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Abstract. Surface defect detection is critical for maintaining product quality in manufacturing.
In this work, we apply a feature-based transfer learning approach for surface defect
classification on the NEU surface defect database. The database contains defects across 6
categories captured under various conditions. We utilised two pretrained convolutional neural
network (CNN) architectures - VGG16 and InceptionV3 - by removing the final classification
layer and using the CNN as a fixed feature extractor. The output feature vectors were classified
using a logistic regression (LR) model. The data was split into train, validation, and test sets
with a 70:15:15 ratio. The VGG16-LR model achieved classification accuracy (CA) of 100%,
98%, and 99% for the train, validation, and test sets respectively. The InceptionV3-LR model
attained CA of 100%, 91%, and 92% for train, validation, and test. The results demonstrate the
effectiveness of transfer learning with CNN feature extraction for surface defect detection on
challenging multi-category industrial datasets. Further work includes tuning hyperparameters
and evaluating additional architectures.

Keywords: Surface Defect Detection, Transfer Learning, Feature Extraction, Deep
Learning

1. Introduction
Surface defects in manufactured products can lead to functional or aesthetic issues, making detection
critical for quality control. Manual inspection is time-consuming, subjective, and inefficient for
modern high-throughput manufacturing [1]–[3]. Automated computer vision techniques present a
compelling solution. Recent work has shown success applying deep convolutional neural networks
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(CNNs) for defect classification. However, training CNNs requires large labelled datasets which are
costly to obtain in practice.

Transfer learning provides a method to leverage pretrained CNNs on general image datasets and
transfer the learned features to new tasks with limited data. As reported in the literature, the aforesaid
technique has been successfully employed on different applications [4]–[9]. With regards to defect
detection, Tabl et al. [10] used a fine-tuned ResNet-50 CNN model to classify manufacturing defects
as either normal or defective. The accuracy reported ranged widely from 48 to 96%, depending on
batch size and epochs, indicating inconsistent performance.

Mat Jizat et al. [5] compared an InceptionV3 CNN paired with logistic regression (LR), k-nearest
neighbors (kNN), SVM, and stochastic gradient descent (SGD) for classifying wafer defects. The
InceptionV3-LR pipeline performed the best on both training and test data compared to the other
methods investigated. Another study addressed common steel surface defects like scratches, pitting,
inclusions, and patches to separate defective from non-defective surfaces [11]. The authors used a
CNN with Xception architecture to detect these defects. It achieved reasonably good accuracy between
85 to 94%. Guan et al. [12] compared the efficacy of a new VSD network against VGG19 and ResNet
on the NEU dataset. It was shown that the VSD network could achieve an overall accuracy of 89.86%
on the validation dataset.

In this work, we present a feature-based transfer learning approach for multi-category surface
defect classification on the Northeastern University (NEU) database. The key insight of the present
study is to evaluate the efficacy of the pre-trained CNN models, i.e., VGG16 and InceptionV3 ability
in extracting meaningful features for the classification of the defects.

2. Methodology
In this study, we conduct an in-depth investigation and comparison of two state-of-the-art pre-trained
convolutional neural network (CNN) architectures – VGG16 and Inception V3 - for feature extraction
and defect classification. The VGG16 was developed by the Visual Geometry Group at Oxford
University. It consists of 16 layers and utilizes consecutive convolutional and max pooling layers of
increasing depth to extract hierarchical features, with fully connected layers at the end for
classification. We utilize a version of VGG16 without the fully connected layers, replacing them
instead with a Logistic Regression (LR) classifier. It is worth noting that the original VGG16 model
was pre-trained on millions of ImageNet images for object recognition tasks.

Conversely, the Inception V3 was developed by Google for image classification and recognition
applications. It introduced a novel architectural block called the inception module, which contains
convolutions of different sizes in parallel to capture features at multiple scales. Multiple inception
modules are stacked for deeper representations. Similar to the VGG16 model, the Inception V3 was
also pre-trained on the extensive ImageNet dataset. The key difference between the two architectures
is that Inception V3 relies on convolutions in parallel for multi-scale feature learning, while VGG16
uses consecutive convolutional layers in a hierarchical fashion.

In our study, we leverage the transfer learning capacity of these two powerful pre-trained models
by extracting features from the convolutional layers, which contain generic representations useful for
many vision tasks. The extracted feature representations are then fed into a LR classifier for defect
classification. Our experiments allow an in-depth analysis and comparison of the transferability of
features from consecutive versus parallel convolutional architectures.

We evaluate the models on a surface defect classification dataset, particularly the NEU database
(https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database). It consists of six
different types of surface defects, i.e., crazing, inclusion, patches, pitted surface, rolled in scale and
scratches, respectively [12]. Figure 1 illustrate samples of the different defects investigated. The
dataset consists of 300 samples for each type of defects. It is worth noting that the 70:15:15 stratified
split ratio was carried out for training, validation and testing dataset. A Python IDE, viz. Spyder
(running on Python 3.7) was used to carry out the analysis. In the study, the default LR from the
sklearn library hyperparameters were used whilst the Keras library was evoked for the VGG16 and
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InceptionV3 architectures, respectively. The present study provides meaningful insights into the
representational differences between these two CNN architectures and their ability to generalize for
defect detection across different datasets. The classification accuracy (CA) as well as the confusion
matrix (CM) are selected as the performance indicators to evaluate the performance of the formulated
pipelines.

(a) crazing (b) inclusion (c) patches

(d) pitted surface (e) rolled in scale (f) scratches

Figure 1. Sample defect images from the NEU database.

3. Results and Discussion
The results shown in Figure 2 demonstrate that using a pre-trained VGG16 model coupled with a
logistic regression (LR) classifier was highly effective for classifying defects in this image dataset.
This VGG16-LR pipeline achieved classification accuracies of 100%, 98% and 99% on the training,
test and validation sets respectively, with no errors. This suggests the VGG16 model was able to
extract meaningful features from the images that enabled accurate defect classification. However,
combining the Inception V3 model with an LR classifier led to much poorer performance, with
classification accuracies of only 91% and 92% on the test and validation sets, despite 100% training
accuracy.
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Figure 2. Pipeline performance.

Figure 3 (Testing CM) and Figure 4 (Validation CM) provides further evidence that the
InceptionV3 model struggled to learn an effective feature representation compared to VGG16, leading
to multiple misclassifications. The different defect classes, i.e., crazing, inclusion, patches, pitted
surface, rolled in scale and scratches are denoted as 0, 1, 2, 3, 4 and 5, respectively. In summary, the
VGG16 model demonstrated superior ability over InceptionV3 to extract discriminative features from
this defect image dataset when used with an LR classifier. The VGG16-LR pipeline provided excellent
defect classification performance, while the InceptionV3-LR pipeline had difficulty learning effective
image features, resulting in poorer classification accuracy.

(a) InceptionV3-LR (b) VGG16-LR

Figure 3. Confusion Matrix on the testing dataset
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(a) InceptionV3-LR (b) VGG16-LR

Figure 4. Confusion Matrix on the validation dataset.

4. Conclusion
In conclusion, the pre-trained VGG16 model coupled with a simple logistic regression classifier
provides an excellent pipeline for classifying defects in this image dataset, significantly outperforming
the InceptionV3-LR approach. The VGG16 model is able to extract highly discriminative features
from the images, enabling near perfect classification accuracy. Moving forward, the VGG16-LR
pipeline could be deployed for real-time defect detection in manufacturing quality control.
Additionally, further hyperparameter tuning and model optimization could potentially improve
performance even further. In addition, the effect of different pre-trained transfer learning models as
well as the combination of different classifiers shall be explored. Beyond this specific application, the
results highlight the importance of selecting an appropriate pre-trained model for a given computer
vision task and dataset.
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