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A B S T R A C T   

Pneumatic servo systems face challenges such as friction, compressibility, and nonlinear dy
namics, necessitating advanced control techniques. Research suggests model-based, model-free, 
hybrid, and optimization-based methods have their strengths. Therefore, this study presents an 
optimal control strategy using Adaptive Domain Prescribed Performance Control (AD-PPC) 
cascaded with PID and optimized using the Evolutionary Mating Algorithm (EMA) for a pneu
matic servo system (PSS). The goal is to achieve faster transient control and stable rod-piston 
positioning with minimal friction through the hysteresis phenomenon of the targeted propor
tional valve-controlled double-acting pneumatic cylinder (PPVDC) representing the PSS. The 
novel EMA optimizes the cascaded controller based on the tracking error as its objective function. 
Simulation studies verify the proposed AD-PPC-PID controller with the PPVDC model plant, 
iteratively optimized by the EMA. The analytical study compares this setup’s control system and 
optimization model with the same control system model using alternative optimization methods. 
The testing employs step and multi-step signals for PPVDC’s rod-piston position input. Results 
show that the EMA-tuned AD-PPC-PID outperforms AD-PPC-PID controller with other optimizers. 
For both input trajectory tests, EMA-tuned AD-PPC-PID shows faster response times, with average 
improvements of 30 % in settling times and 70 % in tracking performance metrics compared to 
other optimizers, making it robust for nonlinear system applications like PPVDC rod-piston 
positioning.   
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1. Introduction 

Pneumatic systems have become prevalent in industrial and manufacturing settings owing to notable benefits including reliability, 
favorable power-to-weight ratios, cleanliness, straightforward structural design, cost-effectiveness, and immunity to electromagnetic 
disturbances. However, complex air flow behavior through valve ports along with the compressibility of air and inherently low natural 
frequencies introduce accuracy and dynamic performance challenges for pneumatic position/trajectory tracking control. The objective 
of pneumatic servo system (PSS) control is emphasized not only on the piston positioning but also its pressure stability. Here friction 
plays a main factor in PSS precisions. Frictional nonlinearities impose difficulties for PSS motion control tasks. The existence of friction 
in the pneumatic cylinder has both advantages and disadvantages. On the one hand, friction increases damping which can improve 
system stability. However, friction also causes issues like increased seal wear, lower cylinder output forces, and stick-slip motion at low 
speeds. Overall, the cons of cylinder friction outweigh the pros. Thus, reducing or eliminating friction has become a major research 
direction for improving pneumatic cylinder performance. Since most pneumatic cylinders utilize elastic seals, common friction 
reduction approaches in the pneumatics industry include: enhancing machining precision, utilizing specialized lubricants, designing 
optimized seal geometries, and employing low-friction materials [1]. However, simply minimizing friction without considering im
plications on stability can undermine system performance. An integrated approach balancing friction mitigation with stability and 
control needs may enable optimized pneumatic cylinder designs. When it comes to control issues, identifying the components of 
uncertainty for the pneumatic servo system that includes its friction is essential. This can be done either through model identification 
that emphasizes model-based control design strategy or using model-free approaches with various integration methods. The LuGre 
friction model [2] is the most widely used for modeling and analyzing pneumatic systems, as it captures nonlinear velocity-dependent 
viscous friction effects. Research [3,4] indicates that lower piston velocities tend to increase static friction, potentially causing jerkier 
rod movements. 

Robust control strategies are therefore vital to address PSS control issues. In the control perspectives, there are various approaches 

List of Symbols 

Mrp Rod–piston mass 
ML External payload mass 
Ai(i=1,2) Absolute pressure in chamber 1 and 2 of the pneumatic cylinder 
ẍrp Acceleration state of the pneumatic cylinder rod–piston 
Ff Inner frictional force in the pneumatic cylinder chamber 
FL External force of the payload 
udz(t) New control signal with dead-zone characteristic 
md Right limits of dead zone 
me Left limits of dead zone 
zmd Right slopes of the new control signal with deadzone characteristic 
zme Left slopes of the new control signal with deadzone characteristic 
Pi(i=1,2) Absolute pressures in chamber 1 and chamber 2 of the pneumatic cylinder 
tc Predetermined convergence of finite-time 
vi(i=1,2) Scaling factor 
α Variable-rate convergence function 
h Convergence rate 
σ Upper boundary gain of the PPC 
σ Lower boundary gain of the PPC 
σρ(0) Upper limit of the maximum overshoot 
σρ(0) Lower limit of the maximum undershoot 
E(t) New transformed tracking error 
xd Reference input of displacement for the rod-piston stroke 
e(t) Tracking error 
Ξ(t) Normalized error 
xrp Feedback response of displacement for the rod-piston stroke 
Kp Proportional gain of the PID controller 
Ki Integral gain of the PID controller 
Kd Derivative gain of the PID controller 
J Cost function 
T Iteration number 
Xm Solution group for male 
Xf Solution group for female 
Imates Possibility of sexual selection  
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with various formulations that have been developed to achieve the robustness of the control systems such as model-based, mode-free 
and hybrid control strategies. Model-based is known for dependent of plant model properties and parameters with the complex control 
theory [5,6] approaches in its design. Feedforward model compensations [7,8], feedback linearization [9], robust and optimal control 
[10], and model predictive control [11,12] are the example of model-based controllers that used and implemented by various re
searchers. Feedforward control employs predictive model plant to determine necessary control inputs for achieving desired motions. 
For example, in the case of PSS model plant, converting desired outputs into valve duty cycles and compensating for nonlinearities [13, 
14]. Alternatively, data-driven models from system identification or neural networks can enhance trajectory tracking accuracy [15, 
16]. However, reliance on accurate models has limitations, necessitating the combination of feedforward and feedback mechanisms to 
ensure robust performance in high-precision applications. Feedback linearization on the other hand, simplifies the plant nonlinearities, 
facilitating the use of linear control methods and complex numerical solutions [17-19], although unmodeled effects remain. It 
transforms the plant states for precise control input design, with state estimators aiding unmeasurable state estimation, albeit with 
computational simplifications [20]. Despite challenges, feedback linearization enhances precision tracking by mitigating non
linearities [9] for the case of nonlinear model such as PSS. Also, has been used to Model predictive control (MPC) offers slightly 
different approaches, optimizing inputs by forecasting responses over a finite horizon, minimizing a cost function like tracking error, 
and systematically handling pneumatic saturation constraints [21]. MPC utilizes prediction horizons to smooth inputs and include 
coupling constraints. However, computational demands increase with model complexity, necessitating efficient embedded imple
mentation. Overall, MPC provides a promising framework for high-performance for nonlinear plants such as PSS by integrating dy
namics models with numerical optimization. Robust control techniques like H-infinity [22] and μ-synthesis [23] as well as 
super-twisting in adaptive approaches [24,25] enhance stability by directly addressing model uncertainties, while optimal methods 
such as Linear Quadratic Regulator (LQR) optimize control performance based on analytical models [26], though intensive compu
tations may hinder the limited processor unit such as embedded system implementation. 

Model-free control, on the other hand, is the opposite, as it does not require mathematical models of the system dynamics for 
control law synthesis. Instead, it relies solely on direct input-output data measured from the pneumatic hardware during operation. 
This provides inherent portability across different plant configurations but critically depends on the availability of high-fidelity sensor 
feedback measurements. Other than conventional controllers such as PID control, Sliding Mode Control (SMC) [27], Iterative Learning 
Control (ILC) [28], Prescribed Performance Control (PFC) [29] and Funnel Control [30] are examples of model-free approaches that 
are majorly deployed with a few adaptive mechanisms in their design. For example, SMC has various adaptive approaches. This control 
method uses high frequency switching to keep system states on specific surfaces, aiming to drive tracking errors to zero for the targeted 
plant system. However, achieving accurate tracking depends on precise feedback, while unmodeled effects and hardware limitations, 
such as imperfect measurements and valve dead bands, challenge its applicability. For instance, Sun et al. proposed integrating SMC 
with active disturbance rejection control (ADRC) and adaptive control to enhance dynamic response, mitigate chattering, and 
incorporate an extended state observer (ESO) for improved disturbance rejection. Also, an adaptive law was employed to reduce 
conservatism in parameter selection [24]. Conversely, ILC aims to enhance tracking accuracy over repeated motions by learning from 
past errors, adjusting feedforward inputs iteratively for cyclical operations/tasks. Model knowledge isn’t necessary since corrections 
are applied directly through repetition, but stability relies on repeatable dynamics, posing challenges for the plant system under 
variable conditions. Here, adaptive laws are crucial for ensuring convergence despite varying trial conditions, while advanced robust 
ILC techniques show potential by combining repetition with real-time compensation for uncertainties. For example, a high-order 
pseudopartial derivative-based model-free adaptive iterative learning controller was proposed by [31] to enhance tracking control 
for pneumatic artificial muscles (PAMs), demonstrating improved convergence and tracking performance through theoretical analysis 
and simulations/experiments. More enhancement works on ILC have been done in [28,32], whereby ILC algorithm was deployed with 
adaptive elements and cascading approaches to address nonlinearities and uncertainties in PSS, demonstrating its capability to track 
non-repetitive signals and overcome internal and payload uncertainties. 

Another model-free approach that has recently been deployed by various researchers are prescribed performance and funnel 
control. This type of control approach aims to regulate system behavior within desired bounds. The difference between these two 
approaches is that prescribed performance control (PPC) focuses on predefined performance objectives, while funnel control (FC 
whereby the ILC algorithm was deployed with adaptive elements and cascading approaches to address nonlinearities and uncertainties 
in PSS, demonstrating its capability to track non-repetitive signals and overcome internal and payload uncertainties. Another model- 
free approach that has recently been deployed by various researchers is prescribed performance and funnel control. This type of control 
approach aims to regulate system behavior within desired bounds. The difference between these two approaches is that prescribed 
performance control (PPC) focuses on predefined performance objectives, while funnel control (FC) [33] employs adaptive strategies 
to guide the system towards desired states. The foundation of PPC was introduced by Bechlioulis et al., where the design was 
emphasized to ensure system output convergence within strict bounds on overshoot and steady-state error [34]. The FC, on the other 
hand, was introduced by Ilchmann et al. to cope with all plants of class S, without parameter estimation or identification as well as 
tolerating noise measurement and huge parameters [35]. For example, Zhang et al. [36] proposed a novel proportional-integral 
approximation-free control by using PPFs for nonlinear robotic systems without employing any function approximation. To stabi
lize the vertical and pitch displacements of active suspensions with parametric uncertainties, an adaptive control with PPF constraints 
was proposed by Jing Na in [37]. For the funnel control implementation, Ueno et al. had proposed this controller design alongside an 
operator-based nonlinear control system with a boundary function design scheme for pneumatic soft-actuator. This method is to 
improve their previous works with λ-tracking control that faced excessively large gains over time issues [38]. Moreover, funnel 
controller deployment has been enhanced a few recent control engineering works such as reported in [39-41] with adaptive elements. 
For example, Poursadegh et al. had proposed the adaptive finite-time funnel control approach for non-affine strict-feedback nonlinear 
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systems, handling unknown non-smooth input nonlinearities with FLC and ensuring steady-state and transient performance via 
improved funnel error surfaces, adaptive laws, and a continuous robust term for enhanced control robustness. Nonetheless, Verginis 
had utilized zeroing control barrier functions for trajectory tracking within a predefined funnel in control-affine nonlinear systems 
with unknown drift terms and parametric uncertainties, ensuring bounded control effort and compensating for system uncertainties. 

Hybrid control methods blend all mentioned approaches in the control system to maximize the strengths and minimize the limi
tations of each controller. The fundamental of this approach is based on the cascading and integration technique that involved not only 
adaptive compensators or coordination between the same controllers but also integration with artificial intelligent algorithms through 
intelligent control techniques such as fuzzy logic [42,43] and neural networks (NN) [44,45] or computational intelligence to optimize 
the tuning parameters such as metaheuristic methods [46-50]. In the case of actuator/motor control such as PSS control, as far as we 
know, the implementation of FLC is more favorable compared to NN when considering the computational factor in real-time operating 
systems. NN deployment majorly focuses on high computational applications such as image processing [44,51] and vision-based 
control systems [52,53] in which recently emphasized deep learning approaches. For example, Dhami had implemented a hybrid 
control approach combining FLC and SMC for effective position control strategy for a pneumatic actuation system by leveraging both 
techniques to cater to both low and high payload situations [54]. Similarly, in [55] self-tuning was designed using FLC for controller 
switching to increase the transient response of pneumatic rod-piston positioning and reduce the hysteresis effect. Slightly different 
from [56] whereby the state observer for PSS was constructed by the FLC considering input voltage saturation and full-state con
straints, ensuring control performance and guaranteeing bounded signals and adherence to constraints. Dai et al. on the other hand 
proposed a hybrid MPC and ILC method to enable real-time dynamic modeling and precise trajectory tracking for pneumatic soft 
robots. Here, the proposed method performed both model parameter learning and trajectory tracking control for the targeted PSS [57]. 

Complex and nonlinear dynamics inherent in practical engineering systems such as pneumatic actuators and controls pose obstacles 
for effective management, especially in providing fine-tuning for optimal performance. Addressing these challenges involves 
leveraging optimization strategies coupled with computational intelligence disciplines, showcasing growing utility in improving 
control system performance. Notably, techniques based on function approximation play a crucial role in managing unmodeled non
linearities and uncertainties. Simultaneously, metaheuristic machine learning approaches serve as essential tools for navigating 
intricate design spaces efficiently, leading to the acquisition of high-quality solutions. These methodologies exhibit valuable gener
alization capabilities and play a central role in optimizing parameters for effective control tasks. Various metaheuristic categories exist 
spanning decades of research: Evolutionary Algorithms (EA), Physics-Based Algorithms (PBA), Human-Based Algorithms (HBA) and 
Swarm Intelligence (SI). EAs are drawn from biological evolution principles to produce next-generation solutions via inheritance from 
parents. A prominent EA class member, Genetic Algorithms (GA) [58], has successfully solved optimization problems across fields 
including forecasting [59], marketing/economics [60], communication systems, numerical and statistical analysis [61] as well as 
engineering solutions [62]. For instance, in the robotics field, GAs were used for optimizing self-learning dynamic walking parameters 
for a quadrupedal robot to improve its walking stability by emphasizing its active back part as reported in [63]. GAs have also been 
deployed in time series analysis and second-order boundary value problems in numerical domains such as reported in [61,64,65]. 

Other EAs include Differential Evolution (DE) [66] and Evolutionary Programming [67]. SI methodologies mimic social group 
behavior; Particle Swarm Optimization (PSO) [68] emulates bird flocking patterns, while Ant Colony Optimization (ACO) [69] was 
inspired by ant colony behavior. PSO is a popular SI method used in various fields, especially control engineering [70,71] and image 
processing [72], due to its rapid convergence and ease of implementation. More SI methods draw inspiration from natural behavior 
such as Artificial Bee Colony (ABC) algorithm [73] from bees, Grey Wolf Optimizer (GWO) [74] from wolf-packs, Moth Flame 
Optimizer (MFO) from moths, Crow Search Algorithm (CSA) [75] from crows, and Barnacles Mating Optimizer (BMO) [76] from 
barnacle’s mating process. Additionally, Gravitational Search Algorithm (GSA) [77], motivated by Newton’s gravity law, exemplifies 
PBA. Alternatively, the Human-Based Harmony Search Algorithm (HSA) [78] arose from musical improvisation principles. Both GSA 
and HSA have proven effective optimization across myriad application domains. 

For optimizing hybrid or cascaded controller structures with multiple tunable parameters, selection or design of an efficient and 
practical optimizer is essential. The optimizer plays a key role in revealing the actual potential and robustness of the control system 
design and demonstrates practicality in terms of computational cost. For instance, Parnichkun and Tuvayanond selected PSO to 
optimize their proposed 2-DOF H∞ loop shaping controller for a 3-DOF pneumatic surgical robot, covering closed-loop dynamics, 
robustness, and minimal control input compared to conventional methods, proving effectiveness for Minimally Invasive Surgery (MIS) 
[79]. Alternatively, Leader-based Harris Hawks Optimization (LHHO) was deployed in [80] for cascaded PID and Fractional Order PID 
(FOPID) controller design to effectively regulate DC motor speed. For HVAC systems, Jin and Wang proposed online optimization using 
GA on multiple tuning parameters in variable air volume (VAV) systems to achieve self-tuning behavior [81]. In [82], GAs again 
optimized a proposed hybrid PID-LQR controller with prescribed stability for Rubber Tyred Gantry Cranes. A new bi-level cross en
tropy algorithm was proposed in [83] to optimize aircraft arrival sequences, aiming to minimize combined fuel consumption while 
each aircraft follows an optimal trajectory. It combines cross-entropy for combinatorial sequencing and direct collocation for optimal 
control, validated through a test case and demonstrating superior performance compared to a bi-level GA. As for summary, in many 
successful approaches discussed earlier there are still a gap in guidance and selecting the most efficient and practical optimization 
algorithm for tuning parameters in hybrid and cascaded control systems. Different applications and controller structures may benefit 
from different optimizers. Practical considerations like computational cost must be balanced with optimization performance. There is 
no one-size-fits-all best approach. 

To address the challenging issues of nonlinearity and uncertainty inherent in PSS tracking error, this paper presents an Adaptive 
Domain Prescribed Performance Control (AD-PPC) strategy paired with a Proportional-Integral-Derivative (PID) controller, optimized 
using a novel Evolutionary Mating Algorithm (EMA) [84]. The control approach is verified on a proportional valve-controlled 
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double-acting pneumatic cylinder (PPVDC) model plant, which represents PSS nonlinear dynamics. The main contributions are 
summarized as follows:  

1. An adaptive PPC method enables finite-time transient control and convergence rate specifications, along with sufficient error 
transformation boundary domains. This overcomes limitations of conventional PPC (CPPC) [34], which constrain control engi
neering implementations. The design focuses not only on increasing the speed of transient response but also on the overall stability 
of the PSS.  

2. EMA-based iterative tuning of the cascaded AD-PPC-PID controller was conducted through simulations using a PPVDC system 
model. This demonstrates a data-driven optimization approach for the control parameters to accommodate time-variant (simu
lation-time) data from the plant model with injected random noise. 

The rest of the paper is organized as follows: Section II details the PPVDC system dynamics, AD-PPC formulation and integration 
with PID control. Section III presents EMA implementation for optimizing AD-PPC-PID controller parameters to regulate PPVDC rod- 
piston positioning. Section IV analyzes and verifies EMA-tuned AD-PPC-PID controller performance under step and multi-step refer
ence trajectories, comparing it against results from other optimizers using the same controller structure. Finally, Section V summarizes 
pneumatic positioning system performance enhancements enabled by the control approach. 

2. Controller design 

As mentioned earlier, this study focused on the PPVDC dynamic model that represented the physical PPVDC attached to the Tri- 
pneumatic Grasper (TPG) [85] robot as shown in Fig. 1. The general overview of the model plant can be explained by the following 
motion equation governing the piston and kinematics response [55,86]; 

Fig. 1. Overview of PPVDC system structure; (a) schematic diagram, (b) attached application (TPG robot), and (c) mathematical model [86].  
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ẍrp =
A1P1 − A2P2 −

(
Ff − FL

)

Mp + ML
(1) 

Here, external payload mass and the rod-piston mass are represented by ML and Mrp, respectively. The annulus regions of each of 
the pneumatic cylinder rod-piston chambers are denoted by Ai(i=1,2). Meanwhile, P1 and P2 represent the absolute pressures in Chamber 
1 and Chamber 2 of the pneumatic cylinder, respectively. ẍrp denotes the acceleration state of the pneumatic cylinder rod-piston 
assembly. Additionally, Ff and FL refer to the inner frictional force inside the pneumatic cylinder chamber and the external force 
exerted by the payload, respectively, as illustrated in Fig. 1(a). Conversely, the input of the plant is expressed with the deadzone 
characteristics,udz(t),as follows [55]; 

udz(t) =

⎧
⎨

⎩

md[u(t) − zmd] , if u(t) ≥ zmd
0 , if zmeu(t) < zmd
me[u(t) − zme] , if u(t) ≤ zme

(2)  

where zmd and zme are the right and left slopes of udz(t). Both md and me are the right and left limitations of the deadzone, respectively. 
The overall PPVDC dynamic model, based on the LuGre friction model [2], is shown in Fig. 1(c) and detail on this model can be found 
in the previous studies reported in [55,86]. The tracking error for positioning is referred to the different between the input trajectory 
(xrp) and the feedback response of the rod-piston position (x0) as follows; 

e = xrp − xo (3)  

2.1. Adaptive domain prescribed performance function 

In this study the conjunction or cascaded method has been approached to improve the performance of PPVDC’s rod-piston posi
tioning. The previous variable-rate convergence and finite-time prescribed performance function (VRC-PPF) [87] is improved and the 

revision has been made on the domain boundary function, 
[
σ,σ

]
. According to the smooth function of VRC prescribed performance 

function (PPF) as follows: 

ρ(t) = (ρ0 − ρ∞)e− ht + ρ∞ (4)  

where 

h =
2α2

t2
c

(5)  

and 

α = v1t(tanh[v2(t − tc)] +1) (6)  

tc is the predetermined convergence of finite-time [88], and both v1 and v2 are positive finite scaling factor for finite time and 
converge-rate respectively, with default value of 1 in the variable-rate convergence function (α). On the other hand,ρ0represents the 
initial value of the tracking error at the transient, while the maximum permissible range of the error boundary (ρ∞) is reached at ρ0 
> ρ∞ > 0. As per the original formula of PPC [34], the concrete convergence time cannot be prescribed by the user when lim

t→∞
ρ(t) =

ρ(∞) > 0with ρ(t) is positively decreasing and t ≡ ∞ as reaches the stability boundary(ρ(∞)). Therefore, the new 
[
σ, σ

]
can be 

formulated as a new adaptive domain (σc) by proportional with the dynamically changed with of h makes σc ∕= σc as follows; 

σc = (σ − 1)h + 1
σc =

(
σ − 1

)
h + 1 (7)  

with the condition. 

lim
t→∞

σc > 1, σ ≥ 1
lim
t→∞

σc > 1, σ ≥ 1 (8)  

where the steady-state-error performance (e(t)) can be achieved with the defined performance function as follows; 

− σcρ(t) < e(t) < σcρ(t),∀t > 0 (9)  

2.2. Error transformation 

In prescribing process of the PPC, an error transformation was introduced for converting the constrained objective function, 
represented by e(t) into an unconstrained formulation that highlights the relationship betweenρ(t)from (4) and e(t) as follows; 
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e(t) = ρ(t)S(E) (10)  

where, 

S(E(t)) =
σceε(t) − σce− ε(t)

eε(t) + e− ε(t) (11)  

and E(t) is a new transformed error and developed to the increase function S(E). The |e(t)| < ρ(t),∀t ≥ 0is obtain since the function of 
S(E) is strictly monotonic increasing. On the other hand, defining ρ(t)can be done to control the behavior for both transient response as 
well as the steady error input of the closed-loop controller. The inverse transformation function for the bounded E(t)can be described as 
follows: 

E(t) = S− 1
(

e(t)
ρ(t)

)

=
1
2

ln
(

Ξ(t) + 1
1 − Ξ(t)

)

(12)  

where S− 1( • ) is the inverse function of S(ε) and normalized error Ξ(t) = e(t) /ρ(t) at |E(0)| < 1. Moreover, Ξ(t) satisfies − 1 
< Ξ(t) < 1whenever E(t) ∕= ∞and the predefined bound of PPF [88] is guaranteed whenever E(t) is constantly bounded. The control 
objective is analogous to creating the positioning control in such a way that E(t) is constrained. Thus, the PID controller’s control input 
for PPVDC’s rod-piston positioning with AD-PPC can be stated as follows: 

u(t) = KpE(t) + Ki

∫

E(t)dt + Kd
d
dt

E(t) (13)  

where Kp, Ki and Kdare the positive finite design parameters for PID controller. 

3. Controller optimization using evolutionary mating algorithm 

As stated previously, to concurrently optimize the parameters of both the decay function in PPF {ρo, tc,ρ∞,v2} and the PID pa
rameters {Kp,Ki,Kd}, an EMA [84] is utilized as depicted in Fig. 3. The v1 parameter is preset to 1 for this system design since prior work 
[88] identified this as the optimal value. The state feedback control law for the AD-PPC-PID can be represented as a single entity. 
Overall, the state feedback control law for the AD-PPC-PID controller can be expressed compactly in the form of 
Γ :=

[
Kp Ki Kd ρo tc ρ∞ v2

]T
∈ R 7. 

Problem 1: The optimal solution Γ∗ ∈ R 7such that 

Γ∗ := argmin
Γ

J(Γ). (14)  

where the cost function (J) quantifies the total simulation runtime(t), per iteration (k) to be minimized by the optimization, which is 
expressed; 

J(Γ, k) := |E(t)|. (15)  

where the maximum number of iterations is denoted by Tmax ∈ R , while the current iteration number is given by T. Similar to various 
other metaheuristic algorithms, the EMA commences with an initialization phase, proceeds to a selection phase, and culminates in the 
generation of new offspring. 

3.1. Initialization 

In this stage, the solution (X) is initiated in two groups; males (Xm) and females (Xf.). The composition of these groups can be 
defined as follows: 

Xm =

⎡

⎢
⎢
⎣

x1
1 ⋯ xd

1

⋮ ⋱ ⋮
x1

n/2 ⋯ xd
n/2

⎤

⎥
⎥
⎦ (16)  

Xm =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

x1
n
2 + 1 ⋯ xd

n
2 + 1

⋮ ⋱ ⋮

x1
n
2 + 1 ⋯ xd

n
2 + 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(17)  

where d and n are denoted by problem dimension and population size, respectively. Following the initialization phase, the objective or 
fitness function is computed for each individual within the population. Subsequently, the best solution up to the current point is 
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determined, considering both Xm and Xf, and is then recorded for further reference. This process ensures ongoing evaluation and 
tracking of the most promising solutions throughout the algorithmic progression. 

3.2. Process of selection for mating 

The mating process in EMA is facilitated by the possibility of sexual selection, referred to as Imates, which is outlined in a more 
straightforward manner [20], as follows: 

Imates = 1 +
[
var

(
XT

m, ∗
)
− var

(
XT

f , ∗
)]

(18)  

where var(Xm,*T) and var(Xf,*
T ) are the variance of the selected male and female to be mated, respectively at iteration T. 

3.3. Off springs reproduction process 

The productions of new off springs, Xchild
T , are calculated using the following expression: 

XT
child =

⎧
⎨

⎩

p. ∗ XT
m,∗ + q. ∗ xT

f ,∗ Imates ≥ 0
p. ∗ XT

f ,∗ + q. ∗ xT
m,∗ Imates < 0

(19)  

where p is the normal random distribution, which is expressed as follow: 

p = randn(1, d) (20)  

where q = 1- p. Suppose that at the last iteration, the optimum location of the agent, p∗ ∈ R 1×d, is found, such that it yields the 
minimum value of the fitness function. In that case, all agents are expected to converge to this location, implying that: 

p∗ := argmin
pn

ffit ,∀n. (21)  

where ffit = J. EMA incorporates the influence of environmental factors, specifically the predator-prey scenario, considered as an 
exploratory process. This results in a significant alteration of the optimal solution’s characteristics, contingent upon whether the 

Fig. 2. Overall deployment of EMA algorithm for AD-PPC-PID controller parameters tuning for PPVDC rod-piston positioning.  
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offspring is presumed to be deceased or alive. More comprehensive details on EMA can be found in [20], and Fig. 2 visually presents the 
overall deployment of EMA in AD-PPC-PID tuning in detail. 

Additionally, Fig. 3 provides a functional block diagram of the overall control system design for PPVDC rod-piston position control, 
highlighting the utilization of the AD-PPC-PID controller with EMA serving as the optimizer. 

4. Results and discussions 

Simulation studies were conducted to verify the proposed AD-PPC-PID with EMA optimization control strategy by comparing it 
with the same controller that optimized using existed metaheuristic methods which are genetic algorithm (GA) [89], Teaching 
Learning Based Optimization (TLBO) [90] and Barnacles Mating Optimizer (BMO) [76] on the identical PPVDC plant. This verification 
works underwent one basic input trajectory which is step input and one crucial input trajectory multi-step inputs for rod-piston 
positioning of PPVDC. This work is done and setup using the MATLAB®/SIMULINK environment and using the data driven 
concept by testing the proposed controller with the targeted plant and direct collecting the data for each iteration. An external 
disturbance in the form of random noises was added to the system at around 1–2 kHz according to the current existed hardware system 
[91]. Overall simulation was set to 10 s for each iteration. The simulation was started with a step input trajectory as fundamental test to 
the proposed AD-PPC-PID on PPVDC rod-piston positioning. The analysis was carried out to observe and confirm the precision of 
PPVDC rod-piston positioning, as well as the stability of the internal pneumatic cylinder, with the convergence of EMA and other 
optimizers with the AD-PPC-PID controller. 

4.1. Step input trajectory test 

The simulation involved setting the step input of the PPVDC’s rod-piston to a length of 0–0.1 m. Tables 1 displayed the optimal 
results obtained by using EMA and other optimizers to PPVDC’s rod-piston positioning according to the step input given. All optimizers 
showed success in obtaining the parameters within the specified range, which is represented by the optimizer boundaries of Min. 
(lower bound) and Max. (upper bound). The specified range is determined according to the experiences and hardware constraint from 
the previous studies [43,88,92,93]. 

The robustness of each optimizer-controller combination was evaluated based on three measures: rise time, settling time, and 
overshoot including the different pressures and the constraint boundary or smooth function performances of the PPF. From this point 
onward in the discussion, the AD-PPC-PID controller tuned with EMA, represented by ’EMA’ in the plot, and the AD-PPC-PID controller 
with other optimizers are denoted as optimizer shortforms ‘GA’, ‘TLBO’, and ‘BMO’ in the plot, respectively. As shown in Fig. 4, the 
EMA yielded superior controller tuning performance relative to the benchmark optimization methods for the AD-PPC-PID controller. 
EMA produced transient responses with reduced rise times between 0.3 to 0.6 s based on the position displacement profile of the 
piston-rod apparatus. The majority of optimizer tuning schemes elicited minimal oscillatory behaviors without considerable over
shoot. However, the tuning mechanism mediated by EMA reduced settling times by an average of 0.5 s compared to AD-PPC-PID 
controller tuned by other optimizers. This enhancement may be attributed to the smooth objective function landscape navigated by 
EMA in Fig. 5. Specifically, EMA defined an optimal control parameter boundary in approximately half the function evaluations as AD- 
PPC-PID controller tuned by the GA and reached the terminal control configuration ahead of the remaining optimizers in terms of finite 
convergence time. 

Regarding computational factors, as depicted in Fig. 6, EMA surpassed all other optimizers in minimizing error, indicated by the 
cost function (J). As shown in Fig. 6(a), EMA reduced Jfrom 0.015 % at the first function evaluation k = 1 down to J = 0.0012% by the 
k = 10, while the GA only decreased J from 0.016 % to 0.014 % across the same iterations. On average, EMA achieved a cost function 
value 10 % lower than GA, 20 % lower than TLBO, and 43 % lower than BMO at convergence. Additionally, EMA exhibited the lowest 

Fig. 3. Overall control structure of EMA with AD-PPC-PID controller for PPVDC rod-piston positioning.  

A. Irawan et al.                                                                                                                                                                                                        



Results in Control and Optimization 15 (2024) 100434

10

computational cost among other heuristic methods, as shown in Fig. 6(b), in tuning AD-PPC-PID controller for PPVDC’s rod-piston 
positioning. BMO consumed a significantly higher amount of elapsed time, approximately 90 % more than EMA. 

In terms of time response and robustness performance, as shown in Table 2, tuning the AD-PPC-PID using EMA (represented by 

Table 1 
FT-PPC-PID controller parameters for step input trajectory test.  

Controller 
Optimizer 

PID AD-PPC 

P I D ρ0 tc ρ∞ v2 

Min. (lower bound) 20 2 5 5 0.5 1 1 
Max. (upper bound) 60 8 7 15 1.2 5 5 
EMA 23.9949 3.5080 0.8167 5.7225 0.1800 1.7996 1.7916 
GA 51.8180 1.9838 4.9664 12.5201 0.6267 3.8895 1.7183 
TLBO 39.7595 7.1637 6.0121 10.2077 0.6559 1.0017 1.8968 
BMO 38.6831 6.5516 5.4405 12.3937 0.5187 1.0204 1.8165  

Fig. 4. Sample of rod-piston displacement performances between AD-PPC-PID with optimizers for step input trajectory.  

Fig. 5. Sample of decay smooth function performances between AD-PPC-PID with EMA and AD-PPC-PID with other optimizers for step 
input trajectory. 
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EMA in the plot) resulted in the fastest responses compared to AD-PPC-PID controller tuned by the other optimization algorithms. This 
is evident in the rising, settling and transient time results, where EMA outperformed GA by 0.3 s and both TLBO and BMO by 0.6 s. The 
overshoot performance seems to be affected by noise, as the percentage is very low on average for all approaches. However, AD-PPC- 
PID controller tuned with EMA exhibits the lowest overshoot among the various tuning methods. 

The results were further substantiated by evaluating performance indices using integral absolute error (IAE), integral square error 
(ISE), and integral time absolute error (ITAE) for a step input trajectory, as shown in Fig. 7. The findings indicate that the AD-PPC-PID 
controller optimized with EMA exhibits the lowest values, achieving up to 70 % improvement in IAE, ISE, and ITAE compared to the 
AD-PPC-PID controller optimized with GA, TLBO, and BMO. Specifically, the controller with GA optimization closely follows the 
performance of the EMA-optimized controller in terms of ISE, with metric values slightly higher by about 30 %. However, TLBO and 
BMO exhibit significantly higher values for both ITAE and ISE, as depicted in Fig. 7. Interestingly, these optimizers perform similarly 
lower in IAE compared to GA, achieving approximately 50 % improvement. Overall, these findings suggest that the proposed AD-PPC- 
PID controller optimized with EMA consistently provides high tracking performance for nonlinear systems, such as PPVDC. 

4.2. Multi-step input trajectory test 

The verification work was advanced through a multi-step input trajectory test. The test aimed to observe the optimized tuning 
values for the AD-PPC-PID controller listed in Table 1, catering to multi-step input trajectories to mimic actual situations in PSS ap
plications that currently attached on TPG robot. The evaluation focuses on tracking errors as well as the internal stability of the PPVDC 
in rod-piston positioning. As depicted in Fig. 8, AD-PPC-PID controller tuned with EMA, on average, has sustained its performance in 
providing the fastest and most stable responses compared to AD-PPC-PID controller with other optimizers. This can be clearly seen in 
the tracking error performances in Fig. 8(b), which are about 10 % lower than AD-PPC-PID controller tuned with GA and 60 % to 80 % 
lower than AD-PPC-PID controller tuned with TLBO and BMO. 

The verification and analysis are furthered on the dynamic stability performance of the PPVDC as shown in Figs. 9 and 10. The 
oscillation in the inner pressures for pneumatic cylinders seems difficult to suppress by using AD-PPC-PID controller tuned with GA and 
BMO compared to tuning with the EMA and TLBO optimizers. As shown in Fig. 9, PPVDC rod-piston positioning with AD-PPC-PID and 
EMA control strategies shows oscillating about 0.5–0.6 MPa higher than AD-PPC-PID controller with TLBO at every changed of the step 
input. However, for the case of using AD-PPC-PID controller with EMA optimizer, the results show that attenuation of the oscillation 
envelope signal was suppressed over the time in each step input as early as 0.2 s on average compared to AD-PPC-PID controller 
performances with other optimizers. As depicted in Fig. 9, AD-PPC-PID with GA and BMO also provides oscillation suppression on 
every step input trajectory but only by minimizing the amplitude and 0.3–0.4 s later than AD-PPC-PID controller tuned with EMA. 

The hysteresis effects also differ across control strategies as observable in the friction-velocity characteristics as shown in Fig. 10. 

Fig. 6. Sample of computational cost between optimizers used in tuning AD-PPC-PID controller, (a) convergence (b) Elapsed time of simulation.  

Table 2 
Performance and robustness of the controllers for step input trajectory test.  

Performance AD-PPC-PID Controller with 

EMA GA TLBO BMO 

Rise Time 0.2937s 0.4958s 0.4498s 0.4382s 
Settling Time 0.4783s 0.7771s 1.0222s 1.0111s 
Transient Time 0.4782s 0.7652s 1.0221s 1.0111s 
Overshoot 2.3 % 2.6 % 3.7 % 3.7 %  
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The EMA-tuned AD-PPC-PID exhibits minimal narrow hysteresis banding around the zero relative velocity point per the pre-sliding 
motion curve [94] compared to the other optimizers. Unmitigated oscillations can be transformed into a high mechanical vibration 
that leads to a high energy valve switching which reduces the life of the pneumatic valve as well as the pneumatic actuator. 

5. Conclusion 

The proposed AD-PPC-PID control strategy, optimized with EMA, is introduced. This approach is verified using a PPVDC dynamic 
model plant, employing both step and multi-step input trajectories. The newly devised AD-PPC-PID controller facilitates adaptive 
domain resizing and adjusting the convergence rate parameters. This offers enhanced finite-time control capabilities of PPC compared 
to conventional fixed-domain method. Implementation showcases improved transient response and stability in rod-piston positioning 
across the range of multi-step inputs. The EMA-tuned AD-PPC-PID also diminishes oscillation amplitudes, leading to enhanced steady- 
state positioning. Notably, minimal pressure oscillations and reduced hysteresis effects indicate that the AD-PPC-PID controller, tuned 
with EMA optimizers, effectively addresses pressure stability issues inherent in PSS such PPVDC unit, including friction problems. 
These findings affirm the robustness of the AD-PPC-PID tuned with EMA optimizer for PSS applications such as PPVDC units, in terms 
of precision and stability control. Ongoing efforts aim to implement the optimized AD-PPC-PID control on the actual TPG robot system, 
accounting for real hardware constraints. This may entail further modifications to the controller and fine-tuning to optimize 
performance. 
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Fig. 7. Performance index.  

Fig. 8. Sample of rod-piston displacement performances between AD-PPC-PID with EMA and AD-PPC-PID with other optimizers; (a) Input reference 
versus feedback measured samples (b) Error tracking samples. 
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Fig. 10. Sample of friction force versus velocity curve performances for multi-steps input trajectory.  
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