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Abstract

Diabetes Mellitus is one of the oldest diseases known to humankind, dating back to ancient

Egypt. The disease is a chronic metabolic disorder that heavily burdens healthcare provid-

ers worldwide due to the steady increment of patients yearly. Worryingly, diabetes affects

not only the aging population but also children. It is prevalent to control this problem, as dia-

betes can lead to many health complications. As evolution happens, humankind starts inte-

grating computer technology with the healthcare system. The utilization of artificial

intelligence assists healthcare to be more efficient in diagnosing diabetes patients, better

healthcare delivery, and more patient eccentric. Among the advanced data mining tech-

niques in artificial intelligence, stacking is among the most prominent methods applied in the

diabetes domain. Hence, this study opts to investigate the potential of stacking ensembles.

The aim of this study is to reduce the high complexity inherent in stacking, as this problem

contributes to longer training time and reduces the outliers in the diabetes data to improve

the classification performance. In addressing this concern, a novel machine learning method

called the Stacking Recursive Feature Elimination-Isolation Forest was introduced for diabe-

tes prediction. The application of stacking with Recursive Feature Elimination is to design an

efficient model for diabetes diagnosis while using fewer features as resources. This method

also incorporates the utilization of Isolation Forest as an outlier removal method. The study

uses accuracy, precision, recall, F1 measure, training time, and standard deviation metrics

to identify the classification performances. The proposed method acquired an accuracy of

79.077% for PIMA Indians Diabetes and 97.446% for the Diabetes Prediction dataset, out-

performing many existing methods and demonstrating effectiveness in the diabetes

domain.
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1. Introduction

Diabetes Mellitus, generally known as diabetes, is a chronic metabolic disease and a severe epi-

demic that significantly rises each year, causing problems for healthcare providers around the

world [1]. The history of diabetes dates back to ancient Egypt about 3000 years ago, and its

impact remains profound in modern times, continuing to be a serious health concern. Hence,

rigorous studies about diabetes were made. Notably, the rigid distinction between type 1 and

type 2 diabetes was only established in 1936 [2]. Type 2 diabetes is the most common type of

diabetes suffered by patients caused by insulin resistance [3]. Meanwhile, type 1 diabetes is

caused by the destruction of β cells in the pancreas, causing the absence of insulin secretion

[4]. The factors of type 1 are due to genetics. Still, they can also be caused by other external fac-

tors like low vitamin D levels, prenatal exposure to pollutants, and poor hygiene, making it eas-

ier for children to get affected [4]. Hence, this disease affected not only the aging population

but also children. This disease is known as a silent illness, as many individuals who suffer from

it are unaware of their condition due to unnoticeable symptoms [5]. Hence, the results of hav-

ing diabetes are often too sudden, causing the individuals to have difficulty in following the

treatment and pursuing lifestyle changes [6]. It is concerning because individuals with diabetes

may get various health complications such as kidney disease, stroke, coronary heart disease,

retinopathy [7], and emerging complications like cancer and liver disease [8]. Hence, creating

awareness about the importance of rapid diagnosis in managing diabetes is crucial [9]. Early

detection enables timely intervention and helps individuals with diabetes take proactive steps

to improve their health and well-being. Rapid diagnosis not only facilitates better disease con-

trol but also reduces the risk of complications associated with diabetes. Each year, many stud-

ies and initiatives were implemented to assist physicians in achieving rapid and accurate

diagnoses.

Back then, physicians traditionally diagnosed patients with diabetes by checking all the

symptoms attentively, prolonging the diagnosis process. Nevertheless, as evolution happens,

humankind has started integrating computer technology with the healthcare system. The utili-

zation of artificial intelligence assists healthcare providers to be more efficient in the diagnosis

of patients, better healthcare delivery, and more patient eccentric [10]. Therefore, it would

benefit everyone regardless of socioeconomic and geographical location. The study on the

integral subdivisions of artificial intelligence, which are predominantly centered around classi-

fication and data mining, is being conducted. Among the advanced data mining techniques

such as deep learning and ensembles, including XGBoost and bagging, stacking emerges as

one of the most prominent methods extensively employed in the diabetes domain [11, 12].

Hence, this study investigates the potential of stacking. It has been identified that stacking is a

high-complexity model that leads to high computational efficiency and affects training time.

The study aims to develop a lower-complexity novel stacking method for diabetes prediction

that demonstrates high efficacy while employing fewer features. Thus, the study delves into uti-

lizing stacking, the Isolation Forest as an outlier detection method, and the Recursive Feature

Elimination (RFE) as the feature selection method to solve this problem. Hence, a novel

method, Stacking with RFE and Isolation Forest (SRFEI), is being proposed. The contribution

of this study is divided into several components:

• The application of RFE with stacking to reduce the number of features and complexity.

• Utilization of Isolation Forest with stacking removes the outlier and reduces the stacking

ensemble’s high complexity.

• Propose a method using stacking, RFE, and Isolation Forest that can acquire high classifica-

tion accuracy.
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To ensure better readability, this paper will be organized as follows: a review of literature,

method, results, discussion, and finally, a conclusion.

2. Review of literature

2.1 Classification

Classification is a data mining technique that involves a knowledge extraction process [13].

Classification can be referred to as categorizing the indeterminate data into discrete classes or

categories (target variables) based on specific features and variables [14–16]. Meanwhile, it is

for regression tasks involving continuous features on the target variable. Many prominent

methods have been applied for diabetes classification, such as J48, random forest, and Naïve

Bayes [17]. However, it may lie where the inability to obtain excellent results due to big data,

outliers, and discrepancy features has become a constraint [18]. Another difficulty that might

develop during classification can include instability, overfitting, and underfitting issues, which

cause low accuracy performance. Support Vector Machine and Decision tree classification as

single classifiers acquired 81.1% and 81.3% accuracy, consecutively with the diabetes dataset

collected from the Department of Medical Services, Bangkok, between 2019 and 2021 [19].

The results demonstrated a reasonable level of performance. However, there is potential for

further enhancement by implementing advanced techniques. Thus, well-known data mining

techniques such as Logistic Regression, Decision Tree, and Support Vector Machine are inte-

grated with the ensemble to enhance classification performance. Notably, ensemble methods

combine the predictions of multiple individual models to create a more accurate prediction.

2.2 Ensemble

The ensemble methods computational learning approaches are analogous to human behavior,

seeking several perspectives before making any critical decisions [20]. Just like humans take

diverse viewpoints to get a better conclusion, ensemble methods combine the predictions of

multiple models to create a more accurate prediction. Normally, ensemble methods consist of

techniques such as the Random Forest, stacking, bagging, and boosting, which work as

advanced methods to improve the performance of machine learning algorithms. All the

ensemble methods utilize the multiple classifiers system in which the classifiers may consist of

the same type of machine learning algorithms (homogenous ensemble) or different types of

algorithms (heterogeneous ensemble) [21, 22]. Existing studies elucidate that the ensembles

such as AdaBoost and bagging obtained superior classification accuracies of 75.32% and per-

formed better than single classifiers like a decision tree with 71.42% and K-Nearest Neighbor

with 71.92% when classifying the PIMA Indians Diabetes dataset since the errors of the classi-

fiers are negatively associated [23]. When multiple models are combined, it will capture the

patterns of the data better. Hence, it leads to better classification performance and avoids over-

fitting issues [15]. There are several other theories that explain the effectiveness of ensemble

methods in various sectors. For example, Allwein, Schapire, and Singer provided a deep theo-

retical analysis highlighting that the ensemble methods can enhance the generalization ability

within the framework of large margin classifiers and demonstrating that ensembles act as a

form of regularization, akin to the regularization techniques employed in single classifiers like

Support Vector Machine [24, 25]. Meanwhile, Breiman explained that performance improve-

ment is related to bias and variance [26]. The present study focused on the stacking ensemble

since this method is more commonly implemented in diabetes studies and performs superiorly

compared to homogenous ensembles like AdaBoost [12] and Random Forest [27], showing

the potential of stacking in classification. Aside from that, stacking allows diversity that can

lead to increased predictive accuracy aside from handling noisy and outlier data [28].
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2.3 Stacking ensemble

Stacking is an ensemble method that fuses multiple classification models consisting of base

and meta-classifiers [29]. This method unifies various machine-learning methods and shares

similarities with other ensemble approaches, such as bagging and boosting [30]. Stacking’s

architecture is divided into two stages: level 0 and level 1 [31]. In level 0, base classifiers are

trained using the whole training set, and each base classifier conducts classification on the data

and generates its predictions. In contrast, in level 1, the meta-classifier takes the outputs or pre-

dictions the base classifiers produce as its input features. To be clear, the meta-classifier learns

from the predictions made by the base classifiers rather than the original input data [32, 33].

The goal of the meta-learner is to combine these predictions effectively, considering the

strengths and weaknesses of each base classifier, in order to make the final ensemble classifica-

tion [34]. Stacking delivers superior performance compared to boosting and bagging when it

is maximumly optimized [35]. This is primarily due to its capacity to combine multiple base

classifiers using a meta-classifier, capturing diverse patterns and behaviors and ultimately

enhancing the ensemble’s classification capabilities. The stacking ensemble managed to obtain

the classification accuracy, precision, and F1-measure of 78.2%, 72.2%, and 59.4% consecu-

tively when using the PIMA Indians Diabetes dataset, outperforming the AdaBoost and Multi-

layer Perceptron [12]. Another study shows that the stacking method acquired an outstanding

accuracy of 94.48% when classifying the Saudi Arabian diabetes dataset collected from King

Fahad University Hospital [36]. Hence, it shows the potential of this method in this domain.

Nevertheless, stacking that generates multiple base classifiers and consists of two levels would

cause higher complexity for the model and simultaneously increase the duration of training

time [37, 38]. Hence, to alleviate this problem, the study utilizes the well-known feature selec-

tion technique, RFE, that is commonly employed in diabetes research.

2.4 RFE feature selection

One of the essential keys that has a direct impact on classification performances is the feature

selection technique [39]. Feature selection eliminates unnecessary data by removing the less

relevant features [40]. Many feature selection types, such as ReliefF, mutual information, and

embedded methods like Lasso and Ridge, work well to reduce the number of features during

classification. Still, this study focuses on the RFE as it can handle numeric and categorical data

and is a more model-centric approach. The model-centric approach means that the RFE evalu-

ates the model’s performance when selecting the features, as the method would assess the

impact of removing each feature in each iteration [41]. The implementation of RFE starts by

training a model using all of the features. Any machine learning algorithm, including Decision

Tree, Support Vector Machines, and Linear Regression, can suitably be used to train the

model. As the feature selection process develops, the original model serves as a reference point

or baseline for comparison. The significance of each feature is established after the original

model has been trained. This is frequently accomplished using feature importance in tree-

based models or by examining the weights (coefficients) given to features in linear models.

Alternatively, depending on the behavior of data, different metrics such as mutual information

or correlation might be utilized. Then, the step of removing the least significant feature in the

data identified in the previous stage is executed [42]. The lowest-ranked features or a predeter-

mined number of features to be removed in each iteration can serve as the direction for this

elimination procedure. Instead of removing multiple features at once, RFE eliminates just one

feature at a time through iteration to assess the individual contribution of each feature. The

model would then be trained again on the reduced feature set. This helps identify whether the

absence of that specific feature positively or negatively impacts the model’s performance. This
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process is repeated iteratively until a stopping criterion is met. The stopping criterion could be

selecting a predetermined number of features or when the model’s performance improvement

saturates. RFE with XGBoost obtained an accuracy of 90% when classifying the diabetic reti-

nopathy dataset from China, which has 60 features [43]. The existing study shows that the Chi-

Square test and RFE had relatively similar performance with 13 and 18 features, both with

100% test data accuracy [44]. However, RFE takes a shorter running time to train 18 features,

which RFE takes 0.286 seconds, while the Chi-Square test takes 0.803 seconds. Hence, this

unveils that RFE efficiently reduces irrelevant features and has fast computational processes.

Eliminating irrelevant features is intended to decrease the complexity of the method, but this

may inadvertently impact performance as it causes the method to be unable to capture essen-

tial underlying patterns due to excessive feature removal or loss of important features [45]. To

strike a balance, this study implements both feature selection and outlier detection techniques.

This dual strategy aims to not only reduce complexity but also enhance the overall perfor-

mance and interpretability of the proposed method.

2.5 Isolation forest

Anomalies and outliers are the data points or observations that are significantly different and

deviate from the norm value of the data. Outlier detection and removal methods are needed to

ensure the relevancy of the critical information in the data, as these methods play a crucial role

in eliminating and mitigating biases present in data points. The method developed by Liu, Ting,

and Zhou in 2008, called the Isolation Forest [46], is selected as an outlier detection method in

this study. Isolation Forest leverages the concept of isolating anomalies by constructing simple

yet powerful isolation trees, thus revealing the subtle variations that distinguish outliers. The

general overview of this method is that Isolation Forest starts by creating a collection of isolation

trees, each designed to isolate a single outlier or a small group of similar outliers. These isolation

trees are binary structures, simulating recursive partitioning. The implementation of the Isola-

tion Forest starts with a random selection of features. Each iteration selects a random feature to

serve as the splitting criterion. A random value within the range of the selected feature’s values

is then chosen as the splitting threshold. This randomness is essential to the algorithm’s effi-

ciency in isolating outliers. Then, the training data is recursively partitioned into two subsets

based on the selected feature and threshold. This process continues until it achieves the stopping

criterion: the predetermined tree depth is reached, or a subset contains a single data point. Each

level of the tree represents a partition of the data space. Each level of the isolation tree represents

a partition of the data space. The tree structure is binary, as each node in the tree has at most

two child nodes. To identify anomalies, the Isolation Forest algorithm measures the path length

from the root of the tree to a leaf node for each data point, as the data with outliers will have a

shorter path length than the normal instance. The isolation score for each data point is calcu-

lated by taking the average path length across all isolation trees. Lastly, the average path length

is normalized and transformed into an anomaly score. Higher anomaly scores indicate a higher

likelihood of being an outlier. One of the characteristics of Isolation Forest is that it does not

rely on a fixed threshold to determine the outliers’ level. It offers flexibility by allowing users to

set the contamination hyperparameter (outliers’ level in the data). Based on the existing study,

XGBoost-Isolation Forest obtained an accuracy of 87.2% when classifying the TLGS Diabetes

data, showing that Isolation Forest managed to reduce outliers effectively [47].

3. Method

This study aims to reduce the high complexity inherent in stacking, minimize the training

time and outliers in the diabetes data, and improve the classification performance. Hence, this
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study introduces a novel method that combines stacking with RFE and Isolation Forest,

known as the SRFEI method. This method applies both feature selection and outlier detection

techniques. The first step of SRFEI’s classification started with shuffling the data and the impu-

tation process using median imputation for missing values. This is followed by the split of

training and test data in which training data consists of 80% of the actual data while test data

has the remaining balance of 20%. The 80% training data and 20% test data split ratio is com-

monly applied in the diabetes domain [48]. Next, the Isolation Forest is employed for outlier

detection and removal in the data. Outliers can cause disproportionate impacts on machine

learning and introduce bias in diabetes prediction. Aside from that, outliers cause machine

learning methods to have difficulty capturing the underlying data patterns and relationships

within the diabetes data. By constructing decision tree ensembles, the technique effectively

identifies anomalies and outliers within a dataset by isolating observations that deviate signifi-

cantly from the norm, allowing the outliers to be eliminated adeptly. In this study, a contami-

nation value of 0.2 signifies that approximately 20% of the data points are expected to be

outliers, indicating outliers prevalent within the data. This parameter choice is based on the

assumption that outliers are relatively not uncommon while still conveying a balance in the

trade-off between identifying genuine anomalies and avoiding the misclassification of average

data points as outliers. The number of trees hyperparameter is set as 100 by the following rule

of thumbs in Isolation Forest. The guidance from healthcare experts was also utilized to estab-

lish an appropriate range for each feature and estimate the percentage of outliers present

within the diabetes data. As Isolation Forest was incorporated, any outliers could be well-

removed. Hence, it would reduce the complexity of the model during classification, enhance

interpretability within data patterns, and produce more accurate results.

For the following step three, feature selection through the RFE would be applied to training

data to find the best features. The number of features selected would be only 80% of the origi-

nal features. The decision tree algorithm is chosen as the method for training the model, and

Gini impurity is selected as the metric for feature importance assessment. Gini impurity pro-

vides a measure of the effectiveness of each feature in contributing to the classification perfor-

mance. The RFE process will be executed iteratively, eliminating one worst-ranking feature at

a time during each iteration. The features contributing the least to the model’s performance

will be systematically removed, ensuring that only the most valuable features are retained for

model training and classification. The features removed in training data would also be

removed in test data, ensuring consistency in the model. The agenda behind the implementa-

tion of RFE is to address the challenge of dealing with a large number of features in diabetes

data. As diabetes datasets often contain a lot of features, attempting classification without fea-

ture selection can increase complexity and lead to longer training times. By iteratively elimi-

nating less informative features, the goal is to streamline the data systematically without

negatively impacting classification performance. Applying RFE not only helps manage the

complexity of the classification task but also reduces training times, making the overall process

more computationally efficient.

The next stage of the method is divided into two crucial stages: level 0 and level 1. In level 0,

the training data that previously underwent train-test splitting and feature selection will be

used for classification purposes. The training data would undergo stratified k-fold cross-valida-

tion in which the k value has been set as ten. To prevent bias, the second shuffling is done

before cross-validation to introduce randomness and reduce any potential ordering bias. This

study employed stratified k-cross-validation to avoid overfitting. One-fold from the cross-vali-

dation would become the validation set to assess the method’s performance after executing the

classification process. The remaining k-1 folds, basically the training sets, would undergo a

classification process. After that, base classifiers would proceed to undergo the classification
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process. SRFEI method applied Logistic Regression, K- Nearest Neighbor, Decision Tree, and

Support Vector Machine as base classifiers. The different types of machine learning methods

as the base classifiers would ensure diversity in the results, as diversity is significant in stacking

[49]. All the base classifiers would make the classification on the validation set. Average

weighted is used to combine predictions as it harnesses the strength of multiple models and

balances the contribution of each model. The average weighted technique has the flexibility to

fine-tune the weights, which can also be done based on expert assistance to enhance the perfor-

mance. This strategic application aims to expedite the most accurate decision-making process.

The cross-validation process continued until all the unique folds from the 10-folds had been

given the opportunity to become the validation set.

Then, after the process of classification in level 0 is completed, level 1 will start. Theoreti-

cally, the idea behind level 0 is that the training data would transform relatively into new data

known as secondary data, as the classes would be based on the best prediction inputs by base

classifiers (acquired from validation sets prediction) and combined using the weighted average

technique. In level 1, all the transformed training data from level 0 will be used for classifica-

tion. This will create better underlying data patterns for classification. The meta-classifier,

Logistic Regression, which follows the rule of thumb in stacking, would be used to classify the

transformed data. Lastly, the classification would assist in the prediction of test data (trans-

forming the same features as training data). The test data is independent of level 0 and any

classification processes. Hence, it would provide fair assessments for the method. Fig 1 shows

the architecture of SRFEI at level 0 and level 1. The application of RFE and Isolation Forest sig-

nificantly reduces the potential bias, outliers, and anomalies typically in diabetes data, making

the SRFEI able to understand data patterns better and simultaneously reducing the complexity

of the method. This study shows the flowchart of SRFEI in Fig 2 to aid in understanding the

logical flow and the pseudocode of SRFEI in Fig 3 as representations to provide clear explana-

tions of the proposed method.

4. Results

The evaluation metrics employed include accuracy, precision, recall, and F1-measure, which

provide comprehensive insights into the model’s performance. The accuracy is the total num-

ber of correct predicted instances over the total instances [50]. Precision is the value of true

positives over the sum of true and false positives. In contrast, recall is the value of true positives

over the sum of true positives and false negatives. Lastly, the F1 measure is the harmonic mean

of precision and recall. The measurement of training time in seconds is used as a time-related

performance metric. The accuracy, precision, recall, F1 measure, and standard deviation (SD)

of accuracy values are recorded in percentage format (%), while training time is in seconds (s).

The results represent the average from thirty independent runs. This approach was adopted to

ensure more reliable assessments of the model’s performance.

4.1 Results of PIMA Indians diabetes and diabetes prediction datasets

classification

In this study, two diabetes datasets were utilized to test the performance of the proposed

method. The first dataset is the PIMA Indians Diabetes dataset. This data was originally from

the National Institute of Diabetes and Digestive and Kidney Diseases. The dataset contains

eight features exclusive of the target variable and 768 instances. The target variable consists of

value 0 (negative test for diabetes) and value 1 (positive test for diabetes), in which 268 consists

of positive tests for diabetes and 500 are negative tests for diabetes. The features in this dataset

are the number of times pregnant, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI,
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Diabetes pedigree function, and age in years format. All those features are numeric datatypes.

For this dataset, specific features such as Glucose, Blood Pressure, Skin Thickness, Insulin,

BMI, and Diabetes Pedigree Function containing values of 0 were replaced with their respec-

tive median values. This preprocessing was guided by the experts’ advice, considering that

obtaining a score of 0 for these features is implausible and likely indicates missing data.

The second dataset is the Diabetes Prediction dataset. This dataset has 100,000 instances

with eight features, not including the target variable. The target variable is binary: 0 for non-

diabetes and 1 for diabetes. The distribution indicates 91,500 instances labeled with a value of

0 (non-diabetes) and the remaining 8,500 instances labeled with 1 (diabetes) for the target vari-

able. The features in the Diabetes Prediction dataset are Gender, Age, Hypertension, Heart

Disease, Smoking History, BMI, HbA1c level, and Blood Glucose. All those features are

numeric datatypes except Gender and Smoking History. As both datasets are hugely imbal-

anced, the macro average technique would be used in the experiment in order to assess the

minority class (diabetes) accurately and to ensure that the minority class is not overshadowed

by the majority class. Tables 1 and 2 show the results of the PIMA Indians Diabetes and Diabe-

tes Prediction datasets classification results using SRFEI and conventional stacking.

The SRFEI method uses six features in the experiments for both datasets, as the method

selected only 80% of the datasets’ original features. Based on the experimentation, a significant

reduction in training time for the PIMA Indians Diabetes dataset classification was observed,

dropping from 4.286 seconds with conventional stacking to just 2.646 seconds when using the

RFE. Moreover, the application of the RFE was also beneficial in the prediction aspect,

Fig 1. The architecture of SRFEI at level 0 and level 1.

https://doi.org/10.1371/journal.pone.0302595.g001
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resulting in an increment in accuracy from 76.363% (conventional stacking) to 79.077%, and

the precision increased from 74.144 in stacking to 76.065. Similar improvements were

observed in the Diabetes Prediction dataset. The training time was reduced from 8949.979 sec-

onds to 4066.058 seconds, and the accuracy increased from 96.689% to 97.446%. The precision

score increases from 93.952% to 95.199% when using SRFEI. Although the results slightly

decreased in recall and F1-measure, accuracy and precision improved in both datasets. The

higher accuracy score compared to stacking demonstrates the SRFEI’s capability to predict all

classes accurately. Then, the high precision value signifies the SRFEI capability to correctly

Fig 2. The flowchart of SRFEI.

https://doi.org/10.1371/journal.pone.0302595.g002
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Fig 3. The pseudocode of SRFEI.

https://doi.org/10.1371/journal.pone.0302595.g003

Table 1. PIMA Indians diabetes dataset classification result.

Metrics Results: Stacking Results: SRFEI

Test accuracy (%) 76.363 79.077

Precision (%) 74.144 76.065

Recall (%) 71.584 70.465

F1 measure (%) 72.297 71.865

Training time (s) 4.286 2.646

SD 3.010 2.139

https://doi.org/10.1371/journal.pone.0302595.t001
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identify individuals at risk of diabetes among those predicted to be positive. In the context of

the diabetes domain, precision is particularly crucial due to the potential ramifications of mis-

classifying individuals as positive when they do not have diabetes. Such mistakes can lead to

many issues, such as unnecessary stress and unwarranted medical interventions. SRFEI man-

aged to minimize the occurrence of false positives, as misclassifying non-diabetes cases as posi-

tive is deemed more unfavorable despite correctly identifying both cases being extremely

important in the diabetes domain. Fig 4 illustrates the comparison of the PIMA Indians Diabe-

tes dataset performance, while the comparison of the Diabetes Prediction dataset performance

is illustrated in Fig 5.

Next, the statistical t-tests were conducted to assess the significance of the differences in

results between conventional stacking and SRFEI. The experiment employed a two-tailed test,

which is more widely accepted and avoids directional bias. The significance level in the

hypothesis testing, denoted as alpha (α), is set as 0.05 because this value is commonly applied

in many scientific research [51]. A significance level of 0.05 means there is a 5% chance of

incorrectly rejecting the null hypothesis. If the calculated p-value exceeds the predetermined

significance level (α = 0.05), the null hypothesis (H0), asserting no significant difference

between stacking ensemble and SRFEI, is accepted. Conversely, if the p-value is less than α, the

Table 2. Diabetes prediction dataset classification result.

Metrics Results: Stacking Results: SRFEI

Test accuracy (%) 96.689 97.446

Precision (%) 93.952 95.199

Recall (%) 82.709 76.064

F1 measure (%) 87.304 82.535

Training time (s) 8949.979 4066.058

SD 0.206 0.189

https://doi.org/10.1371/journal.pone.0302595.t002

Fig 4. PIMA Indians diabetes dataset performance comparison.

https://doi.org/10.1371/journal.pone.0302595.g004
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alternative hypothesis (H1), indicating a significant difference, is accepted. The results used

were thirty independent runs for both conventional stacking and SRFEI, which makes the

degree of freedom 58 in both datasets. In the t-test of independent samples of both methods

for the PIMA Indians Diabetes dataset classification, the p-value is 0.000824989, which is less

than 0.05. Hence, this shows that the PIMA Diabetes dataset classification results difference is

significant at p< 0.05. Meanwhile, in the t-test of independent samples of both methods for

the Diabetes Prediction dataset classification, the p-value is 2.07399E-21, which is less than

0.00001. The results difference for the Diabetes Prediction dataset classification is also signifi-

cant at p< 0.05. Thus, based on the t-test results, there are significant differences in accuracy

increment between the conventional stacking and SRFEI.

4.2 Comparative analysis of the methods

The accurate prediction of diabetes is paramount for early detection and effective disease man-

agement. The objective of comparative analysis is to identify whether the SRFEI is comparable

with other methods. Therefore, this study validates the method’s performance by comparing it

with existing state-of-the-art methods mainly through the classification result of the bench-

mark dataset, the PIMA Indians Diabetes. This study also evaluates the method’s performance

on the recently released Diabetes Prediction dataset. The analysis was done by employing the

results of several eminent methods implemented using WEKA to establish a baseline for per-

formance comparison. In alignment with other studies, accuracy was chosen as the benchmark

evaluation metric. Tables 3 and 4 present the comparative analyses of the PIMA Indians Dia-

betes and Diabetes Prediction datasets classification results consecutively.

SRFEI acquired 79.077% of classification accuracy, surpassing the existing techniques such

as Random Forest with the application of k-means clustering, PCA and importance ranking

that obtained 75.22%, Gradient Boosting with 70%, Modified Bayes Network with 72.3%,

XGBoost-SMOTE with 78.29%, and AdaBoost-SS with 73.88% using the PIMA Indians Diabe-

tes dataset [17, 52–55]. For more validation, this study makes another comparison of the

PIMA Indians Diabetes dataset classification that includes precision analysis. SRFEI outper-

forms Deep Neural Networks in terms of accuracy and precision, in which Deep Neural

Fig 5. Diabetes prediction dataset performance comparison.

https://doi.org/10.1371/journal.pone.0302595.g005
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Networks acquired an accuracy of 64.5% and precision of 64% using the PIMA Indians Diabe-

tes dataset [56]. With the same dataset, SRFEI surpasses ANN-Sequential Forward Selection,

which obtains an accuracy of only 78.41% and a precision score of 72.07% [57]. For the Diabe-

tes Prediction dataset, this study applied three existing ensembles and one single classifier

method for comparison to identify the method’s capability. SRFEI, with 97.446% accuracy and

95.199% precision, surpassed the existing methods in Table 4, consisting of AdaBoost M1 and

bagging with J48 as classifiers, Voting ensemble with Bayes net classifiers, LogitBoost with

decision stump as classifiers, and Naïve Bayes. The voting ensemble acquired an accuracy of

96.672%, while LogitBoost acquired an accuracy of 97.187%. AdaBoost M1 acquired an accu-

racy of 96.275%, bagging obtained an accuracy of 97.033%, and lastly, Naïve Bayes acquired an

accuracy of 94.113% with a precision of 94.2%. The analyses show that the SRFEI performs

better than existing methods.

5. Discussion

In this study, the newly proposed method, SRFEI, was introduced and evaluated primarily for

diabetes classification. The performance of SRFEI was compared against existing state-of-the-

art methods using the PIMA Indians Diabetes and the recently released Diabetes Prediction

dataset. The findings of the study demonstrated that SRFEI outperforms the existing methods

on both datasets’ classification results, displaying that SRFEI is a promising approach for dia-

betes prediction. At the same time, it can predict using a minimal number of features. The

comparative analysis of the benchmark dataset, the PIMA Indians Diabetes dataset, and the

newly released Diabetes Prediction dataset provide a standardized and comparable basis for

methods evaluation. The choice of accuracy as the primary evaluation metric is common in

classification tasks as it enables straightforward comparison with other existing studies.

The SRFEI method stands out due to the utilization of stacking, which integrates multiple

base classifiers and a meta-classifier for the prediction. This integration of classifiers allows the

model to benefit from the strengths of each classifier while alleviating the single classifiers’ lim-

itations. In level 0 of SRFEI, secondary data is generated from the prediction of base classifiers.

Table 3. Comparative analysis of the PIMA Indians diabetes dataset classification results.

Method Accuracy (%)

Random forest- k-means clustering, principal component analysis (PCA), and importance ranking

[17]

75.22

Gradient Boosting [52] 70

Modified Bayes Network [53] 72.3

XGBoost-SMOTE [54] 78.29

AdaBoost- Stability Selection (SS) [55] 73.88

Proposed method (SRFEI) 79.077

https://doi.org/10.1371/journal.pone.0302595.t003

Table 4. Comparative analysis of the diabetes prediction dataset classification results.

Method Accuracy (%)

AdaBoost M1 (J48 classifier) 96.275

Bagging (J48 classifier) 97.033

Voting ensemble (Bayes net) 96.672

LogitBoost (Decision stump classifier) 97.187

Naïve Bayes 94.113

Proposed method (SRFEI) 97.446

https://doi.org/10.1371/journal.pone.0302595.t004
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This secondary data becomes input features for the meta-classifier in level 1, which then

makes the final prediction. The integration of multiple base classifiers assists in addressing the

issue of overfitting. Overfitting generally transpires when a model becomes overly complex

and excels on the training data but generalizes poorly on unseen data. As SRFEI combines the

predictions from different base classifiers, it reduces the potential of overfitting by leveraging a

diverse set of models as it learns different aspects of the data. SRFEI has superior performance

compared to the existing methods, which shows that the SRFEI method has less of a tendency

to overfit.

Another possible explanation for the competent performance of SRFEI can be attributed to

the ability of the model to capture complex patterns in the data effectively. Three reasons cause

this: firstly, due to aggregation of the predictions of base classifiers. Combining predictions

from diverse classifiers and learning provides a more comprehensive view of the underlying

data patterns, leading to more reliable predictions. Simultaneously, the utilization of the aver-

age weighted technique accentuates the cumulative distinctions among the base classifiers.

Consequently, it ensures a diverse model composition by incorporating varying perspectives

from each base classifier. Moreover, average weighted can help mitigate the impact of extreme

predictions from individual models that can lead to a more stable and balanced prediction.

Next, the utilization of Isolation Forest as an outlier detection is efficient for detecting the

anomalies and outliers in data. Therefore, the outliers can be removed effectively, eliminating

bias in the diabetes data. The RFE feature selection simplifies the representation of the data in

the model by focusing on the most relevant features. The unnecessary, irrelevant, and redun-

dant features were removed, making the classification process more proficient. Thus, the utili-

zation of RFE and Isolation Forest leads to a more concise representation of the underlying

data patterns. SRFEI managed to achieve the goal of this study, which is to reduce complexity

and training time. The proposed method is highly efficient and can be accessed through

reduced training time and improved accuracy and stability. The improved stability, which can

be seen through the reduction of accuracy’s SD values compared to conventional stacking, is

due to the reduction of variations caused by irrelevant features. On top of everything, the com-

bination of stacking, RFE, and Isolation Forest in the SRFEI method is compatible specifically

with the diabetes datasets, which could have contributed to the method’s relatively good classi-

fication performance on unseen data.

6. Conclusion

In conclusion, the study introduces the SRFEI method as a promising approach to diabetes

classification to develop a method with high accuracy while using fewer features. The applica-

tion of stacking, RFE, and Isolation Forest to form SRFEI ensures the elimination of irrelevant

data in terms of data points and features. This, in turn, simplifies the ensemble method and

expedites the training process, ultimately leading to reduced complexity. Through experimen-

tation, the study identified that SRFEI exhibits comparable performance to other state-of-the-

art methods on diabetes datasets in both accuracy and training time performance. While the

study presents compelling evidence favoring SRFEI, several aspects must be considered for a

comprehensive evaluation. Firstly, it would be beneficial to explore the interpretability of

SRFEI, especially in the context of medical applications like diabetes prediction, where model

interpretability is crucial for gaining the trust of healthcare professionals and patients. The

assistance from the expert is helpful in this aspect. Moreover, to ensure the robustness and

generalizability of the results, the SRFEI method should be tested on a more extensive range of

diverse datasets. Another limitation of SRFEI is that it may not acquire the optimal hyperpara-

meters during classification, which would be detrimental to the performance results in some
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situations. Utilizing hyperparameter tuning techniques such as Genetic Algorithm and Grid

Search would be useful in boosting the results, as the model can obtain optimal hyperpara-

meters. Looking ahead, future research endeavors could also focus on more suitable data pre-

processing and carefully selecting diverse base classifiers to enhance the results even further.

The SRFEI method demonstrated outstanding potential and consistently performed well

across various assessment metrics, including test accuracy, precision, recall, F1 measure, train-

ing time, and SD. Overall, the findings of this study showcase the effectiveness of SRFEI and its

capability to handle datasets with reduced features, making it a valuable contribution to the

field of machine learning. This study envisions SRFEI becoming a high-performing solution

for various practical applications in diabetes.
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