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A B S T R A C T   

Hybrid Electric Vehicles (HEVs) have emerged as a viable option for reducing pollution and attaining fuel savings 
in addition to reducing emissions. The effectiveness of HEVs heavily relies on the energy management strategies 
(EMSs) employed, as it directly impacts vehicle fuel consumption. Developing suitable EMSs for HEVs poses a 
challenge, as the goal is to maximize fuel economy yet optimize vehicle performance. EMSs algorithms are 
critical in determining power distribution between the engine and motor in HEVs. Traditionally, EMSs for HEVs 
have been developed based on optimal control theory. However, in recent years, a rising number of people have 
been interested in utilizing machine-learning techniques to enhance EMSs performance. This article presents a 
current analysis of various EMSs proposed in the literature. It highlights the shift towards integrating machine 
learning and artificial intelligence (AI) breakthroughs in EMSs development. The study examines numerous case 
studies, and research works employing machine learning techniques across different categories to develop energy 
management strategies for HEVs. By leveraging advancements in machine learning and AI, researchers have 
explored innovative approaches to optimize HEVs’ performance and fuel economy. Key conclusions from our 
investigation show that machine learning has made a substantial contribution to solving the complex problems 
associated with HEV energy management. We emphasize how machine learning algorithms may be adjusted to 
dynamic operating environments, how well they can identify intricate patterns in hybrid electric vehicle systems, 
and how well they can manage non-linear behaviors.   

Introduction 

In response to rising concerns about global warming and climate 
change, vehicle emission regulations are becoming increasingly strin-
gent [1]. This has led to significant advancements in vehicle electrifi-
cation and hybridization to comply with these regulations. One of the 
most impactful strategies to meet the rigorous emissions standards is the 
substitution of traditional vehicles powered by internal combustion with 
HEVs [2]. Hybrid electric vehicles (HEVs) combine an electric motor 
driven by a rechargeable battery and a traditional internal combustion 
engine to provide a cutting-edge method of transportation propulsion. 
Because of this hybridization, HEVs may smoothly transition between 
using an electric motor and a conventional engine, increasing fuel 
economy and lowering pollutants. 

HEVs are characterized by their integration of diverse energy sources 
and power converters, typically the combination of an internal 

combustion engine (ICE) and electric motor. HEVs are currently regar-
ded as a cost-effectiveness and may provide a potential solution for the 
foreseeable future [3]. The primary objective in developing HEVs is to 
minimize fuel consumption and emissions while simultaneously 
addressing the power requirements of drivers. This is achieved by 
exploring suitable energy management strategies that can effectively 
allocate and utilize energy sources in HEVs. 

Energy Management Strategies (EMSs) are crucial to attaining 
optimal power distribution in HEVs while minimizing fuel consumption 
and emissions in a variety of driving situations. The significance of EMSs 
in enhancing fuel economy and reducing emissions of HEVs is widely 
recognized [4]. The intricate nature of hybrid energy technologies, with 
numerous sources of energy and complex behaviors, presents challenges 
for the performance of EMSs. The main goal of EMSs, regardless of the 
powertrain arrangement, is to efficiently control and control the flow of 
electricity from energy converters to reach desired control goals [5]. 
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Therefore, the development of effective control strategies for specific 
driving cycles represents a prominent research focus in energy man-
agement strategies. 

Numerous studies on Energy Management have led to the develop-
ment of HEV Strategies based on rule-based methods, optimal Control 
theory, and reinforcement learning. Rule-based strategies have the 
advantage of being easily applicable to consumer vehicles because they 
only require a small amount of computation and utilize future infor-
mation in a limited way when driving the control values [6,7]. However, 
the efficiency of the rule-based strategies is somewhat inferior to the 
results possibly obtained from true optimization. One of the most widely 
used theories in the study of HEV energy management is the optimal 
control theory. These strategies have the advantage of guaranteeing 
global optimum solutions but have the disadvantage of requiring heavy 
computations and relying on future-driving information to derive the 
optimal control values [8]. The optimal formulation of reinforcement 
learning is a Markov Decision Process (MDP), which consists of an 
environment and an agent. When applying a reinforcement learning 
framework to the HEV Energy Management problem, the environment 
corresponds to the HEV, and the agent corresponds to the strategy. 
Reinforcement learning-based strategies are more advantageous than 
generalisation strategies because actions are driven solely by observable 
states without the need for information about the future. 

Most recently, the field of AI and ML has witnessed significant ad-
vancements, leading to their active integration in the development of 
control strategies for HEVs. Computers can now learn and carry out tasks 
based on training data rather than explicit programming, thanks to the 
scientific field of machine learning. Depending on how training data is 
organized and processed, machine learning approaches can be divided 
into three categories: supervised learning, reinforcement learning, and 
unsupervised learning. Reinforcement learning is the most difficult 
because it requires configuring both the environment and the agent, as 
well as defining the appropriate actions, states, and rewards for effective 
learning. Consequently, there has been a growing interest in utilizing 
machine learning techniques, particularly supervised and unsupervised 
learning, in the development of innovative EMSs for HEVs. In contrast to 
prior review publications [9,10,11], this one tries to give a thorough 
overview of newly developed EMSs based on contemporary research and 
machine learning. It also identifies critical upcoming trends in creating 
and improving EMSs for HEVs. The study’s findings and conclusions are 
intended to be a valuable resource for researchers working in the area 
and to encourage the continued development of efficient EMSs for HEVs. 

Hybrid electric vehicles (HEVs) 

Emergence of hybrid electric vehicle 

Modern civilization has benefited enormously from the invention of 
the vehicle, which has expanded mobility in daily life. Internal Com-
bustion Engine (ICE) development has been crucial to the automobile 
industry. On the other hand, the release of hazardous compounds, 
including carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides 
(NOx), unburned hydrocarbons (HCs), and other pollutants has led to 
environmental issues such as pollution, global warming, and ozone layer 
depletion. The environment and the health of people are both seriously 
endangered by these pollutants. Additionally, a decrease in petroleum 
usage is necessary due to the limited nature of petroleum supplies. 
Alternative transportation solutions have arisen to solve these issues, 
using ICEs as the primary power source and batteries or electric motors 
as backup power sources. Due to this, electric vehicles (EVs), hybrid 
electric vehicles (HEVs), and plug-in hybrid electric vehicles have all 
been developed (PHEVs). Cleaner emissions, increased fuel efficiency, 
financial effectiveness, and environmental friendliness are just a few 
benefits that these cars may provide. They support environmentally 
friendly transportation options and lessen dependency on petroleum by 
incorporating electric power sources. HEVs are cars that use two or more 

power sources to move forward, often an electric motor and an internal 
combustion engine (ICE). To optimize power distribution and boost fuel 
efficiency, HEVs employ a battery to store and discharge energy and a 
powertrain that can switch between the internal combustion engine and 
an electric motor. 

Due to their use of high-efficiency electric motors and controls, as 
well as their capacity to be fueled by alternate energy sources, HEVs 
have grown in popularity. The first electric vehicle (EV) was created by 
Gustave Trouve in 1881. It was a tricycle with a 0.1 horsepower direct 
current motor that was driven by lead-acid batteries [12]. EVs offer 
effective, clean, and environmentally responsible urban transportation, 
but their limited range is a disadvantage. The creation of HEVs 
addressed the problems of higher battery prices, a lower driving range, 
and EV performance limitations [13]. By combining an ICE with an 
electric motor, HEVs maximize their advantages over both ICE and EV 
cars and subsequently reduce their drawbacks. In HEVs, the battery 
serves as an ICE’s supported power supply during vehicle propulsion, 
reducing fuel use and harmful emissions. The Lohner-Porsche Mixte 
Hybrid, developed by Ferdinand Porsche in 1901, stands as the pio-
neering gasoline-electric hybrid vehicle [14]. Unlike EVs, HEVs do not 
require external charging, as the batteries are charged either by the 
engine or through regenerative braking. However, this limits their 
electric range and necessitates longer recharging times. PHEVs present a 
promising medium-term solution by allowing the batteries to be charged 
through the grid. In contrast to HEVs, PHEVs use larger motors and a 
larger onboard rechargeable battery to store energy and replace liquid 
fuels with less expensive grid electricity [15]. The larger battery in 
PHEVs has a higher energy capacity, which improves their fuel econ-
omy. Additionally, the ease of charging the battery from the main power 
supply at home, in parking lots, or in garages adds to the allure of 
PHEVs. 

Structure of hybrid electric vehicle 

There are several kinds of HEVs, and they are classified into series, 
parallel, and power-split architectures according to the powertrain 
structure, as shown in Fig. 1(a), 1(b), and 1(c), respectively. Each 
structure has its characteristics, advantages, and disadvantages. 

The series hybrid powertrain is considered an addition to a battery- 
powered electric vehicle where the propulsion is solely provided by an 
electric motor. In this configuration, a generator is attached to the en-
gine that produces electrical power. The power produced here can be 
mixed with energy stored in the system and sent to the electric motor or 
motors that drive the wheels through an electric bus. The simplicity of 
the series hybrid drivetrain is its primary benefit, as it only requires 
electrical connections between the key power conversion components. 
This simplifies vehicle packaging and design. Additionally, since the 
engine is decoupled from the wheels, it offers flexibility in selecting 
engine speed and load, allowing for operation in a high-efficiency re-
gion. However, the series hybrid powertrain does have some drawbacks. 
Efficiency losses are caused by the two energy conversions involved: the 
generator’s conversion from mechanical to electrical and the motor’s 
conversion from electrical to mechanical. Even in cases when there is a 
direct mechanical link between the engine and the wheels, these mod-
ifications have an impact on the total efficiency. As a result, a series 
hybrid electric car may occasionally use more gasoline than a conven-
tional vehicle, especially while traveling on highways. Additionally, as it 
acts as the main source of propulsion, one of the electromechanical 
energy converters needs to be sized to handle the maximal power 
requirement of the vehicle [16]. The series hybrid powertrain topology 
is depicted in Fig. 1(a). 

In the parallel hybrid powertrain topology, the engine is mechani-
cally coupled to the powertrain while the motor propels the vehicle. 
Depending on load conditions, either the engine or the motor can power 
the vehicle, resulting in improved fuel economy. The motor is primarily 
responsible for power delivery at lower speeds, reducing fuel 
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consumption and maintaining higher efficiency. Unlike the series hybrid 
powertrain, the power summation in the parallel configuration is me-
chanical rather than electrical. The engine and electric motor(s) are 
connected using a gear set, chain, or belt, allowing their torques to be 
combined and transmitted to the wheels. Unlike with a series hybrid 
powertrain, one of the electromechanical energy converters in this 
system does not need to be sized to satisfy the maximum power 
requirement. However, the electric motors in a parallel hybrid power-
train typically have lower power ratings compared to those in a series 
hybrid powertrain, as not all the mechanical power flows through them. 
This can limit the potential for regenerative braking. Additionally, the 
operating conditions of the engine in a parallel hybrid powertrain are 
not as freely regulated as in a series hybrid powertrain. The vehicle’s 
velocity via the transmission system is mechanically tied to the engine 
speed [16]. Fig. 1 shows the parallel hybrid powertrain topology (b). 

The ability to operate in both series and parallel modes is one of the 
critical benefits of the power-split hybrid powertrain design. With more 
operating modes made possible by this adaptability, total efficiency may 
be significantly increased, especially in challenging driving situations. 
Decoupling the engine, generator, and motor rates, which increases 
control flexibility, is the primary advantage of the power-split design, 
even though the series operating path is typically avoided because it is 
inefficient. In this setup, a power split mechanism, a planetary gear set, 
is often used to connect the engine and two electric machines. This 
configuration enables both series and parallel operations by combining 
the power produced by the engine and the electric devices via electrical 
and mechanical routes. The power-split design provides maximum 
flexibility and control over the engine’s operating circumstances 
compared to the parallel hybrid powertrain. It incorporates the benefits 
of both series and parallel operations while minimizing overall losses by 

Fig. 1. Hybrid electric vehicle configurations. (a) series configuration, (b) parallel configuration, (c) power-split configuration.  
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utilizing series operations only for a little percentage of the overall 
power need. This configuration involves the double energy conversion 
characteristic of a series operation, but only a fraction of the power flows 
through it, reducing losses [16]. The power-split hybrid powertrain to-
pology is depicted in Fig. 1(c). 

Classification of energy management strategies 

The term "energy management strategies" (EMSs) describes a 
collection of organized plans, formulas, or techniques used to effectively 
regulate and maximize the use of energy resources within a specific 
system. EMSs include the dynamic allocation and distribution of energy 
from various sources, such as internal combustion engines and electric 
motors, to meet performance requirements while maximizing energy 
efficiency in the context of hybrid electric vehicles (HEVs) and other 
energy-intensive applications. Energy Management Systems for Hybrid 
Electric Vehicles can be classified into several categories based on their 
design principles and strategies. The classification of common energy 
management strategies is shown in Fig. 2. 

Rule-Based EMSs rely on a predefined set of rules and logic to make 
energy management decisions. Typically founded on expert knowledge 
and heuristics, these recommendations define the actions to be taken in 
a variety of circumstances. The system could prioritize the electric motor 
when driving in urban areas at speed and transition to the internal 
combustion engine when traveling at higher speeds. Rule-Based EMSs 
offer simplicity and clarity, but they might not be flexible enough to 
handle different driving situations. The rules must be established and 
arranged in a rule base or set to execute a rule-based EMS. Depending on 
the design of the system, the rule base can be viewed as a group of rules 
that are assessed sequentially or concurrently. The rule-based EMSs 
choose the right rule(s) that best suit the present circumstances after 
continually evaluating the system status. The measures to be made to 
maximize energy management are then determined by the chosen rule 
(s). For rule-based EMSs to function, a set of rules must be created that 
codifies the knowledge and skill of engineers or domain experts. These 
regulations are often drawn from engineering concepts, vehicle specs, 
and system dynamics. Each rule describes a particular situation or 
condition, and the corresponding action specifies the control command 
or implementation technique. The operating parameters of the vehicle, 
such as the battery’s state of charge, its speed, and its engine load, are 
continuously monitored by the rule-based EMSs while it is in operation. 
The predetermined rules are compared to the current state, and the 
action associated with the first rule that meets the requirements is car-
ried out. In this hierarchical or priority-based process, rules with a 
higher priority typically take precedence over rules with a lower 
priority. 

The energy management problem is formulated as an optimization 
job in optimization-based techniques. The best control actions that 
reduce fuel consumption or increase efficiency are found using 

mathematical optimization approaches like dynamic programming or 
quadratic programming. EMSs that are based on optimization may 
handle more complicated driving situations and simultaneously opti-
mize numerous goals. They may, however, have significant computing 
needs and call for a priori understanding of vehicle dynamics. The main 
idea behind optimization-based EMSs is to identify the best course of 
action for controlling the system to minimize fuel consumption, cut 
emissions, and increase overall system efficiency. The system dynamics, 
powertrain components, and driving circumstances are mathematically 
represented, and the energy management issue is formulated as an 
optimization job. The optimization process involves formulating con-
straints that consider elements like battery state of charge (SoC), power 
demand, component limitations, and vehicle dynamics, as well as 
defining an objective function that captures the optimization goal, such 
as minimizing fuel consumption or maximizing efficiency. These limits 
guarantee that the solution is practical and complies with the HEV 
system’s operating constraints. Various optimization algorithms can be 
employed to solve the formulated optimization problem. These algo-
rithms iteratively adjust the control variables, such as engine torque, 
motor torque, and battery power, to search for the optimal solution that 
satisfies the objective function and constraints. Commonly used opti-
mization techniques include dynamic programming, quadratic pro-
gramming, evolutionary algorithms, and model predictive control. 

Learning-based approaches leverage machine learning algorithms to 
learn and adapt energy management strategy based on historical data 
and real-time feedback. With the use of a dataset of driving patterns and 
the accompanying best control actions, supervised or reinforcement 
learning algorithms are taught. The best energy management plan for 
fresh driving scenarios may then be predicted using the learned model. 
EMSs that are learning-based have the benefit of flexibility since they 
can continuously get better at what they do via experience. However, for 
training, they may require considerable training data and processing 
power. The fundamental idea behind learning-based EMSs is to use 
historical driving data and performance metrics to train a machine- 
learning model to capture the intricate connections between various 
inputs (such as battery charge, vehicle speed, and road conditions) and 
the corresponding optimal control actions (e.g., engine torque, motor 
torque, battery power). To train the model, input-output pairings from a 
big dataset are fed into it, and the model is then given time to discover 
underlying patterns and correlations. The trained model may be used in 
real-time applications after the learning phase to forecast the best power 
distribution and control moves based on the driving conditions at the 
moment. The vehicle’s operational parameters are continually moni-
tored by the learning-based EMSs, which also gather real-time sensor 
data and feed it into the trained model to provide the most effective 
control orders. This gives the EMSs the ability to adjust to various 
driving situations, road conditions, and driver behavior, improving en-
ergy economy and performance. 

Fig. 2. Classification of common Energy Management Strategies.  
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Energy management strategies using ML algorithms 

With the help of machine learning, decision-makers can execute an 
effective energy management strategy for hybrid electric vehicles by 
using a powerful tool that allows the agent to "learn" how to "act" in the 
best possible way [17]. This method allows the agent to observe the 
environment’s condition and respond appropriately based on the data 
gathered, all while earning a reward for their efforts. In order to achieve 
this, the agent aims to "learn" from its prior experience in order to 
implement a certain policy that would ensure the reward. This policy is 
based on a mapping from every conceivable state to an action. Recently, 
there has been significant progress in utilizing machine learning tech-
niques and artificial intelligence (AI) in developing control strategies for 
HEVs. With the use of training data, computers can now accomplish 
tasks without explicit programming due to the scientific field of machine 
learning. Depending on how the training data is organized, machine 
learning can be divided into three categories: supervised learning, 
reinforcement learning (including semi-supervised learning), and un-
supervised learning (see Fig. 3). In this study, the power distribution 
strategies for HEVs based on machine learning are classified according 
to these categories. 

In supervised learning, input data is expressed as a feature, and 
target data are paired to form the training data. Supervised learning can 
be used to perform classification or regression tasks. Standard super-
vised learning algorithms includes Random forests [18,19,20] Logistic 
regression [21], Support vector machines (SVM) [21], K-nearest 
neighbours (KNN) [22], artificial neural networks (ANN) [23]. A clas-
sification problem is one in which the dependent variable is expressed as 
categorical data, while a regression problem is one in which the 
dependent variable is expressed as continuous data. Supervise learning 
is the most widely used machine learning frameworks when developing 
power distribution Strategies for HEVs. To carry out supervised learning, 
it is necessary to derive target data corresponding to the features. 
Optimal control theory is generally used to derive these labeled data for 
supervised learning-based HEV strategies [24]. 

Reinforcement learning is also known as semi-supervised learning 
because the agent is trained to maximize the reward it receives through 
various experiences under conditions where the target data is not 
explicitly given. In recent years, the field of reinforcement learning has 
been rapidly developed through the fusion with deep learning, which is 
then called deep reinforcement learning (DRL). Taking advantage of the 
fact that deep learning can derive efficient feature representations for 
complex states or actions, DRL can effectively solve complex problems 
that cannot be solved using the existing reinforcement learning frame-
work [25]. Since DRL derives power distribution Strategies for HEVs use 

only observable states, many studies have taken advantage of DRL to 
develop energy management strategies that can ensure generalization 
performance [26]. 

Unsupervised learning consists of only input values without the 
target data. Representative algorithms for unsupervised learning include 
clustering and dimensionality reduction algorithms. Clustering refers to 
a machine learning technique that classifies data based on a similarity 
measure between features. Dimension reduction algorithms are algo-
rithms that reduce the number of feature dimensions and lower the co- 
linearity between features. In [27], authors classified derived profiles 
using the k-means clustering algorithm and developed a power distri-
bution strategy in which different co-state maps were applied according 
to how each driving profile was classified. The energy management 
strategy for HEVs using machine learning algorithms is depicted in  
Fig. 4. The development of a framework for machine learning algorithms 
in the energy management strategy for HEVs plays a crucial role in 
optimizing the performance and efficiency of these vehicles. This 
framework encompasses various phases and components that enable the 
effective utilization of machine learning techniques for energy 
management. 

One of the primary phases in this framework is offline training. The 
mapping between input states and ideal action parameters is learned at 
this stage by utilizing historical data to train machine learning algo-
rithms. Popular algorithms such as DRL or supervised learning (SL) are 
frequently used for this purpose. A great deal of computing power and 
time are required for the training process to produce accurate and reli-
able models. After the performance of the model has been validated, the 
trained model is then saved for future use. 

Deploying the learned model into the actual HEV system is the next 
step in the framework. The integration of the model into the HEV’s 
Vehicle Control Unit (VCU) or other pertinent components occurs often 
throughout this period. Using the proper software and programming 
languages, such as MATLAB/Simulink or C code, the model is converted 
into a controller. Real-time energy management choices must be made 
by this controller while taking into consideration the condition of the 
vehicle and its operational needs. 

After the trained model has been deployed, the framework enables 
online learning and adaptability. During this phase, the model perpet-
ually modifies its decision-making process in response to real-time data 
received from the HEV system. This allows the model to adapt to 
changing traffic conditions, user preferences, and external influences in 
real-world situations, ensuring optimal energy management. During the 
online learning phase, when the model interacts with the environment, 
receives feedback or incentives, and modifies its behavior as needed, 
reinforcement learning techniques may be implemented. 

Fig. 3. Classification of Machine Learning.  

J.J. Jui et al.                                                                                                                                                                                                                                     



Journal of Engineering Research xxx (xxxx) xxx

6

EMS based on the supervised learning framework 

The automobile industry has turned its attention to more environ-
mentally friendly alternatives, such HEVs, in response to the increased 
interest in decreasing greenhouse gas emissions. Nevertheless, HEVs 
require an efficient energy management system to maximize fuel econ-
omy and minimize emissions. Since supervised learning techniques 
enable the prediction of vehicle behavior and the optimization of power 
distribution, they have been applied to create efficient EMSs for HEVs.  
Fig. 5 depicts a typical framework for creating supervised learning based 
HEVs energy management techniques. To create training data for the 
supervised learning process, HEVs power distribution strategies are 
developed by generating target data that corresponds to a feature. 
Models like Artificial neural networks (ANN), support vector machines 
(SVM), Decision Tree (DT) and random forest (RM) model systems are 
then trained with this data. Thus, setting the goal values that correspond 

to a feature is one of the most crucial aspects of supervised learning. 
Future driving information has been identified as the focus in numerous 
research, and energy management methods have been created based on 
this data [29,30]. The primary function of this statistical model is 
optimal control, which is dependent on predictions made by ML 
algorithms. 

The support vector machine is one of the popular algorithm and it 
has been used in HEV energy management in several research [32,33, 
34]. An SVM-based EMS was developed in one research by Zheng et al. 
[35] to estimate a vehicle’s upcoming driving cycles and correctly alter 
the power distribution between the engine and electric motor. The 
findings demonstrated that, in comparison to the rule-based technique, 
the SVM-based EMSs significantly increased fuel economy. Hou et al. 
[36] new energy management technique for PHEVs with increased 
flexibility was proven to have improved energy-saving performance 
under various driving circumstances. Liu et al. [37] presented a least 

Fig. 4. Framework for Machine learning algorithm in the energy management strategy for hybrid electric vehicle [28].  

Fig. 5. Structure for the supervised learning algorithm in the hybrid electric vehicle’s energy management strategy [31].  
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square support vector machine (LSSVM) based controller for PHEVs, 
which exhibited the ability to quickly generate optimal policies in 
various driving scenarios. Their research showed that the data-driven 
controller effectively translated global optimization knowledge into 
real-time control strategies, resulting in superior control performance. A 
similar approach was proposed in [38] for driving cycle prediction 
within a connected vehicular-cloud environment. In [39], an 
event-based anomaly detection algorithm utilizing a one-class support 
vector machine (SVM) was developed for hybrid electric vehicles, 
showcasing its feasibility and effectiveness in detecting both known and 
unknown anomalies. 

Another popular algorithm for HEV energy management is artificial 
neural networks (ANNs) [40]. Artificial Neural Networks (ANN) are 
effective in approximating nonlinear relationships between inputs and 
outputs by utilizing large datasets without relying on explicit mathe-
matical formulas. Due to their robustness and error tolerance, ANN is a 
popular subfield of Machine Learning (ML) which is widely utilized in 
predictive modelling and optimal control of nonlinear systems [41,42]. 
In the context of EMSs, ANN is often applied in online EMSs where it 
possesses self-learning capabilities and offers optimal solutions [43]. 
Additionally, ANN excels at processing large volumes of data to yield 
accurate results [44]. Moreover, ANN is well-suited for handling mul-
tiobjective nonlinear problems, while Model Predictive Control (MPC) is 
particularly advantageous in situations with constraints. 

In a study by Amit et al. [45], ANN-based EMSs were developed for a 
plug-in HEV, which predicted the optimal power distribution between 
the battery, engine, and electric motor. The results showed that the 
ANN-based EMSs achieved a 5% improvement in fuel economy 
compared to rule-based EMSs. An analogous technique was also 
employed in [46], where the authors applied ANN in a two-step pro-
cedure to operate the microgrid by displaying the mode of operation and 
charge-discharge of the energy storage system (ESS). In another study by 
[47], Artificial Neural Networks (ANN) were employed in a three-layer 
propulsion-mission analysis-EMSs integrated multiobjective optimiza-
tion scheme for hybrid electric aircraft. The model demonstrated sig-
nificant reductions in block fuel burn, achieving a reduction of 
− 44.62%, − 31.47%, and − 21.86% at flight range designs of 1000nmi, 
1250nmi, and 1500nmi, respectively. Yavasoglu et al. [48] imple-
mented an ML-based ANN optimization algorithm, resulting in a sub-
stantial increase of 51.85% in battery lifetime. Xin et al. [49] combined 
Dynamic Programming (DP) and ANN for the EMSs of a fuel cell vehicle. 
DP was utilized to achieve optimal control laws in the prediction hori-
zon, while ANN served as the future velocity predictor, creating an en-
ergy management framework using model prediction control theory. 
According to Panaparambil [50], ANN is characterized by its adaptive 
and learning abilities [51], high parallelism, fault tolerance, memory, 
and its nonlinear global role. A comparison of SoC, Fuzzy Logic (FL), and 
ANN-based energy management strategies was conducted [52], 
revealing that ANN achieved minimal energy consumption and out-
performed rule-based techniques in terms of optimality [53]. The per-
formance of ANN heavily relies on the quality and processing of the 
collected data used for decision making. 

In addition to SVM and ANN, other supervised learning algorithms 
have also been applied to HEV energy management. For example, Gan 
et al. [54] used a random forest (RF) algorithm to predict the power 
requirements of a hybrid energy ship based on an approximation model 
predictive control. Their model successfully reduced the amount of 
calculation and enabled the real-time operation of energy management 
in hybrid energy ships. In another study [55], an RF-based EMSs strategy 
was proposed. The findings showed that their suggested adaptive 
RF-based EMSs could significantly outperform conventional ones in 
terms of ultracapacitor consumption, battery protection, and system 
efficiency. Several studies have also utilized decision tree algorithms for 
energy management in HEVs. For example, Ramya et al. [56] proposed a 
Fuzzy-Based Energy Management System with a Decision Tree algo-
rithm offers an approach to energy management that considers different 

driving cycles and operating conditions. Furthermore, fuzzy logic-based 
EMSs were developed by Hatim et al. [57] for a parallel HEV. The fuzzy 
logic system predicted the optimal power distribution among the engine 
and electric motor based on the driving conditions, such as speed and 
acceleration. The results showed that the fuzzy logic-based EMSs ach-
ieved an improvement of 3.4% in fuel efficiency compared to rule-based 
EMSs. Other supervised learning algorithms that have been applied to 
HEV energy management include decision trees, k-nearest neighbor, and 
gradient boosting. For instance, a model predictive control (MPC) based 
on EMSs coupled with double Q-learning (DQL) was developed by Chen 
et al. [58] to transfer the power among several power sources for PHEVs. 
The predictive model mainly carries out optimum control based on 
prediction results derived from two machine learning algorithms. Xiang 
et al. derived a probability distribution and a transfer matrix through a 
Markov decision process to predict vehicle velocity [59]. In this study, 
the power distribution strategy was developed by formulating an MPC 
algorithm that derives control values from the predictive speed through 
the transfer matrix and dynamic programming results for the prediction 
horizon. Nan et al. constructed various model-based velocity predictors 
and compared the performance of each velocity predictor through the 
result of the MPC algorithm [60]. Murphey et al. constructed an energy 
management system that determines battery power and engine rota-
tional speed through a hierarchical neural network structure [61]. Xie 
et al. used a neural network system to predict the equivalent factor that 
equalized the fuel consumption and battery SoC change in the Equiva-
lent Cost minimization strategy (ECMS) algorithm [62]. Zhuang et al. 
developed an SVM model that can predict the optimal operating mode 
by deriving the operating mode corresponding to vehicle speed and 
torque demands using Dynamic Programming (DP) simulation results 
[63]. 

Table 1 presents significant papers on supervised learning algorithms 
used for energy management strategies in HEVs. The studies can be 
divided into categories based on characteristics, goals, and techniques 
applied to classification and regression issue series. It should be noted 
that the EMSs for HEVs use both regression and classification 

Table 1 
Summary of EMSs Based on Supervised Machine Learning Techniques.  

Ref. Algorithms Features Targets Problem 
types 

[56] Decision Tree Vehicle speed, 
acceleration, and 
battery state of 
charge 

Fuel 
consumption 
and emissions 

Regression 

[45] Artificial 
Neural 
Network 

Battery state of 
charge, vehicle 
speed, and road 
slope 

Fuel economy 
and battery life 

Regression 

[48] Artificial 
Neural 
Network 

Engine speed, 
throttle position, 
and fuel injection 
timing 

Engine faults Classification 

[37] Least Square 
Support 
Vector 
Machine 

Engine speed, 
throttle position, 
and air-fuel ratio 

Vehicle 
emissions 

Classification 

[54] Random 
Forest 

Engine speed, 
throttle position, 
and vehicle speed 

Fuel 
consumption 

Regression 

[64] Gradient 
Boosting 

Vehicle speed, 
battery state of 
charge, and road 
grade 

Fuel economy Regression 

[55] Random 
Forest 

Road slope, vehicle 
speed, and battery 
state of charge 

Energy 
efficiency 

Classification 

[38] Support 
Vector 
Machine 

Battery state of 
charge, vehicle 
speed, and road 
grade 

Battery 
degradation 

Regression  
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techniques; the classification model is used to predict driving styles, 
operating modes, and grey ratio, and the regression algorithm is used to 
forecast speed, engine torque, and battery power. 

EMSs based on the reinforcement learning framework 

For HEVs to reduce fuel use and emissions while preserving vehicle 
performance, energy management is essential. The development of ideal 
EMSs for HEVs has shown considerable promise for reinforcement 
learning (RL) algorithms [65,66,67]. We concentrate on EMSs built on 
RL frameworks in this part and discuss current advancements in the 
area. A particular kind of machine learning algorithm called RL uses 
interactions with the environment to learn through making mistakes. It 
has become more well-known in recent years as a result of its capacity to 
create optimum control strategies without requiring a priori under-
standing of the dynamics of the system. RL-based EMSs for HEVs have 
been proposed by several researchers, and they have demonstrated 
promising results in terms of fuel efficiency and emissions reduction. 
Since 2014, several RL technique types, such as Q-learning, 
temporal-difference (TD) learning, and Dyna-style, were progressively 
implemented in the EMSs industry. Of all the RL algorithms, Q-learning 
is the one that is used the most frequently. DRL algorithms can be further 
divided into Deep Q-network (DQN), double DQN (DDQN), determin-
istic policy gradient (DPG), and deep deterministic policy gradient 
(DDPG) algorithms that used in the current research on DRL-based EMSs 
for HEVs. 

RL algorithms handle optimal decision-making issues by self- 
learning without prior knowledge, and three important components 
are involved: the agent, the environment, and the reward [61]. The 
purpose of RL algorithms is to maximise the accumulated scalar reward 
by interacting with the environment continuously. Through a constant 
trial and error-search process, the agent eventually learns an ideal 
control approach [61]. Furthermore, the Markov property is a dis-
tinguishing feature of RL algorithms, in which modifications in future 
states of the system are only related to the present system states. In that 
instance, the RL algorithm’s decision process is known as the Markov 
decision process (MDP). The MDP is represented as a tuple {A,B,T,W}, 
where A and B indicate the state space and action space, respectively, T∶ 
A × B × A→[0, 1] indicates the transition probability across all states, 
and W∶A × B→R denotes the reward. The basic goal of RL is to learn an 
optimal strategy that mappings state A to optimum action B, with 
maximum accumulate reward W =

∑N
i=0βi • x(i), where β ∈ [1] repre-

sents the discount factor. 
The Q-value is used in RL algorithms to analyse and measure the sum 

of long-term rewards under the executive action, i.e., a higher Q-value 
indicates that the associated action is more likely to be implemented. Q- 
value updates are based on the Bellman equation, which is depicted 
below [68]: 

Q′(ai, bi) = Q(ai, bi)+α • [x(ai, bi)+ β • maxM(ai+1, bi+1) − M(ai, bi) ] (1)  

Where α is the learning rate; Q′(ai, bi)is the Q-value to be updated at the 
next time-step; Q′(ai, bi) denotes the calculated Q-value under the cur-
rent state ai and action bi; x(ai, bi) denotes the current reward under the 
current state ai and action bi; M(ai+1, bi+1), denotes the estimated Q- 
value for the next state ai+1 and next action bi+1. 

The essential agent-environment interaction of the RL algorithm for 
HEVs is depicted in Fig. 6. At each time step, the agent selects an action 
bi at arbitrary based on the current state ai, and the environment pro-
vides the associated scalar reward xi to the agent based on ai and bi. The 
state then changes to ai+1 at the following time step. This process will 
continue until the training is completed. When the RL approach is put to 
the HEVs area, the conditions of driving and the specific vehicle model 
can be the environment; the states, like battery state of charge (SOC), 
vehicle velocity, vehicle power demand, and torque demand, can be the 
vehicle status; the actions, like battery output power, ICE torque, or 
motor torque, can be the power split-related variables. 

For HEVs, an RL-based EMSs is typically used to determine the best 
controlling approach among batteries and ICEs. Chen et al. [69] pro-
posed an RL-based EMS for a plug-in hybrid electric bus; this was one of 
the earliest studies in this discipline. Real-time traffic data and battery 
deterioration were taken into account for determining the best battery 
SoC trajectory for the bus. An RL-based EMS for a series-parallel HEV 
was proposed in a different work by Tang et al. [70]. The best power 
distribution between the engine and the electric motor was determined 
using the RL algorithm while taking into account a variety of driving 
scenarios and vehicle characteristics. When compared to a traditional 
rule-based EMS, it was demonstrated that the suggested EMSs might 
enhance fuel efficiency by as much as 8.7%. Additionally, EMSs for 
HEVs with numerous energy storage devices have been optimized using 
RL. An RL-based EMSs for a plug-in hybrid electric bus with a hybrid 
energy storage system (HESS) made up of a lithium-ion battery and a 
supercapacitor, for instance, was proposed by Bassey et al. [71]. The 
ideal power distribution between the HESS components was established 
using the RL algorithm, which also considered the battery’s age and 
current traffic conditions. An imitation reinforcement learning-based 
method with optimum guidance was developed for energy regulation 
in hybrid cars in the study conducted by Liu et al. [72]. The objective of 
the algorithm was to solve problems faster while maintaining adequate 
control performance. The results demonstrated that the proposed 
strategy effectively reduced the energy consumption of HEVs under a 
variety of driving conditions. The research also implied that the method 
could offer effective solution assistance for analogous constraints-based 
information-required mechanical and electrical system issues. Overall, 
the results demonstrated how the imitation reinforcement 
learning-based method may be used to optimize energy control for 
HEVs. 

Q-learning has been used in the context of EMSs to solve issues 
related to uncertainty and unpredictability in driving cycles. This 
strategy has the benefit of minimizing calculation time while 

Fig. 6. The idea behind RL algorithms and how they are used in HEVs [68].  
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significantly increasing fuel efficiency. An evaluation of the impacts of 
Q-learning, ECMS, and continuous temperature management techniques 
on HEV fuel efficiency was researched by Xu et al. [73] in comparative 
research. The results showed that Q-learning was more effective than 
other methods in improving fuel efficiency. In contrast to conventional 
Q-learning techniques, Shuai et al.’s [74] model-free supervisory control 
systems for automobiles showed better energy efficiency while driving 
but maintaining optimal battery charge. Zhou et al. [75] published an 
inventive multi-step Q-learning approach that permits online optimisa-
tion of EMSs throughout their entire life cycle. This algorithm allows the 
system to adapt and optimise its operation using real-time data, thereby 
enhancing overall performance and efficiency that allows for online 
optimization of EMSs over their full life cycle. The system can adapt and 
optimize its operation using real-time data owing to this algorithm, 
which improves overall performance and efficiency. To balance fuel 
consumption and battery life, research by Ahmadian et al. [76] provides 
a Q-learning-based controlling technique for the management of energy 
in series-parallel based hybrid automobiles. According to the findings, 
fuel consumption was reduced by 1.25% and 0.68% for the HWFET and 
IM240 cycles, respectively, while battery life increased by 65% and 
50%. The study also demonstrated gains in battery life of 47% and 36% 
for UDDS and NEDC cycles, respectively. A real-time self-adaptive 
Q-learning controller for energy management in conventional autono-
mous cars was suggested in another study by Fayyazi et al. [77]. In 
comparison to conventional Q-learning methods, the suggested 
self-adaptive Q-learning algorithm showed a 23% improvement in 
operating time. These results demonstrated how Q-learning may be used 
to optimize energy management tactics for various hybrid and autono-
mous vehicle types. 

The combination of Q-learning and deep learning in the form of deep 
Q networks (DQN) has garnered prominence in the field of DRL and has 
been used to improve the efficacy of RL-based EMSs for HEVs. Zhang 
et al. [78] introduced DRL-based EMSs for a series-parallel HEV, 
leveraging a deep neural network to approximate the optimal power 
split system. Their proposed EMSs achieved a fuel economy improve-
ment of up to 11.7% compared to conventional rule-based EMSs. Wang 
et al. [79] utilized an enhanced parameterized DQN algorithm, which 
reduced driving costs by 3.1% and extended battery life effectively. 
Guodong Du et al. [80] proposed DRL-based EMSs for series hybrid 
electric vehicles (SHEVs), demonstrating faster training speed, higher 
fuel economy, and convergence towards the global optimum compared 
to existing DRL methods. In [81], a hierarchical structure and deep 
Q-learning algorithm (DQL-H) were employed to obtain an optimal 
energy management solution, outperforming other reinforcement 
learning-based approaches in terms of training efficiency and fuel con-
sumption. Moreover, a recent study focused on a longevity-conscious 
energy management strategy using reinforcement learning [82]. The 
training results demonstrated that accounting for fuel cell system 
degradation resulted in a 0.53% decrease in the EMSs’ fuel economy, 
reaching 88.7%. However, the proposed strategy effectively prevented 
the fuel cell system from degrading. Moreover, the proposed strategy 
exhibited a significant improvement in computational efficiency of over 
70% compared to a dynamic programming-based strategy. 

In a separate study by Zheng et al. [83], a Mult objective RL algo-
rithm was utilized to develop an EMSs for a plug-in HEV by achieving a 
20% reduction in fuel consumption compared to rule-based EMSs while 
balancing battery degradation and driver comfort. Zhang et al. [84] 
proposed a double deep Q-network (DDQN)-guided EMSs for an 
electric-hydraulic hybrid electric vehicle, combining Q-learning with 
deep neural networks. Liu et al. [85] introduced a Q-learning-based 
adaptive energy management strategy for a hybrid electric tracked 
vehicle, demonstrating strong adaptability, optimality, and learning 
ability with reduced computational time. Xiong et al. [86] applied the 
same algorithm to obtain optimal power distribution in a plug-in HEV, 
resulting in a significant energy loss reduction of 16.8%. However, the 
discrete states of Q-learning limit its applicability in HEV energy 

management. Another study proposed a deep reinforcement 
learning-based energy management strategy called the DDPG algorithm 
for a range-extended fuel cell hybrid electric vehicle [87]. A DDQL al-
gorithm was implemented for instantaneous power allocation optimi-
zation based on planned velocity [88]. The simulation results 
demonstrated that integrating traffic signals, powertrain parameters, 
and speed forecast of prior vehicles in PHEV velocity management 
improved fuel economy, driving comfort, and traffic efficiency by 
achieving smoother vehicle velocity. 

Deep Deterministic Policy Gradients (DDPG), an advanced RL algo-
rithm, have been utilized in EMSs applications for HEVs [89]. DDPG, a 
combination of Deterministic Policy Gradient (DPG) and Deep 
Q-Network (DQN), is a potent model-free off-policy RL algorithm. By 
employing experience replay and a frozen target network, DQN en-
hances the learning of the Q-function. DDPG extends the original DQN 
from a discrete space to a continuous space, allowing for learning a 
deterministic policy within the actor-critic framework. In a study by Wu 
et al. [90], a DDPG algorithm was used to develop EMSs for a parallel 
HEV. The DDPG algorithm was trained on a simulation platform, and the 
results showed that the proposed EMSs could achieve a 16.3% reduction 
in fuel use compared to rule-based EMSs. In that study, a more effective 
technique was given by taking into account the number of passengers 
and traffic data in addition to vehicle information. To enhance the 
economic performance of a hybrid electric tracked carrier and lessen the 
computing burden, Ma et al. [91] used DDPG with a time-varying 
weighting factor. The findings showed that the DDPG-based EMSs, 
when equipped with an online updating mechanism, were able to ach-
ieve almost 90% of the fuel economy attained by DP while drastically 
cutting down on calculation time. A hardware-in-loop experiment 
further demonstrated that the suggested technique may be implemented 
in real-time applications. A unique EMS based on Double Deep Rein-
forcement Learning was created by Tang et al. [74] developed an 
innovative EMS based on Double Deep Reinforcement Learning. DQN 
was used to master the gear-shifting technique, while DDPG was used for 
engine throttle control. The suggested DDRL-based EMSs demonstrated 
a 2.33% improvement in fuel economy compared to the Deterministic 
Dynamic Programming (DDP)-based EMSs through offline training and 
subsequent online simulation testing, thereby resolving certain intrinsic 
DDP approach shortcomings. An improved energy management frame-
work was presented by Lian et al. [92] and included DDPG regulations. 
By integrating existing knowledge of battery characteristics and statis-
tics on brake-specific fuel consumption (BSFC), the suggested technique 
enabled speedier learning and improved fuel economy. A list of EMSs for 
HEVs based on reinforcement machine learning approaches is shown in  
Table 2. 

These methods optimize the power allocation, power distribution, 
and control actions in HEVs using algorithms like DRL, DQN, DDPG, Q- 
learning, and DDQL. The algorithms work with many different states, 
such as SoC, velocity, distance traveled, battery SoC and fuel con-
sumption, vehicle speed, acceleration, wheel speed, and wheel power. 
The algorithms decide how much power to distribute, disperse it evenly, 
and manage engine torque, motor torque, engine rational speed, and 
motor power. These EMSs techniques’ primary objective is to increase 
the HEVs’ overall performance in terms of energy management and fuel 
economy. Faster training rates, greater fuel economy, enhanced fuel 
efficiency, less energy consumption, and longer battery life are all 
benefits of the activities. 

EMSs based on the unsupervised learning framework 

To maximize the efficiency and performance of HEVs, EMSs are 
essential. The capacity of the unsupervised learning framework to find 
patterns and associations in data without the requirement for explicit 
supervision is making it increasingly popular in the development of 
EMSs for HEVs. In this overview of the literature, we focus on clustering- 
and optimization-based methods for applying unsupervised learning 
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techniques for EMSs in HEVs. Fig. 7 depicts a typical framework for 
creating unsupervised learning based HEVs energy management tech-
niques. Unsupervised learning algorithms operate by identifying simi-
larities in the data and performing clustering based on only X (features) 
and not on Y (labels) [93]. Three primary objectives are carried out 
using unsupervised learning models: dimensionality reduction, associ-
ation, and clustering. 

Clustering-based techniques utilize clustering algorithms to combine 
similar driving behaviors and modify energy management as required. 
The KMeans clustering technique is one of the most simple yet effective 
unsupervised learning algorithms. For instance, Lin et al. [94] suggested 
clustering-based EMSs that used a genetic algorithm to optimize the 
EMSs and a Gaussian mixture model to cluster the driving patterns. 
Similarly, Wang et al. [95] suggested a dynamic clustering-based EMS 
that would be optimized using both a fuzzy clustering method and a 
reinforcement learning algorithm. Through the use of the k-means 
clustering technique, Choi et al. [96] identified driving patterns and 
created an equivalent factor map for the EMSs for a driving pattern. Liu 
et al. [97] used principal component analysis (PCA) to reduce feature 
space and classify features of driving conditions. In [98], real-time 
blended EMSs for PHEVs were presented, which incorporated driving 
conditions identified by the K-means clustering algorithm using Global 
Positioning System (GPS) and Geographical Information System (GIS). 
Similarly, in [99], a hierarchical clustering algorithm was proposed to 
simplify the optimal solution dataset. Both strategies demonstrated 
significant energy consumption savings of over 95%, without relying on 

prior driving conditions and with reduced computational intensity, thus 
showcasing their feasibility for online application. 

Optimization-based approaches in EMSs focus on directly optimizing 
the EMSs without the need for clustering techniques. Wang et al. [100] 
presented fuzzy optimization-based EMSs that employed a fuzzy 
rule-based system and a genetic algorithm for optimization. Their 
strategy optimization solution combined fuzzy logic control (FLC) with 
driving cycle recognition, culminating in relatively close fuel efficiency 
and steady battery charge sustainability. In another study by Yang et al. 
[101], optimization-based EMSs using a particle swarm optimization 
algorithm were proposed. This approach achieved a minimum fuel 
consumption reduction of 10% and 4.5%, respectively. In the proposed 
EMSs, a reduction in battery capacity loss ranging from 6.42% to 9.72% 
was observed, albeit with a slight increase in fuel consumption. Similar 
optimization-based approaches were explored in [102] to optimize 
EMSs with a focus on minimizing operating costs associated with energy 
purchase and energy storage system operation. In [103], an enhanced 
GA-SVM model for predicting vehicle speed was established, and its 
effectiveness was validated through test results. A fuzzy control energy 
management technique optimized by evolutionary algorithms was given 
by the authors in [104] for hybrid energy storage systems in electric 
vehicles. Huiying Liu et al. [105] developed multiobjective predictive 
EMSs using the nondominated sorting genetic algorithm (NSGA-II) to 
enhance the durability of PEMFCs and batteries while reducing eco-
nomic costs. For power distribution in FCHEVs, Tao et al. [106] devel-
oped a fuzzy energy management technique based on enhanced 
Q-learning and GA by eliminating the need for prior knowledge of the 
driving mode. Yuan et al. [107] proposed an optimized rule-based en-
ergy management strategy for hybrid power systems, utilizing a genetic 
algorithm to optimize power allocation among the fuel cell and batte-
ries. This approach enabled optimal power allocation while reducing 
computational burden by leveraging expert experience and global 
optimization properties. 

Hybrid approaches that combine clustering-based and optimization- 
based methods have shown improved performance in EMSs. For 
example, Feng et al. [108] introduced hybrid EMSs that utilized a 
self-organizing map for clustering driving patterns and a differential 
evolution algorithm for optimizing the EMSs. Their method achieved 
significant reductions in peak battery charging current and peak dis-
charging current. Peak charging and discharging currents were lowered 
by 42.94% and 27.73%, respectively, while peak charging and dis-
charging currents were reduced by 62.19% and 56.97%. Other hybrid 
EMSs were proposed by Tayab et al. [109], which employed a salp 
swarm algorithm and a hybrid forecasting approach for optimizing the 
EMSs. The primary goals of their research were to reduce the overall 
running costs of a grid-connected microgrid (MG) and to estimate PV 
power and load demand in the short term. Abolfazl et al. [110] 
employed the fractional-order Darwinian particle swarm optimization 
(FODPSO) method in fuzzy methodology to optimize the performance of 
a three-phase induction motor. 

Table 3 presents a summary of EMSs based on unsupervised 
machine-learning techniques for HEVs. These techniques utilize algo-
rithms such as Gaussian Mixture Model + GA, Fuzzy Clustering Algo-
rithm + RL, Fuzzy Rule-Based System + GA, Self-Organizing Map 
+ Differential Evolution, Clustering Algorithm + Salp Swarm Algo-
rithm, and K-Means Clustering + PSO to optimize energy management 
in HEVs. These algorithms operate on various features, including driving 

Table 2 
Summary of EMSs Based on reinforcement Machine Learning Techniques.  

Ref Algorithms States Actions Rewards 

[80] Deep 
reinforcement 
learning (DRL) 

SoC, velocity Power 
allocation 

Faster training 
speed and higher 
fuel economy 

[69] Deep Q-Network 
(DQN) 

Vehicle speed, 
SoC 

Power 
allocation 

Fuel efficiency 

[70] Proximal Policy 
Optimization 
(PPO) 

SOC, distance 
traveled 

Power 
distribution 

Energy 
consumption 

[92] Deep 
deterministic 
policy gradient 
(DDPG) 

Battery SoC 
and fuel 
consumption 

N/A Fuel efficiency 

[71] Deterministic 
Policy Gradient 
(DPG) 

SoC, velocity Power 
allocation 

Energy 
efficiency 

[76] Q-learning 
Algorithm 

N/A N/A fuel 
consumption 
and battery life 

[90] DDPG Vehicle Speed, 
acceleration, 
battery SoC 

Engine torque, 
motor torque, 
engine 
rational speed 

Cost for fuel, 
cost for electric 
energy 

[88] Double delayed 
Q-learning 
(DDQL) 

SoC, velocity Power 
allocation 

Energy 
efficiency 

[78] DRL Battery SoC, 
wheel speed, 
wheel power 

Motor power Fuel 
consumption, 
electric energy 

[81] Q-learning 
algorithm 

Battery SoC, 
vehicle Speed 

Engine torque Fuel 
consumption, 
battery SoC,  

Fig. 7. The idea behind unsupervised learning algorithms and how they are used in HEVs [93].  
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patterns, SoC, battery voltage, traffic conditions, driving conditions, 
vehicle speed, and SoC. The targets of these EMSs strategies vary and 
include energy efficiency, optimal energy management, battery 
charging schedule, and energy management optimization. 

Challenges and future directions 

Challenges 

Developing the best energy management strategies for HEVs has 
been made possible by machine learning algorithms, but there are still 
several issues that need to be resolved.  

i. Data availability: To learn from the environment and improve the 
power flow, machine learning algorithms need considerable 
training data. However, because of privacy issues, poor data 
quality, and the high cost of data acquisition, gathering and 
interpreting real-world data from HEVs can be difficult.  

ii. Model complexity: Complex models created by machine learning 
algorithms may be challenging to understand and test. This can 
make it difficult to find faults, correct them, or enhance the 
model’s performance. 

iii. Computing resources: Machine learning-based energy manage-
ment solutions for HEVs need to be developed and implemented. 
However, this may not be possible or cost-effective for all users. 

Future directions 

Despite these challenges, there are several exciting directions for 
future research:  

i. Development of new algorithms: New machine learning techniques 
are required to handle the issues of data availability, model 
complexity, and processing resources while enhancing the effi-
ciency of energy management systems for HEVs.  

ii. Hybrid models: To increase performance and resilience, hybrid 
models that blend machine learning algorithms with traditional 
tactics can make use of each approach’s capabilities.  

iii. Integration with vehicle-to-grid (V2G) systems: HEV and V2G system 
integration may open up new possibilities for energy manage-
ment and optimization. Intelligent V2G systems that balance the 
grid’s energy demand and supply while guaranteeing HEV per-
formance may be created using machine learning techniques. 

iv. Real-world validation: To assure their effectiveness and depend-
ability, machine learning-based energy management solutions for 
HEVs should be tested in real-world situations. Collaboration 
between researchers, automakers, and other stakeholders will be 
necessary to achieve this. 

Conclusion 

This study offers a comprehensive assessment of the most recent 
advances in machine learning-based optimized EMSs for HEVs. The 
analysis of energy management systems has revealed that good power 
flow regulation is essential to obtaining these advantages. The overview 
of HEVs emphasizes their fuel economy and emissions reduction ad-
vantages. The review of optimal EMSs focuses on the most recent ad-
vancements in this field, and the section on machine learning methods 
examines their suitability for developing energy management plans for 
HEVs. Overall, the survey reveals that it is a smart strategy to use ma-
chine learning algorithms to design optimal energy management stra-
tegies for HEVs. Using the massive amounts of data that HEVs supply, 
these algorithms may learn from and improve the power flow, resulting 
in greater fuel economy and fewer pollutants. Nevertheless, there are 
still problems with data accessibility, model complexity, and the 
accessibility of computing resources. To solve these issues, future 
research should focus on developing new algorithms and hybrid models 
and integrating them with vehicle-to-grid systems. In order to assure the 
effectiveness and dependability of machine learning-based energy 
management solutions for HEVs, real-world validation is also required. 
The application of machine learning algorithms to HEV energy man-
agement is an intriguing and rapidly developing area with the potential 
to improve transportation sustainability significantly. Continued 
research and collaboration between academia, industry, and other 
stakeholders will be necessary to overcome the challenges and fully 
realize the benefits of this technology. 
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