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A B S T R A C T   

DENV infects 50–100 million individuals, and 500,000 of them go on to acquire the more serious dengue 
hemorrhagic fever, which causes around 20,000 fatalities every year. Despite its widespread nature, there is no 
medication licenced to treat this condition. The purpose of this work is to identify anti-DENV medicines from 
sinapic acid (SA) derivatives utilising in-silico evaluation through docking and pharmacokinetics investigations. 
For the DENV-2 envelop protein, 1-O-β-D-glucopyranosyl sinapate had a significant docking score of − 7.7 kcal/ 
mol, while sinapoyl malate had a docking score of − 6.7 kcal/mol for the DENV-2 NS2B/NS3 protein. Addi-
tionally, according to the PASS server, 1-O-β-D-glucopyranosyl sinapate and sinapoyl malate have a wide range of 
enzymatic activities since their probability active (Pa) values is > 0.700. These compounds exhibit a numerous 
pharmacological effect through activating the body’s enzymes, according to analyses of their pharmacokinetic 
qualities. Accordingly, these substances showed acute toxicity rates at LD50 log10 (mmol/g) and LD50 (mg/g) 
concentrations when administered via various routes, including intraperitoneal, intravenous, oral, and subcu-
taneous. The result of this research suggests, 1-O-β-D-glucopyranosyl sinapate and sinapoyl malate may function 
as possible inhibitors to halt the DENV, and more in-vitro and in-vivo research is required to validate their 
activity and other features.   

1. Introduction 

Mosquito-borne dengue virus (DENV) is a major global health 
problem that is prevalent in tropical and sub-tropical regions, mostly in 
urban and semi-urban environments. Dengue is currently a threat to 
around half of the world’s population, with 100–400 million cases re-
ported year (https://www.who.int/news-room/fact-sheets/detail/de 
ngue-and-severe-dengue). Although the majority of DENV infections 
are asymptomatic or only result in moderate sickness, on rare occasions, 
DENV can cause more serious instances, including fatalities. With four 
distinct but closely related serotypes, DENV is a genus of flavivirus and a 
member of the Flaviviridae family (Adawara et al., 2021). Dengue fever 
(DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome 
(DSS) are all caused by different serotypes of DENV (Roney et al., 2021), 

however DENV-2 and DENV-3 are the most often reported viruses to 
cause significant disease (Balmaseda et al., 2006). A single polypeptide 
precursor including three structural proteins (C, pr-M, and E) and seven 
nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) 
is encoded by the DENV genome, which is a positive-sense single--
stranded RNA (Roney et al., 2023a,b). Despite the disease’s widespread 
occurrence, there is still no FDA-approved medication available to treat 
it. Therefore, it is essential to find and create antiviral medications to 
combat DENV. 

The viral envelope protein (E-protein) aids in the fusing of the 
membranes of the host cell and viral cells during receptor-mediated 
endocytosis. Consequently, E-protein is acknowledged as a significant 
protein target for the creation of antiviral medicines for DENV. While 
the serine protease activity is aided by the DENV N-terminal domain of 
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NS3 and NS2B (Indu et al., 2021). The NS2B/NS3 pro complex is a 
complex structure that results from the interaction of NS3 and NS2B. 
This complex has the ability to break down viral proteins. Viral repli-
cation is hampered by any changes in this region’s functional behaviour. 
NS2B/NS3 complex is therefore thought to be a crucial and significant 
target for the screening and evaluation of the effects of various phar-
macological candidates (Qamar et al., 2017). 

The 3,5-dimethoxy-4-hydroxycinnamic acid known as Sinapic acid 
(SA) can also be found in the form of esters, much like other hydrox-
ycinnamic acids (Eroğlu et al., 2018). SA has been found in many 
different fruits, vegetables, cereal grains, oilseed crops, certain spices, 
and medicinal plants (Pandi and Kalappan, 2021). SA is a chemical that 
is commonly present in the plant world (Chen, 2016). Sinapoyl malate, 
which is often present in leaves, and sinapine (sinapoyl choline), which 
accumulates in roots, are the two main sinapoyl esters. Sinapoyl glucose 
(1-O-β-D-glucopyranosyl sinapate), which is present in all the diverse 
Brassicaceae species, is the most prevalent SA glycoside. Raw rapeseed 
oil contains 4-vinylsyringol, a decarboxylation byproduct of SA. SA 
undergoes structural modifications that lead to the synthesis of 4-vinyl-
syringol and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde) 
under the increased temperature and pressure required to extract oil 
from oilseeds (Nićiforović and Abramovič, 2014). 

SA is a naturally occurring phenolic acid that comes from cinnamic 
acid. It possesses antibacterial, anticancer, anti-inflammatory, antioxi-
dant, and neuroprotective properties (Lee et al., 2021). SA is recognised 
to have a strong antioxidant activity (Galano et al., 2011) and it has 
anticancer benefits by lowering the levels of CDH2, MMP2, and MMP9 
in human prostate cancer cells (Eroğlu et al., 2018). Additionally, SA 
contributes to anti-inflammatory effects by preventing the release of the 
cytokines IL-6 and IL-8 from the NF–B pathway (Zhang et al., 2017). 
Salmonella enterica and Escherichia coli are both known to be resistant to 
antibacterial actions of SA (Tesaki et al., 1998). SA showed a notably 
low cytotoxicity (CC50 = 189.3 μg/mL) and a half-maximal inhibitory 
concentration (IC50) of 2.69 μg/mL, indicating a promising selective 
antiviral potential via in-vitro approaches against SARS-CoV-2 (Orfali 
et al., 2021a,b). Based on antiviral effectiveness of SA against 
SARS-CoV-2, we postulated that SA and its derivatives may interact with 
the structural and non-structural proteins of DENV-2. Therefore, we use 
an in-silico technique to define the mode of action of SA against DENV-2 
in an approximate manner. 

Viruses are now untreatable, and the medications that are available 
are costly and have unfavorable side effects. Six SA derivatives (Fig. 1) 
have been tested for their possible inhibitory effect against DENV-2 E- 
protein and DENV-2 NS2B/NS3 protease using an in-silico technique as 
a result of the paucity of antiviral medications. Since there hasn’t been a 
single treatment developed to treat dengue illness up to this point, the 
current investigation was conducted to find an effective and promising 

therapeutic candidate. 

2. Methodology 

2.1. Recruitment of protein and ligand data 

In order to determine the antiviral potential of SA derivatives against 
the structural and non-structural proteins of DENV-2, they were chosen 
as ligands from a published paper (Nićiforović and Abramovič, 2014). 
The viral proteins were also downloaded from the protein database as in 
crystalline form to dock with SA derivatives. The structural E-protein 
was downloaded from the protein data bank with the PDB id 1OKE 
(Modis et al., 2003), and the non-structural NS2B/NS3 protease was also 
downloaded with the PDB id 2FOM (Erbel et al., 2006). The 2D structure 
of SA derivatives was created in ChemSketch and stored in. mol format 
for docking with the target proteins. DENV-2 E-protein and NS2B/NS3 
protease were downloaded as. pdb format for the docking with the 
selected ligands. 

2.2. Molecular docking 

The virtual screening approaches discussed earlier were utilised to 
estimate the docking analysis utilising the online docking application 
Cavity-detection guided Blind Docking (CB-Dock) (Padhi et al., 2021; 
Roney et al., 2023a,b). The CB-Dock programme was used to prepare the 
PBD file of the receptor and the. mol file containing the ligands for 
docking. Multiple top cavities were automatically chosen and used for 
additional docking analysis throughout this procedure (Liu et al., 2020). 
The first conformation is thought to be the optimum binding posture, 
while the area nearby is thought to be the question ligand’s best binding 
site. The poses with the highest docking scores were chosen for further 
testing in comparison to the reference chemical Panduratin A after 
considering the binding modalities, interactions with active site resi-
dues, and docking score. 

2.3. Physicochemical and pharmacokinetics analysis 

To evaluate the therapeutic potential of the best docked molecules 
further accurately, the online SwissADME programme was used (Ada-
wara et al., 2022). The SMILES file containing active compounds is all 
that is required for production; understanding of the active site or 
binding mechanism is not required. 

2.4. Pharmacophore analysis 

Structure-based and ligand-based techniques have been integrated 
with the energetic (e)-pharmacophore method (Samy et al., 2023). The 

 

Fig. 1. SA and its derivatives.  
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Schrodinger PHASE module was used to determine the pharmacophore 
sites of lead compounds, including hydrogen bond acceptor (A), 
hydrogen bond donor (D), hydrophobic group (H), positively ionizable 
(P), negatively ionizable (N), and aromatic ring (R) (Rani et al., 2023). 
The functional groups that are part of the targeted enzyme’s bioactivity 
are included in the extracted pharmacophore hypothesis. 

2.5. Drug probability 

The Bayesian-based Prediction of Activity Spectra for Substances 
(PASS) was utilised to determine the antiviral potential of SA using the 
chemical’s SMILES as inputs (Asiedu et al., 2021). Based on the 
structural-activity link between the chemical of interest and a training 
set of more than 26,000 compounds with known biological effects, PASS 
calculates the fundamental biological features of molecules. For a pro-
jected activity, the Pa and Pi that PASS predicts for each unique chem-
ical range from 0.000 to 1.000. When Pa >0.3 and Pa > Pi for a certain 
medication activity, it is interesting to study the pharmacological ac-
tivity (Kwofie et al., 2021). 

2.6. Rat acute toxicity 

The in-silico acute toxicity was predicted utilising the online tool 
GUSAR (General Unrestricted Structure-Activity Relationships) (Mad-
duluri and Sah, 2020). The GUSAR programme predicts toxicity using a 
collection of software that includes a database of more than 10,000 
chemical substances. Quantitative structure activity relationship 
(QSAR) analysis was used to forecast the median lethal dosage (LD50) of 
the chemical agent (log10 mg/kg). The analysis considers the many 
different ways of delivery, including intraperitoneal, intravenous, sub-
cutaneous, and oral (Raheem et al., 2023). 

3. Results and discussion 

3.1. Molecular docking 

To determine if the SA derivatives had the potential to be dengue 
antagonists, they were docked with the structural (E-protein) and non- 
structural (NS2B/NS3 protein) proteins of DENV-2 in this work. In 
order to determine if these compounds have anti-dengue potential, the 
present study looked at three docking outcomes, including cavity size, 
docking score, and ligand-target interactions. According to the results 
looked at, the current study found that Sinapoyl malate and 1-O-β-D- 
Glucopyranosyl sinaoate had the greatest docking scores and energy 

values against E-protein and NS2B/NS3 protein, respectively. In addi-
tion, among the investigated SA derivatives, these substances are also 
known to form strong hydrogen bonds with the target proteins’ amino 
acid residues. 

Despite having moderate docking scores, other SA derivatives also 
exhibited hydrogen bonding, hydrophobic and ionic connections with 
these DENV-2 proteins (Tables S1 and S2) which indicated that these 
compounds also showed anti-DENV-2 activity. The binding score and 
hydrogen bond interactions of the docked complex in the current 
investigation were evaluated and compared to those of the reference 
molecule Panduratin A. Panduratin A showed the strongest suppression 
of DENV-2 NS2B/NS3 protease cleavage, with 65% inhibition at 80 ppm 
(parts per million) concentration (Kiat et al., 2006). It showed 
competitive inhibition against DENV-2 NS2B-NS3pro with the IC50 
value of 56 μM (Hariono et al., 2019). According to Frimayanti et al. 
(2011), it interacted with His 51, Asp 75, Ser 135 and Gly 153 and had a 
strong binding affinity (− 11.27 kcal/mol) towards the active site of 
DENV-2 NS2B/NS3. In addition, it exhibited a single hydrogen bonding 
interaction with the DENV-2 E-protein active site (Lavanya et al., 2015). 

3.2. Docking analysis of structural (E-protein) protein (1OKE) 

The cavity size of 380 gives a superior docking score of − 7.7 kcal/ 
mol for 1-O-β-D-glucopyranosyl sinaoate (Table S1). In-depth research 
has been done on this docked complex to better understand how 1-O-β-D- 
Glucopyranosyl Sinaoate interacts with the amino acids of the DENV-2 
structural protein (E-protein). During the analysis of the docked com-
plex, it was discovered that 1-O-β-D-Glucopyranosyl Sinaoate and 
envelop protein made contact along around three lines, as will be 
explained below.  

i. The hydrogen bond interactions between 1-O-β-D-Glucopyranosyl 
sinaoate and envelop protein were Ile46, Glu44, His 244, Lys246, 
Asp 98 and Asn 103 (Fig. 2a and Table S1). 

ii. Besides the hydrogen bond interactions, hydrophobic in-
teractions have also formed between them with the residues of 
Glu44 and Lys246 (Fig. 2a and Table S1).  

iii. Besides the hydrogen bonds and hydrophobic interactions, ionic 
interactions with residues of Arg2 and Lys246 can be found 
precisely in the interaction map (Fig. 2a and Table S1). 

The reference substance Panduratin A, on the other hand, docks in 
the same cavity with a docking score of − 7.7 kcal/mol. With the Glu44 
residue as well as the Ile46, Glu44, Lys246 and Leu 278 residues, 

Fig. 2. Binding affinities among the residues of structural protein (PDB ID: 1OKE) of DENV-2 with (a) 1-O-β-D-Glucopyranosyl sinaoate and (b) Panduratin A. (Dash 
line showed the bound) (Blue color: hydrogen bonds; Sky blue color: weak hydrogen bonds color; Black: Hydrophobic interactions; Yellow color: ionic interactions). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Panduratin A displayed a hydrogen bond interaction. The ionic in-
teractions between Lys246 and Arg2 residues and Panduratin A were 
also demonstrated (Fig. 2b and Table S1). 

3.3. Docking analysis of non-structural (NS2B/NS3) protein (2FOM) 

With a cavity size of 912, sinapoyl malate docks with a score of − 6.7 
kcal/mol (Table S2). The interaction between Sinapoyl malate and the 
amino acids of the DENV-2 non-structural protein (NS2B/NS3 protein) 

Fig. 3. Binding affinities among the residues of non-structural protein (PDB ID: 2FOM) of DENV-2 with (a) Sinapoyl malate and (b) Panduratin A. (Dash line showed 
the bound) (Blue color: hydrogen bonds; Sky blue color: weak hydrogen bonds; Black color: Hydrophobic interactions; Yellow color: ionic interactions). (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Physicochemical and pharmacokinetics analysis of 1-O-β-D-Glucopyranosyl sinaoate and Sinapoyl malate.  

C. Name MW HA HD MR TPSA HIA BBB 1A2 2C19 2C9 2D6 3A4 SP 

Reference Value ≤500 ≤10 ≤5 ≤120 75-140 Å2 High No No No No No No – 
1-O-β-D-Glucopyranosyl sinaoate 386.35 g/mol 10 5 90.09 155.14 Å2 Low No No No No No No − 8.90 cm/s 
Sinapoyl malate 340.28 g/mol 9 3 80.40 139.59 Å2 High No No No No No No − 7.73 cm/s 

MW: molecular weight, HA: hydrogen bond acceptor, HD: hydrogen bond donor, MR: molar refractivity, TPSA: topological polar surface area, HIA: human intestine 
absorption, BBB: blood brain barrier, 1A2 to 3A4: CYP450 enzyme. 

Fig. 4. Pharmacophore hypothesis of 1-O-β-D-glucopyranosyl sinaoate. (Orange color: HB Acceptor, Blue color: HB Donor; Green color: Hydrophobic; Yellow color: 
Aromatic ring). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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has also been thoroughly explored in this docked complex. During the 
analysis of the docked complex, it was discovered that Sinapoyl malate 
and the NS2B/NS3 protein made contact along around three lines, as 
will be explained below.  

i. The hydrogen bond interactions between Sinapoyl malate and 
NS2B/NS3 protein were Thr120, Lys74, Ala164, Ile165, Ala166 
(Fig. 3a and Table S2). 

ii. Besides the hydrogen bond interactions, hydrophobic in-
teractions have also formed between them with the residues of 
Leu76, Lys74, Ala164, Val 154, Ile 123 and Thr118 (Fig. 3a and 
Table S2).  

iii. Besides the hydrogen bonds and hydrophobic interactions, ionic 
interaction with residue of Lys74 can be found precisely in the 
interaction map (Fig. 3a and Table S2). 

The reference substance Panduratin A, on the other hand, has a 
docking score of − 7.0 kcal/mol in the same cavity. In addition to hy-
drophobic interactions with Lys74, Leu76, Trp 83, Leu 85, Ala166, Glu 
88, and Trp 89 residues, Panduratin A displayed hydrogen bond in-
teractions with the Ile165 and Asn 167 residues (Fig. 3b and Table S2). 

3.4. Physicochemical and pharmacokinetics analysis 

The physicochemical characteristics, including molecular weight 
(MW), molar refractivity (MR), topological polar surface area (TPSA), 
hydrogen bond acceptors (HA), donors of hydrogen bonds (HD), and 
others, were displayed in Table 1. All of these compounds met the 
criteria, with the exception of 1-O-β-D-Glucopyranosyl sinaoate, whose 
TPSA was somewhat greater. 

The blood brain barrier (BBB) and human intestinal absorption (HIA) 
are important characteristics for the distribution and absorption of 
drugs, respectively (Shen et al., 2010). While 1-O-β-D-Glucopyranosyl 
sinaoate has a low HIA, sinapoyl malate has a high absorption level by 
the human gut. Additionally, these substances had harmful outcomes in 
BBB, which is a strong indication that they can function as drugs. The 

CYP3A4, CYP2D6, CYP2C9, CYP2C19, and CYP1A2 isoforms of the 
CYP450 enzyme family are key players in drug metabolism. The first and 
most important isoform is CYP3A4, which has an intestine and kidney 
and is responsible for 50% of the drug’s metabolism. The CYP2D6 iso-
form follows CYP3A4, which is involved in 20% of drug metabolism. 
Additionally, 15%, 12%, and 11%, respectively, of drug metabolism is 
carried out by the isoforms CYP2C9, CYP2C19, and CYP1A2 (Roney 
et al., 2021). It is crucial to understand whether the potential medication 
may inhibit a particular CYP enzyme isoform. Good medicines are those 
that do not develop antagonistic interactions with all CYP isoforms. 
Different CYP inhibitor models were developed for the case of meta-
bolism, and the results suggest that these active substances are not CYP 
enzyme inhibitors. Our findings overwhelmingly support the notion that 
1-O-β-D-glucopyranosyl sinaoate and sinapoyl malate are promising 
candidates for the creation of potent anti-dengue drugs. 

3.5. Pharmacophore analysis 

The generic pharmacophore theories were included in the 1-O-β-D- 
glucopyranosyl sinaoate and sinapoyl malate binding domain due to its 
high survival value in terms of its four features (Fig. 4). Additionally, the 
e-pharmacophore demonstrates that the 1-O-β-D-glucopyranosyl 
sinaoate comprises ten acquired acceptors (A1-A10), five obtained do-
nors (D11-D15), one obtained negative ion (H16), and one obtained 
aromatic ring (R18). Sinapoyl malate furthermore includes nine ac-
quired acceptors (A1-A9), three obtained donors (D10-D12), two ob-
tained negative ionic (H13–H14), and one obtained aromatic ring (R15) 
(Fig. 5). 

3.6. Druggability 

Only the most likely pharmacological activities were included in 
Table S3 for 1-O-β-D-Glucopyranosyl sinaoate and Table S4 for Sinapoyl 
malate, according to the PASS server, which demonstrated that both 
compounds have a wide range of pharmacological possibilities. The 
probability active (Pa) score for these compounds ranges from 0.700 to 

Fig. 5. Pharmacophore hypothesis of Sinapoyl malate. (Orange color: HB Acceptor, Blue color: HB Donor; Green color: Hydrophobic; Yellow color: Aromatic ring). 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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0.956. These high Pa scores indicate a strong likelihood of pharmaco-
logical activity for both 1-O-β-D-Glucopyranosyl sinaoate and Sinapoyl 
malate. The diverse range of potential pharmacological activities sug-
gests that these compounds could be valuable in various therapeutic 
applications. 

3.7. Rat acute toxicity 

In order to ascertain the negative consequences that can arise from 
unintentional or purposeful short-term exposure, a substance’s acute 
toxic potential must be assessed (Yadav and Rohane, 2021). For 
long-term toxicity studies and other animal-based investigations 
(including human research), dose selection is based on the prediction of 
acute toxicity testing (Walum, 1998; Barlow et al., 2002). The findings 
of an acute toxicity test can be used to evaluate the toxicity status of the 
test chemical. 

The PASS online tool was used to forecast the in-silico toxicity of the 
chosen lead compounds. The applicability domain (AD) of the QSAR 
models was found to include the bulk of the leads. The IV, oral, subcu-
taneous, and intraperitoneal routes were all taken into account in 
Table 2’s toxicity estimates, which showed that all of the drugs fall 
within class 5. The chemicals were safe and essentially innocuous, ac-
cording to the study. 

4. Conclusion 

Due to the high morbidity rate of dengue infection worldwide, it 
affects people not just from underdeveloped nations but also from 
industrialised countries. Dengue affects about 50,000 individuals a year, 
with dengue hemorrhagic fever accounting for 10% of all occurrences. 
Despite the disease’s widespread distribution, there is presently no 
medication for it. Therefore, the goal of the current study was to 
investigate the SA derivatives’ possible antiviral properties. This study 
found that 1-O-β-D-Glucopyranosyl Sinaoate and Sinapoyl Malate had 
great docking values and exceptional interactions with NS2B/NS3 pro-
teins and DENV-2 E-protein, respectively. These compounds exhibit a 
variety of pharmacological capabilities through activating the human 
body’s enzymes, according to pharmacokinetic property evaluations. On 
the other hand, analysis of the pharmacokinetic characteristics revealed 
that it is less harmful to rats when administered by various routes at 
dosages of LD50 log10 (mmol/kg) and LD50 (mg/kg). In light of this, it 
can be said that 1-O-β-D-Glucopyranosyl Sinaoate and Sinapoyl Malate 
were promising lead molecules that performed better than the reference 
compound against the DENV-2 E protein and NS2B/NS3 proteins, 
respectively. However, further in-vitro and in-vivo experiments are 
required to validate the study. 
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