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ABSTRACT

The average software company spends a huge amount of its revenue on R&D for how to deliver software
on time. Accurate software effort estimation is critical for successful project planning, resource allocation,
and on-time delivery within budget for sustainable software development. However, both overestimation
and underestimation pose significant challenges in software development, necessitating continuous im-
provement in estimation techniques. This study reviews recent machine learning approaches exploited to
enhance software effort estimation (SEE) accuracy, focusing on research published between 2020 and 2023.
The literature review employed an approach to identify pertinent research on machine learning techniques
for software estimation efforts. Additionally, comparative experiments were conducted employing five
commonly used ML methods: K-Nearest Neighbor, Support Vector Machine, Random Forest, Logistic
Regression, and LASSO Regression. These techniques were assessed using five widely employed accuracy
metrics such as Mean Squared Error (MSE), Mean Magnitude of Relative Error (MMRE), R-squared,
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) on seven benchmark
datasets (Albrecht, Desharnais, China, Kemerer, Mayazaki94, Maxwell, COCOMO). By carefully reviewing
study quality, analyzing results across the literature, and rigorously evaluating experimental outcomes, clear
conclusions were drawn about the most promising techniques for achieving state-of-the-art accuracy in
estimating software effort. This study makes three key contributions to the field: firstly, it furnishes a
thorough overview of recent machine learning research in software effort estimation (SEE); secondly, it
provides data-driven guidance for researchers and practitioners to select optimal methods for accurate effort
estimation; and thirdly, it demonstrates the performance of publicly available datasets through experimental
analysis. Enhanced estimation supports the development of better predictive models for software project
time, cost, and staffing needs. The findings aim to focus future research directions and tool development
toward the most accurate machine learning approaches for modeling software development effort, costs,
and delivery schedules.

INDEX TERMS Software Effort Estimation, Software Development Efforts Estimation, Linear Regression,
Support Vector Machine, Random Forest, LASSO, KNN, R&D investment

. INTRODUCTION planning and resource allocation [1]]. Notwithstanding, the
persistent challenge in achieving precise estimates is rooted
in inherent complexities. The accuracy of estimations sig-
nificantly influences planning, budgeting, scheduling, and
resource management [2]. However, the initial phases of the
development process offer limited information, thereby ham-
pering precision. Moreover, the intricacies surrounding this

Accurate software effort estimation is essential in software
development, as it involves predicting the level of effort
and time required to successfully develop a software system
within budget and on schedule. Since the 1960s, research
on improving software effort prediction has been ongoing,
motivated by the need for reliable results that enable effective
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process have sparked extensive debate within the software
engineering community. Enhancing estimation reliability and
precision thus remains a crucial research pursuit. Obtaining
accurate estimates is critical for project success, but the
complex nature of software development complicates this.
As such, the quest for proper and reputable SEE continues
to be an important open research problem [J3]. In light of the
continuous evolution of software development methodolo-
gies and technologies, enhancing effort estimation techniques
is crucial to address challenges posed by changing require-
ments, team dynamics, and other influencing factors [4f]. A
2017 survey by the Project Management Institute highlighted
the impact of inaccurate effort estimation on software project
success. The survey found that 69% of software projects
achieved their goals and objectives [5]. Moreover, the survey
also highlighted that a substantial portion faced challenges,
with 43% exceeding initial budgets, 48% experiencing de-
livery delays, and 15% failing due to poor effort estimates
[5]. These findings underscore the significance of precision in
effort prediction for effective project execution and manage-
ment. As methodologies and technologies rapidly advance,
estimation techniques must continuously evolve to account
for modern development practices and environments [6].

Within the literature on Software Effort Estimation (SEE),
techniques are categorized into three main groups: algo-
rithmic, non-algorithmic, and machine learning models [7|]
[[8]. These diverse approaches are crucial in enhancing the
accuracy and effectiveness of effort prediction, aiding project
managers in making informed decisions for improved out-
comes. Algorithmic techniques utilize statistical and math-
ematical formulations, encompassing widely used methods
like function point analysis [9], COCOMO II [10], source
lines of code [[11]], Putnam SLIM, and use case points [|12].
These models employ equations and formulas to quantita-
tively estimate effort. In contrast, non-algorithmic techniques
rely on subjective assessments of historical data and ex-
pert judgment [13]]. Planning poker [14], wideband Delphi
[[15]], work breakdown structures, and expert estimation fall
under this category. These qualitative approaches leverage
insights from previous projects and specialist knowledge.
With the evolution of artificial intelligence, machine learning
has emerged as the third category for software effort esti-
mation. Machine learning applies algorithms to learn from
data patterns and make predictive effort estimations without
explicit programming. As each technique has its strengths
and limitations, utilizing a combination of complementary
approaches can improve estimation reliability, precision, and
accuracy - crucial factors for successful project development
and delivery [16].

ML techniques like ANN, case-based reasoning, SVR,
DT, Bayesian networks, and genetic algorithms offer al-
ternative approaches to effort estimation [[17] [[18]]. These
models leverage computational learning algorithms to pre-
dict estimates based on input data patterns without explicit
programming. Each estimation technique category caters to
diverse software project needs with its own strengths. How-
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ever, selecting appropriate models is pivotal for accurate and
reliable estimation to enable robust planning and resource
management. Over decades, numerous software effort esti-
mation methods have been put forward by experts and re-
searchers. However, determining the most effective approach
remains a key challenge [19]. Recently, ensemble estimation
techniques have emerged as a potential solution by com-
bining multiple methods to mitigate individual limitations
and harness their collective strengths [20]. The extensive
research conducted has yielded various estimation models
aiming for greater accuracy. However, there remains a lack
of consensus within the research community on a single
definitive best approach. This highlights the need to critically
compare and evaluate methods to identify the most suitable
ones for different project contexts.

The mentioned machine learning algorithms often use
publicly available datasets [21] [[6] [22] to compare the
performance of each other algorithms. The list of datasets
that authors most frequently use is in Table 1. Besides, these
ML algorithms use a performance evaluation matrix, which
is described in Section 2. Exploiting machine learning in
software effort estimation (SEE) is a pivotal research topic,
with numerous researchers over the past decade employing
various techniques and contributing enhanced solutions to the
software community.

The global goal 9.4 (i.e., the sustainability of industry,
innovation, and infrastructure) [23]] talks about how all in-
dustries and infrastructures can be ameliorated to achieve
sustainability by 2030. The level of sustainability should
be reached by making better use of resources and using
green technologies and manufacturing methods. To target
this global goal, the software development industries are
investing in R&D (research and development) to continu-
ously improve their strategies to develop sustainable software
that requires less energy to run and reduces the environ-
mental impact of computing. Effort estimation is crucial in
the software development process, which helps the team to
develop and deliver the software on time. According to recent
research, 30% to 60% of software or IT projects fail [24].
Almost all projects don’t finish within the time or budget that
was planned because of the wrong estimation of resources.
Hence, it justifies the requirement to put more effort in the
investment for R&D of software effort estimation process.
The main point of this paper is software effort estimation that
makes better use of resources to meet the global goal 9.4.

In our study, we specifically focus on the last four years,
taking into account recent advancements, and acknowledge
the existence of pertinent review papers within this timeframe
(1], [2] [16]] [25]-[27]. Besides, some review papers on
software effort estimation using agile methodology [28]]-
[30]. Also, there are some comparative analyses available
in the field of SEE by using various ML on publicly avail-
able datasets [31]—[33]]. While numerous review papers and
comparative analyses exist, there is a notable gap in the
literature where no study concurrently offers both a compar-
ative analysis and a comprehensive review. This research en-
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deavors to contribute to the body of knowledge by critically
examining and evaluating various software effort estimation
approaches to offer insights that can improve precision and
reliability. Through comprehensive analysis, this study aims
to provide valuable perspectives to help refine estimation
practices, ultimately driving improved project outcomes and
customer satisfaction. The key contribution of the paper is the
following.

o This research aims to conduct a systematic analysis of
estimation methods to offer useful insights into their
relative effectiveness and applicability. The goal is to
provide recommended practices for selecting appropri-
ate techniques, and guiding project managers towards
improved effort prediction to support successful project
execution and delivery. This paper presents a literature
review of research published between 2020 and 2023
focusing on software effort estimation.

o This study offers a comparative examination of five
machine learning algorithms (KNN, LR, RF, SVM,
LASSO) using seven publicly available datasets which
are Albrecht, Desharnais, China, Kemerer, Mayazaki94,
Maxwell, and COCOMO.

o The performance of the machine learning algorithms
employed in this study is evaluated using five common
performance evaluation metrics, which are MAE, MSE,
RMSE, R-square, and MAPE. The performance eval-
uation based on diverse metrics offers a multifaceted
perspective on strengths, limitations, and suitability to
guide appropriate method selection aligned with project
characteristics.

The subsequent sections are organized as follows: Section
2 contains a review of the last 4 years’ research articles
between 2020 and 2024. Section 3 outlines the methodology
of the comparative study, which includes the machine learn-
ing algorithm and their parameters, and datasets. Section
4 entails the presentation and discussion of results in the
context of the comparative analysis paper. The conclusion
and future works are discussed in section 5.

Il. LITERATURE REVIEW

In recent times, there has been a notable increase in schol-
arly attention directed towards the field of software effort
estimation. A variety of estimation methodologies have been
proposed in the academic literature to determine the required
work for different projects. In the field of software effort es-
timation systems, researchers have shown a major preference
for machine learning techniques, while algorithmic models
have been largely applied in other domains.

A. LITERATURE SEARCH METHOD

The primary studies were sourced from six reputable digital
libraries, namely IEEE Xplore, ACM Digital Library, Sci-
ence Direct, PubMed, and Google Scholar. These libraries are
widely favored and commonly used within the effort estima-
tion community. A specific search query string was employed
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for each database to identify relevant studies aligned with the
research questions.

B. RESEARCH QUESTIONS
Aligned with the research objectives, our focus centers on
addressing the following research questions:
« Which datasets are most commonly used in the literature
of SEE?
e In terms of SEE methods, which ones are most often
employed?
« In SEE research, which accuracy metrics are most often
employed?
o Between 2020 and 2023, how many scholarly articles
were published on SEE?

C. SEARCH STRING

The search string: ["software effort estimation" OR "software
cost estimation” OR "software development effort estima-
tion"] was selected for the core subject that is dealt with in
this paper.

D. CRITERIA FOR INCLUSION AND EXCLUSION
Inclusion Criteria

o Conducted a study that utilized machine learning (ML)
techniques to estimate software effort.

o Every single one of the papers that are authored in the
English language.

e Scholarly works that have been published in an aca-
demic journal or at a conference.

« A publication that drew on publicly available datasets.

Exclusion Criteria

« Not only was there no semantic interaction but neither
the title nor the abstract had anything to do with our
search query.

o There was no overlap with the research topic, and the
focused aim did not conflict in the slightest with the
goals of the problems addressed in the RQs.

« Research article that does not rely on datasets that are
publicly accessible.

« Paper published before the year 2020.

E. RESULT OF THE REVIEW

We utilized the advanced search feature in each library,
inputting the search query into the designated advanced
search section. We obtained a total of 230 papers from
IEEE Explore, 103 papers from Google Scholar, 120 papers
from PubMed, 42 papers from ScienceDirect, and 7 papers
from the ACM digital library over the past four years. We
have chosen 24 papers out of a total of 502 papers, using
specific criteria for inclusion and removal. In table 2| we
have shown the results of our selected 24 papers from 2020
to 2023. Figure [I] shows the number of datasets that have
been used in previously publicly available datasets. The x-
axis shows the previously publicly available datasets, and the
y-axis shows the number of times each dataset has been used.
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TABLE 1: Summary of the publicly available dataset

SL No | Dataset Name Source Quantity of Data | Number of Features | Attribute of Output: Effort | Size (measured in units) | Ref.
1 COCOMOS1 Promise 63 18 Person-months LOC 134
2 Desharnais GitHub 81 12 Person-hours Function point 135
3 Maxwell Promise 62 27 Person-hours Funciton points 136
4 Nasa93 Promise 93 17 Person-months LOC 137
5 China Promise 499 16 Person-hours Function points 138
6 Tukutuku 53 9 Person-months 139
7 Miyazaki94 Zenodo 48 8/9 Person months ‘KSLOC [40
8 Kitchenham | SEACRAFT 145 9 Person-hours Function Points 41
9 ISBSG ISBSG 1192 13 Man-hours Multiple [42
10 Albrecht Promise 24 8 Person-Months Function point 43
11 Kemerer Zenodo 15 7 Person-months KSLOC 44
12 UCP Promise 70 17 Person-months LOC 45
13 Edusoft Github 200 7 Person-months 46
14 Finnish Not found 38 9 Person-Hours Function Points 147
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FIGURE 1: Publicly available used datasets

The review found that Desharnais and China datasets are
mostly used datasets in the field of software effort estimation.
Figure [2| shows the number of previous algorithms used
in a study on SEE. The graph shows that the number of
previous algorithms used has increased steadily over the past
4 years. Based on our findings, we can see in the figure that
random forest and support vector regressor are mostly used
algorithms in the field of SEE. Figure [3] shows the number
of papers published on SEE from 2020 to 2023. The x-axis
shows the year, and the y-axis shows the number of papers
published. Based on our review, we can say that in 2022
most papers published in journals and conferences. Figure ]
depicts a performance evaluation matrix used by researchers
in the field of SEE. Based on our analysis, we can say that
MAE is the most used performance evaluation matrix in the
field of SEE.

lll. METHODOLOGY

4
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A. MACHINE LEARNING TECHNIQUES
1) K-Nearest Neighbor

KNN is a supervised machine learning algorithm that is
used to decide what to classify and what to predict. To use
this non-parametric algorithm, find the k data points in the
feature space that are closest to the input data point and use
their labels to make predictions [68]]. The KNN algorithm
works by first defining a distance metric between the input
data points in the feature space. The most common distance
metric is the Euclidean distance, but other metrics such as
the Manhattan distance and cosine distance can also be used
[69]. KNN has a few hyperparameters that can be tuned to
achieve optimal performance on a given dataset. These are
the number of Neighbors based on the value of K, distance
metric (Euclidean, Manhattan, and Minkowski), and weights
(uniform and distance). It is particularly useful for problems
where the decision boundaries are non-linear and where the
data is low-dimensional [70].
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TABLE 2: Literature review on SEE

Previous Algorithms

FIGURE 2: Commonly used algorithm by researchers

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4

Ref | Year Datasets Tec[lflsligues Evaluation Matrix
48] | 2023 Desharnais ANN MMRE, MRE and PRED
18] | 2003 | Maxwell. Albrecht, NASA, Telecom, CBR-GA MBRE, MAE, MIBRE
China, Kemerer, Desharnais
49] | 2023 Edusoft SVR, KNN, DT MSE, MAE, R-Square
Kemerer, Albrecht, Miyazaki, China, RAE, MSE, MAE, RRSE, RMSE,
>0] | 2023 Maxwell, COCOMO, NASA FCNN, GWO-FC R2, MAMRE
51 2022 Desharnais LR, KNN, RF, SVM, XgBoost, AdaBoost
COCOCMO81, Deasharnais,
52| | 2022 Maxwell, China, and Miyazaki94 SVR ANN, MMRE, MAR
53 2022 Maxwell, COCOMO81, China RF, DTR, Ridge R, LR, LassoR, MMRE, PRED (25),
Cocomonasav 1, Desharnais, RF, LR, SVM, MP, Stacking, CART R, Vote
P4 | 2022 COCOMONASA2 GA-HSBA, FRSBM R, BHO-HSBA, FFA-HSBA RMSE, MAE
55 2022 ISBSG LinearSVR, GBRegr, MSP, and RFR RMSE, MAE
56) | 2022 Maxwell, NACSQ?I:” Cocomos, analogy-based SEE MdMRE, SA, PRED, MMRE
NASA93, UCP, ISBSG2021 RF, SVR, Ridge Regression, KNN,
57 2022 , China Gradient Boosting Machines MAAE, MSE, MAE
CHINA, KNN, SGD, DT, RFR, bagging regressor,
p8) | 2022 COCOMOS81 gradient boosting regressor, Ada-boost regressor, MSE, RMSE, MAE, and R2
19] | 2021 COCOMOS81, NASA, Maxwell SB, GWO, ACO, GA, CO, BAT, PSO MMRE, MRES’XI?/[R;::PRED’ IBRE
59] | 2021 China, Albrecht, Maxwell, Desharnais NN, Deepnet, SVM , RF RMSE, MAE, MSE, R-Squared
. MBRE, MMRE, MRE, MI-BRE, PRED,
19] | 2021 China, COCOMO-81, NASA Deep-MNN, GWDNNSB SA. MR, MAE,
China, Albrecht, Desharnais, Kitchenham, | SVM, RF, DT, Ridge, NN, LASSO, Deep-Net, ElisticNet,
31 2021 Kemerer, Maxwell, Cocomo8 Bagging, Averaging, Stacking using RF, Boosting, RMSE., MAE, R-squared
. RMSE,
60] | 2021 Desharnais LR, KNN, ML, SVM MAE, MSE
. . GP Pred (25),
61] | 2020 China, Desharnais, Albrecht (genetic programming) MMRE,
62] | 2020 NASA(93,63,60) FPA MMRE
63| | 2020 Desharnais RF, LR, Multi-layer perception MAE, CC, RMSE, RSE, RRAE
64] | 2020 Desharnais, COCOMOS]1 SVM, KNN, RF, NN, and backpropagation MMRE
65] | 2020 NASA 93 COCOMO-II MRE, MMRE
66] | 2020 China, Desharnais, Albrecht pro(;f;;“rging MMRE, PRED (25)
Cocomo81, Nasa93, China, PRED,
67 2020 Maxwell, Deasharnais, ISBSG ABC MMRE, SA
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2) SVM

Support Vector Machine (SVM) is a supervised learning al-
gorithm used for classification and regression tasks. It works
by finding the hyperplane that best separates the data into
different classes. The hyperplane is defined as the decision
boundary that maximizes the margin between the different
classes [71]. SVM has several hyperparameters that can be
tuned to achieve optimal performance on a given dataset.
Some of the key hyperparameters are the Kernel function
(’linear’, "poly’, 'RBF’, ’sigmoid’, and ’precomputed’), the
Regularization parameter, and the Gamma parameter (scale).

6
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It is beneficial for problems where the number of features
is high relative to the number of samples, as it can handle
large-dimensional datasets efficiently. SVM also works well
in cases where the data is not linearly separable, as it can use
nonlinear kernel functions to transform the data into a higher-
dimensional space where a hyperplane can separate it [72].

3) RF

Random Forest is an ensemble learning method that com-
bines multiple decision trees to make predictions. The algo-
rithm works by building multiple decision trees on random
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subsets of the input variables and data samples. The decision
tree predictions are combined to make the final prediction
[73]]. During the prediction phase, each decision tree in the
ensemble makes a prediction on the input data, and the
predictions are combined using a majority voting scheme
for classification tasks [74]. It has a few parameters like the
number of trees (n_estimators: int, default=100), Maximum
depth of trees (max_depth: int, default=None), Number of the
input variable, and many more parameters. It is particularly
useful for problems where the input variables have non-linear
relationships with the target variable, and where the data
contains noisy or missing values. Random Forest has been
successfully applied in various domains, including finance,
marketing, and bioinformatics.

4) LR

Linear regression is a statistical technique that models the
connection between a dependent variable and one or more
independent variables. The model assumes a linear rela-
tionship among the variables, represented by a straight line
[75]. The equation of a linear regression model is y =
Bo + Brx1 + Baxo + ... + Bnxn, Where y is the dependent
variable, x1, s, ...,x, are the independent variables, and
Bo, B1, B2, . .., By are the regression coefficients represent-
ing the slope of the line. The goal of linear regression is to
estimate the values of the regression coefficients to best fit the
data and make predictions for the dependent variable based
on the independent variables.

5) LASSO

LASSO (Least Absolute Shrinkage and Selection Operator)
regression is a variant of linear regression that combines
LASSO and Ridge regression [76]]. It minimizes the sum
of squared residuals while penalizing the absolute values of
coefficients using the L1 norm (A1) and the squared values
of coefficients using the L2 norm ()\3). This leads to feature
selection and coefficient shrinkage, making it suitable for
high-dimensional datasets with correlated predictors. A; and
Ao are regularization parameters controlling the strength of
the LASSO and Ridge penalties, respectively [56].

B. DATASETS DESCRIPTION

1) Albrecht Dataset (AD)

The AD consists of twenty-four software applications written
in third-generation languages such as PL1, COBOL, etc. The
dataset’s definition consists of 6 individual number variables
and one defenseless number attribute called "work hours,"
which represents the proper effort in 1000 hours. Database
management languages were used for the remaining projects,
and COBOL and PL1 were used for development. The AD is
explained in full in Table 3]

2) Desharnais Dataset (DT)

The DT originated from the collection of 81 software projects
obtained from Canadian software enterprises. The dataset
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consists of ten features, including two dependent variables
(time and effort measured in ’person-hours’) and eight inde-
pendent variables. Regrettably, a total of four projects, out of
the original 81, contained missing values. Consequently, we
opted to exclude these projects from the estimating proce-
dure, since their presence could have potentially impacted the
accuracy of the results. After the data pre-processing step, a
total of 77 software projects were completed. The DT is fully
described in Table [l

3) CHINA Dataset

There are nineteen attributes in the CHINA dataset used to
predict software effort. In total, there are 499 distinct project
instances. The descriptive statistics for the CHINA dataset
are given in Table[5]

4) Kemerer Dataset

Thirteen software projects with a "man-month" unit of mea-
surement are included in the Kemerer dataset. The projects
are defined by six traits and one predictable property. Each
of the six attributes is represented by two categories and
four numerical attributes. The Kemerer dataset’s complete
description is given in Table[6]

5) Miyazaki94 Dataset

The Miyazaki94 dataset was contributed by Miyazaki. There
are 48 software projects included in this compilation. There
are nine traits altogether. One is an identifier, one is a decision
attribute, and the remaining seven are conditional attributes.
The complete description of the Miyazaki94 dataset may be
found in Table[7l

6) Maxwell Dataset

The 62 projects in the Maxwell dataset, which was assembled
from one of Finland’s biggest commercial banks, are each
characterized by 23 attributes. A detailed overview of the
Maxwell dataset may be found in Table [8] The only numeri-
cal attribute is project size in function points.

7) COCOMOS81 Dataset

The COCOMO’81 collection comprises 252 software
projects, with the majority being scientific applications coded
in Fortran [2, 10]. Every project consists of 13 qualities (see
Table [9): the size of the program is quantified in KDSI (Kilo
Delivered Source Instructions), while the other 12 attributes
are assessed using a scale of six linguistic values: ’extremely
low’, ’low’, nominal’, "high’, ’very high’, and ’extra high’.
These 12 characteristics pertain to the software development
environment, encompassing factors such as the expertise of
the personnel engaged in the software project, the develop-
ment methodology employed, and the constraints imposed by
time and storage limitations.

C. EVALUATION MATRIX

1 .
MSE = =% (¥i — Yi)’ 1)

i=1
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TABLE 3: Description of Albrecht dataset [6]

SL| Features Information regarding the fea- | Types | Selection of | Mean | Std Min Max
No tures of the feature Dev
Data

1 | Input the quantity of inputs a software | Integer | InquiryNumeriq 40.25 36.913 | 7 193
must handle.

2 | Output The quantity of outputs gener- | Integer | OutputNumerid 47.25 35.169 | 12 150
ated by software.

3 | File The quantity of files required for | Integer 17.375 | 15.522 | 3 60
a program to write to or read
from.

4 | FPAdj The raw function points are ad- | Double 0.989 0.135 0.75 1.2

justed by the function point ad-
justment factor based on certain
software attributes.

5 | Inquiry how many queries or questions a | Integer 16.875 | 19.337 | O 75
software must respond to.
6 | AdjFP The Function Point Adjustment | Integer | AdjfpNumeric | 658.875| 492.204 | 199 1902

Factor is multiplied by the raw
function points to determine the
adjusted function points.

7 | RawFPcounts| The Function Point Metrics are | Double | RawFPcounts | 638.53 | 452.653 | 189.52 | 1902
used to calculate the raw func-
tion points.

8 | Effort Person-months are used to quan- | Double | Effort
tify the software development ef-
fort.

TABLE 4: Description of Desharnais dataset [26]

SL| Features Information regarding the fea- | Types of | Selection of | Mean Std dev | Min Max

No tures Data the feature

1 | Project Number of Project Non-
continuous

2 | ManagerExp| Years of project managers’ ex- | Non- 2.531 1.644 -1.00 | 7.00

perience continuous

3 | TeamExp Years of team experience Non- 2.185 1.415 -1.00 | 4.00
continuous

4 | YearEnd Completion year Non- 85.741 1.222 82.00 | 88.00
continuous

5 | Effort assessed in person Continuous | Effort 5046.309 4418.767 546.00| 23940.0

6 | Length Duration of the Project Continuous 11.667 | 7.425 1.00 | 39.00

7 | Transaction | Quantity of transactions com- | Continuous| Transactions | 182.123 | 144.035 | 9.00 | 886.00

pleted
8 | PointsNon Function points without adjust- | Continuous| PointsNon 304.457 | 180.210 | 73.00 | 1127.00
Adjust ments Adjust

9 | Entities The quantity of entities Continuous 122.333 | 84.882 | 7.00 | 387.00

10| PointsAjust | Function points for adjustments | Continuous| PointsAjust | 289.235 | 185.761 | 62.00 | 1116.00

11| Adjustment | Factor of adjustment Continuous 27.630 | 10.592 | 5.00 | 52.00

12| Language Programming language Categorical
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TABLE 5: China dataset description [26]

SL | Features Information regarding the features Types of | Selection of | Mean | Std Min | Max
no Data the feature Dev
1 | ID Numerical 250 144 1 499
2 | AFP Function Points(FP) adjustments Integer AFP 487 1059 | 9 17518
3 | Input input of FP Integer Output 167 | 486 | O 9404
4 | Output External output of FP Integer File 114 | 221 0 2455
5 | Enquiry FP of external output enquiry Integer Interface 62 105 | O 952
6 | File FP of internal logical files Integer Added 91 210 | O 2955
7 | Added FP for additional functions Integer NPDR_AFP | 260 830 |0 13580
8 Interface Added FP to the external interface Integer PDR_AFP 24 85 0 1572
9 | Deleted Integer N-Effort 12 124 | 0 2657
10 | Changed FP of modified functions Integer NPDU_UFP | 85 291 0 5193
11 | PDR_UFP Delivery rate of productivity (unad- | Double 13 14 0.4 101
justed FP)
12 | PDR_AFP | Delivery rate of productivity (adjusted | Double Effort 12 12 0.3 83.8
FP)
13 | NPDU_UFP | Delivery rate of productivity (unad- | Double 1 1 1 4
justed FP)
14 | NPDR_AFP | Delivery rate for normalized productiv- | Double 14 15 0.4 108
ity (adjusted FP)
15 | Dev.Type Numerical 0 0 0 0
Only {0}
16 | Resource Type of team Discrete 12 12 0.3 83.8
17 | N_effort Normalized effort integer 4278 | 7071 | 31 54620
18 | Duration Time spent on the project overall Integer 9 7 1 84
19 | Effort An overview of the work report Integer 3921 | 6481 | 26 54260
TABLE 6: Description of Kemerer dataset [6]
Sl | Features | Information regarding the features | Types of | Selection| Mean Std Dev | Min | Max
No Data of the
feature
1| ID The project’s identity.
2 | Language | The language of programming uti- | Non-
lized in the project. continuous
3 | Duration | The project’s duration expressed in | Numerical | Duration | 14.26667 | 7.544787| 5 31
months.
4 | Hardware | The type of hardware utilized in the | Non- 2.333333| 1.676163| 1 6
project. continuous
5 | AdjFP Function points were modified. Numerical | AdjFP 999.14 589.5921| 99.9 | 2306.8
6 | KSLOC | The project is expected to have | Numerical | KSLOC | 186.5733| 136.8174| 39 450
thousands of source lines of code.
7 | EffortMM| calculated in person-months for ef- Efforts 219.2479| 236.0554| 23.2 | 1107.3]]
fort
8 | RAWFP | Function points not adjusted. Numerical | RawFP | 993.8667| 597.4261| 97 2284
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TABLE 7: Description of Miyazaki94 dataset [26]

S1 | Features | Information regarding the features Types of Data | Selection] Mean Std Min | Max
No of the Dev
feature

1 | ID

2 | KSLOC | The number of lines of code in | Continuous KLOC | 70.792 | 87.5678 | 6.9 417.6
COBOL, not counting comments

3 | FORM Quantity of distinct (report) forms Non- FROM | 22.38 20.55 0 91

continuous

4 | SCRN Quantity of distinct output or input | Non- SCRN 33.39 47.27 0 281
screens continuous

5 | ESCRN | The total number of info points on | Non- 525.60 | 626.058 | O 3000
all the screens continuous

6 | FILE The quantity of distinct record for- | Non- 34.81 53.36 2 370
mats continuous

7 | EFILE Total amount of data elements | Non- 1854.58| 6398.605| 57 45000
across all files continuous

8 | EFORM | The aggregate quantity of data ele- | Non- 460.67 | 396.816 | 0 1566
ments across all forms continuous

9 | MM System formed by Man-Months Continuous Man 87.475 | 228.7597 5.6 1586.0

Month

MSE is another metric for measuring the error between
actual values () and predicted values (). It calculates the
squared differences between actual and predicted values and
then takes the average of these squared differences. Squaring
the errors amplifies larger errors and is commonly used in
optimization problems and statistical analysis.

N
1 .
MAE = — E_l |Y; = Y| 2)

MAE is a metric used to measure the average absolute
difference between the actual values () and the predicted
values (). It computes the absolute value of the residuals
(the differences) between actual and predicted values, and
then takes the average of these absolute differences. MAE is
useful because it gives an idea of how far off the predictions
are from the actual values, without considering the direction
of the errors.

3)

RMSE is a modification of MSE that calculates the square
root of the average squared differences between actual and
predicted values. RMSE is often preferred when you want
to express the error in the same units as the original data,
making it more interpretable.

R2=1—M 4
Y, (Vi - V)2

R-squared is a measure of the goodness-of-fit of a re-
gression model. It compares the variance explained by the

10
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model to the total variance in the data. A higher R-squared
value (closer to 1) indicates that the model explains a larger
proportion of the variance in the data.

1 N
MAPE:N;

MAPE is a metric used for forecasting accuracy. It cal-
culates the percentage difference between actual values ()
and predicted values () and then takes the average of these
percentages. MAPE expresses errors as a percentage of the
actual values, making it easy to understand in practical terms.

Yi-Yi
Y;

x 100% 5)

D. PARAMETER VALUES

Figure [5] shows the parameter values of the employed ma-
chine learning algorithms (KNN, SVR, RF, Linear Regres-
sion, DT, LASSO) in this study.

KNN N_neighbors=5, weights="uniform’, leaf_size=30, metric="minkowski"

SVR kernel= 'rbf', degree=3, gamma="scale', cache_size=200

RF n_estimators:100, criterion="squared_error', min_samples_split:2

Linear fit_intercept:True, copy_X:True, n_jobs:None, positive:False

DT Criterion="gini' splitter="best’, min_sample_split=2, min_samples_leaf=1

(PSSO a|pha = 0, fit_intercept:True, max_iter: 1000, selection="cyclic'

EISURE 5: Parameter settings of the compared ML algo-
rithms
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TABLE 8: Description of Maxwell dataset [77]

S| . . Selection Sud .
No Features | Information regarding the features | Types of Data of the | Mean Dev Min | Max
feature
1 | year The project’s inception year Continuous Year
2 | App The application’s name that is cur- |\ o oinous 2.35 0.99 1 5
rently being developed
3 | Har The .plat.fon.n of.hardware that the Non-continuous 2.61 1 1 5
application is being created for
4 | Dba The project’s information manage- |\ o hinuous 103 |044 |0 |4
ment system
5 | Ifc The technology employed for user Non-continuous 1.94 0.25 1 2
interface
6 | Source The utilized source code manage- Non-continuous Source | 1.87 0.34 1 2
ment system
Whether or not the project is de-
7 | Telonuse| veloping legacy mainframe appli- | Binary 2.55 1.02 1 4
cations with IBM Telon
The quantity of programming lan-
8 | Nlan guages implemented within the un- | Non-continuous Nlan 0.24 0.43 0 1
dertaking
9 | TO1 Client involvement Non-continuous 3.05 1 1 5
10 | TO2 rSnl;fnﬁtment development - environ- Non-continuous 3.05 0.71 1 5
11| TO3 Employee accessibility Non-continuous 3.03 0.89 2 5
12 | TO4 Utilizing standards Non-continuous 3.19 0.70 2 5
13 | TOS used Methods Non-continuous TOS 3.05 0.71 1 5
14 | TO6 Utilizing tools Non-continuous 2.90 0.69 1 4
15 | TO7 The logical complexity of software | Non-continuous 3.24 0.90 1 5
16 | TO8 specifications volatility Non-continuous 3.81 0.96 2 5
17 | TO9 Standards for quality Non-continuous T09 4.06 0.74 2 5
18 | T10 The requirements for efficiency Non-continuous 3.61 0.89 2 5
19 | T11 prerequisites for installation Non-continuous 342 0.98 2 5
20 | T12 Skills for staff analysis Non-continuous 3.82 0.69 2 5
21| T13 Employee application expertise Non-continuous 3.06 0.96 1 5
22| T14 Employee teamwork abilities Non-continuous 3.26 1.01 1 5
23 | T15 Employee teamwork abilities Non-continuous T15 3.34 0.75 1 5
24 | Size The project’s size measured in | oo Size 673.31 | 784.08 | 48 | 3643
lines of code
25 | Duration The project’s length expressed in Continuous Duration| 17.21 10.65 4 54
months
The entire work put into the
26 | Effort project, measured in person- | Continuous Effort 8223.21| 10499.9| 583 | 63694
months
27 | Time The total number of persoq-months Non-continuous Time 5.58 2.13 1 9
that were spent on the project
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TABLE 9: Description of the COCOMO81 dataset [31]

SL | Features| Information regarding the features Types of | Selection | Mean Std Dev | Min Max
No Data of the
feature
1 | Data Size of database Float Data 1.004 0.073 0.94 1.16
2 | Rely Requirements for software dependabil- | Float Rely 1.036 0.193 0.75 1.4
ity
3 | Cplx Complexity of the Product Float 1.091 0.203 0.7 1.65
4 | Time Time limit for execution Float Time 1.114 0.162 1 1.66
5 | Stor primary storage limitation Float Stor 1.144 0.179 1 1.56
6 | Virt volatility of virtual machines Float 1.008 0.121 0.87 1.3
7 | Acap Capability of analysts Float Acap 0.905 0.152 0.71 1.46
8 | Turn Turnaround time required Float 0.972 0.081 0.87 1.15
9 | Pcap Skills of programmers Float 0.937 0.167 0.7 1.42
10 | Aexp application-related experience Float 0.949 0.119 0.82 1.29
11| Vexp Work with virtual machines Float 1.005 0.093 0.9 1.21
12 | Lexp Fluency in a programming language Float 1.001 0.052 0.95 1.14
13 | Modp | Applying state-of-the-art programming | Float Modp 1.004 0.131 0.82 1.24
techniques
14 | Sced Timeline for necessary development Float Sced 1.049 0.076 1 1.23
15 | Tool The application of software Float 1.017 0.086 0.83 1.24
16 | Effort | Physical exertion measured in person- | Float Effort 683.321| 1821.582| 5.9 11400
months
17 | Loc Lines of code Float Loc 77.21 168.509 | 1.98 1150

IV. RESULT AND DISCUSSION
Table[I0| presents the performance evaluation of the Albrecht

relatively better predictive accuracy compared to other mod-
els. However, all models exhibit lower R-squared values,

dataset using five different machine learning algorithms. The
results show that the Linear Regression (LR) and LASSO
models show good performance with minimal errors, ex-
hibiting excellent predictive accuracy. In contrast, the KNN
model displayed the highest errors and the lowest R-square,
indicating relatively poor performance compared to the other
algorithms. Figure [6] shows the result of the actual vs. pre-
dicted value using different machine learning algorithms on
the Albrecht dataset.

indicating that the predictive performance is suboptimal, with
RF even showing a negative R-square. The choice of the best
model would depend on the specific objectives and trade-
offs between different performance metrics in this context.
Figure [/|shows the result of the actual vs predicted value us-
ing different machine learning algorithms on the Desharnais
dataset.

TABLE 12: Performance evaluation of China dataset

. . Dataset MAE MSE RMSE | R-square | MAPE

TABLE 10: Performance evaluation of Albrecht dataset China KNN 20814 1 59576654 T 77380 | 773.80 | 651

Dataset MAE | MSE RMSE | R-square | MAPE China _LR 0.00 0.00 0.00 1.00 0.00

Albrecht_KNN 18.26 | 937.24 | 30.61 | 0.10 184.36 China_RF 236.25 | 450709.49 | 671.35 | 0.99 9.08

Albrecht_ LR 0.00 | 0.00 0.00 1.00 0.00 China_SVM | 0.06 0.01 0.08 1.00 0.01

Albrecht RF 786 | 151.66 | 12.31 | 0.86 108.27 China_LASSO | 0.46 2.42 1.56 1.00 0.02

Albrecht_SVM 032 | 0.22 0.47 1.00 1.67

Albrecht_LASSO | 0.04 | 0.00 0.05 1.00 0.47

TABLE 11: Performance evaluation of the Desharnais dataset

Dataset MAE MSE RMSE R-square | MAPE
Desharnais_ KNN 1358.89 | 3254903.30 1804.14 | 0.71 72.85
Desharnais _LR 2124.31 | 7242009.89 | 2691.10 | 0.36 61.83
Desharnais_RF 2591.78 | 12518906.12 | 3538.21 | -0.11 86.96
Desharnais_SVM 2125.44 | 7298069.06 | 2701.49 | 0.36 64.57
Desharnais_LASSO | 2124.30 | 7241927.21 2691.08 | 0.36 61.83

Table |11] presents the performance evaluation of the De-
sharnais dataset. The results indicate that the KNN model
achieved the lowest MAE and RMSE values, suggesting

12
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Table[12]displays the performance evaluation of the China
dataset. Notably, the LR (Linear Regression) model achieved
good scores in MAE, MSE, RMSE, and R-square, indicating
an ideal fit to the data with no prediction errors. In con-
trast, the RF (Random Forest) model showed a relatively
high RMSE and MAPE, suggesting that its predictions had
notable deviations from the actual values. The choice of the
most suitable model would depend on the specific objectives
and the importance of various performance metrics in the
context of the China dataset. Figure 8| shows the result of
the actual vs predicted value using different machine learning
algorithms on the China dataset,
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FIGURE 7: Predictive Performance Comparison Across Multiple Machine Learning Algorithms for Desharnais Datasets

Table [[3] presents the performance evaluation of the Ke-
merer dataset. Notably, the LR (Linear Regression) model
achieved better scores in MAE, MSE, RMSE, and R-square,
indicating an excellent fit to the data with no prediction
errors. In contrast, the KNN model had a high RMSE and
a negative R-square, suggesting that its predictions deviated
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significantly from the actual values. The choice of the most
suitable model for the Kemerer dataset would depend on
specific objectives and priorities regarding different perfor-
mance metrics. Figure [0 shows the result of the actual vs
predicted value using different Machine learning algorithms
on the Kemerer Dataset,

13



This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3404879

IEEE Access

Actual vs. Predicted Values

Actual vs. Predicted Values

Actual vs. Predicted Values

e Actual © e Actual C e Actual ©
40000 e Predicted 40000 o Predicted 40000 o Predicted
. = . .
£ 30000 b £ 30000 £ 30000
3 ° 3 ° = .
2 U 2 o 2 o
o o o
£ 20000 . £ 20000 3 £ 20000 .
2 . 2 P 2 P
[} °
o o (] o (]
& !' & P & &
10000 I. 10000 /0 10000 /‘
0 / 0 / 0 /
0 10000 20000 30000 40000 0 10000 20000 30000 40000 0 10000 20000 30000 40000
Actual Values Actual Values Actual Values
(a) KNN (b) LASSO (c) Linear Regression
Actual vs. Predicted Values Actual vs. Predicted Values
e Actual © e Actual ©
40000 o Predicted o 40000 o Predicted
3 .
H
£ 30000 — £ 30000
] s ] .
S ° ] °
o -
£ 20000 . & 20000 .
] e Y 2 o
°
g P g ’o
10000 , . 10000 /o
0 / 0 /
0 10000 20000 30000 40000 0 10000 20000 30000 40000
Actual Values Actual Values
(d) Random Forest (e) SVM
FIGURE 8: Predictive Performance Comparison Across Multiple Machine Learning Algorithms for China Dataset
Actual vs. Predicted Values Actual vs. Predicted Values Actual vs. Predicted Values
300
e Actual © e Actual $ e Actual ©
o Predicted e Predicted e Predicted
L] ° .
250 250 250
.
v * w e n O
E] E] 5
= 200 3 3
S S 200 < 200
° ° o
2 2 £
S . 5 . < .
@ 150 © E 150 @ 0
T T &
100 . 100 100
L]
°
° ) .
100 150 200 250 100 150 200 250 100 150 200 250
Actual Values Actual Values Actual Values
(a) KNN (b) LASSO (c) Linear Regression
Actual vs. Predicted Values Actual vs. Predicted Values
e Actual © e Actual C
e Predicted e Predicted
O .
250 . 250
® .
] ] ]
3 200 E
S T 200
3 * 3
€ 150 0 ] .
? B 150
- I
100 .
N 100
50 e .
100 150 200 250 100 150 200 250
Actual Values Actual Values
(d) Random Forest (e) SVM
FIGURE 9: Predictive Performance Comparison Across Multiple Machine Learning Algorithms for Kemerer Dataset
dictions had notable deviations from the actual values. The

Table [[4] provides a performance evaluation of the
Mayazaki94 dataset. The LR (Linear Regression) model
achieved good scores in MAE, MSE, RMSE, and R-square,
indicating a flawless fit to the data with no prediction errors.

On the other hand, the KNN m

odel exhibited a relatively

choice of the most suitable model for the Mayazaki94 dataset
would depend on specific objectives and priorities for differ-
ent performance metrics. Figure [T0] shows the result of the
actual vs predicted value using different Machine learning

higher RMSE and lower R-square, suggesting that its pre- algorithms on the Miyazaki94 dataset.
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FIGURE 11: Predictive Performance Comparison Across Multiple Machine Learning Algorithms for Maxwell Dataset

Table [I3] provides a performance evaluation of the
Maxwell dataset. Notably, the LR (Linear Regression) model
achieved good scores in MAE, MSE, RMSE, and R-square,
indicating an excellent fit to the data with no prediction
errors. In contrast, the RF (Random Forest) model showed a
relatively higher RMSE and lower R-square, suggesting that
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its predictions had notable deviations from the actual values.
The choice of the most suitable model for the Maxwell
dataset would depend on specific objectives and priorities
concerning different performance metrics. Figure [TT] shows
the result of the actual vs predicted value using different
Machine learning algorithms on the Maxwell dataset,
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FIGURE 12: Predictive Performance Comparison Across Multiple Machine Learning Algorithms for Cocomo81 Dataset

TABLE 13: Performance evaluation of the Kemerer dataset

Dataset MAE | MSE RMSE | R-square | MAPE
Kemerer_ KNN 75.98 | 8650.96 | 93.01 -0.43 34.97
Kemerer _LR 0.00 | 0.00 0.00 1.00 0.00
Kemerer_RF 44.62 | 2480.90 | 49.81 0.59 24.74
Kemerer_SVM 0.05 0.00 0.07 1.00 0.05
Kemerer_LASSO | 1.32 4.69 2.17 1.00 0.57

TABLE 14: Performance evaluation of Mayazaki94 dataset

Dataset MAE | MSE RMSE | R-square | MAPE
Miyazaki_KNN 146.36 | 47625.61 | 21823 | 0.64 52.05
Miyazaki_LR 0.00 0.00 0.00 1.00 0.00
Miyazaki_RF 33.05 | 1756.79 | 41.91 | 0.99 15.50
Miyazaki_SVM 0.08 0.01 0.09 1.00 0.04
Miyazaki_LASSO | 0.01 0.00 0.01 1.00 0.00

TABLE 15: Performance evaluation of Maxwell dataset

Dataset MAE | MSE RMSE R-square | MAPE
Maxwell_KNN 558.73 | 1120299.02 | 1058.44 | 0.94 7.18
Maxwell_LR 0.00 0.00 0.00 1.00 0.00
Maxwell _RF 629.21 | 2023548.15 | 1422.51 | 0.89 10.19
Maxwell _SVM 0.05 0.00 0.06 1.00 0.00
Maxwell_LASSO | 0.04 0.00 0.06 1.00 0.00

TABLE 16: Performance evaluation of Cocomo81 dataset

Dataset MAE | MSE RMSE | R-square | MAPE
Cocomo_KNN 380.40 | 842748.51 | 918.01 | 0.59 29.38
Cocomo_LR 0.00 0.00 0.00 1.00 0.00
Cocomo_RF 34296 | 585815.68 | 765.39 | 0.72 50.32
Cocomo_SVM 0.09 0.01 0.09 1.00 0.16
Cocomo_LASSO | 0.00 0.00 0.00 1.00 0.00

The Table [T6 presents a performance evaluation of the
Cocomo81 dataset. Remarkably, the LR (Linear Regression)
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model achieved good scores in MAE, MSE, RMSE, and R-
square, indicating an ideal fit to the data with no prediction
errors. In contrast, the KNN model displayed a relatively
higher RMSE and lower R-square, suggesting that its pre-
dictions had notable deviations from the actual values. The
choice of the most suitable model for the Cocomo81 dataset
would depend on specific objectives and priorities regarding
different performance metrics. Figure [I2] shows the result of
the actual vs predicted value using different machine learning
algorithms on the cocomo81 dataset.

A. DISCUSSION

1) What are the most frequent datasets in the literature of
SEE? (Research Question 1)

About fifteen distinct datasets were used in the research that
were chosen. We search for datasets that are utilized in a
minimum of one study. A review of the literature is displayed
in table [2] One of the most widely used datasets in the SEE
literature is that of China and Desharnais, which has been
used in several studies.

2) What are the most frequently used SEE techniques?
(Research Question 2)

SEE is the practice of projecting the amount of money, time,
and resources required to complete a software development
project. SEE represents a specific type of regression problem.
Regression utilizes input data, including project size, com-
plexity assessments, and past data, to predict a continuous
numerical value. In this particular case, it aims to estimate
the quantity of work needed. The input characteristics could
comprise a range of project criteria and variables that impact
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the amount of effort required for development. The following
machine learning methods were used, either by themselves
or in conjunction with other (ML and nonML) estimation
methods, to estimate the SEE. SVM, Bayesian networks
(BN), kNNs, ANNSs, decision trees (DT), Genetic Program-
ming (GP), CBR, Random forests (RF), and classification
and regression trees (CART) are some examples of artificial
neural networks. Our study indicates that the most commonly
used ML techniques in SEE literature are SVR and RF.

3) Performance Evaluation Matrix (Research Question 3)
Evaluation metrics are utilized in regression issues to as-
sess the performance of a model of prediction that seeks
to estimate a continuous destination variable. The literature
on software effort estimating has several metrics that have
been developed and applied to evaluate a prediction model’s
accuracy. Primarily, these measures rely on prediction error,
sometimes referred to as absolute error, which quantifies the
difference between the anticipated and observed values [[78].
Our analysis indicates that MAE (Mean Absolute Error) and
MMRE (Mean Magnitude Relative Error) are the most often
employed performance assessment metrics in the literature
on SE), relying on historical data.

4) How many research papers are published on SEE
between 2020-2023 (Research Question 4)

Our review indicates that there are a total of 24 papers within
the specified period. After considering our inclusion and
exclusion criteria, we have narrowed down the selection from
the numerous published papers. Figure [ presents a concise
overview of the article we have chosen.

B. THREATS TO VALIDITY

An empirical study’s validity may be compromised by a
variety of reasons. We tried to tailor the search string to our
research questions and used it to find the appropriate research
for our systematic literature review. However, since some
studies (rarely) failed to include crucial keywords in their
study title, abstract, or keywords, it’s possible that we over-
looked some pertinent research. Even though we made every
effort to prevent this scenario by consulting each study’s
bibliography to choose all the pertinent research, there’s still
a chance we might have overlooked some significant studies
that pose a hazard. The dangers to the internal, construct,
conclusion, and external validity of our study are covered in
this part along with the steps that have been taken to mitigate
them.

1) Internal Validity

The primary risk to the internal validity of the data under
study is selection bias. Four datasets with various model-
based techniques have been employed. The NASA93 dataset
is LOC-based, the China datasets are FP-based, and a third
dataset follows the UCP technique. The dimensions, applica-
tion scope, size, and complexity of these databases all differ.
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Therefore, internal danger is not a significant worry for this
study.

2) Construct Validity

Regarding construct validity, one potential hazard is the
presence of verification bias. To mitigate this issue during
the process of empirical analysis, we have employed a di-
verse range of impartial error and accuracy metrics. Each of
these metrics addresses a unique and specific component of
performance evaluation.

3) Conclusion Validity

The degree of variability of the outcomes under various
experimental conditions is correlated with the validity of the
conclusions. In this study, we have worked on sensitivity
analysis to address this issue. Every analysis has been per-
formed again with various cross-validation strategies. Fur-
thermore, we used standard data splits to conduct the trials
on separate datasets for each of the five ML-based SEE
techniques. We have sought to exclude the potential that
randomness could lead to performance enhancement.

4) External Validity

The main possible risk to external validity is associated with
the generalization of results. All the experiments have been
conducted using a wide range of datasets, including cross-
company and within-company data. Consequently, we think
that this study’s findings will aid in the generalization of the
results for both homogeneous and heterogeneous datasets of
various sizes and domains.

V. CONCLUSION

In this paper, we contribute to the domain of software effort
estimation, with a specific focus on machine learning tech-
niques. Our research presents two key contributions. First,
we conduct a comprehensive literature review investigating
state-of-the-art effort estimation using machine learning, fol-
lowing established protocols. By analyzing primary studies,
we gain valuable insights into the most effective approaches.
Second, we perform a comparative evaluation of various
machine learning models on seven well-known datasets, as-
sessing accuracy using metrics like MAE, MSE, RMSE, R-
square, and MAPE. Our research provides a solid foundation
for further exploration into software effort estimation. The
outcomes offer practical guidance for practitioners in se-
lecting appropriate techniques for future projects, enhancing
planning and resource allocation for improved processes and
outcomes. In conclusion, our work significantly contributes
to the field, benefitting both the research community and
software development practitioners. Through meticulous in-
vestigation and comparative evaluation, this study elucidates
the strengths and limitations inherent in machine learning
approaches for effort estimation. The findings establish a
foundation for future advancements in the field. This paper
offers diverse perspectives for future investigation into agile
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development effort prediction. One area of interest is study-
ing the influence of cost factors on model accuracy. However,
software effort estimation is crucial for sustainable software
development Which is aligned to the global goal 9.4.

Future work could explore enhancing effort estimation
precision using different machine-learning techniques and
evaluation metrics. Additionally, investigating improved es-
timation through homogeneous or heterogeneous ensemble
models combining algorithmic, expert, and machine learning
approaches would be valuable. Incorporating human experts’
context-specific knowledge not captured by algorithms, es-
pecially for emerging technologies or new domains, could
prove beneficial. Further research can focus on utilizing com-
binations of complementary estimation techniques involving
expert estimation to create hybrid frameworks, aiming to
propose an ensemble model that harnesses algorithmic, ex-
pert, and machine learning strengths for improved accuracy.
The resulting instrument could serve software firms and
practitioners for early-stage estimation of new projects. In
summary, this research contributes significantly to software
effort prediction, benefitting researchers and practitioners.
The literature analysis and comparative assessment provide
diverse insights into machine learning techniques used for
SEE, paving the way for future enhancements. The findings
aim to guide improved effort estimation practices for success-
ful project planning and execution.
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