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A B S T R A C T   

Currently, syngas plays an important role in renewable and sustainable energy production. The idea of 
manufacturing syngas via bi-reforming methane, which involves the combination of methane (CH4), carbon 
dioxide (CO2), and steam, appears very promising. As a result, the goal of this research is to improve syngas 
output by improving process parameters in methane bi-reforming using a 3%Ce-15%Cu/MnO2 catalyst. Opti
mization analysis was performed using response surface methodology (RSM). The ultrasonic impregnation (UI) 
method was employed to synthesize the catalysts used in this study. Following that, the catalyst was charac
terized using several techniques such as Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), temperature 
programmed reduction (TPR), temperature programmed desorption (TPD), and temperature programmed 
oxidation (TPO). The findings of the characterization show that the presence of CeO2 promoters has a dual effect 
on the size of CuO crystallites. Firstly, it reduces the size from 19.07 nm to 13.66 nm because to the dilutive effect 
generated by the inclusion of CeO2. Second, the presence of CeO2 promoter accelerates the transition from CuO 
to Cu0 metallic phase. Furthermore, the addition of CeO2 boosts the CH4 and CO2 conversion rates by 23.65% 
and 24.93%, respectively. As a result, the H2 yield increases significantly when compared to the unpromoted 
catalyst. The study investigates the influence of process parameters, specifically the reaction temperature 
(700–900℃), CO2 ratio (0.2–1), and gas hourly space velocity (GHSV) (16–36 L g cat− 1 hr− 1), on the conversion 
of CH4 and CO2, as well as the H2/CO ratio. The optimization study finds that the highest conversion rates for 
CH4 and CO2 are 78.32% and 72.45%, respectively, when the reaction temperature is 800 ◦C, the CO2 ratio is 0.6, 
and the gas hourly space velocity (GHSV) is 26 L g cat− 1 hr− 1. The optimum conditions result in the highest 
syngas ratio of 1.77. The results of the optimization are then assessed using the mean errors. The H2/CO ratio, as 
well as the average errors for CH4 and CO2 conversions, are discovered to be 0.15%, 0.95%, and 0%, respectively.   

1. Introduction 

The depletion of fossil fuel resources has spurred an initiative to 
harness natural resources for producing sustainable and eco-friendly 
energy fuels using advanced and efficient methods. In this context, 
natural gas has emerged as an economical and environmentally friendly 
energy source due to its wide availability and high energy density 

(Al-Fatesh et al., 2023a). Additionally, it predominantly contains 
methane, which can be converted into viable hydrocarbons, oxygenates, 
and synthetic fuels through various direct and indirect routes (Ateka 
et al., 2022). Direct processes involve selective oxidation of methane, 
methane aromatization, and high-temperature methane coupling. On 
the other hand, indirect methods focus on upgrading methane to inter
mediate products like syngas (a mixture of CO and H2) through partial 
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