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ABSTRACT 

 

This paper presents corrosion behaviour of heat treated and welded low carbon steel at 

different welding voltage and filler materials. Welding process was conducted on butt 

joint specimens using Metal Inert Gas (MIG) technique at welding voltage range of 19 

to 21 V with 1 V interval and filler materials used were ER 308L and ER 70S-6 with 1.2 

mm diameter. Heat treatment of full annealing was done to the welded low carbon steel 

and corrosion behaviour was tested using synthetic seawater environment with 3.5 wt% 

NaCl. Microstructure changes were observed using Scanning Electron Microscope 

(SEM). Results showed that, corrosion rate decreased when welding voltage increased 

as it directly affected welding heat input. The welding heat input was found to have a 

significant effect to corrosion rate as it changed the ferrite content on the microstructure 

of the specimens. The decreased in corrosion rate was also found when full annealing 

process was done to the specimens and the used of ER 70S-6 filler material. From 

metallographic study, iron oxides and pitting was found on the surface of the exposed 

area after the corrosion test. 

 

Keywords: Filler material; corrosion behavior; low carbon steel; welding voltage; full 

annealing. 

  

INTRODUCTION 

 

The modernization of this era expands the demands and applications of carbon steel 

especially in construction industry and the naval structure builder. A lot of mega steel 

structure platforms have been designed and constructed to fulfil the exploitation of 

civilization. Most of these structures are fabricated by technique of welding. However, 

these weldments usually are more vulnerable to steel corrosion crack than the 

corresponding base plates, the welded zones represent potential weak links which may 

limit or impair performance (Saleh et al., 2005). Moreover, the corrosion in seawater is 

reflected by the fact that most of the common structural metals and alloys are attacked 

by this liquid or its surrounding environments (Gooch, 1974). Thus, improvements in 

weldment properties are critical to increase the reliability of high-performance 

structures utilizing welded carbon materials. Several diagrams have been developed to 

predict the microstructure in the welding of similar and dissimilar metals (Schaeffler, 

1949; Delong, 1974). They also relate various alloy elements in the weld metal that 

have a remarkable influence on the microstructure (Kotecki and Siewert, 1992; Cleiton 

et al., 2008). A fundamental study to the properties and microstructure of the welded 

zone of carbon steel was carried out by means of Metal Inert Gas (MIG) welding with 
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different type of filler materials and parameters. With the electrochemical measurement, 

the corrosion resistance for each welded area was determined. 

 

MATERIALS AND METHODS 

 

The result collected from the testing process is compared and analysed to investigate the 

corrosion behaviour of low carbon steel. The chemical composition for the as-received 

carbon steel is shown in Table 1. Half of the low carbon steel specimens received were 

heat treated to temperature of 950 ˚C for 2 hours and cooled in the switched off furnace 

as full annealing process. There are two welding filler materials used for welding 

process which are ER 308L and ER 70S-6 to butt join the  low carbon steel with MIG 

welding to study the corrosion behaviour of the welded metal. Three different welding 

voltages were used during the MIG welding. Microstructures of the specimens were 

observed after welding process. Electrochemical test was carried out with solution of 

3.5 wt% NaCl at room temperature and standard atmosphere condition. Scanning 

electron microscopy images of specimens were observed. 

 

Table 1. Chemical composition for the as received carbon steel. 
 

 

Table 2. Chemical composition of the welding fillers used. 

Type of 

filler 

Chemical Composition, weight % 

C Mn P Si Cu Cr 

ER 70S 0.06-0.15 1.40-1.85 0.25 0.80-1.15 0.50 0.15 

ER 308L 0.03 1.00-2.50 0.03 0.30-0.65 0.75 19.5-22.0 

 

 
 

Figure 1. Workpiece dimension in mm. 

Material Chemical Composition, weight % 

C Mn P S Si 

Specimen 0.10 0.223 <0.01 <0.01 <0.01 

AISI 1010 0.08-0.13 0.30-0.60 0.04 (max) 0.05 (max) 0.10 (max) 
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RESULTS AND DISCUSSIONS 

 

Microstructure Comparison After Heat Treatment Process 

 

From the observation of optical microstructures in Figure 2 for the base metal of (a) 

non-heat treated and (b) heat treated low carbon steel, there are ferrite (B), pearlite(A) 

and the grain boundary cementite film (GB) found in the microstructure. By 

comparison, the amount of pearlite, ferrite and the grain boundary cementite film (GB) 

were different between non-heat treated and heat treated carbon steel. 

The grain size for the heat treated carbon steel is much more differ where it 

found to be larger than the non-heat treated carbon steel. The specimens were heated to 

950˚C for two hour. Here all the ferrite was transform into austenite form. At this 

heating process, the specimens were homogenized. The carbon steel was then cooled in 

the realm for gaining the slow cooling rate. This results in a coarse pearlite structure. 

Full annealed steel is soft and ductile with no internal stress.  
 

       
        (a)             (b) 

Figure 2. Microstructures for the base metal: (a) non-heat treated, and (b) heat treated. 

 

Microstructure of Welded Low Carbon Steel 

The microstructure of weldment for specimens with welding voltage of 19V and 21V 

with welding filler ER 70S were compared to study the different in microstructure 

content. The microstructure on Figure 3 was labelled with PF (polygonal ferrite), FS 

(aligned side plate ferrite or known as the Widmanstatten ferrite) and AF (acicular 

ferrite).  

The microstructure of weldment for specimen of welding voltage 19V and 21V 

with ER 70S mild steel filler at non-heat treated condition had different amount of 

acicular ferrite, polygonal ferrite and the aligned side plate ferrite by observing the 

images in Figure 4. By comparing both figures, the amount of acicular ferrite in welding 

voltage of 19V was lower if compared to the weldment which was welded at welding 

voltage of 21V. The polygonal ferrite, which looked similarly as ferrite inhibit much of 

the weldment zone in the specimen with welding voltage of 19V. For specimen with 

welding voltage of 21V, the aligned side plate ferrite/Widmanstatten ferrite and the 

acicular ferrite inhibit at much of the weldment of the microstructure.  
The acicular ferrite found in the microstructure of weldment is actually a 

microstructure of ferrite which is characterized with the needle shaped crystallites. 

These grains are actually in thin lenticular shape. This acicular ferrite is benefits to the 

microstructure as it can increase the toughness of the specimen due to its chaotic 

A 

GB 

B 

A 

B 

GB 



 

4 

 

ordering. Acicular ferrite is the microstructure that is advantageous over other 

microstructures (Udomptol, 2007).  

Aligned side plate ferrite or Widmanstatten ferrite in the microstructure of 

weldment increases as the austenite grain size and the cooling rate of the weldment 

increased. By decreasing the austenite grain size and increasing the cooling rate, both 

yield strength and impact toughness will increase (Kumaresh, 2007). The overall 

refinement of Widmanstatten ferrite attributes the strength and toughness to the 

microstructure. Polygonal ferrite nucleates at the austenite grain boundaries and in 

intragranular regions. Polygonal ferrite is transformed at high temperatures and 

favoured in high heat input processes. Large amount of polygonal ferrite is not 

considered beneficial to toughness, especially in higher strength steels. It is of lower 

strength than other transformation products. 

 

    
          (a)           (b) 

Figure 3. Microstructure of weldment for non-heat treated specimen welded with ER 

70S filler (500x magnification): (a) 19V, and (b) 21V. 

 

Polarization Diagram Analysis 

The polarization diagrams for the 12 specimens were generated with the potentiostat of 

WonaTech WPG100 and shown in Figure 4 and 5. Tafel analysis was performed by 

extrapolating the linear portions of the logarithm of absolute current density and the 

corrosion potential plot. The Tafel analysis calculated the corrosion rate of each 

specimen after importing the value of sample area, density and the equivalent weight in 

the IVMAN software.  
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           (a)            (b) 

Figure 4. Polarization diagram for welded carbon steel with ER 70S filler: (a) non-

heated, and (b) heat treated. 

 

   
           (a)            (b) 

Figure 5. Polarization diagram for welded carbon steel with ER 308L filler: (a) non-

heated, and (b) heat treated. 

Effect of Welding Voltage on the Corrosion Rate 

Table 3. Corrosion rate of specimens at different welding parameters. 

Welding 

Voltage, V 

Corrosion Rate, mmpy 

Non-heat treated  Heat treated 

ER 70S 

(mild steel 

filler) 

ER 308L 

(stainless steel 

filler) 

ER 70S 

(mild steel 

filler) 

ER 308L 

(stainless steel 

filler) 

19 28.4 14.9 19.1 10.8 

20 20.5 8.3 11.7 6.1 

21 15.2 4.3 6.8 1.2 
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Figure 6. Graph of corrosion rate versus the welding voltage for welded low carbon 

steel 

 

From the trend of the graph for both heat treated and non-heat treated carbon steel in 

Figure 6, the corrosion rate of the specimen was decreased as the welding voltage 

increases. The non-heated carbon steel has higher corrosion when compared to the heat 

treated carbon steel. The heat treated carbon steels have the lower corrosion rate 

because the materials were heat treated at full annealing process. The heat treated 

carbon steel has higher corrosion resistance by comparing to the non-heat treated 

materials.  
The specimens welded with the ER 308L stainless steel filler has lower 

corrosion compare to the welding filler of ER 70S. The chemical composition of the ER 

70S and ER 308L filler were showed in the Table 2. ER 308L filler has lower carbon 

content and higher chromium content compared to the ER 70S filler. The high 

chromium contains in the ER 308L filler make it resist rust than other type of steel. The 

chromium combines with oxygen in the atmosphere to form a thin invisible layer – 

passive film. If the materials are cut or scratched and the passive film is disrupted, more 

oxide will quickly form and recover the exposed surface, protecting it from oxidative 

corrosion. 

As the welding voltage increases, the welding heat input will increase and 

increase the welding temperature. The welding temperature will affect the 

microstructure changes on the weldment. This microstructure changes were shown in 

Figure 4. The different of welding voltage will have the different microstructure on the 

weldment. By comparing images in Figure 4, the weldment with welding voltage of 

20V had more polygonal ferrite which was considered not beneficial to the toughness of 

the specimen. The weldment with welding voltage of 21V had large amount of acicular 

ferrite and aligned side plate ferrite which contribute to the strength and toughness on 

the welded low carbon steel. The weldment for specimen of welding voltage 21V has 

the better mechanical properties due to the ferrites content in the microstructure. In 

other words, the higher welding heat input will have the lower corrosion rate for the 

welded low carbon steel. 
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Scanning Electron Microscopy Result 

The SEM in Figure 7 showed the images of specimen without cleaning process. The 

corrosion exist due to the exposed of surface area after electrochemical testing. The 

shapes of coral alike were found in the SEM image. The corrosion products formed on 

the surface of the specimen were iron oxides or in general term named rust (Iversen and 

Leffler, 2010). These iron oxides consist of iron (III) oxides and iron (III) oxide-

hydroxide.  

The SEM of specimen after cleaning process was showed in Figure 8. After 

cleaning process, there were pits found on the surface of specimen (Garner, 1979; Noor, 

et al., 2008). Pitting is a form of extremely localized attack that results in holes in the 

metal. These holes may be small or large in diameter but in most cases they are 

relatively small. It is difficult to detect pits because of their small size and pits are often 

covered with corrosion products. 

 

 
 

Figure 7. Corrosion product formed after corrosion test (2000x magnification). 

 

 

 
 

Figure 8. Corrosion defect after corrosion test (1500x magnification). 
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CONCLUSION 

 

In conclusion, the corrosion behaviour of MIG welded heat treated carbon steel was 

investigated. The welding heat input has the significant to the corrosion rate of the 

carbon steel where high welding heat input will produce a welded carbon steel with low 

corrosion rate. This welding temperature will affect the microstructures changes on the 

weldment and vary the properties of the welded carbon steel. For the overall results 

comparison, welding heat input has the most significant to the corrosion rate of the 

welded carbon steel with take up to 42.68% affection. The types of welding fillers used 

conclude 34.97% to the corrosion rate while the carbon steels’ treatment inhibit total of 

22.35% to the corrosion rate of the welded carbon steel. 
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