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Abstract. Rotating machineries always operating under different loads and 
suffer from various types of bearing fault. Thus, bearing fault diagnosis is 
essential to prevent further loss or damage. Deep learning has been favoured 
over machine learning recently due to data explosion and its higher 
performance. In deep learning-based bearing fault diagnosis, vibration 
signals are usually transformed into images using time frequency analysis 
methods such as short-time Fourier transform, wavelet transform, and 
Hilbert-Huang transform. Convolutional neural network (CNN) is widely 
used for fault classification method. However, the training dataset and 
testing dataset usually have different load domains due to different working 
conditions. Obtaining training data of wide range of loadings are impractical 
and exhausting. Thus, this study is proposed to solve load domain adaptation 
using denoising diffusion implicit model (DDIM). In this study, synthetic 
images are generated using DDIM model while only convolutional neural 
network (CNN) is used as fault classification model. The classification 
accuracy of testing dataset is obtained using CNN models trained with 
original training dataset and augmented training dataset. The results showed 
that the synthetic scalograms could improve the performance of CNN model 
by 3.3% under different load domains. 

1 Introduction  
Rotating machineries such as steam turbines, compressor, gearboxes, aircraft engines, and 
generators always suffer from various bearing faults due to long working hour under different 
loads. Serious safety issues and financial losses might as well happen. Thus, highly efficient 
fault diagnosis is important to detect fault in advance and prevent greater consequences. 
Commonly found bearing faults are ball fault, inner race fault, and outer race fault.  

Deep learning method  is widely used for bearing fault diagnosis. Bearing fault diagnosis 
requires input data which can be captured by sensors in the form of vibration signals, thermal-
imaging, acoustic noise, and motor current [1]. Examples of popular vibration signals dataset 
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used by researchers are Case Western Reserve University (CWRU) dataset, Paderborn 
University dataset, PRONOSTIA dataset, and Intelligence Maintenance Systems (IMS) 
dataset [1]. Vibration signals can be used directly as time series data or two-dimensional 
images [2]. Common time-frequency analysis used to transform time series vibration signal 
into two-dimensional images are short-time Fourier Transform (STFT), continuous wavelet 
transform (CWT), and Hilbert Huang Transform (HHT) [3]. CNN model is usually used for 
image classification. 

In industrial environment, machines always operate under different loads and suffer from 
various types of bearing fault. Gathering of new data and training of new classification model 
are too time consuming and computationally expensive. 

Generative model such as generative adversarial network (GAN) has been widely studied 
to diagnose bearing fault. GAN is able to generate high quality images in a short time and 
has been used to generate synthetic images to oversample imbalanced dataset [4]–[7]. 
However, many studies of diffusion models are focused on imbalanced datasets instead of 
domain adaptation. 

In this study, denoising diffusion implicit model (DDIM) is utilized for load domain 
adaptation. Continuous wavelet transform (CWT) is used to convert vibration signals into 
scalograms. Synthetic images are generated by DDIM for dataset augmentation purpose. Two 
CNN models are trained and tested with non-augmented dataset and augmented dataset 
respectively for results’ comparison. 

2 Bearing Fault Classification 

2.1 Vibration Signal Collection 

Vibration signals of ball bearing are collected from Bearing Data Center by Case Western 
Reserve University (CWRU) [2]. CWRU dataset is chosen due to its accesibility and 
popularity among researchers which enables comparison of results. The specifications of 
datasets are shown in table 1. 

 
Fig. 1. Experimental setup of CWRU bearing dataset [2]. 

 

 

 
Table 1. Specifications of bearing dataset. 
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Bearing Type Drive end 

Fault Size (inch) 0.007, 0.014, 0.021 

Working Load 0 hp, 1 hp, 2 hp, 3 hp 

Health Conditions Normal, inner race fault, outer race fault, ball fault 

Sampling Frequency (Hz) 12000 

 

2.2 Image Transformation of Vibration Signals 

Time series vibration signal has too many data points and cannot fit in one image. Thus, data 
segmentation is applied to create segments with equal size. Overlapping sliding window 
segmentation method [8], [9] is used for segmentation without any loss of features. The 
length of segment must be enough to cover a bearing’s full rotation. Given the sampling 
frequency, Fs and motor speed, w are provided, the segment length can be obtained with 
equation 1 [10]. The step size is 25% of the segment length. Next, continuous wavelet 
transfom (CWT) are applied to the segments of vibration signal to obtain scalograms. 
Complex Morlet wavelet is used as mother wavelet. 

 
Fig. 2. Overlapping sliding window method [11]. 

 
                            𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  𝐹𝐹𝑠𝑠×60

𝜔𝜔                                        (1)                      
 

2.3 Experimental Conditions 

Table 2 shows the distribution of dataset for each domain. Each dataset represents different 
operating loads of 0 hp,1 hp, 2 hp, and 3 hp. The dataset is divided into two domains: first is 
the source domain, which is labelled dataset used for training; the second is target domain, 
which is unlabelled dataset used for testing. Studies of bearing fault diagnosis under different 
working loads usually involve fault classification using multiple classification models [11], 
[12]. In this study, the performance of classification model is studied using original training 
dataset and augmented dataset. 
 

Source Domain (Load) Target Domain (Load) 
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0 hp 1 hp, 2 hp, 3 hp 
1 hp 0 hp, 2 hp, 3 hp 
2 hp 0 hp, 1 hp, 3 hp 
3 hp 0 hp, 1 hp, 2 hp 

Table 2. Dataset for source domain and target domain. 

2.4 Generative Model for Synthetic Scalogram 

Denoising diffusion implicit model (DDIM) is used in this study to generate synthetic images. 
DDIM can generate high quality images without adversarial learning and outperforms 
denoising diffusion probabilistic model (DDPM) [13]. DDIM uses U-Net as its backbone for 
continuous downsampling and upsampling process of images. Skip connections are 
employed in the U-Net to decrease information loss during down-sampling and up-sampling 
of images. Deterministic sampling procedure is implemented in DDIM instead of stochastic 
sampling for faster images generation [13]. 

Kernel Inception Distance (KID) is used as loss function to validate the training progress 
by measuring the similarity between inference samples and training samples. KID is chosen 
over Frechet Inception Distance (FID) because it is computationally lighter and easier to 
implement. KID is applied only on evaluation step to use lesser computational resource. 
During the calculation, the dimensions of images are resized to the minimal resolution of 
Inception network, which is (75x75) for faster calculation. Model checkpoint callback is used 
to save the trained DDIM with best weight after every epoch. The best weight is determined 
by the lowest KID loss. 

For this research, two datasets are prepared for training of two models. First model is 
trained with original dataset. Synthetic scalograms will be added to the original dataset to 
create a new dataset (augmented dataset) to train second model. 

2.5 Fault Classification Model 

CNN architecture is used as fault classification model. The input layer of CNN takes RGB 
image of size 128x128 as input data. There are three convolutional layers with filter size 32, 
64, 128 respectively. Each convolutional layer has a 3x3 kernel, ‘same’ padding, and ‘relu’ 
activation. Max pooling layer are applied to first two convolutional layers. Global average 
pooling layer is added to the last convolutional layer instead of fully connected layer because 
global average pooling is more robust to spatial translations of the input and more native to 
the convolution structure. Dropout with rate 0.2 is added to prevent overfitting. ‘softmax’ 
activation function is used as output layer since multiclass dataset is used. Adam optimizer 
with static learning rate of 0.001 was used. The CNN model was trained for 20 epochs. Model 
checkpoint callback was used to save the trained model with the best weight after every 
epoch. Table 3 shows the parameters for CNN model. The trainable parameters are relatively 
small as flatten layer is not used. 

Table 3. Parameters of Sequential CNN model. 

Layer (Type) Output Shape Param # 
conv2d (Conv2D) (None, 128, 128, 32) 896 

max_pooling2d (MaxPooling2D) (None, 64, 64, 32) 0 
conv2d_1 (Conv2D) (None, 64, 64, 64) 18496 
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max_pooling2d_1 
(MaxPooling2D) 

(None, 32, 32, 64) 0 

conv2d_2 (Conv2D) (None, 32, 32, 128) 73856 
global_average_pooling2d 
(GlobalAveragePooling2D) 

(None, 128) 0 

dropout (Dropout) (None, 128) 0 
dense (Dense) (None, 4) 516 

Total parameters: 94276   
Trainable parameters: 94020   

Non-trainable parameters: 256   

 

3 Results 

3.1 Generations of Synthetic Scalograms  

DDIM model is successfully trained and synthetic samples for each class of bearing fault 
types are generated. Figure 3 show the real CWRU scalograms while Figure 4 show 
generated synthetic scalograms which will be used for data augmentation. 

    
(a)                                (b)                                   (c)                                    (d) 

Fig. 3. Scalograms of: (a) real healthy bearing, (b) real inner race fault, (c) real outer race fault, (d) 
real ball fault. 

 

      
Fig. 4. Scalograms of: (a) synthetic healthy bearing, (b) synthetic inner race fault, (c) synthetic outer 
race fault, (d) synthetic ball fault. 

3.2 Classification Results 

Two CNN models are successfully trained with original dataset and augmented dataset 
respectively. Table 4 shows the testing accuracies of both models. The average testing 
accuracy of CNN model trained with augmented dataset is 3.3 % higher than the average 
testing accuracy of CNN model trained with original dataset. Figure 5 shows that there are 
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increments in testing accuracies for each domain shift by adding synthetic scalograms to the 
original datasets.  

Table 4. Comparison of testing accuracy between original dataset and augmented dataset. 

 Domain 
Shift 

0→
1hp 

0→
2hp 

0→
3hp 

1→0
hp 

1→
2hp 

1→
3hp 

2→
0hp 

2→
1hp 

2→
3hp 

3→
0hp 

3→
1hp 

3→
2hp 

aver
age 

Original 
Dataset 

94.8
% 

93.8 
% 

83.5 
% 

92.8 
% 

93.8
% 

82.2 
% 

87.1 
% 

90.7
% 

88.7 
% 

75.6
% 

81.5
% 

89.7 
% 

87.8
% 

Augmented 
Dataset 

95.3
% 

96.3
% 

88.1 
% 

92.7
6 % 

98.2 
% 

88.8 
% 

88.2 
% 

93.5 
% 

91.2 
% 

82.5
% 

86.6 
% 

94.7 
% 

91.1
% 

 

 
Fig. 5. Comparison of testing accuracy of CNN trained with original dataset and augmented dataset. 

4 Conclusion 
In this study, DDIM is applied and synthetic scalograms similar to CWRU scalograms can 
be generated. The difference in testing accuracy of augmented dataset and original dataset 
shows that synthetic images generated by DDIM could be used to improve performance of 
CNN model by 3.3% under different working loads. 

In the future, conditional generative models should be considered to control type of 
images generated. Since unconditional DDIM is used in this study, the amount for each class 
of samples is generated randomly. This would be a problem if large amounts of synthetic 
samples of a specific class are required. Different evaluation methods for generative model 
should be considered since existing evaluation methods such as KID and FID evaluate the 
images in human perspectives which might not works for scalograms. 

Transfer learning using generated scalograms also can be applied to an existing model 
instead of training a new model. Transfer learning is more effective in terms of computational 
power and time. 

Training datasets and testing datasets from different test rigs also could be obtained to 
verify the effectiveness of DDIM in load domain adaptation. Also, alternative analysis 
methods such as current analysis, ultrasound analysis and acoustic analysis should be 
considered since vibration analysis could only detect mechanical faults. 
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