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A B S T R A C T   

Photovoltaic systems convert solar irradiance into electricity. Due to some factors, the amount of solar irradiance 
arriving at the solar photovoltaic collector at a specific location varies. The goal of this study was to develop a 
mathematical model for predicting the performance of a photovoltaic system, which depends on the amount of 
solar irradiance. A novel model for solar irradiance in the form of a delay differential equation is introduced by 
including the factor of delayed solar irradiance, hour angle and the sun’s motion. The simulation study is carried 
out for the three scenarios of weather conditions: a clear day, a slightly cloudy day, and a heavily overcast day. 
The numerical solution is obtained by adopting the 4th-order Runge Kutta method coupled with a parameter 
fitting technique, the Nelder Mead algorithm, which is implemented by using MATLAB software. The data from a 
solar plant in Pahang, Malaysia, was used for model validation and it is found that the prediction profile for solar 
irradiance aligns well with the intermediate and decay phases, but deviates slightly during the growth phase. The 
output current and power for the solar photovoltaic panel were treated as time-dependent functions. As the solar 
irradiance increases, the output current and power of the solar panel will increase. The result showed that the 
maximum output current and output power of STP250S-20/Wd crystalline solar module decreased by 42% and 
76%, respectively, during slightly cloudy and heavily overcast conditions when compared to clear days. In other 
words, the performance of a photovoltaic module is better on clear days compared to cloudy days and heavily 
overcast. These findings highlight the relationship between delayed solar irradiance and the performance of the 
solar photovoltaic system.   

1. Introduction 

Renewable energy could diversify energy resources in electricity 
generation and reduce dependency on depleting fossil fuels (Jamil and 
Wang, 2016). Compared to fossil fuels, solar technology is the 
fastest-growing, most cost-effective, and least harmful to the environ-
ment. Solar irradiance is an essential source of energy conversion for 
solar photovoltaic (PV) systems. According to Widén & Munkhammar 
(2019), the amount of solar irradiance arriving on the PV panel consists 
of three components, i.e., direct, diffuse, and reflected, influenced by 
weather conditions. 

The overwhelming response to solar PV systems as a new electricity 
resource provided research opportunities to improve the system and 
meet the current needs. Mathematical modelling took part as a solution 
for presenting the actual situation. The existing models were designed 

based on the specific hardware, factor, environment, and manufacturer 
information, making them non-uniform. Consequently, adapting exist-
ing formulas to the chosen hardware model remains a challenge. 

The amount of solar irradiance arriving on the PV panel is the pri-
mary factor influencing the output current. Various models, such as 
artificial neural networks (ANNs) (Al-Fatlawi et al., 2015; Khatib et al., 
2012), global horizontal irradiance (Chow et al., 2011), geographical 
information system (Rumbayan et al., 2012) and linear model (Rosario, 
2014; Danandeh, 2018) had been employed to estimate solar irradiance. 
Factors influencing the solar irradiance amount on the flat panel include 
geometrical parameters, sunshine parameters, simulation days and 
temperature (Arief et al., 2017; Khatib et al., 2012; Mekhilef et al., 2012; 
Moballegh and Jiang, 2014; Rizal and Wibowo, 2013; Rosario, 2014; 
Shukla et al., 2015; Zaatri and Azzizi, 2016; Jiang, 2008; Hasni et al., 
2012; Ozgoren et al., 2012; Chen et al., 2013). However, none have 
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adequately demonstrated a sufficiently meaningful parameter related to 
delay time. 

The output current and power values contribute to the measurement 
of the performance of a solar PV system. However, the existing mathe-
matical model for solar PV panels formulated the output current and 
power as a static value (constant and time-independent). In reality, the 
value of a solar PV panel’s output current and power varies and keeps 
changing over time due to the fluctuating amount of solar irradiance 
arriving on the solar panel. This results in inaccurate performance 
estimation under the oscillating amount of solar irradiance. A clear 
linkage between the solar irradiance model and the output current and 
power of solar PV is essential to obtain a better understanding of the 
performance of the PV system. For this purpose, research is needed to 
integrate solar irradiance into the performance of solar PV in a seamless 
fashion. 

Therefore, this study aimed to present a new model for predicting the 
solar irradiance arriving on the PV panel by using a delay differential 
equation (DDE). To the best of our knowledge, no deterministic model in 

the form of an ordinary differential equation (ODE) has been proposed 
to describe the dynamic of solar irradiance. Furthermore, the depen-
dence of solar irradiance on delay time has yet to be discovered. Hence, 
this study will adopt this approach in formulating the time-dependent 
solar irradiance. Subsequently, the resulting solution of solar irradi-
ance will be used to predict the performance of the PV system by means 
of calculating the solar PV’s output current and power. 

2. Mathematical modelling 

Mathematical modeling translates the real-world process into esti-
mation calculation that can be used to study the behavior of a process. 
Many authors have developed a model for solar irradiance, mostly 
applying stochastic models, time series models, and neural networks. 
Evolution in differential equations has grown and has been applied in 
many fields. However, no research formulated a deterministic model 
such as an ODE for solar irradiance, and less research used a delay factor 
in their model. In this study, a new mathematical formulation for solar 
irradiance in the form of a DDE was developed. DDE is a differential 
equation in which the derivatives of a function at the present time rely 
on the values of the functions at earlier times, called delay. Note that the 
DDE model is a complicated ODE model considering that phenomena 
may have a delayed effect (Shampine and Thompson, 2009). 

DDE has been used for various physical systems in previous research, 
such as ecology (Kolesov and Shvitra, 1979), control theory (Pyragas, 
2006), genetics regulatory systems (Parmar et al., 2015; De Jong et al., 
2021), neural systems (Campbell, 2007; Schöll et al., 2009; Rahman 
et al., 2018), epidemics (Kyrychko and Blyuss, 2005), coupled chemical 
oscillators (Blaha et al., 2013) and laser system (Lenstra and Yousefi, 
2000; Krauskopf, 2005). Keane et al. (2017) introduced a mathematical 

model in the form of DDE to simulate the dynamics of climate change 
with limited parameters. Their study proved that delays have a signifi-
cant impact on the behavior of the real situation. Moreover, Keane et al. 
(2017) utilized DDE to model a system that demonstrated chaotic 
behavior representing the irregularity characteristic of El 
Niño–Southern Oscillation (ENSO). 

In this study, the dynamics of solar irradiance arriving on the PV 
panel are viewed as a compartmental model, as illustrated in Fig. 1. This 
compartmental model framework is used as a backbone to formulate a 
model. This process has inputs and outputs from the ‘compartment’ over 
time. In this case, the compartment is the rate of solar irradiance, G(t). 
The inputs are direct solar irradiance and diffused solar irradiance. 
Meanwhile, the output occurs through reflected solar irradiance. We are 
interested in the amount of solar irradiance arriving on the PV panel at 
any given time. 

Based on the compartmental model in Fig. 1, the rate of change of 
solar irradiance arriving on a PV panel is equal to the ‘rate in’ minus the 
‘rate out’, and the balance law can be written as follows:  

In the next step, this balance-law approach is used to formulate math-
ematical models of differential equations that describe the dynamics of 
solar irradiance on the solar PV panel. Let G(t) be the amount of solar 
irradiance on the PV module at a given time t (in minutes). The newly 
proposed delay differential model for solar irradiance is given in Equa-
tion (1). 

dG(t)
dt

= α − βG(t)Ṙ(t − τ) (1)  

The parameter α is the constant rate of the direct and diffused solar 
irradiance arriving on the solar panel and β is a constant. R˙(t) is the 
decay rate of solar irradiance outgoing from the solar panel due to re-
flected solar irradiance, hour angle and the sun’s motion and is assumed 
to follow the Hill function, that is Ṙ(t) =

(G(t))n

θn+(G(t))n. Hill function is a 
monotonic increasing function of G(t) that meets the following features: 
If G(t) = 0, then R˙(t) = 0 , if G(t) = θ, then Ṙ(t) = 1 /2, and lim

G(t)→∞
Ṙ(t) =

1. 
The detection of solar irradiance at the solar panel is not an instan-

taneous process; there is a time lag because the solar irradiance trans-
portation from the sun to the solar panel requires time. The time delay, τ 
is the time taken by the solar irradiance reached on the solar PV panel 
after initiation that relates to diffused and reflected solar irradiance. On 
top of this, there is a significant delay between the elimination of solar 
irradiance and the measurement of solar irradiance collected on solar 
PV. 

Thus, the rate of change of solar irradiance on the solar panel can be 
rewritten as in Equation (2), 

dG(t)
dt

= α −
βG(t)(G(t − τ))n

θn + (G(t − τ))n (2)  

where α, β, θ, and n are positive constant and τ > 0. The parameter α is 
related to the production rate while, β, θ, and n determines the decay 
rate of solar irradiance. The initial function is stated in Equation (3). 

G(t)=φ(t) for − τ≤ t≤ 0,where φ ∈ C[[− τ, 0],R+] and φ(0)> 0 (3) 

Fig. 1. Compartmental model.  

{
Rate of change of solar irradiance

on the solar photovoltaic panel

}

=

{
Rate of incoming solar irradiance i.e.

sum of direct and diffuse solar irradiance

}

−

{
Rate of outgoing solar irradiance

i.e. reflect solar irradiance

}
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In developing the proposed model, the following assumptions are 
adopted.  

i. The rate of direct solar irradiance striking the atmosphere/earth 
and the diffused solar irradiance, α, is constant. It is independent 
of a solar panel’s collected amount of solar irradiance.  

ii. We assume that the collected solar irradiance on the solar panel 
can only change due to the amount of direct, diffused, and re-
flected solar irradiance.  

iii. The model involves two mechanisms. The positive mechanism is 
through the direct and diffused solar irradiance that arrives on 
the solar collector. The negative one is due to the reflected solar 
irradiance in which the solar irradiance turns back to the atmo-
sphere, hour angle, and the sun’s motion.  

iv. We assume that the weather conditions, such as cloudiness, sky 
clearness index, humidity, and wind, are consistently similar for 
each day within specific model’s simulation.  

v. Subsequently, we assume that the removal of solar irradiance on 
the solar panel at any time is proportional to the amount of the 
collected solar irradiance at a previous time τ > 0. Time delay 
plays a vital role in simulating the amount of solar irradiance 
reflected by the surface of the PV module. 

The forecasting model of solar irradiance can give a rough approxi-
mation of the performance of solar PV. The above-proposed approach to 
predicting solar irradiance can be subsequently applied to predicting 
solar power performance. Note that the PV system’s instantaneous 
output power will change with time as the amount of solar irradiance 
collected by PV cells varies from morning to night, day to day, weeks to 
weeks, and months to months. 

This study focuses on the PV circuit model with a single diode model 
with five parameters (Sabudin et al., 2017, 2020; Sabudin and Jamil, 
2019). The equation for the output current, I0 (in Ampere, A) is given by 
(Phang et al., 1984): 

I0 = IPV − ID − ISH  

where 

ID = IRC

[

exp
(

V + IRS

aVT

)

− 1
]

ISH =
V + IRS

RSH  

VT =
kT
q

NS 

The parameter IPV is the photocurrent, I0 is the current, which flows 
through the parallel diode, and ISH is the shunt current flown due to the 
presence of RSH, (Phang et al., 1984). The symbol q is the electron charge 
(1.60217646 × 10− 19 C), k is the Boltzmann constant 1.3806503× 10− 23 

J/K, VT is the thermal voltage for a cell, which is influenced by tem-
perature T, NS is the number of cells, IRC is the current flow inside the 
diode that influences the amount of ID, and a is the ideality diode. The 
output power, P0 is given by; 

P0 = I0V  

3. Linear stability analysis 

Dimensions of parameter quantities in the newly proposed solar 
irradiance model are given in Table 1. 

We introduce dimensionless variables and parameters into the model 
as 

y=G/θ, s = βt, σ = βτ and c = α/θβ (4) 

After substituting the variables and simplifying the equation, we 
obtained 

dy
ds

=
α
θβ

−
β
θβ

yθ
θn(y(s − σ))n

θn[1 + (y(s − σ))n
]

(5) 

Hence, the newly proposed model of solar irradiance is reformulated 
in the dimensionless form and is given by 

dy
ds

= c − y
(y(s − σ))n

1 + (y(s − σ))n (6) 

The equilibrium solution, y∗ is obtained by solving c − y∗ (y∗)n

1+(y∗)n = 0. 

Thus, c − (y∗)n+1

1+(y∗)n = 0, or equivalently 

(y∗)n+1
− c(y∗)n

− c= 0 (7) 

Using substitution of x = y∗, we set a function F(x) as 

F(x) = xn+1 − cxn − c, x ≥ 0 (8)  

which yield 

F′(x) = (n + 1)xn − cnxn− 1 = xn− 1[(n+ 1)x − cn], x ≥ 0 (9)  

F is decreases when F′(x) < 0 and increases when F′(x) > 0. Hence, F 
decreases for x < cn

n+1 and increases for x > cn
n+1. In addition, F(0) = − c <

0 and F(∞) = 0. Thus, F(x) = 0 has a unique positive root x ∈ (0,∞). It 
means that the equilibrium solution y∗ ∈ (0,∞) is unique and positive. 
Furthermore, 

c=
(y∗)n+1

1 + (y∗)n < y∗ (10) 

Therefore, Equation (6) has a unique positive equilibrium y∗ and that 
y∗ > c. Note that, c = α/θβ. 

We want to prove that Equation (6) has a unique steady state. Sup-
pose K and L are both equilibrium points and K ∕= 0. We aim to present 
that K = L. The two equilibrium solutions satisfy 

Kn+1 − cKn − c= 0 (11)  

and, 

Ln+1 − cLn − c= 0 (12)  

respectively. That means, 

Ln+1 − cLn − c=Kn+1 − cKn − c (13) 

Hence, 

Ln+1 − Kn+1 − c(Ln − Kn)= 0 (14) 

By applying the formula of 

ap − bp =(a − b)
(
ap− 1 + ap− 2b+…+ abp− 2 + bp− 1) (15) 

we obtain 

(L − K)
(
Lp + Lp− 1K +…+ LKp− 1 +Kp

− c
(
Lp− 1 + Lp− 2K +…+ LKp− 2 +Kp− 1))= 0 (16)  

Thus, L − K = 0 which implies L = K. This proves that Equation (6) has a 
unique equilibrium point. We conduct a linear stability analysis to learn 

Table 1 
Dimensions of parameters.  

Parameters  Value 

G(t),θ  W/m2 

α  W/(m2 min) 
β  1/min  
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more about this model’s dynamic behaviour. To do this, we apply the 
Taylor series expansion to linearize the nonlinear system in Equation 
(6). Consider a system dy/ds = f(y) that has an equilibrium point y∗ such 
that f(y∗) = 0. The Taylor series expansion of f(y) around the point y∗ is 
given by 

f (y)= f (y∗)+
df
dy

⃒
⃒
⃒
⃒

x=y∗
(y − y∗)+

1
2

d2f
dy2

⃒
⃒
⃒
⃒

x=y∗
(y − y∗)2

+
1
6

d3f
dy3

⃒
⃒
⃒
⃒

x=y∗
(y − y∗)3

+ …

(17)  

and can be simplified as 

f (y)= f (y∗)+
df
dy

⃒
⃒
⃒
⃒

x=y∗
(y − y∗) + higher order terms (18) 

These higher order terms will be nearly zero when y is sufficiently 
close to y∗. Hence, we can discard them to attain the approximation as 

f (y)≈ f (y∗) +
df
dy

⃒
⃒
⃒
⃒

x=y∗
(y − y∗) (19) 

Since f(y∗) = 0, the approximation near the equilibrium point is 
given by 

f (y)=
df
dy

⃒
⃒
⃒
⃒

x=y∗
(y − y∗) (20) 

To accomplish the linearization, we specify the perturbation state 
Y = y − y∗. By using the fact that dY/ds = dy/ds, we obtain the line-
arized model given by 

dY
ds

=
df
dy

⃒
⃒
⃒
⃒

y=y∗
Y (21)  

Eventually, the resulting linearized equation for 

dy / ds = c − yF(y(s − σ)) (22)  

is given by 

dY(s)
ds

= − F(y∗)Y(s) − y∗F′(y∗)Y(s − σ) (23) 

We substitute the exponential solution Y = Y0eμs which gives 

μ+F(y∗)+ y∗F′(y∗)e− μσ = 0 (24) 

Next, we want to comprehend the behaviour of the roots of the 
characteristic in Equation (24). If the real part of the characteristic root 
is negative, then the equilibrium point is stable. Assume that F, F′ and y 
are all positive. If the real part of μ is positive, then 

μ+F(y∗) + y∗F′(y∗)e− μσ > 0 (25) 

This leads to a contradiction. Therefore, we conclude that the real 
part of the characteristic root cannot be positive; only the real roots of 
Equation (24) are negative. Hence, the equilibrium point y∗ is stable. 

Consequently, we investigate the existence of Hopf bifurcation. Hopf 
bifurcation occurs when the steady state solution goes unstable with a 
change of sign of the real part of a complex eigenvalue. Besides that, 
Hopf bifurcation indicates the presence of oscillatory or periodic solu-
tions in the amount of solar irradiance on the solar panel. Hopf bifur-
cation can only occur when the parameter values have zero real part and 
nonzero imaginary part. 

In this case, we can set μ = iω indicating that μ has a zero real part. 
Utilizing the formula of a complex number, e− iθ = cos θ − i sin θ, we 
obtain 

F(y∗)+ y∗F′(y∗)cos ωθ+ iω − iy∗F′(y∗)sin ωσ = 0 (26)  

By separating into real and imaginary parts, we obtained two equations. 
For the real part, 

F(y∗) + y∗F′(y∗)cos ωθ= 0, (27)  

and for the imaginary part, 

ω − y∗F′(y∗)sin ωσ = 0. (28) 

We immediately discovered a parametric representation of the crit-
ical stability curve from these two expressions given by 

ω= y∗F′(y∗)sin ωσ. (29) 

Squaring both sides of equation (29) and employing equation (27), it 
can be shown that 

ω=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(y∗F′(y∗))2
− (F(y∗))2

√

. (30) 

From equations (27) and (28), it follows that y∗F′(y∗) = −
F(y∗)

cos ωθ and 
y∗F′(y∗) = ω

sin ωθ, respectively. Thus, tan ωσ = − ω
F(y∗). The smallest root of 

this equation lies in the interval π
2 < ωσ < π, and the root σ = 1

ω

[
π +

tan− 1
(
− ω

F(y∗)

)]
. 

Thus, a Hopf bifurcation occurs at the frequency ω and the critical 
delay σ for a given y∗. The critical stability curve for σ is displayed in 
Fig. 2. To conclude, if the delay is smaller than this critical delay, then 
the steady solution is stable. Meanwhile, the steady solution is unstable 
and exhibits an oscillatory solution if the delay is larger than the critical 
delay. 

4. Results and discussion 

The proposed model defined in Equation (2) is solved numerically by 
employing the 4th-order Runge-Kutta method. The unknown parameters 
were defined by fitting a parametric curve to the given actual data set by 
adopting the Nelder-Mead algorithm. The method has been scripted in 
MATLAB to solve the DDE model. The equation’s output defined the 
predicted amount of solar irradiance reaching the PV module. 

The Nelder-Mead algorithm is a numerical optimization method to 
determine unknown parameters by optimizing an objective function. 
The algorithm iteratively refines a simplex (a geometric shape) to find 
the minimum of a function. Simplex is the corner points of a geometric 
shape. For example, the simplex is a triangle in two dimensions and a 
tetrahedron in three dimensions. Each vertex of the simplex represents a 
candidate solution to the optimization problem. These vertices are 

Fig. 2. Critical stability curve.  
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adjusted and moved around during the algorithm’s iteration towards the 
minimum value of the objective function. The searching process in-
volves some rules of reflection, expansion, contraction, and shrinking on 
the simplex vertices based on function evaluations. The process con-
tinues until convergence is achieved (Nelder and Mead, 1965). 

The observation data is collected from a solar PV plant in Pahang 
Malaysia. The latitude and longitude of the location are 3◦32′20.9”N and 
103◦25′47.7”E respectively. Data for solar irradiance obtained full cycle 
is for 2011. Fig. 3 illustrates the ten-day daily pattern of solar irradiance 
received in a solar PV plant in Pahang, Malaysia, from January 1 to 
January 10, 2011. During these ten days, the amount of solar irradiance 
fluctuates and differs for each day. This is due to the dynamic weather 
profiles at that site location. For example, January 1 was clear day, 
January 2 was slightly cloud covered and January 6 was heavily over-
cast. This study considered three types of weather conditions: clear days, 
slightly cloud-covered, and heavily overcast. 

Even though the maximum amount of solar irradiance received is 
different for each day, the trajectory of solar irradiance resembles a bell- 
shaped curve similar to that. Because of this reason, Su et al. (2012) 
utilized a Gaussian curve to model solar irradiance in Macau and 
discovered that the data was well-fitted. 

Typically, one can roughly categorize the changing pattern of solar 
irradiance within a day into three phases: growth, intermediate, and 
decay. The growth phase occurs in the morning from 6 a.m. to 9 a.m. 
when the solar irradiance increases. It is followed by the intermediate 
phase from 9 a.m. to 4 p.m. when the solar irradiance is relatively high, 
and the solar irradiance attains its peak at noon, around 12 p.m. 
Correspondingly, the decay phase happens in the afternoon from 4 p.m. 
to 7 p.m. when the solar irradiance rapidly declines. Note that, zero solar 
irradiance was received early in the morning and night. 

This diverse pattern is a consequence of the sun’s movement in the 

sky each day, which leads to different amounts of solar irradiance ob-
tained at a particular site. The Earth’s rotation also causes hourly 
changes in solar irradiance due to sun’s position being low in the sky in 
the morning and afternoon. Compared to midday, when the sun’s po-
sition is at its peak, its rays penetrate the atmosphere deeper. Around 
solar noon on a clear day, a solar collector receives the most solar 
irradiance. 

4.1. Model validation 

The profile trajectory of solar irradiance collected on a PV panel 
during clear days on 2nd – January 4, 2011 is portrayed in Fig. 4. The 
blue dots denote the actual data, and the red lines represent the model 
simulation result. By employing the Nelder-Mead algorithm as a 
parameter fitting technique, the values of the unknown parameters were 
attained as in Table 2 with the root mean square error (RMSE) value of 
2.2735× 102. 

Fig. 5 displays the simulation output for the slightly cloud covered 
day scenario in accordance with the fitted value of the unknown pa-
rameters listed in Table 2. The RMSE value obtained is 2.0292× 102. 
The figure illustrated the irregular profile of solar irradiation in cloudy 
conditions on January 8 to 10, 2011. Typically, on a slightly cloud 
covered day, the solar irradiance reaches its peak at around 600 W/m2. 
Additionally, Fig. 6 exhibits the dynamic pattern of solar irradiance 
during heavily overcast days on January 5 to 7, 2011. The best-fitted 
parameter values were recorded in Table 2 with the RMSE value 
69.7076. The maximum value of solar irradianceattained during heavily 
overcast days is approximately 250 W/m2. 

Based on the results of the three types of weather conditions, as 
shown in Figs. 4–6, the model is reasonably suitable for the intermediate 
period (9 a.m. - 4 p.m.) and decay phase (4 p.m.–7 p.m.), but not for the 
growth phase. Other than that, the model is able to match the peak value 
of solar irradiance at noon. However, a significant discrepancy exists 
between the model and the data in the growth phase. It can be seen that 
the model predicts the growth phase earlier than the actual time. This 
might be due to the negligence of some factors that affect the solar 
irradiance dynamic, which should have been included in the formulated 
model. Note that the incorporation of many factors in a model would 
increase its complexity which leads to longer running time and requires 
higher computing performance. 

Table 2 display the side-by-side comparison of peak values attained 

Fig. 3. Solar Irradiance from 1st until January 10, 2011.  

Fig. 4. Solar irradiance model and actual data for clear-day.  

Table 2 
Difference between three scenario.  

Scenario Clear Day Slightly Cloud Covered Heavily Overcast 

Peak Value 1000 W/m2 600 W/m2 250 W/m2 

Constant    
α 1.425 0.75 0.33 
β 1581 3704.58 2061.56 
θ 10,710 10711.04 12748.07 
n 3.06 3.04 1.74 
τ 612 669.21 702.95  
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and the estimated parameters. According to the recorded peak value, the 
more cloudy the day, the less solar irradiance is received on the solar 
panel. In addition, the rate of direct and diffused solar irradiance 
arriving on the solar panel, α is the highest on a clear day and the lowest 
on a heavily overcast day. In other words, the brighter the day, the 
greater the value of α. 

The time delay, τ on a clear day is the shortest compared to a slightly 
cloud-covered day and a heavily overcast day. Meanwhile, the longest 
time delay is discovered on a heavily overcast day. Simply put, the 
brighter the day, the shorter the time delay for the solar irradiance. On 
the other hand, solar irradiance transportation from the sun to the solar 
panel requires a longer time during cloudy days. This is because the 
cloud cover influenced the diffused solar irradiance as it follows a more 
scattered and uncertain path through the clouds before reaching the 
solar panel. 

The parameters of β, θ and n are related to the decay rate of solar 
irradiance. The value of θ and n are almost identical on clear days and 
days with a slight cloud cover but show a noticeable difference during a 
heavily overcast. The reason is that the weather conditions of a clear day 
and a slightly cloud-covered might be close to each other, in contrast to 
heavily overcast. On the other hand, β did not show any significant 
pattern from the clear day to slightly cloud-covered and heavily over-

cast. It is a constant that was designed to boost the model’s accuracy. 
From these findings, we conclude that cloud cover affects the dy-

namic of solar irradiance. The cloud cover plays a role in reflecting and 
scattering incoming solar irradiance. An increase in cloud cover would 
result in a decrease in solar irradiance. 

4.2. Time delay simulation 

In the proposed model, the time delay value determines the time 
required for the solar irradiance to reach the solar panel. Thus, the 
simulation of the time delay can provide valuable insights into the 
properties of the model. The simulation results during clear days for the 
parameters listed in Table 3 with different τ are displayed in Figs. 7 and 
8. 

Note that τ = 612 is the result obtained for clear days. Fig. 7 dem-
onstrates a comparison for the case of τ = 400, 612, 800, where the 
oscillatory behavior of the solar irradiance is observed. In this case, the 
systems exhibit a relatively simple behavior, with regular and predict-
able periodic oscillations. Specifically, as time delay, τ increase, the 
growth phase of the cycles is delayed but with a higher peak value of 
solar irradiance. 

In contrast, Fig. 8 compares the small value of time delays relative to 
other parameters i.e. for τ = 20,50,80,110. A small value of the time 
delay means that solar irradiance has a relatively immediate effect on 
the solar panel. For τ = 20, the solar irradiance tends to reach its steady 
state at 200 W/m2. For τ = 50,80, the graph shows a damped oscillation 
that converges to a steady state at 200 W/m2. 

In this case, the stable steady states at τ = 20,50,80 become periodic 
oscillations at τ = 110. Note that, small changes in the time delay value 
from τ = 80 to τ = 110 lead to prominent changes in the system’s 
behavior. In other words, the system transitions from a stable steady 
state to periodic solutions. The effect of incrementing the time delay 
significantly impacts the solar irradiance behavior. By increasing the 
delay time, the graph induces oscillations. 

When the delay is smaller than the critical delay, the steady solution 
is stable, which means that small perturbations from the equilibrium 
state will decay over time, and the system will return to a steady state. 
Mathematically, this stability is often associated with eigenvalues of the 
system’s linearization having negative real parts, indicating conver-
gence to the equilibrium. In other words, a delay shorter than the critical 
delay maintains the system’s stability. When the delay exceeds the 
critical delay, the system becomes unstable. This means that small 
perturbations from the steady state can grow over time, leading to os-
cillations or divergent behavior. This destabilization is commonly 
manifested by eigenvalues with positive real parts, indicative of diver-
gence from the equilibrium. The system, in this scenario, tends to exhibit 
oscillatory behavior. 

To summarize, the time delay term in the proposed model signifi-
cantly affects the dynamic pattern of solar irradiance, where changes in 
time delay can cause significant changes in the amplitude, peak value 
and phase of the cycles. In addition, the time delay in the model 
significantly affects the system’s behavior. For example, the time delay 
value can determine the system’s stability and bifurcation properties. In 

Fig. 5. Solar irradiance model and actual data for slightly cloud covered day.  

Fig. 6. Solar irradiance model and actual data for heavily overcast day.  

Table 3 
Comparison between three scenario.  

Scenario Clear Day Slightly Cloud 
Covered 

Heavily 
Overcast 

Maximum output 
current, I0 

10.41 A 6.04 A 2.48 A 

Maximum output power, 
P0 

389.36 W 225.76 W 92.61 W 

Range of output current 
in intermediate phase 

1.30–10.41 A 0.71–6.04 A 0.55–2.48 A 

Range of output power in 
intermediate phase 

48.57–389.36 
W 

63.80–225.76 W 12.40–92.61 
W  
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addition, it can lead to different types of behavior, such as stability and 
periodic oscillations. 

4.3. The prediction profile of output current and output power 

A solar panel produces the output current by absorbing photons from 
sunlight. Consequently, from the absorption of photons, the PV cells will 
strike electrons into a higher energy state, generating a flow of electrical 
current. Correspondingly, the output power of a solar panel is obtained 
by multiplying the panel’s output current and output voltage. The 
resulting output current is measured in amperes (A), while the output 
power is measured in watts (W). 

The performance of solar PV systems in terms of output current and 
power is not fixed but changes over time each day. Other than that, the 
daily changing pattern provides valuable information for designers and 
users to analyze the performance of their solar PV systems. The objective 
of this study was to provide a prediction profile for the hourly output 
current and power depending on the amount of the collected solar 
irradiance on the panel. 

This section focuses on simulating the output current and power for 
STP250S-20/Wd crystalline solar module. Fig. 9 the trajectory of output 
current for the three weather conditions: a clear day, a light cloud cover, 
and a heavy cloud cover. The highest output current is generated on 
clear days, followed by slightly cloud cover and heavily overcast days. 
The output current changes significantly depending on the variation in 
the solar irradiance captured by the PV module. On clear days, a PV 
module might receive a lot of solar irradiance, whereas, on overcast 
days, it can receive less. The increase in output current meant more solar 
irradiance was collected by the PV module, as visualized in Figs. 4–6. 
Besides the level of solar irradiance, it is important to note that the 
trajectory of the output current of a solar panel in a day is influenced by 
other factors. This includes the latitude, the time of year, the weather 
conditions, the surface area of the panel, the efficiency of the PV cells, 
the load resistance and the orientation and tilt angle of the panel (Khatib 
et al., 2012; Mekhilef et al., 2012; Moballegh and Jiang, 2014; Rizal and 
Wibowo, 2013; Rosario, 2014; Shukla et al., 2015; Zaatri and Azzizi, 
2016). 

The profile of output current during heavily overcast days is por-
trayed in Fig. 10. It can be seen that the output current is proportional to 
the amount of solar irradiance hitting the panel. It is observed that, the 
peak time for solar irradiance is earlier than that for output power. 

In Fig. 11, the output power is compared for three weather condi-
tions: clear day, slightly cloudy, and heavily overcast days. The PV 
module collects more solar irradiance on clear days, resulting in the 
highest output power, and less on overcast days. Note that the peak 

Fig. 7. Solar irradiance for various values of τ during clear days.  

Fig. 8. Solar irradiance for small values of τ during clear days.  

Fig. 9. Output current for three scenarios.  
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values of solar irradiance and output power are not reached simulta-
neously. Solar irradiance typically reaches its peak earlier than the 
output power. Other factors that influence the trajectory of the output 
current include panel age and condition, PV cell efficiency, panel 
orientation and tilt angle, shading on the panel, and atmospheric con-
ditions, in addition to solar irradiance level (Khatib et al., 2012; 
Mekhilef et al., 2012; Moballegh and Jiang, 2014; Rizal and Wibowo, 
2013; Rosario, 2014; Shukla et al., 2015; Zaatri and Azzizi, 2016). The 
prediction profile for hourly output power indicates that it tends to be 
higher on clear days compared to cloudy days, similar to the trend 
observed in output current. This is because output power and output 
current are highly correlated. 

Table 3 compares the maximum output current and output power, 
and the range of output current and output power in intermediate phase 
of a solar PV module under three different weather conditions: clear, 

slightly cloudy, and heavily overcast. According to the results, the 
maximum output current and power of a PV module decrease by 42% 
and 76%, respectively, during slightly cloudy and heavily overcast 
conditions compared to clear days. During the intermediate phase of 
heavily overcast days, a PV module’s output current and power vary 
slightly, with the smallest range within 0.55–2.48 A and 12.40–92.61 W, 
respectively. Conversely, a PV module’s output current and power value 
exhibit the largest range during the intermediate phase on clear days 
within 1.30–10.41 A and 48.57–389.36 W, respectively. Between 9 a.m. 
and 4 p.m. on slightly cloud covered days, the STP250S-20/Wd crys-
talline solar module produced output current and power ranging from 
0.71 to 6.04 A and 63.80–225.76 W, respectively. Overall, the perfor-
mance of a PV module is better on clear days compared to cloudy days. 

In accordance with the solar irradiance model’s result, the conse-
quent performance of solar panels in terms of output current and power 

Fig. 10. Output power and solar irradiance for heavily overcast.  

Fig. 11. Output power for three scenarios.  
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adequately matches the intermediate phase and decay phase. However, 
it is a bit off for the growth phase. Despite that, it can still provide a 
valuable purpose for practitioners while focusing on the intermediate 
and decay phases. Rationally, most PV systems work productively dur-
ing the intermediate phase from 9 a.m. to 4 p.m. That is the most crucial 
time to focus on. The depletion of the performance can also be studied 
through the decay phase. 

The key findings of this study were deduced as follows.  

i. The changes in solar irradiance will contribute significantly to the 
output current and the production of output power. As the solar 
irradiance increases, the output current and power will increase.  

ii. The delay time is a crucial factor that must be considered when 
modelling solar irradiance to reproduce its fluctuations accu-
rately. The delay times would affect the solar irradiance level that 
arrived on the solar PV panel.  

iii. The prediction profile for solar irradiance aligns well with the 
intermediate and decay phases but deviates slightly during the 
growth phase. Accordingly, the hourly prediction profiles for 
output current and power have a similar trend.  

iv. The maximum output current and power of STP250S-20/Wd 
crystalline solar module decrease by 42% and 76%, respec-
tively, during slightly cloudy and heavily overcast conditions 
when compared to clear days.  

v. The amount of energy a solar PV panel produces depends on the 
weather conditions. The performance of a PV module is better on 
clear days compared to cloudy days.  

vi. This study elucidates the relationship between delayed solar 
irradiance and the performance of the PV system. 

5. Conclusion 

Essentially, we made clear connections between the delayed solar 
irradiance and the performance of a solar PV model. We developed a 
new mathematical model to predict the solar irradiance that will hit the 
PV panel and employed the DDE for the first time. Other than that, we 
succeeded in estimating the unknown parameters related to direct, re-
flected and diffuse solar irradiance by adopting a parameter fitting 
technique, the Nelder Mead algorithm. Although many researchers have 
utilized output current and power as time-independent functions, we 
treat those equations as time-dependent. The main highlight of the 
proposed model is that the delay impacts solar irradiance and, conse-
quently, the output current and power produced by the solar PV module. 
The prediction profile for solar irradiance aligns well with the inter-
mediate and decay phases but deviates slightly during the growth phase. 
The maximum output current and power of STP250S-20/Wd crystalline 
solar module decrease by 42% and 76%, respectively, during slightly 
cloudy and heavily overcast conditions, compared to clear days. The 
amount of energy a solar PV panel produces depends on the weather 
conditions. The performance of a PV module is better on clear days 
compared to cloudy days. The delay factor added value to the solar PV 
model and increase the understanding of the whole system. 
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