trips #1

to #60 can be used for training, consisting of 945,027 instances. Trips
#61 to #70 serve as the testing dataset with 118,974 instances.

Step 3. Model configuration
Configure the Random Forest model, specifying hyperparameters like

the number of trees in the forest, maximum tree depth, and the number of
features considered at each split. These hyperparameters can be tuned to
optimize performance.

Step 4. k-fold cross-validation
Implement 5-fold cross-validation (k¼ 5) on the training dataset. This

process involves splitting the training data into five subsets or "folds".
Train the RF model on four of these folds and validate it on the

remaining one in a rotating fashion, resulting in five sets of model
evaluations.

Step 5. Hyperparameter tuning - number of trees
Conduct a hyperparameter tuning experiment to determine the

optimal number of trees for the Random Forest. Trial different values
such as 25 trees, 50 trees, 75 trees, and 100 trees.

For each configuration, perform 5-fold cross-validation on the
training data and evaluate the model's performance using metrics.

Step 6. Model training
Based on the hyperparameter tuning results, select the optimal

number of trees that yields the best performance on the training dataset.

Step 7. Model evaluation
Employ the trained RF model with the chosen number of trees to

predict SOC values for the testing dataset.
Calculate evaluation metrics such as RMSE, MAE, MAX, and standard

deviations to assess the model's performance.

Step 8. Results and analysis
Analyze the results of the RF-based SOC estimation, emphasizing the

accuracy, robustness, and consistency achieved with the chosen number
of trees.
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Compare the performance of the RF model with ELM.
Table 1 provides detailed information on the configuration of the data

for training, validation, and testing.
To assess the effectiveness of the RF model, various metrics were

utilized, including Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Maximum Error (MAX ERROR), and Standard Deviation (STD
DEV). The definitions of these metrics are as follow:

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðbyi � yiÞ2
n

s
(1)

MAE¼ 1
n

Xn

i¼1

jyi � byi j (2)

where

byi � predicted;

yi � actual;

n-number of observations.

RMSE quantifies the dispersion of prediction errors (residuals) rela-
tive to the actual values, whereas MAE signifies the average absolute
error within a set of predictions, regardless of their direction. In contrast,
STD DEV and MAX ERROR are employed to assess the robustness of the
proposed RF model and pinpoint the maximum error occurring at a
specific instance, respectively. In this study, the selection of hyper-
parameter values for the RF model was determined through meticulous
Table 1
Training and testing data division for SOC estimation using Random Forest.

Battery Lithium-ion battery pack (60 Ah)

Profiles used Real driving trips
Training process Trip #1 to trip #60 that is consists of 945, 027 instances
k-fold cross-validation k ¼ 5
Testing process Trip #61 to trip #70 that is 118, 974 instances
Input Voltage in volts (V), current in ampere (A),

battery temperature in celsius (ºC) & ambient
temperature in celsius (ºC)

Output (%) SOC

4

experimentation and optimization. The aim was to strike a balance be-
tweenmodel complexity and prediction accuracy, taking into account the
computational resources required. Specifically, a range of tree numbers,
including '25 trees, 50 trees, 75 trees, and 100 trees,' was evaluated to
understand their impact on the model's performance, which has been
highlighted in Step 5. Through extensive experimentation, it was found
that '25 trees' demonstrated the best prediction accuracy among the
evaluated hyperparameter settings. This choice was made to ensure an
optimal trade-off between predictive power and computational effi-
ciency, making the RF model well-suited for real-world electric vehicle
applications.

4. Results and discussion

All simulations for this study were conducted using MATLAB on a
MacBook Pro with a 2.40 GHz Quad-Core Intel Core i5 processor and 8
GB RAM. To evaluate the performance of RF in achieving the lowest
RMSE, the determination of the number of trees was experimentally
executed. In this paper, different numbers of trees, specifically 25 trees,
50 trees, 75 trees, and 100 trees, were selected for the training-testing
process, and the best results were recorded for comparison. Addition-
ally, (ELM) proposed by Ref. [52], will be employed to compare perfor-
mance with RF.

In order to determine number of trees in RF model, simulations for
training, cross validation and testing are executed for five times. Running
the RF model multiple times offers several valuable advantages. Firstly,
conducting multiple runs allows for the averaging of results, which helps
in reducing the variance inherent in the RF algorithm. The randomness
introduced through features selection and bootstrap sampling can lead to
varying predictions between runs. By averaging the results, a more stable
and reliable estimation of the target variable can be achieved. Secondly,
evaluating the variability of the model across different runs provides
valuable insights into the consistency of its performance. This analysis
helps identify potential areas of improvement and reveals any instability
issues. Thirdly, in ensemble learning scenarios like bagging, conducting
multiple RF runs enables the creation of an ensemble of diverse RF
models. By aggregating their predictions, the overall performance is
often improved. Lastly, considering random initialization's impact on
results, running RF multiple times with consistent experimental setups
ensures fair comparisons and meaningful evaluations. This practice helps
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mitigate any bias introduced by the initial random state, leading to more
robust and generalizable RF models.

In this study, which has been mentioned previously, various config-
urations of the RF model were investigated for the SOC estimation
problem, using 25 trees, 50 trees, 75 trees, and 100 trees in the ensemble.
The outcomes of these simulations are visualized in Fig. 2, revealing a
remarkable level of consistency in the performance results across the
different tree settings. However, a more in-depth analysis of the results
presented in Table 2 highlights that the RF model with 25 trees
demonstrated themost favorable performance compared to the other tree
configurations. As a result, the RFmodel utilizing 25 trees was selected as
the optimal choice for further development and application in the SOC
estimation problem.

In Table 2, the performance metrics of the RF model with ELM for
SOC estimation are presented, encompassing different numbers of trees
in the ensemble (25 trees, 50 trees, 75 trees, and 100 trees). The "Best"
column showcases the optimal performance achieved for each evaluation
metric among the tested configurations, while the "Average" column
represents the average results obtained from five-time simulations for
each metric. Among the evaluated configurations, the RF model with 25
trees emerges as the most favorable choice for SOC estimation. It ach-
ieved the lowest RMSE of 5.902,8%, indicating superior accuracy in
predicting SOC compared to the other tree configurations. Additionally,
the MAE yielded the lowest value of 4.432,1% for the RF model with 25
trees, signifying better precision in its predictions. Moreover, the RF
model with 25 trees exhibited the smallest MAX error of 24.217,5%,
suggesting less deviation in predicting extreme SOC values. Furthermore,
the STD_DEV of the RF model's performance showed minimal variation
across different tree configurations, highlighting its consistent
performance.

The 25-tree RF architecture clearly emerges as the optimal configu-
ration, outperforming the larger RF models and ELM method. Specif-
ically, the 25-tree RF reduces the RMSE by 0.093,4 (5.902,8 vs 5.996,2)
compared to the 50-tree model and 0.311 (5.902,8 vs 6.312,7) over the
ELM. This demonstrates superior accuracy with the 25-tree configura-
tion. Additionally, the 25-tree RF yields a 0.574,4 lower MAE than ELM
(4.432,1 vs 5.111,2), highlighting greater precision. In terms of maximal
deviation, the 25-tree RF exhibits the smallest MAX error at 24.217,5,
which is 0.476,3 and 3.572,2 lower than the 75-tree RF and ELM
respectively. Moreover, while computation time logically increases with
more trees, the improvements in most metrics from 50 trees to 100 trees
are marginal compared to the gains from 25 trees to 50 trees. This
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suggests the additional complexity and training time of larger RFs above
50 trees are unwarranted. Based on the comprehensive comparative
analysis, the 25-tree RF architecture optimally balances accuracy, pre-
cision, deviation, and efficiency for SOC estimation.

In contrast, the RF model with ELM, although having fastest
computation time, failed to demonstrate competitive performance. The
“Best” and "Average" column for ELM consistently showed higher RMSE,
MAE, MAX, and STD_DEV values compared to the RF models. The
remarkable difference in computation time between ELM and RF can be
attributed to several key factors. Firstly, ELM's inherent simplicity and
feedforward learning approach, involving only one hidden layer in its
neural network architecture, leads to faster computations due to fewer
parameters to optimize during training. Additionally, random weight
initialization strategy in ELM enables rapid convergence during the
learning process [53]. On the other hand, RF employs an ensemble of
decision trees, which requires building multiple trees, each with a
varying depth, to capture complex non-linear relationships present in
SOC estimation. The implementation of k-fold cross-validation, often
used to assess the generalization performance of RF and mitigate over-
fitting, adds further computational overhead by repeatedly training and
validating the model on multiple subsets of the data. As a result, the
computation time increases, especially when using a larger number of
trees and/or a higher k value for cross-validation. The efficiency of ELM
is favored in the trade-off between computation time and predictive
performance. In contrast, RF, which employs k-fold cross-validation,
exhibits a slower computation time. This characteristic, however, al-
lows RF to achieve heightened accuracy and robustness in tasks related to
SOC estimation. Consequently, RF emerges as a valuable option for
datasets necessitating rigorous evaluation and model tuning. Based on its
outstanding accuracy and efficiency, the RF model with 25 trees is rec-
ommended as the optimal choice for SOC estimation in real-world ap-
plications, offering reliable predictions with notable consistency derived
from the average results of five-time simulations.

Figs. 3 and 4 illustrate the assessment outcomes for testing data
regarding SOC estimation achieved through RF and ELM, respectively.
The results unmistakably reveal that RF surpasses ELM, showcasing su-
perior accuracy in capturing the test data's underlying pattern. More
precisely, for RF, the highest recorded error is less than 23.73%, occur-
ring at instance #1,785, as depicted in Fig. 3. Conversely, ELM exhibits a
higher error rate, with the maximum error reaching 27.86% observed at
instance #104,800, as presented in Fig. 4. These results highlight the
superior predictive capability of RF over ELM in the SOC estimation task,
RM
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Table 2
Performances of RF with ELM.

Performance Best Average

Evaluation (%) RF (25 trees) RF (50 trees) RF (75 trees) RF (100 trees) ELM RF (25 trees) RF (50 trees) RF (75 trees) RF (100 trees) ELM

RMSE 5.902,8 5.925,6 5.994,9 5.954,7 6.312,7 6.062,2 5.999,2 6.022,6 5.989,5 6.564,7
MAE 4.432,1 4.415,2 4.478,8 4.476,7 5.111,2 4.512,9 4.510,6 4.509,0 4.489,4 4.986,6
MAX 24.217,5 24.556,8 24.693,8 25.795,8 27.859,7 25.924,5 24.299,2 25.159,6 24.786,9 28.190,7
STD. DEV. 5.899,9 5.923,1 5.994,8 5.954,5 5.673,9 6.061,6 5.998,2 6.021,6 5.989,2 6.105,9
Computation
time (s)

165.28 347.86 526.50 656.11 1.42

Fig. 3. Results of the (a) SOC estimation by RF for the testing data, (b) error between actual and predicted.
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making RF the more effective and precise approach in this study.
It is also worth to mention that in Figs. 3 and 4, the observed large

SOC estimation errors at the initial instances can be attributed to the
inherent challenges associated with using real-world data captured
during EV trips. Unlike synthetic or controlled data, real-world data can
exhibit variations and anomalies that may not be present in idealized
scenarios. These variations can stem from factors such as abrupt changes
in driving conditions, sensor noise, and initial measurement inaccuracies.
It is important to note that the SOC estimation model, based on RF, aims
to adapt to and learn from these real-world variations. As the model
processes more data instances, it progressively refines its predictions,
leading to improved accuracy in estimating SOC values. This learning
process is a key characteristic of machine learning models, allowing them
to capture complex dependencies and enhance their performance as more
data becomes available. The capacity of mitigating and diminishing these
errors while incorporating additional data illustrates the adaptability and
effectiveness of the approach in managing the challenges presented by
real-world EV driving conditions.

A comprehensive analysis comparing the SOC curves for RF and ELM,
with a focus on their performance, is presented side by side in Fig. 5. The
6

analysis confirms that RF performs better than ELM in predicting SOC,
which aligns with the observations presented in Figs. 3 and 4. The SOC
curve generated by RF closely matches the actual SOC values, indicating
its superior predictive ability. On the other hand, ELM shows less
favorable performance, with noticeable deviations from the actual SOC
values across all instances, indicating lower accuracy in SOC prediction.

Fig. 6 illustrates the error comparison between RF and ELM for SOC
estimation. As been pointed out previously, it is noteworthy that the RF
method exhibits a higher error magnitude at the beginning of the in-
stances, particularly at instance #1,785. This phenomenon is consistent
with previous observations in SOC estimation for EV, due to factors such
as limited data availability and variations in driving behavior during the
initial stages of a trip. In contrast, the ELMmethod displays its maximum
error at a significantly later instance, specifically at #104,800. This in-
dicates that at this particular instance, ELM failed to adapt and achieve
accuracy comparable to RF. Nevertheless, it is essential to emphasize that
overall, the error patterns between RF and ELM are comparable. This
observation suggests that RF-based SOC estimation approach, despite
exhibiting higher initial errors, converges to a level of accuracy similar to
that of ELM as the analysis progresses.



Fig. 4. Results of the (a) SOC estimation by ELM for testing data, (b) error between actual and predicted.
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Simulation results indicate that both approaches successfully tracked
the SOC output from real data testing. Nevertheless, there is potential for
further enhancing the performance of both RF and ELM by incorporating
feature selection techniques. The data collected for the BMW i3 EV
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includes a wide range of parameters, such as elevation, speed throttle,
regenerative braking charge, traffic conditions, distance, and duration, in
addition to the parameters already utilized in the current study. Through
the application of feature selection methods, researchers can discern the
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Fig. 6. Error comparison between RF and ELM for SOC estimation.
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most relevant and influential parameters that impact SOC and battery
health, consequently contributing to improved estimation accuracy. By
focusing on the most significant features, the models can be optimized to
better capture the underlying relationships and intricacies of SOC esti-
mation in electric vehicles. This approach enables a more focused and
efficient modeling process, as it selects the most informative features
while reducing noise and irrelevant data. Moreover, opportunities
abound for future research to explore diverse directions aimed at refining
SOC estimation and gaining better insights into the battery pack's state of
health in electric vehicles. By integrating feature selection into the esti-
mation process, researchers can potentially achieve more robust and
accurate predictions, benefiting the overall performance and applica-
bility of SOC estimation techniques in EVs.

5. Conclusion

In this study, a RF model was introduced for the precise estimation of
SOC in EV batteries, utilizing real-world data from a BMW i3 EV. The
design of the RF model was fine-tuned, incorporating optimizations such
as the selection of vital hyperparameters, including the number of trees,
and configuring input–output relationships. These adjustments aimed to
improve the accuracy of SOC estimation. The RFmodel achieved superior
performance over the Extreme Learning Machine (ELM) method, with
lower RMSE of 5.902,8% compared to 6.312,7% for ELM, and lowerMAE
of 4.432,1% versus 5.111,2% for ELM across rigorous k-fold cross-
validation testing. This demonstrates the higher accuracy and precision
of the proposed RF approach. Additionally, the MAX error was reduced
from 27.859,7% with ELM down to 24.217,5% with the optimized 25-
tree RF configuration, highlighting decreased deviation. The RF
model's design was optimized, including the selection of crucial hyper-
parameters such as the number of trees, and the configuration of
input–output relationships to enhance SOC estimation accuracy.

The practical significance of this SOC estimation approach extends to
the electric vehicle industry as a whole. It offers the potential to revo-
lutionize battery management, improving EV range prediction accuracy
and overall battery health. The robustness and accuracy of the RF model
carry significant implications for extending battery lifespan and
8

optimizing battery usage in practical electric vehicle (EV) applications.
This advancement aligns with the industry's goals of enhancing electric
mobility and sustainability.

Looking ahead, future research can delve into expanding the scope of
input parameters, exploring diverse input–output configurations tailored
to specific driving conditions, and incorporating feature selection tech-
niques. These endeavors promise to further enhance the accuracy and
applicability of the deep learning approach in real-world EV applications.
In summary, the proposed RF-based SOC estimation model stands as a
compelling and accurate solution, addressing critical challenges in EV
battery management. Ongoing research opportunities include the
exploration of additional parameters, the customization of input–output
relationships for varying conditions, and the integration of feature se-
lection methods. These avenues of exploration reinforce the commitment
to advancing SOC estimation in electric vehicles, contributing to the
ongoing evolution of electric mobility.
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