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A B S T R A C T   

The precise determination of battery state of charge (SoC) holds paramount significance and has garnered 
considerable attention across diverse sectors, including academia. Accurate knowledge of the SoC percentage 
offers numerous advantages, ranging from optimizing travel planning to enhancing the efficiency and reliability 
of electric vehicle operations through effective battery management systems. In response to the growing 
importance of SoC estimation, this study introduces a hybrid approach called the Barnacles Mating Optimizer 
with Deep Learning (BMO-DL) for SoC of Nissan Leaf batteries. The conventional methods for SoC estimation 
often suffer from limitations in accuracy and robustness, leading to suboptimal EV performance and battery 
management. In contrast, BMO-DL leverages the power of BMO algorithm to fine-tune the hyperparameters of 
DL, which is subsequently employed for the actual estimation. This synergistic combination enhances the ac-
curacy and reliability of SoC estimation. The estimation model takes three inputs: voltage, current and conducted 
charge to generate a single output, the SoC percentage. he study’s findings underscore the superiority of BMO-DL 
by revealing its capability to achieve significantly better results compared to the other benchmarking methods 
identified. Notably, BMO-DL exhibits significantly lower error rates when compared to competing algorithms, 
thereby reinforcing its potential to advance the efficiency and reliability of electric vehicle operations while 
addressing the critical challenge of SoC prediction.   

1. Introduction 

In order to attain carbon neutrality, enhance air quality in urban 
areas, and fulfill consumer demands, governments worldwide are 
actively advocating for the adoption of innovative energy-efficient 
electric vehicles (EVs). With rapid progress in the accumulation of 
decommissioned lithium-ion batteries, environmental and economic 
concerns have garnered significant interest, leading to the evolution of 
research in the adequate EV charging infrastructure [1] as well as 
recycling process of these batteries [2]. One of the active issues in bat-
tery management systems is the battery State of Charge (SoC) estimation 
problem. Accurately estimating the SoC in batteries holds paramount 
significance across a spectrum of applications, spanning from electric 
vehicles (EVs) to renewable energy systems. The SOC of a battery rep-
resents the remaining available energy and plays a critical role in opti-
mizing battery utilization, prolonging battery life, and ensuring safe and 
reliable operation. Given the uncertain driving patterns and the repeti-
tive acceleration and deceleration of a vehicle, the mattery may 

experience significantly changing load requirements [3]. Therefore, the 
development of precise and efficient SoC estimation techniques is a 
subject of ongoing research in the field of energy storage systems. 

Typically, the conventional SoC estimation approaches rely on a 
limited dataset collected under specific conditions, which might not 
accurately represent the full range of operating conditions for a battery 
[4]. Besides, they also often depend on physics-based models, which can 
be computationally intensive and sensitive to parameters variations 
such as hybrid Coulomb counting/impedance measurement approach 
[5]. To overcome these limitations and improve SoC estimation accu-
racy, machine learning techniques have emerged as promising alterna-
tives. The rapid progress of contemporary machine learning techniques 
is driven by the continuous enhancement of computational capabilities 
and greater availability of datasets. Currently, machine learning algo-
rithms have become deeply embedded in our daily life where they have 
emerged as the dominant choice for various tasks such as predictive 
analytics with particular attention to SoC estimation [6]. 

In reference to [7], a study conducted a comparison of 18 distinct 
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machine learning techniques for estimating the SoC in batteries. In this 
study, machine learning techniques were categorized into three groups 
viz. linear models, ensemble models and other models. Within the linear 
model’s category, it included Linear Regression, Bayesian Ridge, and a 
few others. Meanwhile, Bagging, XGBoost and several other methods 
were grouped under the ensemble methods category, while techniques 
like Support Vector Regression, Artificial Neural Network and a few 
others were grouped the under other models’ category. The efficiency of 
these models was evaluated based on several criteria, such as training 
and prediction time comparisons, matching of SoC estimation curves, 
statistical evaluation, and performance indices. Among these findings, it 
becomes evident that the ensemble method outperforms the other 
groups, with Bagging and ExtraTree yielding superior results. An addi-
tional proposition found in [8] introduces the use of the Adaptive Neuro 
Fuzzy Inference System (ANFIS). 

Meanwhile, in [9], a study proposed the use of Bidirectional Long 
Short Term Memory (BiLSTM)-Recurrent Neural Network (RNN) in 
conjunction with Parallel Artificial Neural Networks (PANNs) for esti-
mating SoC in electric vehicle battery packs. The proposed model, 
implemented using a publicly available dataset, demonstrated superior 
performance compared to conventional RNNs, achieving a speedup of 
1.5 − 3 times. Ref. [10] presents a study that utilizes an LSTM-based 
model. In the proposed research, the LSTM model is enhanced with 
anti-noise adaptability to improve the accuracy of predicting remaining 
useful life (RUL). Another improved LSTM is introduced in [11]. Pro-
gressing further, a Deep Neural Networks (DNN) was introduced for the 
purpose of estimating SoC using data collected in a laboratory setting 
involving a Li-ion battery 18,650 [12]. When compared to a Gated 
Recurrent Unit Recurrent Neural Networks (GRU-RNN), the DNN 
network exhibited promising results. It yielded mean error values of less 
than 0.4 % and a maximum error value of under 2.5 % when applied to 
simulated data. These outcomes strongly indicate the accuracy of the 
DNN in the SoC estimation. 

In recent study, Do et al. (2023) [13] introduced a hybrid model that 
merges the capabilities of the Extreme Learning Machine (ELM) model 
with Salp-Swarm Algorithm (SSA) [14] for the estimation of lithium-ion 
battery behavior. Given the ELM’s sensitivity to network weights and 
hidden layer biases, the SSA is employed to search for the optimal 
values, while the ELM network is tailored to estimate the current SoC of 
the battery. The SSA’s effectiveness is enhanced by incorporating a 
chaotic mapping technique during the initialization phase, and the Sine 
Cosine Algorithm (SCA) is integrated into the formulation of swarm 
positions. Through minimizing errors, the proposed model demonstrates 
its superiority when compared to other existing models, which includes 
Back Propagation Neural Network (BPNN), hybrid ELM with Particle 
Swarm Optimization (PSO) [15], among others. Similar works that 
demonstrate a hybrid machine learning with optimization algorithms 
for SoC estimation also can be seen in [16,17]. In addition, SoC pre-
diction utilizing Kalman Filter has garnered significant attention in the 
research community, as elaborated upon in [18,19]. 

Among the reviewed existing works, Deep Learning (DL) has 
demonstrated remarkable capabilities in modeling complex relation-
ships in data and solving challenging prediction tasks [20], including in 
battery SoC estimation [21]. DL models have predominantly found 
application in addressing issues related to classification, regression, and 
clustering tasks [22,23]. In contrast to conventional machine learning 
models such as Support Vector Machines (SVM) [24], Random Forest 
(RF), Logistic Regression (LR), among others, DL models depend on 
intricate neural networks known as deep neural network. These net-
works consist of multiple layers of neurons. DL has the ability to auto-
matically extract representation from high dimensional data and acquire 
an understanding of complex nonlinear mapping between inputs and 
outputs [25]. In many instances, data driven approaches utilize the 
battery’s measured current, voltage, and temperature as inputs, often 
employing a sliding window technique. Additionally, it is evident that 
DL can accommodate a noticeably larger sliding window length 

compared to traditional machine learning techniques. 
Despite the impressive success of DL techniques, the performance of 

these models heavily depends on the optimization of their internal pa-
rameters, namely weights and biases. Any inappropriate values set to the 
parameters will directly affect the overall performance of the DL model. 
To address this optimization challenge, this paper proposes a hybrid 
approach that integrates the Barnacles Mating Optimizer (BMO) [26] 
with DL (termed as BMO-DL) for SoC estimation in batteries. The BMO is 
a recent addition to the field of metaheuristic optimization. It draws 
inspiration from the mating behavior of barnacles in nature, aiming to 
replicate and adapt these principles to solve optimization problems 
effectively. The BMO has been proven its efficiency in solving complex 
and multi-dimensional optimization problems in different areas which 
includes in telecommunication networks [27], information security 
[28], power system [29,30], building system engineering [31], big-data 
[32], finance [33], electrical engineering [34,35], renewable energy 
[36,37], and many more. By hybridizing the BMO with DL, the strengths 
of both techniques can be maximized and achieve synergistic enhance-
ment in addressing the issue of interest. 

The contributions of this study are as follow:  

i Automated hyper-parameter optimization of DL using BMO: 

This study introduces a novel approach by using BMO to optimize the 
hyper-parameters of DL models. By automating the hyper-parameter 
tuning process, this contribution enhances the efficiency and effective-
ness of DL for SoC estimation.  

i Enhanced SoC estimation accuracy through hybrid BMO-DL 

The hybrid BMO-DL presents a significant advantage in SoC esti-
mation. By synergistically combining the strengths of both techniques, 
this contribution achieved a remarkably improvement in the SoC 
estimation. 

The subsequent sections of this paper are organized as follows: In 
Section 2. A concise overview of barnacles in nature and the develop-
ment of their mathematical model is presented, followed by a descrip-
tion on Deep Leaning in Section 3. Section 4 outlines the methodology 
adopted, encompassing data collection, training and testing, the hybrid 
BMO-DL model and evaluation. The acquired results are examined in 
Section 5, and Section 6offers the concluding remarks. 

2. Barnacles mating optimizer 

2.1. Barnacles, in nature 

Dating back to the Jurassic era, barnacles start their life cycle as 
swimmers and then adhere to aquatic surfaces, undergoing shell for-
mation in adulthood. With a vast diversity of over 1400 species, bar-
nacles are predominantly hermaphroditic, equipped with both male and 
female reproductive organism. Among them, acorn barnacles are 
particularly common. A striking trait of barnacles in their extended 
reproductive organ, setting a remarkable record in the animal kingdom 
relative to their body size [38]. Based on the uniqueness of the barna-
cles, the BMO was introduced which offers several advantages that make 
it a valuable choice for optimizing the weights and biases of Deep 
Learning.  

i Exploration and Exploitation: BMO exhibits a balance between 
exploration and exploitation in the optimization process. This bal-
ance is crucial for deep learning, as it allows the algorithm to explore 
a wide range of potential solutions (exploration) while also fine- 
tuning promising solutions (exploitation). This property helps pre-
vent getting stuck in local optima and can lead to finding better- 
performing neural network configurations. 
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ii Diversity in Search: The mating behavior modelled in BMO in-
troduces diversity in the search process. In deep learning, having a 
diverse set of weight and bias configurations can lead to improved 
generalization and model robustness. BMO’s ability to generate 
diverse candidate solutions aligns with the need for exploring a 
broad solution space in neural network optimization.  

iii Global Optimization: BMO has demonstrated effectiveness in global 
optimization tasks. In Deep Learning, finding globally optimal 
weight and bias configurations is often crucial for achieving state-of- 
the-art performance. 

2.2. Mathematical model of barnacles mating optimizer 

The BMO consists of 3 phases, namely initialization, followed by 
selection, and finally, reproduction.  

i Initialization 

Initially, the number of possible solutions is initialized, which rep-
resents the barnacles. It can be expressed as follows: 

X =

⎡

⎢
⎢
⎢
⎣

x1
1 ⋯ xN

1

⋯ ⋯ ⋯
x1

n ⋯ xN
n

⎤

⎥
⎥
⎥
⎦

Barnacle/possible solution 1
⋯

Barnacle/possible solution n

→
Problem dimension,N

(1)  

where; 
N=number of control variables/optimization parameters 
n= population size 
The control variables outlined Eq. (1) are constraint with the upper 

and lower limits specific to the problem at hands, as defined below: 

upperB = [upperB1,…, upperBi] (2)  

lowerB = [lowerB1,…, lowerBi] (3)  

where upperB and lowerB represent the upper and lower bounds of 
control variables, and i indicates the maximum number of control 
variables.  

i Selection 

The parameter pl governs the choice of pairing two barnacles for 
mating, inspired by the natural behavior of barnacles. This selection 
process operates under the following assumptions:  

a The selection is random, but it is limited to the pl parameter.  
b Each barnacle can contribute or receive sperm from other barnacles, 

with fertilization occurring between only one pair. Despite the pos-
sibility of multiple males fertilizing a female in nature [38], this 
model assumes a one-to-one fertilization.  

c If the selection process picks the same barnacle, it implies self-mating 
(self-fertilization). However, self-mating is a rare occurrence among 
barnacles according to [39]. In these cases, the potential for 
self-mating is ignored, resulting in no new offspring generation.  

d When the selection during a particular iteration exceeds the pre- 
determined pl value, the process of sperm casting takes place, 
which is recognized as exploration. 

Based on the information provided, exploitation corresponds to 
points (1) and (2). 

To elaborate on the mating process, let’s suppose that pl equals 7. As 
a result, in a given iteration, barnacle #1 has the opportunity to engage 
in mating only with barnacles ranging from barnacle #2 to barnacle #7. 
However, if barnacle #1 were to hypothetically choose barnacle #8, this 

would exceed the predetermined limit, leading to the absence of a 
mating event. In such cases, when this situation occurs, the process shifts 
into sperm casting, signifying an exploration phase. In this context, a 
straightforward selection procedure is employed, as follow: 

barnacled = randperm(n) (4)  

barnaclem = randperm(n) (5)  

where, randperm is short for "random permutation," is a function 
commonly used in optimization algorithms and other computational 
tasks. It generates a random permutation of a sequence of numbers, 
typically integers, from 1 to a specified maximum value. In BMO, this 
function is employed to shuffle the order in which elements are pro-
cessed, introducing randomness and diversifying the exploration of 
potential solutions, thereby helping to avoid getting trapped in local 
optima and potentially discovering improved solutions. Details 
regarding the selection and mating process of the barnacles can be 
referred in [26].  

i Reproduction 

The subsequent formulas are employed to generate new offspring/ 
variables based on the barnacles’ parents: 

xN new
i = pxN

barnacle d + qxN
barnacle m (6)  

where p represents normally distributed pseudo-random numbers 
within the range of [0, 1], and q equals (1-p). The variables xN

barnacle d and 
xN

barnacle m correspond to the traits of the parent barnacles, Dad and Mum, 
respectively, as selected in Eqs. (4) and (5). The parameters p and q 
denote the proportions of characteristics inherited from Dad and Mum 
that contribute to the creation of new offspring. Thus, the offspring’s 
traits are determined based on the probability of a random number 
falling between 0 and 1. For instance, if p is randomly generated as 0.6, it 
signifies that 60 % of the paternal (Dad) attributes are inherited, while 
40 % of the maternal (Mum) attributes contribute to the formation of the 
new offspring. 

The parameter pl plays a crucial role in determining the equilibrium 
between the exploitation and exploration phases. Once the selection of 
barnacles for mating occurs within the pl range, it triggers the exploi-
tation process (as indicated by Eq. (6)). On the other hand, if the se-
lection falls beyond this range, the exploration proceed (Eq. (7)) is 
triggered, characterized as follow: 

xn new
i = rand() × xn

barnacle m (7)  

where barnacle_d and barnacle_m represent the potential parents for 
mating, and n denotes the population size. According to Eqs. (4) and (5), 
the selection process occurs randomly, aligning with the aforementioned 
assumption number 1. Here, rand() represents a random number within 
the range of [0,1]. The algorithm for BMO is depicted in Fig. 1. 

3. Deep learning 

For SoC estimation tasks, a DL is employed. A DL is feedforward, 
supervised learning network where in this study, it consists of an input 
layer, two hidden layers with 5 hidden neurons and an output layer. In 
input layer, the inputs are voltage (V), current (I) and conducted charge 
(Q) while the output is SoC in percentage. Due to the significant reliance 
of Deep Learning (DL) on the specific values of weights and biases, this 
research deviates from utilizing the Back Propagation (BP) algorithm for 
network training. Instead, the study adopts the BMO approach (refer to 
Sections 3 and 4.2). The architecture of DL for State of Charge (SoC) 
estimation is illustrated in Fig. 2. 
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4. Methodology 

This section is dedicated to elaborating on the methodology utilized 
in this study. It encompasses a comprehensive description of the dataset, 
the procedures for training and testing, the hybrid BMO-DL model, and 
finally, the criteria employed for evaluation. 

4.1. Dataset description 

In this study, the data was gathered through simulations involving an 
electric car resembling the Nissan Leaf, utilizing a lithium polymer cell 
model known as ePLB C020 [40]. The dataset incorporated information 
about the battery, including V, I and Q, which are fed to the estimation 
model as inputs. The datasets consist of 68,741 instances which are later 
divided into training and testing set. Sample of dataset are as tabulated 
in Table 1 [40]: 

Meanwhile, Fig. 3 illustrates the holistic input-output dataset 
employed for the training process. This dataset comprises a substantial 
collection of over 40 thousand instances, which translates to more than 
60 % of the complete dataset. Notably, this dataset showcases the raw 
data in its original form before undergoing the normalization procedure. 
The utilization of raw data is crucial, as it provides insights into the 
inherent characteristics and distribution of the information. Subse-
quently, the normalization process transforms this raw data into a 
standardized format, which is essential for enhancing the model’s 

learning process and promoting convergence during training. This 
practice ensures that the neural network effectively learns from a 
consistent and comparable range of values, facilitating improved per-
formance and accurate predictions. 

4.1.1. Training and testing 
To facilitate both training and testing, a duration of 12 h was allo-

cated for training, encompassing a trip of 277.64 km. Meanwhile, for 
testing, a separate 7-hour dataset was employed, corresponding to a trip 
of 163.24 km. The distribution for training and testing was divided in 
the ratio of 0.6 and 0.4, respectively. 

4.2. Barnacles mating optimizer-deep learning 

In this research, the BMO algorithm was applied to enhance the 
performance of the DL by fine-tuning its weights and biases. This opti-
mization process seamlessly integrated the BMO algorithm into the DL 
framework, functioning until the predefined maximum iteration limit is 
attained. For this research, the maximum iteration is established at 
1000. The optimization process centered on key parameters within the 
neural network, specifically focusing on the weights denoted as wji and 
wkj, as well as the biases situated in both the hidden and output layers, 
which bounded between − 1 to 1. The setup comprises a total of 5 hidden 
neurons, which have been determined through iterative experimenta-
tion. The total variables to be optimized (weights and biases, Fig. 2 as 

Fig. 1. BMO Algorithm.  
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reference) are 3 (inputs neuron) x 5 (hidden neuron layer 1) + 5 biases 
(hidden neuron layer 1) + 5 (hidden neuron layer 1) x 5 (hidden neuron 
layer 2) + 5 biases (hidden neuron layer 2) + 5 (hidden neuron layer 2) x 
1 (output neuron) + 1 bias (output neuron) = 56 variables. The primary 
objective function utilized is the MAE. Significantly, the goal was to 
minimize the MAE as it corresponds to superior model performance and 
predictive accuracy. To provide readers with a visual representation of 
the BMO-DL optimization process, a flowchart of BMO-DL has been 
included in Fig. 4. These comprehensive adjustments ensure that the DL 
model attains an optimal configuration of weights and biases within the 
specified iteration limit, ultimately contributing to an enhanced model 
performance and improved predictive accuracy. 

4.3. Performance evaluation metrics 

In this study, the evaluation of the SOC estimation is served by two 
criteria, namely Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE). AME provides the average of the absolute differences 
between the estimated values and the target values. It measures the 
average magnitude of errors without considering their direction, making 
it less sensitive to outliers. Meanwhile, RMSE is the square root of the 

average of the squared differences between the estimated values and the 
target values. It places more emphasis on larger errors due to the 
squaring of errors, making it sensitive to outliers. Both metrics are 
defined as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1‖ y(i) − ŷ(i) ‖2

N

√

(8)  

MAE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
|y(i) − ŷ(i)|

√

(9)  

where N represents the data length of the battery estimated to be eval-
uated, y(i) and ŷ(i) are the target and estimated battery SOC, 
respectively. 

4.4. Benchmarking technique 

This study undertakes a comparison of the results attained through 
the BMO-DL approach with those achieved by optimizing DL using the 
Particle Swarm Optimization (PSO) method and the Harmony Search 
Algorithm (HSA). A brief of PSO and HSA are as follow: 

4.4.1. PSO 
Introduced by Kennedy and Eberhart [13], PSO was developed based 

on the inspiration of birds’ movements or fish schooling. Classified 
under Swarm Intelligence (SI) algorithm, PSO is based on the principle 
that the members of the swarm are cooperative with each other. In PSO, 
each particle possesses its individual best solution (Pb), as well as global 
best solution (Gb). The Gb represents the most optimal solution among 
all the Pb achieved so far. Each particle’s behavior is influenced by 
exchanging information with other particles within the swarm. The 
continuous evolution of each particle’s trajectory is captured by 
adjusting its velocity and position using the defined equations, respec-
tively. Since its introduction, it has been widely used to solve various 
problems in different fields [41–43]. 

Fig. 2. Deep Learning Architecture for SoC estimation.  

Table 1 
Sample of Dataset.  

Sampling Time (s) V C Q 

1 4.1749 0.0090 0 
2 4.1749 0.0090 0 
3 4.1748 − 0.0090 − 2.6455 
4 4.1703 − 0.3797 − 1.0744 
5 4.1697 − 0.3706 − 2.1136 
6 4.1695 − 0.3526 − 3.0839 
7 4.1694 − 0.3390 − 4.0317 
8 4.1694 − 0.3028 − 4.8701 
9 4.1692 − 4.2217 − 5.8377 
10 4.1104 − 7.9959 − 0.0017  
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4.4.2. HSA 
Unlike PSO, HSA [44] is categorized as human-inspired algorithm, 

which draws inspiration from the musical process of finding harmonious 
arrangements of musical notes and applies that concept to optimization 
problems. In HAS, potential solutions are represented as harmonies 
within a harmony memory (HM). These harmonies undergo a trans-
formation process that mirrors the improvisational creation of new 
harmonies by musicians. This process involves generating a novel har-
mony by following three pitch production rules: selecting a pitch at 
random from HM, adjusting a randomly chosen pitch from HM, and 
constructing a pitch through random selection. If the newly generated 
harmony surpasses the quality of the weakest harmony within HM, it 
replaces the latter. This iterative process persists until a specified 
termination condition is met. The application of HSA can be seen in 
various fields such as scheduling [45,46], education [47] and many 
more. 

5. Results and discussion 

In order to identify the optimal configurations of hidden neurons for 
BMO-DL, the proposed model underwent experimentation using three 
distinct settings for hidden neurons, as outlined in Table 2. Besides MAE 
and RMSE, the evaluation also takes into account the maximum error 
which represents the largest difference between predicted and actual 
values. A lower maximum error indicates that the method produces 
fewer extreme outliers. 

Based on Table 2, the collected results show a performance 

Fig. 3. Input-Output data for training process.  

Fig. 4. Flowchart of BMO-DL.  

Table 2 
Comparison of Different Hidden Neurons for BMO-DL.  

Number of Hidden Neuron MAE RMSE Maximum Error 

3 8.7293 10.4943 17.4227 
5 5.6610 6.7888 12.3972 
7 8.3934 9.6334 14.2611  
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comparison among various configurations of hidden neurons. Three key 
metrics were employed namely MAE, RMSE and maximum error. For the 
case of hidden neurons=3, the recorded MAE, RMSE and maximum 
error are 8.7293, 10.4943 and 17.4227, respectively. Moving to the 
configuration with five hidden neurons, the metrics exhibit a much 
smaller MAE, which is 5.6610 and 6.7888 of RMSE while the maximum 
error was recorded at 12.3972. Finally, for the setup involving seven 
hidden neurons, the values showcase a MAE of 8.3934, RMSE of 9.6334, 
and a maximum error of 14.2611. 

The tabulated findings provide insights into the impact of varying 
hidden neuron counts on the performance of BMO-DL estimation model. 
As evident from the above table, the configuration employing five hid-
den neurons seems to produce the smallest MAE and RMSE values. 
However, it is noting that this configuration also demonstrates a rela-
tively higher maximum error. Conversely, the three-hidden-neuron 
configuration and the seven-hidden-neuron configuration have their 
respective strengths and weaknesses in terms of estimation error. Fig. 5 
illustrates the performance comparison of different hidden neurons for 
BMO-DL. This comparison is based on three key metrics: MAE, RMSE, 
and Maximum Error. To ensure the robustness and reliability of the 
results, simulations were conducted for each hidden neuron configura-
tion (3, 5, and 7) independently and repeatedly. This approach was 
adopted to account for potential variability in the outcomes and to assess 
the consistency of the model’s performance. Upon analyzing the results 
of these simulations, a consistent pattern emerged. The configuration 
with 5 hidden neurons consistently outperformed the others across all 
five runs. Thus, the configuration with 5 neurons at each hidden layers is 
selected for the BMO-DL for the SoC estimation problem. 

Table 3 shows the result of the performance comparison among 
BMO-DL, PSO-DL and HAS-DL. Considering the data provided in the 
table above, it becomes clear that BMO-DL exhibits the smallest MAE 
value, indicating its superior performance in minimizing the average 
error. This trend is consistent in the RMSE results as well, where BMO- 
DL outperforms the other methods by having the lowest RMSE. This 
signifies that BMO-DL offers more accurate predictions across the board. 
Furthermore, when considering the metric of maximum error, the re-
sults obtained by BMO-DL highlight its greater consistency in avoiding 
extremely inaccurate predictions. The HSA-DL secured the second po-
sition, exhibiting higher MAE and RMSE values than those achieved by 
BMO-DL, specifically 10.0983 and 10.6445, respectively. This places 
PSO-DL in the third position. The maximum errors produced by all 
identified algorithms seem to align with the recorded errors. 

Figs. 6–8 depict the estimated values generated by BMO, PSO and 
HSA, respectively, in comparison with the actual SoC values. The lower 
portion of each figure visualizes the errors associated with the estima-
tions produced by their respective method. 

To enhance the clarity of the comparison, we have aggregated the 
results from Figs. 6 to 8, as illustrated in Fig. 9. As seen in the figure, the 
values generated by BMO-DL closely align with the target values, 
especially at the onset of the testing phase. In contrast, the prediction 
values generated by PSO-DL appear to be scattered throughout most of 
the testing phase. 

Fig 10. illustrates the comparison of convergence curve recorded by 
BMO-DL, PSO-DL and HSA-DL. The convergence performance was 
evaluated over a total of 1000 iterations. Among these methods, BMO- 
DL exhibited a notably superior convergence rate, achieving a MAE 
value of 0.0079. In comparison, the PSO-DL method displayed slightly 
competitive convergence capabilities, yielding an MAE value of 0.0085. 
In contrast, the HSA-DL demonstrated slightly higher convergence 
values, recording an MAE of 0.0241. These results highlight the robust 
convergence performance of BMO-DL which converges to solutions with 
remarkable precision over the course of 1000 iterations. 

A significant test for each difference with the identified methods is 
provided in Table 4. From the table, it is evident that the differences in 
performance among these methods are statistically significant. These 
results suggest that BMO-DL, in both comparisons, demonstrates a clear Fig. 5. Performance comparison of different hidden neurons for BMO-DL.  

Table 3 
Comparison between BMO-DL vs. PSO-DL vs. HAS-DL for SoC Estimation.  

Hybrid Methods/Metrics MAE RMSE Maximum Error 

BMO-DL 5.6610 6.7888 12.3972 
PSO-DL 13.3401 14.1219 22.7693 
HSA-DL 10.0983 10.6445 16.7805  

Fig. 6. SoC Estimation based on BMO-DL.  

Fig. 7. SoC Estimation based on PSO-DL.  
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advantage over the other methods in terms of accuracy, as indicated by 
the highly significant p-values. 

6. Conclusion 

In conclusion, this study introduced the BMO-DL hybrid approach for 
precise SoC estimation in battery systems. The methodology combined 
BMO with DL and underwent rigorous evaluation on Nissan Leaf bat-
teries. Using a comprehensive dataset, the performance of the BMO-DL 
model was assessed with two key metrics: MAE and RMSE. Additionally, 
a comparative analysis was conducted to establish the statistical sig-
nificance of BMO-DL’s outcomes in relation to two analogous hybrid 
techniques, namely hybrid PSO-DL and HSA-DL. 

The study’s findings consistently demonstrated that BMO-DL out-
performed the identified hybrid algorithms, yielding significantly lower 
MAE and RMSE values. This highlights the potential of BMO-DL as an 
effective approach for accurate SoC estimation in battery systems. In 
summary, the BMO-DL hybrid approach represents a notable advance-
ment in battery SoC estimation. Its superior performance compared to 
existing hybrid algorithms suggests practical applicability in electric 
vehicles and renewable energy systems. As the research landscape 
continues to evolve, this study provides a foundation for future en-
deavors, driving further innovations and advancements in battery 
management and estimation techniques. 
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