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ABSTRACT Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency
due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three
different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and
0.125 wt.%. Maximum specific heat capacity nanofluids (c,yr) augmentation is 24.49% at 0.125 wt.%
loading of Ti3C; in the base oil. The calculation of the c,yr based on the temperature and nanoflakes
concentration is very expensive and time-consuming as it should be calculated via the practical test
investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning
method to extract the surrogate model for calculating the c,yr based on the temperature and nanoflakes
concentration. In addition, a couple of other machines learning methods, including support vector regression
(SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove
the higher efficiency of the recently proposed LSTM model in the calculation of the c,nr. In addition, the
Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed
SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the c,yr based
on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning
calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing
and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP,
and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM
model can reduce the mean square error in calculating the cpyr by 99%, 99% and 91% compared with SVM,
GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical
properties of nanofluids.

INDEX TERMS Nanofluids, MXene, deep learning, machine learning, specific heat capacity, Bayesian

optimization.
I. INTRODUCTION
In recent numerical/experimental studies, researchers are
The associate editor coordinating the review of this manuscript and attracted to exploring innovative techniques to further effi-
approving it for publication was Jolanta Mizera-Pietraszko . ciency enhancement of PV/T hybrid systems using nanofluid
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(NF) as a coolant instead of conventional working fluids
since conventional fluids usually suffer from poor ther-
mal and optical characteristics that limit the efficiency
of PV/T [1], [2]. NFs are advanced heat transfer fluids
with superior thermo-physical characteristics prepared by
dispersing nano-sized solid particles (1-100 nm) into con-
ventional pure base fluids such as water, mineral oils and
a combination of different fluids or organic chemical flu-
ids. NFs exhibit improved heat transfer characteristics due
to advanced properties of nanoparticles dispersed in a base
fluid, such as greater heat transfer coefficient, Brownian
motion mechanism in colloidal mixture and surface charge
of the nanoparticles [3], [4]. Besides, investigations have
demonstrated that NFs convey significantly higher thermal
conductivity because dispersed nano-sized particles cause
a larger surface area than base fluids [5], [6]. Due to the
advanced properties of NFs, they are being extensively
implemented in solar-based energy conversion systems [7].
The impact of NFs on non-concentrating and concentrat-
ing solar collectors has exhibited remarkable augmentation
inefficiency of the systems [8].

Nanoparticles, including carbon nanotubes and 2D
graphene materials, significantly impact nanofluids’ ther-
mal properties [9], [10]. These two-dimensional materials
possess exceptional thermal, optical, and electrical character-
istics, garnering extensive research attention [11]. In 2011,
Drexel University researchers unveiled MXenes, a family
of 2D materials comprising carbonitrides, transition metal
carbides, and nitrides [12]. MXenes exhibits outstanding
thermo-electric, optical, magnetic, and adsorption properties
and robust mechanical strength. MXenes are derived from
the Mn+1AXn phase through selective ‘A’ layer etching,
offering diverse applications due to their remarkable chemi-
cal and mechanical attributes. Recent studies have explored
MXene (TizC,) particles, revealing significant improvements
in energy storage and thermal conductivity [13]. However,
their utilization in hybrid PV/T solar systems as nanoflu-
ids remains unexplored. Conventional base fluids in solar
thermal processes pose environmental threats due to toxi-
city and non-biodegradability. Researchers are increasingly
focusing on alternative, eco-friendly base fluids, such as
vegetable oils, known for their non-polluting properties [14].
Various oil-based nanofluids, including thermal, transformer,
turbine, and synthetic oil, have been extensively studied [15].
In addition, neural network-based models have been pro-
posed for optimizing solar thermal fluid transfer systems,
demonstrating their reliability [16]. Soybean oil, known for
its superior heat transfer capacity, wide availability, non-
toxicity, and biodegradability, stands out as an effective
additive in PV/T solar collectors [17]. Wang et al. [18]
demonstrated the enhancement of photothermal conversion
efficiency (63.35%) of MXene nanofluids, outperforming
graphene nanofluids, optimizing the working conditions of
direct absorption solar collectors. These findings emphasize
the need for continued research in this domain.
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cpnF has contradictory results stated in several research
articles. However, literature reports that c,yr can be ele-
vated considerably relative to base fluid due to distributed
nanoparticles. Hu et al. [19] showed that the ¢, of salt-based
Si0; increases at low particle loading (< 1 wt.%) and begins
to decrease at high concentrations. The analogous study
conducted by Rodriguez-Laguna et al. [20] revealed 18%
augmentation in ¢, of graphene NF. They attributed the mech-
anism to negligible flake thickness, nano-layering across the
flakes and emerging thermal resistance in the dispersion.
Sonawane et al. [21] revealed some exciting findings about
ATF (aviation turbine fluid) based Al O3 NF. They measured
the specific heat of 0.1 vol% of Al203, less than pure fluid.
However, for higher volume concentrations (0.3 vol% and
0.5 vol%), the ¢, was higher than the parent fluid, and for
1 vol% of Al,Os, it again decreased. These results indicate
uncertainty of specific heat capacity (cp) with low to high
particle loading.

The idea of machine learning has been implemented
in many areas to imitate the complicated plant model,
which cannot be modelled using a classical mathematical
model [22], [23]. It helps researchers reduce the number
of trials in extracting the thermophysical properties of the
NFs. The idea of machine learning is to develop a model
using the limited experimental dataset to calculate the ther-
mophysical properties of the NFs [24]. Several researchers
have used Machine learning methods in NFs to estimate
cpNF- Alade et al. [25], [26] used a support vector machine
(SVR) to estimate the c,nr of metallic oxides/ethylene gly-
col using temperature (K), ¢, of ethylene glycol (J/K.g),
the ¢, of nanoparticles (J/K.g) and volume fraction of the
nanoparticles (wt.%). Their proposed SVR prediction model
was one of the pioneer machine learning-based models in
estimating the cpyr. They used the Bayesian optimization
technique to choose the optimal hyperparameters of the SVR
prediction model. Later, Alade et al. [27] proposed another
SVR prediction model using the volume fraction of the
nanoparticles (wt.%) and the ¢, of nanoparticles (J/K.g).
It should be noted that the simplification (usage of 2 inputs
instead of 4 inputs) and usage of a meta-heuristic algorithm
for optimization instead of global optimization (genetic
algorithm (GA) instead of Bayesian optimization method)
is the main differences between their proposed method [27]
in comparison with previous method [25], [26]. Hassan and
Banerjee [28] employed a multi-layer perceptron (MLP) for
the estimation of the cpyr of molten salt-based using tem-
perature (°C), the mass fraction (wt.%), the specific heat of
nanoparticles (J/K.g), and average diameter of nanoparticles
(nm) as inputs of the prediction model. Jafari and Fatemi [29]
estimate the cpyr of nitride-based using the Monte Carlo
method with consideration of nanoparticle sizes (nm), tem-
perature (°C) and a Mass fraction (wt.%). Alade et al. [30]
predicted the isobaric ¢,y of nitrides/ethylene glycol-based
with consideration molar mass of the nanoparticles (g/mol),
size of the nanoparticles (nm), the temperature (°K), and
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mass fraction of nanoparticles (wt.%) as inputs of the system.
Alade etal. [31] used SVR and MLP for c¢,nF of copper oxide
prediction with consideration of temperature (°K), volume
fraction (wt.%) and specific heat of nanoparticles (J/K.g)
as input vector of the system. They found that the machine
learning method (MLP) is able to reach more accurate results
compared to a classical method (SVR). Jamei et al. [32]
developed the hybrid model with a combination of Gaus-
sian process regression and Radial basis function network to
reach a higher accuracy in predicting ¢,yr based on temper-
ature (°K), solid volume fraction (wt.%), mean diameter of
nanoparticle (nm) and ¢, of nanoparticles (J/K.g). Their pro-
posed method [32] shows higher accuracy in the prediction of
¢pNF in comparison with random forest (RF) as the suitable
candidate for the classical method. Later, Jamei et al. [33]
investigated the estimation of ¢,y of molten salt-based using
two novel ensemble machine learning methods, including
extra tree regression and AdaBoost regression. These two
models are validated using RF and a boosted regression tree.
It should be noted that the inputs of the proposed algorithms
are solid mass fraction (wt.%), temperature (°K), ¢, of base
fluid, mean diameter (nm), and density of nanoparticle (p).
Adun et al. [34] investigated the influences of volume con-
centration (wt.%), mixture ratio and temperature (°K) on the
cpNF of Fe304-Al,03-ZnO/water ternary hybrid synthesis.
They [34] proposed the Hybrid machine learning-based pre-
diction model to calculate the c,yr based on pre-investigated
parameters. Their proposed method is the combination of GA
and SVR as well as MLP. Their proposed GA-based SVR pre-
diction model beat the MLP in calculating c,yr with higher
accuracy than the MLP prediction model. Assad et al. [35]
reviewed the influence of different parameters in c,yr. They
found that properties of solid structures, concentration (wt.%)
and temperature have the considerable influence in c,np
[35]. Zobeiry et al. [36] used MLP to solve the heat transfer
equation in engineering applications and advanced manu-
facturing. They validated their extracted results for one- or
two-dimensional cased of e heat transfer partial differential
equation by finite element models. Recently, reinforcement
learning is used by Wang et al. [37] in order to control the heat
transfer parameters of the indirect-contact heat exchangers.
Their proposed method shows the higher efficiency in the
existence of higher disturbances.

In order to eliminate the time-consuming and expensive
practical extraction of the thermophysical properties of the
soybean oil/MXene NFs, machine learning methods are used
to calculate the requested outcomes. However, the above-
reviewed literature [25], [26], [27], [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37] shows a lack of comprehensive
investigation to extract the most efficient method for calcu-
lating the thermophysical properties of soybean oil/MXene
nanofluids. This study aims to develop a methodology to
extract the efficient machine learning method to calculate
the cpnr based on the temperature and nanoflakes concen-
tration. In detail, the research gaps and contributions can be
categorized as follows:
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e For research gaps:

1) Limited exploration of advanced machine learning
techniques, such as LSTM, for predicting the cpnF.

2) Lack of clarity on which machine learning method is
currently the most effective for ¢,yr prediction.

3) Insufficient information on the impact and effec-
tiveness of Bayesian optimization in improving the
performance of ¢pyr prediction models.

4) Lack of quantification regarding time and cost sav-
ings is achieved by eliminating practical tests for the
determination of thermophysical properties.

e For research contributions:

1) Introduction of advanced machine learning methods,
including SVR, MLP, GMDH, and LSTM, for esti-
mating cp,nr based on temperature and nanoflakes
concentration.

2) Utilization of Bayesian optimization to enhance the
performance of machine learning models.

3) Elimination of the need for time-consuming and
expensive practical tests in determining ther-
mophysical properties of soybean oil/MXene
nanofluids.

It should be noted that the Bayesian optimization method,
as one of the most efficient global optimization methods with
higher accuracy and lower computational load, is employed
in this study to calculate the hyperparameters of the pro-
posed machine learning techniques to increase the model’s
performance [38], [39].

In the next Section, the design of the experiment from
producing soybean oil/MXene NFs until the extraction of
the dataset is explained. Section III explained the proposed
methodology of this study, including the investigation of the
investigated and newly proposed machine learning methods
with a combination of Bayesian optimization. MATLAB
software verifies and validates the investigated methods in
Section IV. The most remarkable outcomes are explained,
and the consequence is concluded in Section V.

Il. MATERIALS AND EXPERIMENTS

The thermophysical properties of the NF are composed of
viscosity, thermal conductivity, cp, and thermal diffusivity.
It is not hard to exaggerate the importance of thermal conduc-
tivity compared to other thermophysical properties. In total,
95% of studies are based on investigating thermal conductiv-
ity NFs because of the importance of these thermophysical
properties. In addition, the ¢,y received less attention than
the other 5% of thermophysical properties investigation of
the NF. Despite this, the investigation of the cpnr is essential
for calculating the solar collector’s performance. In addition,
understanding the c,nr is the key to calculating the heat trans-
fer rate between different fluids. Due to good heat transfer
properties, Soybean oil (Sigma Aldrich, USA) is selected as
the base fluid. Soybean oil is a vegetable oil with a chemical
composition of long-carbon chained triglycerides and several
lipids.
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A. PREPARATION OF SO/Ti; C, NANOFLUIDS

Our previous research used the MXene (TizC,Tx) synthesis
process [40]. A two-step technique is applied to synthe-
size Soybean oil-based TizC, NF, considering this method
is convenient for large-scale production and most econom-
ical. However, stability is a major challenge in formulating
NF in this method. Firstly, synthesized Ti3C, powder was
dispersed to the base Soybean oil at three different weight
fractions ranging from 0.025 to 0.125 wt.%. After adding
Ti3C,, two stabilization techniques were used to develop
stable NF. Firstly, NF samples were stirred for 30 min at
700 rpm by a magnetic stirrer and concurrently heated at
70 °C temperature to make the mixture homogenous into the
base fluid. The sonication process was conducted for 30 min
using an ultrasonic probe sonicator (FS-1200N) to agitate
the intermolecular forces between Ti3;C, nanomaterials and
disperse them uniformly.

B. CHARACTERIZATION

The ¢, measurement of the developed soybean oil-based
MXene nanofluids is processed using differential scanning
calorimetry (DSC), DSC-1000/C (Linseis, Germany) [40].
According to our research study [40], the acquired exper-
imental results exhibited good accuracy by the provided
results by the supplier. In addition, a uniform measurement
process was another advantage of ensuring the precision of
the measure ¢, results.

lll. METHODOLOGY

This paper aims to predict the ¢,y of the soybean oil/MXene
NF based on temperature and nanoflakes concentration. The
employed data in machine learning methods is obtained
via a DSC for 0.025, 0.075 and 0.125 (wt.%) of soybean
oil/MXene NF. High-advanced machine learning methods,
including SVR, GMDH, MLP and LSTM, are employed in
predicting cpnr. Then, it is worth mentioning that this work
is the first to use a comprehensive machine learning study to
calculate the NF’s ¢, . The reason for using highly advanced
machine learning such as LSTM is the highly nonlinear
behavior of the cpyr behavior of the soybean oil/MXene NF
based on the temperature and nanoflakes concentration. The
high power of the LSTM because of the existence of memory
cells inside the structure of this network is the main reason
for achieving the task compared with other machine learning
methods such as SVR, GMDH and MLP.

Figure 1 shows the schematic structure of the proposed
method in this study, from the production of the soybean
oil/MXene NF to the calculation of the c,yr. The proposed
method started with producing the NF using pure, 0.025,
0.075 and 0.125 (wt.%) concentrations. Then, the produced
materials are tested via a DSC, and the dataset is saved
using.csv format. The recorded dataset is employed in a
pre-processing block to eliminate the out-of-range data, nor-
malized and divided to train and test datasets. The Bayesian
optimization method calculates the optimal indexes of the
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four investigated machine learning techniques. The valida-
tion process halts training when the validation error rate on
a non-training subset increases continuously for more than
6 epochs to prevent overfitting. After extracting the optimal
indexes of the proposed machine learning techniques, the
final models, which are known as Opt-SVR, Opt-GMDH,
Opt-MLP and Opt-LSTM, are compared with each other
using the extracted dataset to extract the most accurate model
among the four investigated machine learning methods.

A. DATASETS

Figure 2 represents the ¢,y of SO/ Ti3C, NF at different par-
ticle loading of TizC; nanoparticles. Results show that c,nr
of the NF improves with the increment of weight fraction of
Ti3C, particles and evaluated temperatures from 25 to 80 °C.
The uncertainty measurement of c,nr in the present inves-
tigation is approximately 2.5% for the working temperature
range. ¢,nrF exhibited significant enhancement with the addi-
tion of TizC, particles. The achieved data reveals that the
maximum cpyF increment is found to be approximately
24.49% for 0.125 (wt.%) (cpnr = 2.06 J/g K) compared
to Soybean oil (c,yr = 1.65 J/g K) at 25 °C. The higher
heat absorption capacity of two-dimensional TizC, parti-
cles and interface attractions in surface area between pure
Soybean oil and MXene atoms are attributed to the cause
of cpnyr augmentation of the NF. The formed interaction
between these molecules and the homogenous dispersion of
nanoflakes in the pure oil can cause improved ¢,y of SO/
Ti3Cy NF. At elevated temperature, particles tend to store
more energy as extra heat leads to vibrational energy and
enhances the average energy of the molecules. For negligi-
ble surface thickness (< 10 nm) of 2D materials, c,nyr of
the NFs can be enhanced due to emerging phonon modes
(Rodriguez-Laguna et al., 2018). The results suggest the
prominent heat storage capability of SO/Ti3C, NF. Therefore,
it can be stated that developed NF can be a potential substitu-
tion for conventional fluids in the PV/T system to improve the
overall c,yF of the system. In addition, Table 1 summarizes
the extracted datasets from the above-explained experimental
study to clarify the understanding of the input parameters
(including Temperature °C and wt.%) and output parameter
(cpnF)- However, we should mention that the actual dataset is
consists of 3348 different Temperature (°C) for each concen-
tration, including pure, 0.025, 0.075, and 0.125 Cp (J/(g K)).
Then, it can be concluded that the training/validation/testing
dataset is 13,392.

B. PRE-TUNING OF ALGORITHM

The pre-processing of the dataset is utilized to reduce the
system’s complexity during the training process of the net-
work to reach higher accuracy. It starts with eliminating the
out-of-range data because these data dramatically decrease
the accuracy of the network. The main source of these data
is the fault in measuring systems. Normalization n,; and
standardization o, can be used to allocate the mean and std
of the dataset in the rational range and decrease the system’s
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FIGURE 1. The graphical representation of the proposed method in this study from producing the NFs until the evaluation of the investigated

machine learning methods.
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complexity for the network. It has been calculated as follows:

Xi — X
ny = o 8))
X—x
Xi —X
oy = @)
Ox

where x, X and X are the minimum, maximum, and mean
values of the dataset. Also, x;, ny, and oy, are ith raw,
normalized, and standardized data. It should be noted that
the normalization/standardization process is implemented
for input and output data separately. The final step of the
data pre-processing is dividing data into training and testing
samples.

C. GROUP METHOD OF DATA HANDLING
GMDH, introduced by Ivakhnenko [41], is a modelling
method for complex nonlinear systems. It selects, combines,
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TABLE 1. The sample of the extracted dataset from the experimental
study includes inputs (Temperature °C and wt.%) and output (c,xF).

TEMP ¢ (J/(GK))
(°O) PURE 0.025 0.075 0.125
WT.% WT.% WT.%
25 1.656833 1.689561 1.81698 2.061926
30 1.659902 1.684547 1.824393 2.052467
35 1.661488 1.677129 1.840338 2.04233
40 1.662575 1.677094 1.858106 2.035072
45 1.663308 1.673066 1.876944 2.027286
50 1.665074 1.673056 1.898761 2.022955
55 1.669391 1.676841 1.922448 2.012461
60 1.68013 1.686066 1.949505 2.015223
65 1.694943 1.702049 1.974919 2.02169
70 1.713314 1.719549 1.996323 2.044691
75 1.73043 1.741267 2.009633 2.073444
80 1.74357 1.760389 2.016403 2.108299

and generates neurons to adapt to system complexity without
relying on a precise physical model, making it a valuable tool
for modelling and prediction tasks.

The methodology of GMDH revolves around selecting
essential neurons in a network to minimize prediction errors
and extract an ideal neural structure. This process includes
continuously choosing, combining, and generating new neu-
rons until a new generation fails to outperform the previous
ones. GMDH adapts to the complexity of nonlinear sys-
tems through the regeneration of filtered neurons, their
combination, and the extraction of next-layer neurons. This
iterative process continues until the best model is obtained.
Regarding mathematical representation, GMDH employs
Volterra-Kolmogorov-Gabor (VKG) polynomial components
in a self-organized network. This network captures relation-
ships between inputs and outputs through polynomial terms,
with coefficients determined during the modelling process.
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GMDH consists of multiple neural layers, with each neu-
ron having two inputs and one output. The Ivakhnenko
polynomial calculates the neuron outputs, effectively mod-
elling the relationships between input variables.

D. SUPPORT VECTOR REGRESSION

SVR, introduced by Cortes and Vapnik [42], is a powerful
technique for handling linear and nonlinear time-series data.
It seeks an optimal hyperplane with strong generalization
capabilities, making it particularly useful in financial appli-
cations and other fields. The method minimizes a specific
function with constraints and utilizes a mapping function to
handle nonlinear data effectively. SVR aims to find an opti-
mal decision hyperplane that maximizes the margins between
two sample classes, demonstrating strong generalization abil-
ity. It is well-suited for small-sized and nonlinear datasets and
finds use in various fields, including approximation.

In SVR, data is typically represented as a set of pairs (x, T),
where x represents attributes and T represents labels for linear
functions. The regression function in SVR is expressed as
f (x) = (w | x)+b. The goal of SVR is to minimize a specific
function ® (w, &) that includes a regularization term and a
term related to errors. This function is minimized concerning
the support vector (w) and a cost parameter (C). Slack vari-
ables (£) are used to account for errors in predictions. SVR
employs a loss function to reduce errors between the pre-
dicted and actual labels. In this context, the e-insensitive loss
function is commonly used. Solving the optimization prob-
lem in SVR involves constraints related to the e-insensitive
loss function, and it is typically done using Lagrange
multipliers and the Karush-Kuhn-Tucker conditions. To han-
dle nonlinear data, SVR employs a mapping function W,
which maps the data into a feature space, facilitating better
regression.

E. MULTI-LAYER PERCEPTRON

The Multi-layer Perceptron (MLP), initially introduced by
Rosenblatt [43], is a learning network that employs backprop-
agation and features multiple hidden layers. Typically, MLP
comprises three layers: hidden, input, and output. Nonlinear
activation functions are utilized for all neurons, excluding
those in the input layer. MLP is a versatile tool used predom-
inantly for regression tasks as a supervised learning method,
but it can also handle classification tasks. MLP adjusts its
parameters, including biases and weights, during training
based on the provided input and output datasets. The primary
objective is to minimize the error between predicted outputs
and target values.

Validation parameters such as the mean square error (MSE)
or root mean square error (RMSE) are employed via the back-
propagation algorithm to achieve this error minimization.
Notably, the backpropagation algorithm employs gradient
descent as a stochastic method to propagate the biases and
weights backward throughout the network. During training,
the jth output node in the nth data point is represented as the
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difference between the actual (d) and predicted (y) values:
ej (n) = d; (n) — yj (n) (3)

The weights are extracted by minimizing the error across
all actual and target values of the system:

1
JOEEDINAC )

Gradient descent is then used to calculate the weight vari-
ations as follows:
ae (n)
Bvi (n)
where v;, y;, and 7 represent the local induced field, the previ-
ous neuron’s output, and the learning rate, respectively. The
learning rate affects the convergence speed of the network.
The derivative of the weight concerning the local induced
field can be expressed as:

de (n)
v (n)

where @ represents the derivative of the activation function,
and it remains constant with respect to variations in the local
induced field and weights. Furthermore, the derivative of the
weight for the hidden neuron is determined by considering
the derivative of the activation function (¢’) and the influ-
ence of the kth node’s weight (output layer) on the hidden
node’s weight variation, thus defining the activation func-
tion’s backpropagation [44].

Awiji(n) = —n yi (n) (&)

=ej(m ¥ (v (n)) (0)

F. LONG SHORT-TERM MEMORY

LSTM is used in machine learning and deep learning as a
highly advanced artificial neural network model [45]. Unlike
the MLP, LSTM has a feedback connection to decrease errors.
The LSTM model can efficiently handle a lengthy list of
data samples using its memory blocks. Memory blocks are
employed in the LSTM model to handle the complexity of a
long sequence dataset. Using LSTM, input is defined based
on the history of the signal, and the output is the signal’s
actual future (next time-step). LSTM comprises three units,
including the input, output, and forget. Every unit combines
the sigmoid function and dot product to generate gradient
information regarding elimination, control, and distortion of
the information flow. The proposed LSTM model for c,nr
of the soybean oil/MXene NFs comprises an input generator
unit, a normalization unit, and a sequence input layer, fol-
lowed by a variable number of hidden layers and units, a fully
connected layer, and regression output. It is noteworthy that
during the training process of the model, the inputs and
outputs of the model are defined on the basis of the history of
the motion signal.

The LSTM model, which consists of input, output, and
forgets gates, with each gate derived from the sigmoid func-
tion and dot product to defend the gradient information from
deletion or distortion and regulate the flow of information,
is made learning-friendly by the forgotten historical infor-
mation and updated memory units. The LSTM indexes are
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chosen based on the Bayesian optimization method to get
the most effective outcomes in regenerating the optimal input
motion signal for the motion simulator user. It should be noted
that the proposed algorithm is modularly designed to support
the definition of LSTM or BiLSTM as well as consideration
or non-consideration of the dropout layer, which is normally
used to avoid the overshooting problem of the data during
training and testing. The trained LSTM is used to predict the
cpnr of the soybean oil/MXene NFs.

There are two training methods in the LSTM, including
real-time recurrent learning (RTRL) and truncated backprop-
agation through time (BPTT) with respect to gradient descent
optimization. The summation of the square of the errors is
defined as a loss function. The exploitation of the linear con-
stant error carousel of the memory cell shortens the error. The
error discharges from the cell and decreases exponentially
inside the carousel of the memory cell.

G. BAYESIAN OPTIMIZATION METHOD

Bayes’ theorem, invented by Thomas Bayes, is based on
statistical methods to calculate the probability of the inci-
dent [46]. A Bayesian optimization can be categorized into
constrained optimization while minimizing the objective
function [47]. The cost function is defined in this study to
minimize the MSE and RMSE while maximizing the cor-
relation coefficient (CC) using the stochastic method. Also,
the state can be continuous reals, categorical, or integers.
In this study, we used the Bayesian optimization method
for the automatic tunning of our proposed machine learn-
ing methods because of the tremendous advantages of this
constrained-based optimization method. The tuning of the
machine learning method is often a black art that needs
expert knowledge to reach high performance. The Bayesian
method works through an iterative development of the global
statistical model of the unknown objective function. The
optimization starts with a likelihood and prior over functions.
A posterior distribution is calculated according to each iter-
ation’s previous objective function evaluation. The elements
in the Bayesian optimization method are a Gaussian model of
the cost function, Bayesian’s updating procedure, and acqui-
sition function. An acquisition function assesses the location
of the state using the posterior distribution function.

The Bayesian optimization method extracts the GMDH,
SVR, MLP and LSTM hyperparameters. The proper cost
function definition is essential in calculating the relevant
results based on the system’s needs. The modular definition
of the sequencing block and MLP model is used inside the
Bayesian optimization method. Then, the model is trained
and evaluated using the predefined values via the optimiza-
tion algorithm. The cost function is defined to decrease
prediction error. Then, the MSE between the actual ¢, and
predicted ¢, during the testing process is defined as the cost
function for the Bayesian optimization algorithm.

1

T SN U N
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TABLE 2. The extracted optimal hyperparameters using the Bayesian
optimization method for MLP and LSTM.

METHOD ADJUSTMENT PARAMETERS
GMDH MAXIMUM NUMBER OF LAYERS=10; MAXIMUM NUMBER
OF NEURONS=100; TRAINING RATIO=0.7; SELECTION
PRESSURE=0
SVR GAUSSIAN KERNEL FUNCTION; AUTOMATIC KERNEL
SCALE; STANDARDIZE THE DATA.
MLP NUMBER OF LAYER=2; NUMBER OF NEURONS=11;
LINEAR RATE=0.0959
LSTM NUMBER OF LAYER=10; NUMBER OF NEURONS=321;
INITIAL LEARNING RATE=5x10-4;
L2REGULARIZATION=1.0825x10-10

TABLE 3. The testing samples for evaluation of the four investigated
machine learning methods.

N TEMP WT.% | Cenr N TEMP WT.% | Cenr
(°C) /G (°C) (/G

OK) OK)

1 68.2805 | 0.125 | 2.04 11 82.7700 0 1.75
2 | 83.3962 | 0.075 | 2.02 12 63.5959 | 0.025 | 1.70
3 | 366116 | 0.075 | 1.85 13 89.6680 | 0.025 | 1.79
4 | 47.1150 0 1.66 14 73.7205 | 0.025 | 1.74
5 | 28.6824 0 1.66 15 92.7611 | 0.125 | 2.20
6 | 852578 | 0.125 | 2.15 16 79.3697 0 1.74
7 | 684706 | 0.125 | 2.04 17 29.8299 0 1.66
8 | 45.0176 | 0.025 | 1.67 18 57.4651 | 0.025 | 1.68
9 | 69.8175 | 0.075 | 2.00 19 87.3806 | 0.025 | 1.78
10 | 87.2807 | 0.025 | 1.78 20 39.2977 | 0.075 | 1.86

where T; and 7; are the ith output and the ith predicted value.

IV. RESULTS AND DISCUSSIONS

Four investigated machine learning methods, including SVR,
GMDH, MLP and LSTM, have been modelled in MATLAB
to discover the most efficient model in predicting the soybean
oil/MXene NFs using temperature and nanoflake concen-
tration. The Bayesian optimization method is employed to
extract the optimized model of each machine learning method
shown as Opt-SVR, Opt-GMDH, Opt-MLP and Opt-LSTM.
The combination of the verification and validation
subsections structured this Section.

A. VERIFICATION

GMDH is designed regarding the explained model in
Section III-C. SVR is designed regarding the described
model in Section III-D. MLP is prepared based on the
presented mathematical model in Section III-E. LSTM is
prepared based on the presented mathematical model in
Section III-F. The Opt-GMDH, Opt-SVR, Opt-MLP and
Opt-LSTM have been prepared according to the presented
mathematical model in Sections III-G. MATLAB software’s
fitrsvm, feedforwardnet and trainNetwork functions are used
to design the SVR, MLP and LSTM models. In addition,
the GMDH algorithm is developed based on the provided
model by Kalami Heris [48]. The proposed methods in the
previous Section are coded in MATLAB software, and out-
puts are visualized using the plot function. In addition, the
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TABLE 4. The extracted results of proposed and investigated machine learning methods, including GMDH, SVR, MLP and LSTM, with/without using the

Bayesian optimization method during the implementation of testing datasets.

METHOD GMDH SVR MLP LSTM METHOD GMDH SVR MLP
PROCESS TRIAL-AND- OPTIMIZED TRIAL-AND- OPTIMIZED PROCESS TRIAL-AND- OPTIMIZED TRIAL-AND-
ERROR ERROR ERROR ERROR
MSE 0.073 0.057 0.078 0.047 MSE 0.073 0.057 0.078
RMSE 0.581 0.239 0.531 0.216 RMSE 0.581 0.239 0.531
NRMSE 0.304 0.130 0.231 0.117 NRMSE 0.304 0.130 0.231
CC -0.0081 -0.0008 -0.1373 -0.1248 CC -0.0081 -0.0008 -0.1373
ERROR ERROR
MEAN 0.024 0.001 0.025 0.010 MEAN 0.024 0.001 0.025
ERROR STD 0.423 0.246 0.326 0.221 ERROR STD 0.423 0.246 0.326
R2 0.114 0.057 -0.169 -0.125 R2 0.114 0.057 -0.169

bayesopt function of MATLAB is used to develop a Bayesian
optimization method.

B. VALIDATION

Five parameters have been used to validate our pro-
posed method compared with the traditional methods,
including CC, MSE, RMSE, normalized root mean square
error (NRMSE), and R2. These validation parameters are
calculated as follows:

coo 2 G DT -T) (8.2)
\/21 1 (‘xl —)C) ( )
1
MSE = ; ( ) (8.b)
RMSE = ( ) (8.0)
RMSE
NRMSE = === (8.d)
AN\ 2
z Ti — L
R*=1- (—)2 8.e)
> (Ti—T)

where n, x;, ¥ and T are the number of samples, the ith input,
the mean of inputs and the mean of outputs.

The investigated Bayesian optimization method is
employed four times for extracting the optimal hyperpa-
rameters of GMDH, SVR, MLP and LSTM. The extracted
hyperparameters of MLP and LSTM are shown in Table 2
using the Bayesian optimization method. The extracted
hyperparameters are defined inside the initial definition of the
proposed and investigated machine learning parameters, such
as Opt-SVR, Opt-GMDH, Opt-MLP, and Opt-LSTM, to be
trained via the implementation of 95% of the datasets. At the
same time, 5% is used for validation and testing purposes
of the methods. Increasing the validation error rate on a
non-training subset for more than 6 epochs is employed to
terminate the training process and prevent the networks from
facing overfitting problems.

In addition, Table 3 shows the testing samples of the
investigated methods for 20 trials. It includes the inputs
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(Temperature °C and wt.%) and actual output (c,yr) captured
via the experimental investigation.

In order to show the influence of the Bayesian opti-
mization method on the proposed and investigated machine
learning methods (GMDH, SVR, MLP, and LSTM), the
models are developed using the extracted optimized and
trial-and-error hyperparameters. Table 4 shows the extracted
outcomes with/without implementing the Bayesian optimiza-
tion method. As represented in Table 4, the efficiency of
GMDH, SVR, MLP, and LSTM increased by 0.73%, 1.25%,
0.59%, and 0.59% using the CC as the evaluation parameter,
respectively. Also, Table 4 shows that the implementation
of the Bayesian optimization method can reduce the MSE
of GMDH, SVR, MLP, and LSTM by 28.07%, 65.96%,
36.08-times, and 592.22-times, respectively. In addition, the
NRMSE reduces using the Bayesian optimization method
by 1.34-times, 0.97-times, 5.39-times, and 23.05-times using
GMDH, SVR, MLP, and LSTM methods, respectively.

Figure 3 represents the target and predicted c;, of the soy-
bean oil/MXene NFs based on temperature and nanoflakes
concentration using optimized GMDH, SVR, MLP and
LSTM. Based on the presented results in Figure 3, the CC
between the actual and predicted ¢, using GMDH, SVR,
MLP, and LSTM are -0.0008, -0.0428, 0.9998 and 0.9999.
The higher CC using LSTM compared to GMDH, SVR, and
MLP is because of the highest power of this machine learning
technique in handling nonlinear systems.

Figure 4a-b presents the error between the actual and
predicted ¢, of the soybean oil/MXene NFs based on tem-
perature and nanoflakes concentration using four investigated
methods (GMDH, SVR, MLP and LSTM) and two inves-
tigated methods (MLP and LSTM) for 20 trials during the
testing session, respectively. Based on the represented result
in Figure 4a, MLP and LSTM are able to decrease the MSE,
RMSE, and NRMSE more than 8260-, 107- and 111-times
compared to GMDH and SVR for 20 trials of a testing ses-
sion, respectively. Also, Figure 4b shows that LSTM is able
to decrease the MSE, RMSE and NRMSE between the actual
and predicted ¢, of the soybean oil/MXene NFs 95.08%,
78.00% and 76.67% compared with MLP for 20 trials of the
testing stage, respectively. As a result, the higher accuracy
of MLP and LSTM compared with GMDH and SVR is the
first revealed information regarding the represented results
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FIGURE 3. The actual and predicted c,yf of soybean oil/MXene NFs based on temperature and nanoflake concentration using Bayesian
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FIGURE 4. The error between the actual and predicted cp of soybean oil/MXene NFs based on temperature and nanoflake concentration using
(a): Bayesian optimization based GMDH, SVR, MLP and LSTM machine learning methods; (b): Bayesian optimization based MLP and LSTM machine

learning methods.

in Figure 4a. Also, the higher accuracy of the LSTM com-
pared with MLP is the second revealed information based on
Figure 4b. In the following the error histogram and regres-
sion of the investigated machine learning methods with the
cooperation of Bayesian optimization technique is shown in
Figure 5-6.

Figure 5a-d shows the error histogram of the optimized-
based GMDH, SVR, MLP and LSTM during the implementa-
tion of all data (including training and testing dataset), respec-
tively. Regarding the represented outcomes in Figure 5a-d,
the mean of the error between the actual and predicted ¢, of
the soybean oil/MXene NFs using optimized LSTM is 219-,
393- and 134-times lower than the optimized GMDH, SVR
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and MLP methods. The lower mean of the error between
the actual and predicted ¢, of the soybean oil/MXene NFs
using the LSTM method compared to GMDH, SVR and MLP
methods proves the efficiency of this investigated machine
learning method. Also, the variation of the error, which is
used to show the robustness of the model using LSTM, is 39-,
237- and 3-times lower than GMDH, SVR and MLP methods.
Then, in the point of error variation, the robustness of the
model can be ordered as LSTM, MLP, GMDH and SVR,
respectively. Also, the order of the models based on the
lower error is LSTM, MLP, GMDH, and SVR. It should be
concluded that the LSTM is the most reliable model, while
the SVR is the weakest model in predicting the c).
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FIGURE 5. The error histogram of the data using all data, including all data (training and testing) using optimized based (a): GMDH;

(b): SVR; (c): MLP; (d): LSTM.
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FIGURE 6. The regression of the data during all data (training and testing) using optimized based (a): GMDH; (b): SVR;

(c): MLP; (d): LSTM.

Figure 6a-d represents the regression of the developed
GMDH, SVR, MLP and LSTM for prediction of the soybean
oil/MXene NFs ¢, during the training and testing stages of the
algorithms, respectively. The vertical and horizontal axes in
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Figure 6 represent the actual and predicted c,, of the soybean
oil/MXene NF. The R2 of optimized GMDH, SVR, MLP and
LSTM during all data processes (including testing and train-
ing) are 0.9755, 0.10457, 0.99985 and 0.99998, respectively.
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TABLE 5. The extracted results of proposed and investigated machine learning methods, including GMDH, SVR, MLP and LSTM, with/without using the
Bayesian optimization method during the implementation of testing datasets.

Method | GMDH SVR MLP LSTM
Process | Training | Testing | All Training | Testing | All Training | Testing | All Training | Testing | All
MSE 0.001 0.057 0.001 0.046 0.047 0.046 1.0x10° 1.2x10° | 1.0x10° | 8.6x107 5.9x107 | 8.6x107
RMSE 0.036 0.239 0.036 0.215 0.216 0.215 3.2x10° 3.5x10° | 3.2x10° | 9.3x10* 7.7x10%* | 9.2x10*
NRMSE | 0.020 0.130 0.019 0.116 0.117 0.116 1.7x10° 1.8x10° | 1.7x10° | 5.0x10"* 4.2x10* | 5.0x10*
Error -1.9x10 1.0x10* 9.8x10* | 1.1x10* | 9.5x107 3.0x10* | 1.3x10°®
-1.8x10* | 0.001 5.1x10* 0.010 5.2x10*
Mean 4
Error 3.2x107 3.4x103 | 3.2x10° | 9.3x10* 7.2x10* | 9.2x10*
Std 0.036 0.246 0.036 0.215 0.221 0.215
R? 0.967 0.057 0.967 0.103 -0.125 0.103 0.9991 0.9984 0.9991 0.9998 0.9984 0.9998
T-Test SVM with 10 Trials all investigated machine learning methods during the training
. ‘ \ | ' ‘ | || }‘Mﬁiﬁi;n and testing stage of the data. LSTM can reach better results
g 2 il ‘ Ll compared with those of GMDH, SVR and MLP in terms of
S 1 lower MSE, RMSE, NRMSE, average of error and variation
EE ENESARERSS 8@ EEER of error.
520 'ER N E B | B .
52 00 f ‘ In order to study the accuracy and repeatability of the pro-
g posed method, the T-test is implemented in all four machine
= ] 1 . . . . .
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3| | ! | . ‘ the violin plot for 10-times trials of the SVR, MLP and
@ 2 4 6 8 l(é ]12 416 1820 LSTM methods, respectively. It should be noted that there
T-Test MLP with 10 Trials is no need to evaluate GMDH because it always reaches
0.02 ‘ ‘_m?a‘n the same results. However, the error of the GMDH is quite
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FIGURE 7. The results of the T-test after 10-time trials for proposed
optimized machine learning methods, including (a): SVR; (b): MLP;
(c): LSTM.

It shows the 2.45%, 89.54% and 0.01% improvement of the
R2 using optimized LSTM compared with those of optimized
GMDH, SVR and MLP, respectively.

The statistical representations of Figure 3-6 are shown in
Table 5. It shows the outcomes during the training, testing and
all processes of the four optimized investigated techniques,
including GMDH, SVR, MLP and LSTM. Based on the
demonstrated results, LSTM is the strongest technique among
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oil/MXene nanofluids, emphasizing machine learning tech-
niques to replace expensive practical tests. Identified gaps
include limited exploration of advanced machine learning
methods like LSTM for ¢,yr prediction, lack of clarity on
the most effective approach, and insufficient understanding
of Bayesian optimization’s impact on c,yr prediction. Con-
tributions include introducing advanced machine learning
methods (SVR, MLP, GMDH, LSTM) for c,nr estimation,
using Bayesian optimization to enhance model performance,
and demonstrating feasibility of eliminating costly practical
tests while improving prediction accuracy. The main finding
is successful implementation of machine learning methods,
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including LSTM, SVR, MLP, and GMDH, in predicting c,nr
of soybean oil/MXene nanofluids based on temperature and
nanoflakes concentration. Results show optimized LSTM
model significantly reduces mean square error in c,yr cal-
culation compared to SVM, GMDH, and MLP, achieving
reductions of 99%, 99%, and 91% respectively. This approach
offers a promising solution for efficiently estimating thermo-
physical properties and can be extended to predict others.
However, proposed method’s reliance on data quality may
limit generalizability to other fluids, requiring better data
and transferability solutions, explored in future studies using
conventional neural networks and transfer learning.
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