

IOT INTEGRATED ANTENNA ROTATOR

CHONG JIA XIN

Bachelor of Electronics Engineering Technology

(Computer System) with Honours

UNIVERSITI MALAYSIA PAHANG

SUPERVISOR’S DECLARATION

I hereby declare that I have checked this thesis and in my opinion, this thesis is adequate

in terms of scope and quality for the award of the degree of Bachelor of Electronics

Engineering Technology (Computer System) with Honours.

 (Supervisor’s Signature)

Full Name :

Position :

Date :

STUDENT’S DECLARATION

I hereby declare that the work in this thesis is based on my original work except for

quotations and citations which have been duly acknowledged. I also declare that it has

not been previously or concurrently submitted for any other degree at Universiti Malaysia

Pahang or any other institutions.

 (Student’s Signature)

Full Name : CHONG JIA XIN

ID Number : TG18001

Date : 31 January 2022

IOT INTEGRATED ANTENNA ROTATOR

CHONG JIA XIN

Thesis submitted in fulfillment of the requirements

for the award of the degree of

Bachelor of Electronics Engineering Technology (Computer System) with Honours

Faculty of Electrical & Electronics Engineering Technology

UNIVERSITI MALAYSIA PAHANG

JANUARY 2022

ii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor, Ir. Dr. Rosmadi

Bin Abdullah, who has always impressed me with his outstanding professional conduct.

I greatly appreciate his invaluable supervision and tutelage throughout my SDP. His

insights on the project's development, particularly from the standpoint of a professional

engineer, answered a lot of my concerns. I consider myself fortunate to have the

opportunity to work with such an inspiring supervisor like him.

Very special thanks to Dr. Syukran Hakim Bin Norazman for his treasured

guidance which was enormously influential and helpful in shaping my software

development skills. I am truly grateful for his enlightening advise and providing

opportunities for me to grow professionally. His profound knowledge and professional

expertise in software engineering enabled me to effectively complete this project. It is

always an honor to learn from Dr. Syukran.

My appreciation goes to the Faculty of Electrical & Electronics Engineering

Technology, Universiti Malaysia Pahang for providing me with the funding assistance to

complete this project. Additionally, I would like to thank my teammate, Dira Nadia Binti

Padzil for her co-operation while conducting this SDP. I also want to express my gratitude

to my family and friends for their consistent encouragement which was important for the

successful completion of my studies.

iii

ABSTRACT

This project deals with the design and fabrication of an IoT Integrated Antenna Rotator

to upgrade an existing antenna rotator by integrating it with Internet of Things (IoT)

technology. The objective of this thesis is to integrate Google Maps into web server with

the antenna rotator system in order to achieve a speedy and high accuracy standalone

antenna pointing system. This thesis describes the software development of the rotator

system which includes the specification, system and software design, implementation and

unit testing, integration and system testing, and finally the operation. NodeMCU ESP32

is implemented as the microcontroller in this SDP to control the system by using its

central processor. A web server is developed in order to act as a user interface to interact

with the antenna rotator system. Digital map is integrated with the system to attain IoT

technology by using Google Maps API. The IoT Integrated Antenna Rotator is tested

upon the integration and fabrication process. The antenna rotator is able to rotate to a

desire location precisely through web server by using Google Maps API. The outcomes

can result in significant cost and time savings, as well as increase the product reliability

and user confidence in using IoT Integrated antenna pointing system.

iv

ABSTRAK

Projek ini membentangkan reka bentuk dan fabrikasi IPB Integrasi Pemutar Antena untuk

menaik taraf pemutar antena sedia ada dengan menyepadukannya dengan teknologi

Internet Pelbagai Benda (IPB). Objektif tesis ini adalah untuk mengintegrasikan Google

Map dengan sistem pemutar antena untuk mencapai sistem penunjuk antena stand-alone

yang pantas dan ketepatan tinggi. Tesis ini menerangkan pembentukan dan pembangunan

sistem pemutar yang merangkumi spesifikasi, reka bentuk sistem dan perisian,

pelaksanaan dan ujian unit, integrasi dan ujian sistem, dan akhirnya operasi. NodeMCU

ESP32 dilaksanakan sebagai mikropengawal dalam projek ini untuk mengawal sistem

dengan menggunakan pemproses pusatnya. Pelayan web dibangunkan untuk bertindak

sebagai antara muka pengguna untuk berinteraksi dengan sistem pemutar antena. Peta

digital disepadukan dengan sistem untuk mencapai teknologi IPB dengan menggunakan

API Peta Google. IPB Integrasi Pemutar Antena diuji atas proses penyepaduan dan

fabrikasi. Pemutar antena dapat berputar ke lokasi yang diinginkan dengan tepat melalui

pelayan web dengan menggunakan API Peta Google. Hasilnya dapat mencapai

penjimatan kos dan masa dengan ketara, serta meningkatkan kebolehpercayaan produk

dan keyakinan pengguna dalam menggunakan sistem penuding antena bersepadu IPB.

v

TABLE OF CONTENT

DECLARATION

TITLE PAGE

ACKNOWLEDGEMENTS ii

ABSTRACT iii

ABSTRAK iv

TABLE OF CONTENT v

LIST OF TABLES viii

LIST OF FIGURES ix

LIST OF ABBREVIATIONS xii

LIST OF APPENDICES xiii

CHAPTER 1 INTRODUCTION 1

1.1 Project Background 1

1.2 Problem Statement 2

1.3 Objectives 3

1.4 Research Scope 3

1.5 Report Organization 4

CHAPTER 2 LITERATURE REVIEW 5

2.1 Antenna Rotator 5

2.2 Internet of Things (IoT) 8

2.2.1 IoT Integration 10

2.3 Microcontroller 11

2.3.1 NodeMCU ESP32 11

2.4 Wi-Fi Network 13

vi

2.5 Software Engineering 14

2.6 Software Process 18

2.6.1 Waterfall Model 19

2.6.2 Agile Methodologies 22

2.6.3 Agile Methodology Vs. Traditional Waterfall Model 25

2.7 Application Programming Interface (API) 26

2.7.1 Web API 26

2.8 Graphical User Interface (GUI) 28

2.9 Web Server 30

2.10 WebSocket Protocol 32

CHAPTER 3 METHODOLOGY 36

3.1 Flowchart of Methodology 37

3.2 Project Layout 38

3.3 Block Diagram of IoT Integrated Antenna Rotator (Software Development) 39

3.4 Project Flow 40

3.5 Hardware Components 41

3.5.1 NodeMCU ESP32 41

3.5.2 Antenna Rotator 42

3.5.3 LCD Display 42

3.5.4 Potentiometer 10kΩ 43

3.5.5 Transformer 43

3.5.6 Relay 5V Module 44

3.5.7 Toggle Switch 44

3.5.8 Optocoupler 45

3.5.9 Resistor 45

vii

3.6 Software Tools 46

3.6.1 Arduino IDE 46

3.6.2 Visual Studio Code 46

3.6.3 Web script 46

3.6.4 WebSocket 46

3.6.5 Google Maps API 47

3.7 Circuit Design 47

3.8 Software Development 49

3.8.1 Requirements Analysis and Definition 49

3.8.2 System and Software Design (GUI) 51

3.8.3 System and Software Design (ESP32) 61

3.9 Calibration and Calculations 66

3.10 Project Cost and Material List 69

CHAPTER 4 RESULTS AND DISCUSSION 70

4.1 Implementation and Unit Testing 70

4.2 Integration and System Testing 81

4.3 Prototype 86

4.4 Ethical Consideration 89

CHAPTER 5 CONCLUSION AND RECOMMENDATION 91

5.1 Conclusion 91

5.2 Recommendation for Future Work 92

REFERENCES 93

viii

LIST OF TABLES

Table 2.1 NodeMCU ESP32 features 12

Table 3.1 Project cost and material list 69

ix

LIST OF FIGURES

Figure 2.1 Rotator Bearing Layout 6

Figure 2.2 General Assembly Type 2000 Pan & Tilt Head 7

Figure 2.3 NodeMCU 13

Figure 2.4 Evolution of software technology in the last twenty-five years 15

Figure 2.5 Industry-specific maturation points of IT security. 17

Figure 2.6 Waterfall model 20

Figure 2.7 Agile methodology iteration 23

Figure 2.8 Customer centred agile methodology 24

Figure 2.9 Interface thinking of UI/UX design 30

Figure 2.10 Server architecture 31

Figure 2.11 WebSocket communication model 33

Figure 2.12 Network load comparison graph 35

Figure 3.1 Process flow for the fabrication of IoT Integrated Antenna Rotator 36

Figure 3.2 Flowchart of methodology 37

Figure 3.3 Expected project layout of IoT integrated Antenna Rotator 38

Figure 3.4 Block diagram of project (software development) 39

Figure 3.5 Project flowchart of IoT Integrated Antenna Rotator 40

Figure 3.6 NodeMCU ESP32 41

Figure 3.7 Dennard Type 2000 42

Figure 3.8 LCD Display 42

Figure 3.9 Potentiometer 10kΩ 43

Figure 3.10 Transformer 43

Figure 3.11 5V relay Module 44

Figure 3.12 Toggle switch 44

Figure 3.13 Optocoupler 45

Figure 3.14 Resistor 45

Figure 3.15 IoT Integrated Antenna Rotator schematic circuit 47

Figure 3.16 Iterative waterfall model 49

Figure 3.17 JavaScript scripting 1 51

Figure 3.18 JavaScript scripting 2 52

Figure 3.19 JavaScript scripting 3 52

Figure 3.20 JavaScript scripting 4 53

Figure 3.21 CSS scripting 1 55

x

Figure 3.22 CSS scripting 2 55

Figure 3.23 CSS scripting 3 56

Figure 3.24 CSS scripting 4 57

Figure 3.25 CSS scripting 5 57

Figure 3.26 JavaScript scripting 5 58

Figure 3.27 JavaScript scripting 6 58

Figure 3.28 HTML scripting 1 59

Figure 3.29 HTML scripting 2 60

Figure 3.30 JavaScript scripting 7 60

Figure 3.31 ESP32 coding 1 61

Figure 3.32 ESP32 coding 2 62

Figure 3.33 ESP32 coding 3 62

Figure 3.34 ESP32 coding 4 63

Figure 3.35 ESP32 coding 5 63

Figure 3.36 ESP32 coding 6 64

Figure 3.37 ESP32 coding 7 64

Figure 3.38 ESP32 coding 8 65

Figure 3.39 ESP32 coding 9 65

Figure 3.40 Antenna rotator calibration 66

Figure 3.41 Angle of antenna rotator versus ADC value 66

Figure 3.42 Vector direction of the calculated bearing 68

Figure 4.1 Top view of hardware assembly 70

Figure 4.2 Side view of hardware assembly 1 71

Figure 4.3 Side view of hardware assembly 2 71

Figure 4.4 Simulation of feedback mechanism 72

Figure 4.5 Upload program to ESP32 72

Figure 4.6 Getting IP address 73

Figure 4.7 GUI layout (web server) 73

Figure 4.8 LCD display 74

Figure 4.9 Request current location permission 75

Figure 4.10 Get current location (before) 75

Figure 4.11 Get current location (after) 75

Figure 4.12 Sending coordinate information from web browser to ESP32 76

Figure 4.13 Received coordinate information in ESP32 77

Figure 4.14 Angles update 1 77

xi

Figure 4.15 Sending desire rotation angle from web server to ESP32 78

Figure 4.16 Received desire rotation angle in ESP32 78

Figure 4.17 Angles update 2 79

Figure 4.18 Manual rotation mode being activated 79

Figure 4.19 Angles update 3 80

Figure 4.20 Web server layout in smartphone 80

Figure 4.21 Hardware connection of IoT Integrated Antenna Rotator 81

Figure 4.22 Antenna rotator 82

Figure 4.23 System integration 83

Figure 4.24 System integration real-time update current angle 84

Figure 4.25 Control system using Google Maps 84

Figure 4.26 Control system by setting angle from GUI 85

Figure 4.27 Manual rotation control 85

Figure 4.28 System testing using mobile phone 86

Figure 4.29 Top view of the IoT Integrated Antenna Rotator control box 87

Figure 4.30 Side view of the IoT Integrated Antenna Rotator control box 87

Figure 4.31 Prototype testing 87

Figure 4.32 IoT Integrated Antenna Rotator prototype 88

Figure 4.33 Request for location information 89

Figure 4.34 Location information permission is allowed 90

Figure 4.35 Location information permission is denied 90

xii

LIST OF ABBREVIATIONS

API Application programming interface

CSS Cascading Style Sheets

CLI Command-line interface

GUI Graphical user interface

HTML HyperText Markup Language

HTTP Hypertext transfer protocol

IDE Integrated development environment

IoT Internet of things

JS JavaScript

JSON JavaScript object notation

LCD Liquid crystal display

MCU Microcontroller

PWM Pulse-width modulation

RAM Random-access memory

ROM Read-only memory

SDP Senior design project

SPI Serial peripheral interface

SSID Service set identifier

URL Uniform resource locator

UART Universal asynchronous receiver-transmitter

UX User experience

UI User interface

WLAN Wireless local area network

WLAN Wireless local area network

xiii

LIST OF APPENDICES

Appendix A: Gantt Chart for SDP 2 114

Appendix B: Back End Scripting 115

Appendix C: Front End Scripting 122

1

CHAPTER 1

INTRODUCTION

This chapter discussed the project background, problem statement of the project,

objectives of the project, research scope and organization. The focus of this thesis is to

develop an IoT Integrated Antenna Rotator which is able to transmit and receive signals in

an effective way. In order to process the signals in different directions, the antenna needs

to rotate to the appointed position. The existing antenna rotator is manually driven and it

is less user friendly. As a solution, an IoT integrated antenna rotator that can regulate the

antenna position using software is needed to be developed to ease the antenna orientation

process.

1.1 Project Background

The performance of the antenna has a significant effect on the telecommunication

system sustainability (Junfithrana et al., 2017). The direction of the antenna pointing area

is crucial in receive or transmit the signal in the particular location. The majority of

direction-finding antennas work throughout a broad frequency spectrum and estimate the

direction of arrival of an incoming electromagnetic field using a 2-dimensional angular

coverage (for instance, only the azimuth angle is estimated for a restricted range of

elevation angles) (Duplouy et al., 2019). It would be preferable if the antenna's orientation

could be controlled by an IoT integrated antenna rotator. The rotator is mounted beneath

the antenna and connected to a controller and internet. The rotator is able to assist the

antenna in receiving or transmitting signal in various directions without exerting additional

forces.

The Internet of Things (IoT) is a new technology which allows a worldwide

network of machines, appliances and devices capable of interacting and exchanging data

with each other. The IoT is known as one of the greatest forthcoming technologies and is

2

gaining enormous attention from various industries (I. Lee & Lee, 2015). With IoT

integration, most of the process is going through digital transformation. This allows a

system to operate at an accelerated level and speed because it is connected to a software

which could transfer information through a network and analyze the data in a short time.

Hence, IoT is implemented in the antenna rotator system and is able to upgrade the existing

antenna rotator into a speedy and high accuracy antenna pointing system.

The IoT Integrated Antenna Rotator is concerned with the design and development

of an antenna rotator that will allow the antenna to be positioned according to the chosen

azimuth. The rotator is able to be controlled automatically via software through internet.

The user is able to alter the orientation of the antenna by selecting the desired location from

the web server.

1.2 Problem Statement

The direction of the antenna plays a crucial role in obtaining signals. The antenna

must point precisely to the area to transmit or receive a signal from a certain location. The

existing antenna rotator is able to be controlled manually or remotely. However, the

existing product requires the user to know the direction or coordinate of the desired signal

source or destination, which causes the system to become less user-friendly and the

direction of the antenna pointing area is not accurate. Besides, this will reduce the

efficiency of the signal communication system since the transmitted or received signal

cannot be sent to or accepted from the desired location accurately. Therefore, a IoT

integrated antenna pointing system is required to overcome the issues. A 24VAC rotator is

used as the primary driver in the antenna system for orientation and speed control, along

with the necessary mechanical coupling. NodeMCU ESP32 is used as a controller to

control the signal to shift the motor and stop in time in order to regulate the direction of the

antenna rotator. A proper control algorithm must be built and implemented on the

controller to provide the position control command in order to achieve a decent response.

Also, a Graphical User Interface (GUI) is implemented into this system to achieve IoT

integration. A digital map is integrated with the system thus the antenna rotator is able to

adjust its angle and direction according to the chosen location from the web server. The

3

antenna rotator device, circuit construction, controller and software application must be

correctly constructed and adhere to the antenna's specifications in order to achieve its

functionalities.

1.3 Objectives

The main aim for our Senior Design Project is to fabricate an IoT Integrated

Antenna Rotator to upgrade an existing antenna rotator with the integration of Internet of

Things (IoT) technology. This ultimate aim can be accomplished through the following

objectives:

i. To develop Graphical User Interface (GUI) by using web server and allow the

system to communicate with microcontroller thru internet.

ii. To integrate Google Maps with the antenna rotator system.

1.4 Research Scope

In the beginning of this project's evolution, several factors were considered to

evolve the IoT Integrated Antenna Rotator. For this project, the aim is to construct the IoT

Integrated Antenna Rotator by upgrading the existing antenna rotator by integrating it with

Internet of Things (IoT).

i. The microcontroller is used to control the angle of the antenna.

ii. Web server is used as a user interface to communicate with the microcontroller.

iii. Google Maps is integrated with the system to achieve IoT technology.

iv. Analyze and evaluate the most suitable material for this project.

4

1.5 Report Organization

This report consists of 4 chapters as a subtopic and the list of references. The first

chapter discusses in detail of the background study of the project, the problem statement,

the objectives, the research scope of the project for this SDP 2 and the report organization.

For the second chapter, it is focusing more on the literature review that also includes a

detailed background and related works written based on the research journals, articles and

reports that have been cited and quoted for reference regarding the subjects of this project.

Next, the third chapter is research methodology that includes methodology flowchart in

addition to research activities such as design, method selection, modelling and simulations

to achieve the objectives of this project. Then, the results or outcomes that have been

achieved from the testing and analysis are discussed in chapter 4. A detailed explanation

on the results can be obtained in this chapter. Lastly, the attachment of the list of references

that were referring to when doing the research and analysis and the Gantt Chart as the

timeline of the progress for this project.

5

CHAPTER 2

LITERATURE REVIEW

This chapter provides the literature review of antenna rotator, internet of things,

microcontroller, network, software engineering and process, application programming

interface, graphical user interface, web server and WebSocket protocol.

2.1 Antenna Rotator

An antenna rotator is typically used when signals arrive at a desired area from

widely separated places and the relatively narrow bandwidth of a single fixed-position

antenna prevents accurate reception or transmission. Using an antenna rotator, an observer

may swiftly position the antenna in the direction of the desired channel's transmission tower

or in the direction that guarantees the best reception of a given channel. An antenna rotator

frequently enables for the easy "fine-tuning" of the antenna orientation to accept signals

from various locations caused by changing atmospheric conditions or other signal-

interfering circumstances. Additionally, the antenna rotator enables the reduction of

multipath, adjacent-channel, and other types of interference that may be mitigated in some

cases by reorienting the antenna slightly. Therefore, the antenna rotator device may be used

to rotate a directional antenna. It is composed of two components which are a controller

and a rotator. The term "rotator" refers to any machine capable of rotating something. The

rotator plays a significant part in the antenna rotator project and must be designed perfectly

for smoother movement and rotation. Gearbox and drive (geared motor), azimuth angle

encoder, and rotary joint make up a basic motor (Muhammad Rusydi Bin Buchek & Darul

Ridzuan, 2014).

Generally, the millimetre-wave rotator assembly was used to design the rotator. The

design was particularly emphasizing the coaxial cable and coax rotary joints. Figure 2.1

illustrates the rotator bearing layout.

6

Figure 2.1 Rotator Bearing Layout

Source: (Muhammad Rusydi Bin Buchek & Darul Ridzuan, 2014).

The radial loads are carried by the upper and lower bearings, while the middle

bearing offers axial support. The rotating table as known as the "lazy-Susan" turntable was

used as a support for several of the antenna rotator projects. The motor shaft would be

supported by the rotating table as it rotates (Kivinen et al., 1999).

The Dennard Type 2000 rotator (Figure 2.2) is selected in this project because it is

one of the most advanced Pan and Tilts on the market, with clean designs and pressure die

cast components to ensure high quality finishes and fits previously unavailable in a unit of

this price range, as well as a striking and creative appearance to ensure it will remain the

market's preferred option (Dennard Type 2000, n.d.) . This rotator was selected and will be

attached to the antenna because it has features that are compatible with the antenna as listed

as follow:

i. Components are pressure diecast to ensure high quality and tolerance fits.

ii. External friction cap change is shielded for ease of use.

iii. Socketed in depth Extremely strong Aluminium shafts that have been anodized for

rigidity.

iv. Pan gearing with anti-backlash.

7

v. Clean wiring looms are made possible by modular printed circuit board electronics.

vi. Rear connector is angled and recessed for transit safety.

Figure 2.2 General Assembly Type 2000 Pan & Tilt Head

Source: (Dennard Type 2000, n.d.)

The Dennard Type 2000 rotator has built in potentiometer to act as a feedback

mechanism for this IoT integrated Antenna Rotator system.

8

2.2 Internet of Things (IoT)

The fourth industrial revolution is currently underway—fourth in the sense that it

is inventive and qualitative. Moreover, the quality of the variation could be observed in the

integrated management and supervision of the entire manufacturing process, which is

unified and agile (Nagy et al., 2018). To stay competitive in a worldwide economy,

manufacturing firms require continually update their production methods to meet changing

market needs (Pedersen et al., 2016).

The first foundation for industrial digitization is device networking. This is usually

referred to as the Internet of Things, a notion that the profession cannot deny. IoT is a term

that refers to "mobile devices" that are outfitted with a chip, RFID, sensor, or any other

networking device that are capable of sharing and communicating data (Hermann et al.,

2016).

With the advent of IoT, smart products develop that can communicate the present

condition of production or process monitoring, the process characteristics, and the

impending need for maintenance, as well as provide recommendations regarding the nature

of the intervention or even intervene the system itself (Atzori et al., 2010; Weyer et al.,

2015). With the proliferation of IoT and artificial intelligence, repetitive job is becoming

more obsolete. Machines accomplish these operations precisely and at a substantially

reduced financial cost (Gubbi et al., 2013). There are several advantages utilizing IoT,

including the following:

i. The ability to retrieve data from any location, moment and gadget.

ii. Enhance communication between electronics devices which are connected.

iii. Able to save energy and cost by transferring data packets through a linked network

iv. Automating tasks contributes to the improvement of a business's service quality by

removing the requirement for human intervention.

9

The applications of IoT technologies are several, since they are adaptable to nearly

any technology capable of delivering pertinent information about its own performance, the

accomplishment of an activity, or even the ambient conditions that need to supervise and

regulate remotely.

One of the examples of IoT application is the implementation of IoT in

manufacturing or industrial sector. Manufacturing has became the most popular IoT

application category in the 2018 research. Technology company such as Microsoft and

AWS, as well as significant industrial automation firms such as Siemens or Rockwell

Automation, are among the drivers pushing the manufacturing industry's digital

transformation. Industrial IoT applications encompass a broad variety of initiatives using

linked "things" both within and outside the plant. For example, many IoT-based factory

control and automation projects offer holistic smart factory solutions that incorporate a

variety of components, including production floor monitoring, wearables and augmented

reality on the shop floor, remote PLC control, and automated quality control systems.

Remote control of linked machinery, equipment monitoring, and administration and

control of complete remote industrial activities such as oil rigs are all examples of typical

outside the factory projects. Numerous case studies cite "decreased operational downtime

and cost savings" as primary reasons for OEMs to use industrial IoT solutions.

An IoT-enabled environment is also shown by an integrated transportation system

that can dynamically route and rearrange itself in response to changing traffic requirements

and circumstances (Zanella et al., 2014). In healthcare, IoT has been utilised to monitor

patient recovery and to compare it to a number of patient-specific factors using IoT-enabled

devices (Chen et al., 2014). Additionally, the data collected may be utilised to compare

patient reactions to therapy in a variety of global environmental scenarios. Additionally,

smart IoT devices may be utilised to monitor and regulate energy use.

In this project, IoT is integrated with an antenna rotator in order to enable user

control and monitor the antenna pointing system remotely through online platform such as

web server. This implementation enhances the precision, product reliability and increase

the conveniency of the antenna rotator system by integrating with IoT technology.

10

2.2.1 IoT Integration

Several commercial devices have emerged in recent years that used as IoT general

purpose devices, including Arduino, RaspberryPi, and NodeMCU. These devices share

three characteristics where they include GPIO (General Purpose Inputs Outputs) ports that

enable easy connection of virtually any type of sensors (Inputs) or actuators (Outputs), they

include an IP-compatible network interface, typically wired 802.3 Ethernet with RJ45

connector or wireless 802.11 wifi, and they include an open-source operating system that

enables development using industry-standard programming standards. In some cases, IoT

devices are equipped with alternative LAN (or PAN) network technologies such as ZigBee

or Bluetooth. While these technologies may perform better in some areas, such as energy

consumption or cost, each of them requires an IP gateway to integrate the network with

other devices or to send packets over long distances. In many instances, the manufacturer

also provides dedicated gateways for their own IoT devices in order to increase the

connection between the IoT devices (Diaz-Cacho et al., 2015).

IoT devices incorporate compact processors that enable them to transmit and

receive data using the IP network protocol stack. While some of these devices may have

sufficient processing capabilities to modify and process data before it is delivered to the

network or after it is received, others encode or retrieve data from IP packet structures.

In order to fabricate this project, a microcontroller is selected to be the processor of

the IoT Integrated Antenna Rotator. The microcontroller is required to be equipped with

wireless Wi-Fi network in order to achieve IoT integration.

11

2.3 Microcontroller

Embedded systems instruction is diverse and heterogeneous (Subbian & Beyette,

2013). Firstly, embedded computing systems are developed and constructed at various

levels of abstraction such as hardware, system software and application. Moreover, it

incorporates principles from a variety of fields, including as electronics, computer science,

software engineering, and control theory (Caspi et al., 2005). The embedded system is

comprised of a microcontroller and auxiliary hardware components (Illera & Sepulveda,

2015). The instruction is able to be implemented to the microcontroller by program it and

the code was written in C using the Arduino IDE.

A microcontroller (abbreviated MCU for microcontroller unit) is a miniature

computer contained within a single metal-oxide-semiconductor (MOS) integrated circuit

(IC) chip. A microcontroller is composed of one or more CPUs (processor cores), memory,

and programmable I/O peripherals. Additionally, a tiny amount of RAM and programme

memory in the form of ferroelectric RAM, NOR flash, or OTP ROM are frequently

incorporated on the chip. Microcontrollers are intended for embedded applications, as

opposed to microprocessors used in personal computers or other general-purpose

applications, which are composed of a number of discrete chips.

2.3.1 NodeMCU ESP32

The ESP32 is a dual-core development board that integrates Wi-Fi and Bluetooth

wireless capabilities. It integrates a broad range of peripherals, including capacitive touch,

ADC, DAC, SPI, UART, PWM, I2C and I2S. The ESP32 is the successor to the ESP8266.

It includes an additional touch-sensitive pins for awaking the device from deep sleep

condition (ESP-WROOM-32 Datasheet Espressif Systems, 2017). The ESP32 consumes

very little power because to its power-saving capabilities and it has security features on a

microcontroller chip. NodeMCU ESP32 is selected as the microcontroller implemented in

this project to achieve the communication between the software and hardware by using

Arduino IDE and web server. The features of the ESP32 is listed in Table 2.1.

12

Table 2.1 NodeMCU ESP32 features

Features/ Properties NodeMCU ESP 32

Microcontroller ESP32

Operating Voltage 3.3V

Power supply 7V – 12V

Current consumption 20 mA – 240 mA

Current consumption Deep Sleep 5 µA

Digital I/O Pins 36

Digital I/O Pins with PWM 36

Analog Input Pins 15

SPI/I2C/I2S/UART 4/2/2/2

Flash Memory 4MB

SRAM 520KB

Size (Length x Width) 52mm x 31mm

802.11 b/g/n Wi-Fi HT 40

Bluetooth Yes

Touch sensor 10

CAN protocol Yes

Ethernet MAC Interface Yes

Security Boot flash encryption. OTP 1024-bit

Hall effect sensor Yes

Power jack No

USB connection Yes

13

Figure 2.3 NodeMCU

Source: Cytron.

NodeMCU ESP32 as shown in Figure 2.3 is used to receive the input signal and

control the output signal in the system. The ESP32 is programmed to determine the

direction of the antenna rotator and calculate the bearing to achieve the targeted azimuth

angle once receive the coordinate from the user through internet. In this SDP, the

standalone ESP32 microcontroller is implemented which allows access to web server from

the microcontroller without any custom firmware modifications. This unique feature of the

ESP32 grants the system to easily deploy as a standalone device to perform the task.

2.4 Wi-Fi Network

A wireless network (Wi-Fi) is a network that communicates between computers

and other network devices utilizing radio signal frequency. It is also known as a WiFi

network or a wireless local area network (WLAN). It allows devices to remain connected

to the network while roaming without being attached with wires. Wi-Fi signals are

amplified by access points, so a device can be far away from a router and still connect to

the network. Wireless connection allows the received data to be communicated to a server,

where it could be analysed and processed further by the application hence achieve IoT

technology (Saloni & Hegde, 2016). In this project, the communication between the ESP32

and web server is deployed through Wi-Fi network. The user is able to access the Wi-Fi

network by simply enter the correct SSID and password of the Wi-Fi in ESP32.

14

2.5 Software Engineering

Software development is a broad term that encompasses a range of computer

science tasks concerned with the process of developing, designing, executing, and

maintaining software. The systematic application of engineering principles to the

production of software is referred to as software engineering (Bourque et al., 2002).

Several significant software innovations had their commercial debuts during this

era. Of fact, several significant technological advances occurred before to 1984: IBM's

OS/360 and the microprocessor, as well as other still-relevant software engineering

principles, were established far earlier (Boehm, 2006; Redwine & Riddle, 1985). Initially,

software spread from a few corporate desks to almost everyone's life. The personal

computer, the Internet, and mobile phones are all examples of this phenomenal progress.

Second, empirical evaluations surpassed subjective judgments. "Software engineering is

not yet a genuine profession," Mary Shaw stated, "but it has the possibility to become one

(Shaw, 1990)." During the early stages of technology development, various innovations

were simply manufactured and distributed, but beginning in the 1980s, engineers reviewed

and experimentally tested new technologies to determine their impact (Ebert, 2008).

The Figure 2.4 illustrates significant software technologies and the stages of

maturity at which they achieved. It is based on a layout introduced by Sam Redwine and

William Riddle (Redwine & Riddle, 1985). To keep things simple, the learning curve is

devided into three phases which are foundations (when fundamental research and concepts

were developed), limited usage (when concepts reached a few organisations and

customers), and broad use (when the technology achieved approximately a third of its then-

available market).

15

Figure 2.4 Evolution of software technology in the last twenty-five years

Source: (Redwine & Riddle, 1985)

16

Three clusters of software technology are depicted in Figure 2.4. Fundamental

technologies contribute to the evolution of broad trends and disciplines, and they are

applicable to all sectors and stages of software development. The majority of people were

born during the last 25 years. Technology ideas and approaches integrate fundamental

processes seen in a wide variety of businesses and products. Consolidated technologies are

conceptual in nature and offer ready-to-use technical solutions.

As seen in Figure 2.4, numerous patterns describe the progress of software

technology during the last 25 years:

i. Rather than individual corporations, software technologies are driven by

ecosystems of researchers, suppliers, customers, and consumers.

ii. Before technologies succeed, they must undergo multiple trials with varying

degrees of emphasis.

iii. Different sectors embrace a given technology at differing rates.

iv. A domain-specific emphasis enables users to tailor technology to their own

requirements.

v. Process-driven design and delivery have supplanted ad hoc trial-and-error

approaches.

vi. Previously fragmented and independent technologies are now interconnected.

vii. Every one of those developments had a significant impact on the engineering of

products and on structuring the software industry.

Certain technologies take an abnormally long maturation periods or never

completely develop. Their transition to widespread utilization follows an S-shaped pattern

of innovation that goes from initial research and trials to widespread industrial adoption

and then repeats again (Ebert & Dumke, 2007; Hamel, 2001). Software technologies are

beneficial when they are widely used. However, certain sectors adopt a specific technology

considerably more quickly than others. A excellent illustration is the tortuous path toward

17

usable code generation and engineering tool packages. These tool sets began as a result of

technology being unprepared; subsequently, the market was unprepared. Artificial

intelligence and expert systems both met the same end. Nowadays, they are nearly

everywhere, since industry has realized that expert systems cannot exist as a stand-alone

technology but must be integrated into products. Figure 2.5 illustrates this impact in further

depth with regards to information security. Depending on the application domain,

technologies encounter a variety of problems and are adopted at varying rates.

Figure 2.5 Industry-specific maturation points of IT security.

Source: (Ebert, 2008)

From the 1980s on, software processes, both engineering and management-related,

accelerated technological advancement. The complexity of software systems continues to

expand faster than humans can regulate it. People had previously encountered this

bottleneck in the 1960s, but it began to recede as large industries shifted their focus to the

process of software engineering. As a result, software development has evolved

considerably over the last 25 years, transitioning from a highly individualistic creative

activity to a mostly collaborative technical profession.

Integration of processes, tools, and people accelerate the adoption of new

technologies. It's difficult to think that 25 years ago, the majority of software, its creators,

and users operated in isolation. Software integration became most obvious with the birth

and rapid expansion of the Internet, owing to the interaction and integration it enables.

18

Component frameworks and open standards provide further impetus for this movement.

Adoption and integration are not simple tasks. To add value to engineers' work, new

technology, methods, and engineering tools require extensive change management.

Engineering approaches are used to guide the software development process, which

encompasses the act of defining, implementing, assessing, measuring, managing,

changing, and improving the software life cycle process itself. It makes extensive use of

software configuration management, which is concerned with regulating configuration

changes in a systematic manner and with ensuring the integrity and traceability of the

configuration and code throughout the system's life cycle. Contemporary methods

implement software versioning.

2.6 Software Process

A long-standing legacy in software engineering and information systems has been

devoted to the creation and implementation of approaches that facilitate successful

software development (Hirschheim et al., 1995). Scholars have extensively analysed

formulations and evaluations of prescriptive approaches during the last four decades, rather

than examining processes based on those methods (Wynekoop & Russo, 1997).

Software methods were initially developed in the mid-1960s as an organization's

defined approach to an anticipated set of software development activities in order to

minimise or lessen the possibility of quality, cost, or time failure (Sommerville, 1996).

Royce developed an early version of the software life cycle approach based on system

engineering ideas (Fitzgerald, 2000; Rovce, 1970). This paradigm was eventually termed

as 'traditional' or 'waterfall' model and is widely regarded as the foundational standard for

software development processes. Waterfall is a term that refers to a succession of

unidirectional, top-down, and non-iterative processes. On the other hand, the waterfall

model is described as an iterative process (Rovce, 1970). After that, the approach faced

criticism for a variety of reasons, including its treatment of iterations and inability to

provide cost-effective, user-driven software (Lyytinen, 1987). Later techniques

acknowledged the crucial importance of iterations in producing successful designs (Boehm

19

& Turner, n.d.), resulting in the development of non-'monolithic' perspectives that utilise

iterations to gradually produce software (Graham, 1992).

With shifting trends in software development, it has not yet achieved the level of

developing software that is correct, easy to use, works reliably, is maintainable, is cost

effective, and is delivered on schedule (Lacerda & Furtado, 2018). Agile Software

Development Process has exploded in popularity as a viable option for software

development, allowing developers to efficiently simplify all of the above variables. Though

the agile approach's quality has been demonstrated theoretically, it has not been quantified

(Bhasin, 2012; Hsu & Lin, 2018; Jain et al., 2016).

2.6.1 Waterfall Model

Winston W. Royce introduced the iterative waterfall software process paradigm in

1970. This model gained popularity and served as a useful guide for designing software

products. The term "structural specification" is taken from it. Each phase follows the

completion of the previous one, and activities can be separated into stages. Although the

result of one phase becomes the input of the following phase, developer have the option of

revisiting stages in the subsequent cycle (Trivedi & Sharma, 2013).

This model is named as "waterfall model" because its graphical depiction resembles

a cascade of waterfalls, as seen in Figure 2.6. This model is simple to comprehend and

apply and it is one of the first models and is still frequently used in government projects

and by a large number of large corporations (Kumar & Bhatia, 2014). The waterfall model

serves as a foundation for the development of several additional lifecycle models. This

approach reaffirms the value of define -before-design, design-before-code (Cohen et al.,

2010).

20

Figure 2.6 Waterfall model

Source: (Kumar & Bhatia, 2014)

The waterfall model is a project management method that relies on a sequential

design process resembling the face of a waterfall. Beginning with requirements, since the

waterfall model requires that specifications be thoroughly documented prior to the start of

any other project phase, the project manager is keen to invest more time

collecting requirements. Requirements begin with a concept or an idea of what the

customer wishes to accomplish. The project manager will conduct a concept discussion

with the client, subject matter experts, and other stakeholders in order to develop highly

21

precise business requirements. Before proceeding to the next step, the project team

confirms and accomplishes the requirements phase (Sinha & Das, 2021).

The design process encompasses both the conceptual and physical design phases.

The logical design is an abstract representation of how software data flows at the outputs.

It is commonly shown visually as a data flow diagram. The physical design dictates the

equipment, such as storage and network infrastructure, that will make the logical design a

reality.

During the implementation phase, developers write the actual code needed to

develop the software according to the specifications specified in the design document. To

guarantee that the software requirements are satisfied, the separate programme modules or

programmes are combined and tested as a whole system. This enables continuous

implementation followed by developer-led unit-level verification.

Verification or testing process is the process of comparing the programme to the

requirements specified in the first phase of the software development lifecycle. The project

team selects a set of colleagues named Testers to test the programme during the verification

phase. If the programme does not conform to the requirements specified in the

requirements document, the tester returns it to the software engineers for additional

adjustment. Once all validation tasks have been completed in the phase and the output has

been approved by testers, the project proceeds to the next phase.

Following this stage of verification, the development team delivers the code to the

production environment. The final step is maintenance, during which the project team fixes

production defects or errors and pushes new builds with cleaner code into production.

The waterfall model is suitable to implement on certain system such as Critical

systems that require significant investigation of the software definition and design for

safety and security. To do this analysis on these systems, the specification and design

papers must be comprehensive. Typically, safety-related issues in the specification and

design are extremely costly to rectify during the implementation stage. This model is also

appropriate for embedded systems in which software requires communicate with hardware.

22

Due to the inflexibility of hardware, it is typically not practical to postpone choices about

software functionality until the software is implemented. Additionally, this methodology

is applicable to large software systems that are a component of larger engineering systems

produced by several partner organizations. The hardware in the systems may be created

similarly, and businesses find it more convenient to adopt a single model for hardware and

software. Additionally, if many businesses are involved, exhaustive specifications may be

required to enable the separate creation of various subsystems.

2.6.2 Agile Methodologies

Agile techniques are software development approaches that adhere to the Agile

Manifesto's software development values and principles. Agile techniques strive to deliver

the best product possible through small cross-functional self-organizing teams that

regularly deliver tiny bits of functionality, allowing for user feedback and correction.

Agile is about being flexible to the market and the consumer by quickly responding

to their requirements and desires and adjusting course as necessary. Agile methods may be

used to any sector that involves a continuous flow of work and the delivery of work

products, such as information technology or software development. Agile technique

contributes to risk reduction by rendering prospective products 'irrelevant' in the market.

They do this by splitting the generally lengthy wait period (often using the classic

"waterfall approach") into shorter cycles (called sprints or iterations). Each sprint is divided

into three phases: requirements, implementation, and testing (Figure 2.7). Each sprint

concludes with a client review to ensure that smaller vertical pieces of the product finally

match their demands and are also market ready.

23

Figure 2.7 Agile methodology iteration

Source: (Sinha & Das, 2021)

Due to the iterative and incremental nature of the agile methodology, each stated

phase is completed within a series of brief iterative cycles of the software development

process referred to as sprints. While in a conventional process, also known as a lightweight

development process, each step is carried out sequentially without any iteration defined.

The incremental cycles result in a deployable product for the customer (Dingsøyr &

Lassenius, 2016). Additionally, agile contains stages like as concept, genesis, release,

production, and retirement that are not covered in traditional methodologies. Agile

24

development is a more rapid and sustainable kind of development than traditional

development since it allows for customer contact throughout the process and the adaptation

to needed adjustments. As seen in Figure 2.8, it is a customer-centred technique.

Additionally, customer satisfaction is prioritised by connecting with them more frequently

or virtually in every phase of a sprint than in a typical one (Jain et al., 2018).

Figure 2.8 Customer centred agile methodology

Source: (Jain et al., 2018)

Agile approach provides several benefits such as the cost of adopting modifications

to requirements is minimised. The amount of rework required for analysis and

documentation is substantially less than what is necessary with the waterfall approach.

Besides, it is easy to obtain consumer feedback on completed development activity.

Customers may leave comments on software demonstrations and check what has been

implemented. Customers have difficulty determining progress based on software design

papers. Also, it is feasible to produce and deploy relevant software to the client quickly,

even if not all functionality is available. Customers may begin utilizing and gaining value

from the product far sooner than with a waterfall method.

However, a number of disadvantages also noticed from agile approach where the

process is imperceptible. Managers require regular deliverables in order to track progress.

When systems are built rapidly, producing publications that reflect each version of the

system is not cost effective. Furthermore, a s new increments are introduced, the

25

system structure degrades. Regular modification results in a jumbled code base as new

functionality is implemented in every manner feasible. Adding new features to a system

gets increasingly complicated and expensive. To prevent structural deterioration and

overall code messiness, agile methodologies recommend rework (modify and reorganize)

the programme on a frequent basis.

2.6.3 Agile Methodology Vs. Traditional Waterfall Model

Various models are used for development purposes in both traditional and agile

approaches. Various models such as the waterfall model, prototype model, spiral model,

iterative enhancement model, and evolutionary model are used in conventional approach

(Singh & Gautam, 2016; Singh & Prasad Kannojia, 2012). Kanban, scrum, extreme

programming, and feature driven development are just a few of the techniques used in agile

approach.

The approach to process maturity concentrated on process and project management

enhancements, as well as the adoption of quality software engineering practices throughout

a business. The maturity level of a process indicates how well-established technical and

managerial practises have been integrated into an organization's software development

processes. This strategy is primarily concerned with enhancing product quality and process

predictability. The agile approach focused on iterative development and the minimization

of overheads in the software process. Agile methodologies are defined by their ability to

offer functionality quickly and adapt to changing client needs. The idea of improvement is

that the best processes are those with the fewest overheads, which agile methodologies may

accomplish.

The most appropriate model may be chosen based on the requirements analysis of

the programme to be created and the available resources. In this project, waterfall model is

deployed as the methodology for this project. The waterfall technique relied more on

specifications, whereas agile relied more on prototypes. In this SDP, hardware is involved

and an embedded system is built. According to the lack of flexibility of hardware, it is

generally not possible to suspend decisions about software functionality until the software

is delivered.

26

2.7 Application Programming Interface (API)

An application programming interface (API) is a way for computers or computer

programmes to communicate with one another. It is a form of software interface that

provides a service to other software components (Reddy, 2011). An API specification is a

document or standard that explains how to create or use such a connection or interface. The

term "implement" or "expose" an API refers to a computer system that adheres to this

standard. The word application programming interface (API) can apply to either the

specification or the implementation. Nowadays, APIs are frequently utilised in today's

software development industry (Zhong & Mei, 2019).

Unlike a user interface, which links a computer to a human, an API connects

computers or pieces of software together without direct usage by end user. An API is

frequently composed of many components that serve as tools or services to the

programmer. When a programme or programmer makes use of one of these components,

it is referred to as calling that section of the API. The API's calls are sometimes referred to

as subroutines, methods, requests, or endpoints. A specification for an API defines these

calls, i.e. it describes how to utilize or implement them.

One of the purposes of APIs is to obscure the technical details of how a system

works, revealing just the portions that a programmer would find helpful and ensuring that

they remain consistent even if the internal details change in the future. An API may be

tailored to a specific pair of systems, or it may be a shared standard that enables

interoperability across several systems.

2.7.1 Web API

Web Application Programming Interfaces are the specified interfaces that enable

interactions between an organisation and the apps that consume its assets. They also serve

as a service-level agreement (SLA) for the functional provider to specify and disclose the

service path or URL for its API consumers. An API approach is an architectural

approach focusing on the provision of a programme interface to a collection of services to

a variety of applications servicing a variety of users.

27

Web APIs enable programmatic access to remote data or functionality through a

network. For example, applications can make use of the Google Places API to discover

local establishments, the Twitter, Instagram, or Facebook APIs to connect users with

friends and family, or the Stripe API to collect end-user payments. Usually, programmes

are composed of microservices that communicate with one another via web APIs (Wittern,

2018). When used in conjunction with web development, an API is commonly specified as

a collection of specifications, such as HTTP request messages, and a definition of the

structure of response messages, typically in the Extensible Markup Language (XML) or

JavaScript Object Notation (JSON) format. A shipping business API, for example, might

be integrated into an eCommerce website to enable customers to request shipping services

and to automatically include current shipping prices, without the site developer having to

manually insert the shipper's rate table into a web database. While the term "web API" was

historically used interchangeably with "web service," a recent trend (dubbed Web 2.0) has

been a shift away from SOAP-based web services and service-oriented architectures (SOA)

toward more direct representational state transfer (REST)-based web resources and

resource-oriented architectures (ROA) (Benslimane et al., 2008).

In this project, Google Maps API is implemented in order to add a digital map in

the web server to allow user to choose locations from the map easily. The Google Maps

API is a collection of JavaScript classes that enable users to alter and incorporate Google

Maps into their websites. Google Maps API enables the entire globe of Google Maps

enthusiasts link the free electronic map to their web pages and utilize the free electronic

map for a range of geographic information system applications (Li, 2011). For instance,

users may utilise Google Maps to see data points connected with certain geolocations.

Additionally, users may generate personalised routes (Zhu, 2012). Additionally, the

Google Maps API is fully documented, with several courses and samples available online

for students to study. Additionally, there is an active user forum where users may ask and

answer questions. Although the Google Maps API is a free service, it does have certain

technological limitations. For example, a user's ability to make queries to Google Maps

services per day and per second is limited. Paid memberships allow users to increase their

limit, however the great majority of users seldom exceed the pre-set capacity.

28

2.8 Graphical User Interface (GUI)

The graphical user interface (GUI) is a sort of user interface that enables users to

interact with electronic devices through the use of graphical symbols (Martinez, 2011)and

audible indicators such as main notation, rather than using text-based user interfaces,

written command labels, or text navigation. GUIs were developed in response to the

perceived steep learning curve associated with command-line interfaces (CLIs), which

require users to write instructions onto a computer's keyboard. It has always been necessary

for applications to design a pleasing and intuitive user interface (UI) and user experience

(UX) that allows people to utilize them easily (Alfaridzi & Yulianti, 2020). A user interface

is described as a medium that a system provides for users to engage with it and vice versa,

whether they need to control the system, enter data, or consume the system's contents (Joo,

2017). The term "user experience" refers to the impressions that individuals receive when

they use or engage with a product. The user experience refers to how consumers feel about

a product in terms of how satisfying, pleasant, and simple to use it (Kurniawan, 2004).

Interfaces are inextricably linked to both design and interaction. The interface

design process contributes to graphically connecting system functionalities. Additionally,

the UX interface is influenced by the system's usability, its contents, and services, the

affinity of users, and the value of users. Developing a consistent interface is a critical task

to do since it defines the user's comfort level when managing a system. When consistency

is understood, it may result in a more effective objective (NIELSEN, 1989). According to

Jonathan Grudin, there are three processes involved in building a consistent interface: the

first step is to define the consistency; the second step is to ensure that the consistency is

solid; and the third step is to check for undesirable consistency (Grudin, 1989). It is critical

for designers to provide a consistent interface because while they may not be aware of the

context in which the user is operating, they are aware of the conversation that will occur

between the user and the system. Numerous trade-offs must be made in order to create a

user interface that fulfils all of the computer system's requirements and goals while

adhering to a set of principles (Johnson, 2010).

29

There are ideas referred to as "golden rules" that may be applied to a variety of

interactive systems that include user involvement (Shneiderman & Plaisant, 2010). All of

the concepts are refined as following:

i. Consistency

This criterion is now being violated, consistency manifests itself in a variety of

ways. In comparable instances, consistent sequences of activities must be done. Situations

such as concealing the password while entering and requesting confirmation before to

deleting an item would improve the system's quality.

ii. Offering universal usability

The developer should consider the user's demands and build the interface in such a

manner that further transformations may be made when the user's requirements vary.

Integrating features for novice users, such as adding explanations and giving shortcuts for

experts, results in an increase in system quality.

iii. Informative feedback

Each user action should be accompanied by informative feedback. For activities

that are performed infrequently but regularly, a modest reaction should be supplied;

however, for actions that are performed infrequently but frequently, a more significant

response should be offered.

By segregating by layer from the tactic of evaluating the user's intent with the UX

interface to the cognitive and sensory attributes that cause user behaviour to the surface,

Jesse James Garrett demonstrated the framework of UX by splitting it into Strategy, Scope,

Structure, Skeleton, and Surface. Recently, the design interface for UI/UX has placed a

premium on user demands (JOO, 2017; H. E. Lee, 2014). Once user demonstrate an action

plan, it empathises immediately. This is for the purpose of comprehending the users. The

second step is to establish the objective in terms of a project or business by identifying the

issue. The following stage, Ideate, aims to generate new concepts and solutions. The

subsequent stage is to develop a prototype of the UI/UX that was offered as a concept or

30

solution in the previous phase. The final stage is to finish the UI/UX by examining and

making decisions. Figure 2.9 illustrates this execution strategy as UI/UX interface thinking.

Figure 2.9 Interface thinking of UI/UX design

 Source: (Joo, 2017)

In this project, web server is implemented in GUI to allow user interact with the

antenna rotator remotely through internet.

2.9 Web Server

The requirement for remote monitoring and accessibility for a variety of embedded

applications has raised the demand for cost-effective and power-efficient techniques

(Bammidi & Kundala, n.d.). Numerous remote monitoring and control solutions are

investigated, and it is shown that the greatest outcomes are achieved when the web server

are properly created for embedded applications (Tian-huang & Jia-xi, 2008).

A web server is a piece of software or hardware that responds to client requests

made over the World Wide Web using HTTP (Hypertext Transfer Protocol) and other

protocols. A web server's primary responsibility is to show website content by storing,

processing, and distributing webpages to users. Apart from HTTP, web servers offer the

SMTP (Simple Mail Transfer Protocol) and FTP (File Transfer Protocol) protocols, which

are used for email, data transfer, and storage, respectively.

The web server can deliver services needed to web clients and website hosting.

Web clients can connect to the web server through a router and the internet. This is a low-

cost web server solution that allows for local data storage and access via a segment of web

clients (MacHeso et al., 2021). The client server architecture greatly contributes to the

31

development of Internet of Things devices, which have become the topic of discussion in

the computer industry (Limpraptono et al., 2011). Figure 2.10 illustrates a typical client-

server architecture in which a request is made to the server whenever a web client wishes

to reach the server.

Figure 2.10 Server architecture

Source: (Limpraptono et al., 2011)

Between the web client and the web server, a particular protocol called Hypertext

Transfer Protocol (HTTP) is utilised. In this project, a real-time monitoring system is

necessary to analyse, investigate, and make judgments on environmental characteristics

such as the feedback potentiometer value from antenna rotator. This task could be achieved

with the deployment of NodeMCU ESP32. The advantages of embedding a web server into

a device are listed as following (Can Filibeli et al., 2007):

• Users can interact with appliances using a web browser on a device. These

technologies, which range from personal computers to mobile phones, are widely

available and widely used.

32

• Costs associated with user interface hardware (electromechanical) can be removed,

allowing for the construction of more user-friendly interfaces at a cheap cost.

• Controlling, monitoring, and upgrading are all possible from any location on Earth.

• Developers may maintain products throughout their life cycles by uploading new

software versions, which reduces maintenance expenses.

• Updates and extensions to user interfaces are possible.

2.10 WebSocket Protocol

In HTML5, the WebSocket protocol is a TCP-based application-layer

communication protocol that corresponds to the concept of a socket and creates a full-

duplex communication channel between the server and Web client. The server and client

is able to communicate via the WebSocket channel (Mei & Long, 2020). The most

distinguishing characteristic of the WebSocket protocol is that it enables the server to

actively deliver data to the client, which is extremely difficult with the HTTP protocol, and

its minimal header information makes it ideal for real-time communication (Qin, 2017).

With the tremendous growth of the Internet, the Browser/Server mode has become

the standard for modern applications, and developers have steadily prioritised Web

communication security in recent years. The system operations are performed on the

browser side, which has the advantages of high real-time speed, cross-platform

compatibility, and ease of use. Simultaneously, the WebSocket protocol transmits data 500

times faster than the HTTP standard (Lubbers, 2011). Indeed, WebSocket-based

communication interfaces have been commonly applied to overcome issues involving real-

time communication (Zha et al., 2014). As a result, a real-time monitoring system for

wireless coverage data are developed using the WebSocket protocol, and the acquired

wireless coverage data is shown in real time on the browser side. This technology provides

a simple and dependable foundation for planning or post-maintenance wireless network

coverage (Liu et al., 2018).

33

It only requires a simple "handshake" action between the browser and the server in

the WebSocket, then a fast track is formed between the browser and the server. Once

linked, WebSockets act as data frames, transmitting and receiving data in dual channel

mode.

Between the server and the client, a WebSocket connection is established through

the WebSocket protocol during the initial "handshake." Additionally, the protocol is based

on the TCP/IP underlying protocol. The WebSocket protocol is straightforward; clients

such as standard browsers communicate with servers over the 80 or 443 port. According to

HttpHeader, the server determines whether a connection is a WebSocket request and, if so,

upgrades it to a connection. Following the handshake's success, the connection enters the

two-way long connection data transmission phase.

WebSocket data transfer is frame-based: 000 signifies the start of data, 0xff denotes

the end of data, and the data is encoded in utf-8. In comparison to standard HTTP queries,

the WebSocket handshake processes merely two bytes of request header information

between the server and the client, significantly reducing the amount of bandwidth

consumed by requests and server resources (Zhang & Shen, 2013).

Figure 2.11 WebSocket communication model

Source: (Zhang & Shen, 2013)

34

At the moment, the need for real-time information transmission is increasing.

HTML5 recommends the use of WebSockets to enable real-time online communication.

Figure 2.11 illustrates the WebSocket communication paradigm. WebSocket is a new

HTML5 protocol that enables full-duplex communication between the browser and the

server. In comparison to previous real-time communication technologies, WebSocket

enables real-time communication while reducing server resources and bandwidth.

WebSockets provide the following benefits over traditional real-time

communication. WebSocket significantly reduces network bandwidth usage by appending

more than 800 bytes of HTTP headers to a single HTTP request. When the WebSocket

protocol is used instead of HTTP, each message is sent across the network in the form of a

WebSocket framework, with a total overhead of around 2B (Yang & Yang, 2016). In

comparison to conventional HTTP, each request-response pair requires a mode in which

the client connects to the server. Each time data is exchanged, in addition to the actual data,

the server and client transfer a huge number of HTTP headers, resulting in a low efficiency

of exchange of information. Similar to Socket, WebSocket is a TCP long-connection

communication mechanism. Following the establishment of the WebSocket connection,

further data is transferred in the form of a frame sequence. The client and server are not

needed to re-initiate the connection request until either the client or the server disconnects

from the WebSocket connection. The use of network bandwidth resources is significantly

reduced in the case of excessive concurrency and high load traffic between the client and

the server. The Figure 2.12 compares network traffic generated by the system while it

interacts in real time via polling and WebSocket. When traffic and load rise, the WebSocket

approach outperforms previous polling techniques significantly.

35

Figure 2.12 Network load comparison graph

Source: (Liu et al., 2018)

WebSocket is a true full-duplex communication protocol that provides superior

real-time performance which it enables full-duplex communication between the server and

the browser. Once the connection is established, the server and client are equal and may

communicate with one another. The HTTP long connection is based on HTTP, the standard

client-server request protocol. Due to the full-duplex nature of the protocol, the server can

send information to the client at any time. Due to the client sends and receives messages

over the same persistent connection, the advantage of real-time communication is obvious.

In comparison to an HTTP request, which requires the client to request to the server, the

latency is greatly decrease, and the data can be transferred more frequently in a short period

of time.

36

CHAPTER 3

METHODOLOGY

This chapter details the order, technique, and procedure for constructing the project.

Understanding the methodologies and technology that will be employed is critical while

developing the project. This is a hardware and software integration design project. The

project must be completed in stages and in accordance with the process flow outlined below

(Figure 3.2) in order to accomplish the stated aim.

Figure 3.1 Process flow for the fabrication of IoT Integrated Antenna Rotator

37

3.1 Flowchart of Methodology

Figure 3.2 shows the methodology flowchart in order to complete this project.

Figure 3.2 Flowchart of methodology

38

3.2 Project Layout

Figure 3.3 Expected project layout of IoT integrated Antenna Rotator

Figure 3.3 illustrate the expected layout of the IoT integrated antenna rotator. An

antenna is mounted on the antenna rotator while the rotator is installed on a solid base. The

rotator is connected to a control box which inside it contains the microcontroller, electronic

components and electrical circuit. The microcontroller inside the control box is connected

to a Wi-Fi network to enable the system to access internet. Users are allowed to utilize the

web server as the GUI to control or monitor the orientation of the antenna rotator. By

implementing the Google Maps API, user can easily pin the places in Google Maps to

obtain the correct coordinate of the locations. Alternatively, user also can manually alter

the angle of the antenna rotator by adjusting the potentiometer at the control box.

39

3.3 Block Diagram of IoT Integrated Antenna Rotator (Software Development)

Figure 3.4 Block diagram of project (software development)

Figure 3.4 illustrates the block diagram of IoT Integrated Antenna Rotator which is

emphasise on the software development. The Google Maps API is embedded into the web

server which allows user to select the current or desire location from the digital map. The

user is also able to select a certain angle from the web server to control the angle of the

rotator. The input data is then sent to the NodeMCU ESP32 controller via Wi-Fi using

WebSocket protocol to control the output of the system. ESP32 will calculate the bearing

based on the input data from web server and decide the antenna rotator to turn clockwise

or anti-clockwise by switching the relay. A feedback mechanism is implemented in this

system to confirm the antenna rotator is correctly pointing to a certain direction. The ESP32

ensure the current angle (feedback angle) of the antenna rotator is always within the range

or close to the desire angle entered by user. The real-time current angle of the antenna

rotator is displayed on the web server as well to allow user remotely monitor the system.

User is allowed to manually control the orientation of the antenna rotator using

potentiometer by simply switch on the manual mode hence the antenna rotator could rotate

according to the manual rotation. The current angle and desire angle of the system is also

displayed on the LCD.

 rap i a

user inter a e

() ntenna

rotator

 oog e

 aps P

 o e

 SP 3

 isp a

 e a

Fee a k

 i i

 e So ket

proto o

 anua

 ontro ang e

40

3.4 Project Flow

Figure 3.5 Project flowchart of IoT Integrated Antenna Rotator

41

Figure 3.5 shows the flowchart for IoT Integrated Antenna Rotator. There are 2

method that user can adjust the orientation of the antenna rotator which are analog control

or select the location thru web server. When the coordinate of the location is inserted, the

data of the coordinate is transmitted to the ESP32. The ESP32 controls the movement of

the rotator and causes the motor to rotate. The inserted value is compared with the feedback

value from antenna rotator, in order to decide the orientation of the motor. The motor keeps

rotating until it reaches the desired angle determined by the controller. Finally, the rotator

faces the selected location entered by the user.

3.5 Hardware Components

The selected hardware components for design the IoT Integrated Antenna Rotator

are listed as following.

3.5.1 NodeMCU ESP32

Figure 3.6 NodeMCU ESP32

Figure 3.6 shows an ESP32 is selected as the controller in this project which it is a

dual-core development board that integrates Wi-Fi features. It integrates a broad range of

peripherals, including capacitive touch, ADC, DAC, SPI, UART, PWM, I2C and I2S.

42

3.5.2 Antenna Rotator

Figure 3.7 Dennard Type 2000

Dennard Type 2000 in Figure 3.7 is used as the rotator to rotate the position of an

antenna. The cables of the Dennard Type 2000 are connected to the system to control the

orientation movement and provide the feedback of the position to the controller.

3.5.3 LCD Display

Figure 3.8 LCD Display

Figure 3.8 shows a liquid crystal display (LCD) which is a light-modulating flat-

panel display device that makes use of liquid crystals' capabilities. Liquid crystals do not

generate light directly; rather, they create monochromatic contents via a backlight or

reflector. It is used in this project to display the current and desire angles of the system.

43

3.5.4 Potentiometer 10kΩ

Figure 3.9 Potentiometer 10kΩ

Figure 3.9 shows potentiometer of 10kΩ. t is a manua a justa e varia e

resistor with three terminals to rotate the azimuth angle of the antenna rotator.

3.5.5 Transformer

Figure 3.10 Transformer

A transformer as illustrated in Figure 3.10 is used in the project to convert and step

down the source from 240VAC to 24VAC.

44

3.5.6 Relay 5V Module

Figure 3.11 5V relay Module

Figure 3.11 shows a 5V relay module. The relay is controlled by a low-level

triggered control signal. When the relay is activated, it operates in one of two modes, either

normally open or normally closed to control the orientation of antenna rotator.

3.5.7 Toggle Switch

Figure 3.12 Toggle switch

Figure 3.12 shows a 3-pins toggle switch that is activated by back-and-forth

movement of a lever to open or close an electrical circuit. It is used in this project to turn

on or off the manual rotation mode of the IoT Integrated Antenna Rotator.

45

3.5.8 Optocoupler

Figure 3.13 Optocoupler

Figure 3.13 shows an optocoupler that connects two isolated circuits together. It

used to protect the system from damaging the circuit and devices by receiving the signal

with excessive voltages.

3.5.9 Resistor

Figure 3.14 Resistor

Figure 3.14 shows resistors which are used in electrical circuit to limit the current

flow or voltage in the system. 220Ω and 3.8kΩ resistors are used in this project to adjust

the current flow in this system.

46

3.6 Software Tools

The following are the selected software tools for develop the IoT Integrated

Antenna Rotator software system.

3.6.1 Arduino IDE

The Arduino Integrated Development Environment (IDE) is a cross-platform

programme developed in C and C++ functions. It is used to build and upload programmes

to Arduino compatible boards. In this project it used to program the ESP32.

3.6.2 Visual Studio Code

Visual Studio Code is a simplified code editor that includes debugging, task

execution, and version control capabilities. It is designed to give only the tools necessary

for a speedy code-build-debug cycle, leaving more complicated processes to more feature-

rich IDEs. Visual Studio Code is used in this project to develop the front-end of the system.

3.6.3 Web script

Scripting is a prevalent technique in web development. Web development

encompasses all activities involved in creating an Internet-based website, including web

design, web content creation, and programming. Scripting enables the transformation of a

static HTML page into a more dynamic one. It enables people to engage with a website. In

this project, HTML, CSS and JavaScript are used to design the web server. HTML

establishes the foundation for websites, which is expanded and updated by other

technologies such as CSS and JavaScript. CSS is used to manage the appearance,

formatting, and layout of web pages. JavaScript is used to programmatically control the

behaviour of certain components.

3.6.4 WebSocket

WebSocket is an IETF-standardized transport protocol that permits the usage of

multiplex messages on both the client and server side of a single TCP connection (Fette &

Melnikov, 2011). WebSocket is intended to assist the web browser and web server in

47

communicating bidirectionally many messages concurrently with the least amount of

latency and packet loss (Nakajima et al., 2013).

3.6.5 Google Maps API

Google Maps API is a collection of application programming interfaces that allow

user to communicate with the web services. It enables developers to create simple to highly

advanced location-based applications for the Web, iOS, and Android. In this project, the

geographic coordinates are obtained by using Google Maps API.

3.7 Circuit Design

Figure 3.15 IoT Integrated Antenna Rotator schematic circuit

Figure 3.15 illustrate the schematic circuit connection of IoT Integrated Antenna

Rotator using NodeMCU ESP32 as the controller. The feedback signal and manual rotation

signal are connected to A6 (D34) and A7 (D35) correspondingly, input of relay 1 and relay

2 are connected to D32 and D33 respectively, SDA is connected to D21 and SCL connected

to D22. The ESP32 and relays are 2 isolated circuit and they are connected using

48

optocoupler to protect the system from harming the circuit and devices by receiving the

signal with extreme voltages. The relays are used to control the orientation of the antenna

rotator where one relay is used to control the clockwise rotation, another relay is used to

control the anti-clockwise rotation. A toggle switch is connected to D4 as an input signal

to let user to switch on the manual rotation mode.

49

3.8 Software Development

The waterfall model is a software development methodology plan that is based on

the concept of following a predefined sequence of events from top to bottom in the shape

of a cascade. Its stages are closely associated with the software development life cycle

(SDLC), from which it originated. Iterative waterfall software development processes

gained popularity because they gave realistic instructions for producing software products.

Each phase follows the completion of the previous one, and activities can be separated into

stages. Even though the result of previous stage becomes the input of the following stage,

developers have the option of reviewing stages in the iteration cycle (Trivedi & Sharma,

2013). Figure 3.16 illustrate the iterative waterfall model which have been implemented in

this project.

Figure 3.16 Iterative waterfall model

3.8.1 Requirements Analysis and Definition

The definition and analysis of requirements are concerned with consultation with

system users establishes the system's services, restrictions, and aims. They are then detailed

specified and serve as the basis for the system specification. In this project, GUI is used to

enable the user to select the desired location or insert coordinate of a specific area to

determine the direction of the antenna rotator. The software is designed using HTML, CSS

and JavaScript scripting to build a web server for the system. Also, the Google Map is

 e uirements

 e inition

S stem an

so t are esign

 mp ementation

an unit testing

 ntegration an

s stem testing

 peration an

maintenan e

50

integrated with the web server in order to achieve the objective of this project which is IoT

integration technology. The user could access the web server by using browser. The data

is then sent to the ESP32 and automatically be converted to the desire rotation angle to

control the orientation of the antenna rotator. The value of the angles will be displayed on

the LCD and the web server also able to show the real-time angle of the antenna rotator.

The user also can manually control the antenna rotator either thru potentiometer or web

server. This IoT integration can help users to control the direction of the antenna rotator in

a most effective way.

The elements and the functions of the web server include:

• Integrated with Google Maps API.

• Selection of current and desire location in Google Maps.

• Get current location from Google Maps.

• Key in desire coordinate.

• Manually define rotation angle.

• Display real-time current angle of antenna rotator.

The features and the tasks of the ESP32 involve:

• Convert the coordinate information to angles.

• Decide the orientation of the antenna rotator.

• Compare the rotation angle with feedback angle (current angle).

• Allows user manually control rotation angle.

• Display current angle and desire angle on LCD.

51

3.8.2 System and Software Design (GUI)

A web server is built by using HTML, CSS and JavaScript scripting to act as a GUI

for this system. The program is scripted in Visual Studio Code before being integrated with

backend program (ESP32). Figure 3.17 until Figure 3.30 show the coding for constructing

the web server. However, the full backend scripting is written in Appendix B.

Firstly, JavaScript scripting is built to define the makers’ locations and prepare for

allowing the users to drag the markers in Google Maps in order to obtain the coordinates.

These steps are shown in Figure 3.17, Figure 3.18 and Figure 3.19.

Figure 3.17 JavaScript scripting 1

52

Figure 3.18 JavaScript scripting 2

Figure 3.19 JavaScript scripting 3

53

Figure 3.20 shows the coding for allowing the users to get their current location by

using Google Maps API. For security purpose, the browser will ask for the user’s

permission e ore getting t e user’s urrent o ation.

Figure 3.20 JavaScript scripting 4

54

Figure 3.21, Figure 3.22, Figure 3.23, Figure 3.24 and Figure 3.25 show the CSS

scripting describing the for the appearance of the web server. Figure 3.21 shows the

dynamic bar to represent the real-time current angle of the antenna rotator. Figure 3.23,

Figure 3.24 and Figure 3.25 show the design of the dynamic slider to enable user to choose

the desire rotation angle.

55

Figure 3.21 CSS scripting 1

Figure 3.22 CSS scripting 2

56

Figure 3.23 CSS scripting 3

57

Figure 3.24 CSS scripting 4

Figure 3.25 CSS scripting 5

58

Figure 3.26 shows the function for initialize the web socket once the user enters the

web server by using browser. Figure 3.26 and Figure 3.27 show the functions which are

triggered when user click the button to send the data from web server to backend (ESP32).

Figure 3.26 JavaScript scripting 5

Figure 3.27 JavaScript scripting 6

59

Figure 3.28 shows the HTML scripting for displaying the real-time updating the

current angle of antenna rotator and presenting the Google Maps in the web server.

Figure 3.28 HTML scripting 1

Figure 3.29 shows the HTML scripting for displaying and inserting the coordinate

information as well as the manual control rotation angle from web server.

60

Figure 3.29 HTML scripting 2

Figure 3.30 shows the JavaScript to enable the user to use the slider and obtain the

slider value as the angle for manual control rotation.

Figure 3.30 JavaScript scripting 7

61

3.8.3 System and Software Design (ESP32)

ESP32 is programmed in C/C++ with Arduino IDE. Figure 3.31 until Figure 3.39

show the coding for constructing the system in ESP32. However, the full backend scripting

is written in Appendix C. Figure 3.31 shows the header files and libraries used in this

project. JSON library is used to prepare the static memory which will be used in

transmitting data between frontend and backend. Web server and web socket server is

located at port 80 and 81 respectively after insert the SSID and password of the Wi-Fi

network.

Figure 3.31 ESP32 coding 1

Figure 3.32 shows the coding for declaring the variables and include the html sketch

 i e name “ e page. ” which is the GUI for the project. The scripting descripted in

System and Software Design (GUI) is saved as “ e page. ” in the same sketch folder and

to be uploaded into ESP32 later.

62

Figure 3.32 ESP32 coding 2

Figure 3.33 shows the program in setup() which only runs once when the system is

activated. The direction of antenna rotator remains unchanged when the system is turned

on and the system is connected to the Wi-Fi once the system is started. The web server,

web socket and LCD is initialized at this stage too.

Figure 3.33 ESP32 coding 3

63

Inside the loop function as shown in Figure 3.34, the program loops sequentially,

which enables the program to adapt and respond. The system utilizes it to exert active

control over the ESP32 board. The ESP32 will keep reading the feedback value from

antenna rotator and updating to frontend (GUI) using JSONtxt. The manual rotation is

enabled i t e togg e s it is turne to “H H” on ition. The LCD will continuously

display the real-time current angle and desire angle of the system.

Figure 3.34 ESP32 coding 4

Figure 3.35 show the web socket event which is triggered when data is sent from

frontend to backend.

Figure 3.35 ESP32 coding 5

64

Figure 3.36 show the data from GUI is being stored in backend and the program

will differentiate either user choose coordinate information or manual rotation angle to

control the antenna rotator.

Figure 3.36 ESP32 coding 6

Figure 3.37 shows the function to calculate the bearing based on the coordinate

information. The angle is being used as the desire angle when user select the locations from

Google Maps in web server and send to ESP32.

Figure 3.37 ESP32 coding 7

65

Figure 3.38 and Figure 3.39 shows the function of rotation which control the

orientation of the antenna rotator by switching the relays. The desire rotation angle is

compared with the current (feedback) angle of antenna rotator. Based on the conditions,

the relays would be turned off or on in order to control the antenna rotator to turn clockwise

, anticlockwise or stop. A range of 10 degree is program due to the detection of fluctuation

in feedback mechanism.

Figure 3.38 ESP32 coding 8

Figure 3.39 ESP32 coding 9

66

3.9 Calibration and Calculations

Due to the orientation limitation of the Dennard 2000, the antenna rotator is only

able to rotate from 0° until 290°. The antenna rotator is then calibrated to make sure the

angles and the required input voltage for the orientation. Figure 3.40 shows the circular

protractor pasted on the antenna rotator in order to measure the relationship between angle

of the antenna rotator and the required voltage. The data is recorded and plotted into a

graph. Figure 3.41 illustrate the graph of the angle of antenna rotator versus ADC (analog

to digital conversion) value.

Figure 3.40 Antenna rotator calibration

Figure 3.41 Angle of antenna rotator versus ADC value

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000

A
n

gl
e

o
f

an
te

n
n

a
ro

ta
to

r

ADC value

Angle of antenna rotator versus ADC value

67

Based on the relationship shown in Figure 3.41, Eq. (3.1) is expressed for

calculating the feedback value or current angle of antenna rotator.

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑎𝑛𝑔𝑙𝑒 = (0.113961 ×
 𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟) +
 10.7873

3.1

The angle of the manual rotation via potentiometer is expressed in Eq. (3.2).

𝑀𝑎𝑛𝑢𝑎𝑙 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 =
(𝐴𝐷𝐶 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑜𝑚𝑒𝑡𝑒𝑟 × 290)

4096

3.2

The bearing between two points a and b is calculated mathematically by obtaining

the inverse tan function of X and Y as in Eq. (3.3).

bearing = tan−1(X, Y)

3.3

X and Y are defined as Eq. (3.4).

𝑋 = 𝑐𝑜𝑠 𝜃𝑏 × 𝑠𝑖𝑛 ∆𝐿

𝑌 = 𝑐𝑜𝑠 𝜃𝑎 × 𝑠𝑖𝑛 𝜃𝑏 – 𝑠𝑖𝑛 𝜃𝑎 × 𝑐𝑜𝑠 𝜃𝑏 × 𝑐𝑜𝑠 ∆𝐿

3.4

a and b represent the two coordinates, and their prefixes are given in Eq. (3.5).

𝐿 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒

𝜃 = 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒

𝑎𝑛𝑑 ∆𝐿 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒

𝑡𝑤𝑜 𝑝𝑜𝑖𝑛𝑡𝑠.

3.5

68

The vector direction of the calculated bearing is illustrated as in Figure 3.42.

Figure 3.42 Vector direction of the calculated bearing

0

90

1 0

 0

 ort

 est

Sout

 ast

69

3.10 Project Cost and Material List

The estimated project cost and the selected materials are listed in Table 3.1. The

total cost is around RM74.72. Every member of the project is allowed to claim the cost of

material up to RM300.00. Hence, the project cost is within the claiming range.

Table 3.1 Project cost and material list

No
Material /

Component
Specification Supplier/ Source Quantity

Estimated

cost (RM)

1
NodeMCU

ESP32
WROOM DEVKIT Cytron 1 38.72

2 Potentiometer 10kΩ
Reuse from previous

project
2 0.00

3 LCD
JHD162A with

driver

Reuse from previous

project
1 0.00

4
Prototype PCB

board
72mm x 47mm Apply from faculty 1 0.00

5 Connector 2-pin Apply from faculty 10 0.00

7 Transformer 240VAC/24AC
Reuse from previous

project
1 0.00

9 Relay SRD-5VDC-SL-C
Reuse from previous

project
2 0.00

10 Optocoupler TLP621-4 Apply from faculty 1 0.00

11 PCB Stand -
Reuse from previous

project
20 0.00

12 Antenna rotator Dennard Type 2000
Reuse from previous

project
1 0.00

13 Ethernet Shield Model V2.0 Cytron 1 36.00

14 Resistor 0Ω Apply from faculty 4 0.00

15 Resistor 3. kΩ Apply from faculty 4 0.00

TOTAL ESTIMATED COST = RM 74.72

70

CHAPTER 4

RESULTS AND DISCUSSION

This chapter details the implementation and unit testing, integration and system

testing and discussion of the outcomes in order to verify that each unit meets its

specification and validate this project achieves the objectives.

4.1 Implementation and Unit Testing

At this phase, the software design is accomplished as a set of programs or program

units. The required hardware to conduct the unit testing are assembled as in Figure 4.1,

Figure 4.2 and Figure 4.3. The assembled hardware is known as control box for this project.

Figure 4.1 Top view of hardware assembly

 anua rotation

 ontro s it

 anua rotation

 ontro

 isp a

 e a e a 1

71

Figure 4.2 Side view of hardware assembly 1

Figure 4.3 Side view of hardware assembly 2

 roun Fee a k

signa

3.3

supp

 (trans ormer) ntenna

rotator

(e t)

 ntenna rotator

(rig t)

 (trans ormer)

 o e SP3

 egative termina

o supp

Positive termina

o supp

72

For unit testing purpose, a potentiometer is connected to simulate the feedback

mechanism of the antenna rotator as in Figure 4.4.

Figure 4.4 Simulation of feedback mechanism

The software program is uploaded into ESP32 by using USB cable as in Figure 4.5,

and the Arduino IDE shows message after the upload process is done.

Figure 4.5 Upload program to ESP32

73

Figure 4.6 shows the serial monitor in Arduino IDE to observe the parameters and

results of the system. When the system is started, the ESP32 is connecting to the Wi-Fi and

web server. After the connection is completed, an IP address showed up at serial monitor.

At beginning stage, the direction of the antenna rotator remains unchanged and the serial

monitor i isp a “ otation omp ete” to in i ate t e antenna rotator is in stop mo e.

Figure 4.6 Getting IP address

User can access the web server of IoT Integrated Antenna Rotator by typing the IP

address inside a web browser. The layout of the GUI is shown in Figure 4.7. The real-time

current bearing of antenna rotator can be observed in web browser and the LCD displays

the current angle and desire angle of the system as in Figure 4.8.

Figure 4.7 GUI layout (web server)

74

Figure 4.8 LCD display

For enhance the security feature and protect the privacy of the user, the web browser

will request the permission from user before the system obtain the current location of the

user. A pop-up window appears as in Figure 4.9 when user first entering the web server or

 i k t e “ et Current Location” button as in Figure 4.10. The result of the action is shown

in Figure 4.11.

75

Figure 4.9 Request current location permission

Figure 4.10 Get current location (before)

Figure 4.11 Get current location (after)

76

The red marker indicates the current location of the user and the blue marker

represents the desire location that antenna rotator is required to point. Both markers are

draggable, and the coordinates information is updated in the text boxes. User can type the

coordinate information if they know or simply utilize the Google Maps. When user click

“Sen ” utton as in Figure 4.12, an alert window shows up indicates the coordinate data

has been sent to ESP32. Figure 4.13 shows the serial monitor when the data has been

received in backend and the bearing of the desire rotation value is calculated. The antenna

rotator starts to rotate until the current angle and desire angle are close to each other. Web

server and LCD will keep update the latest angles of the system as in Figure 4.14.

Figure 4.12 Sending coordinate information from web browser to ESP32

77

Figure 4.13 Received coordinate information in ESP32

Figure 4.14 Angles update 1

78

User also can utilize the slider and send the desire angle from web server to ESP32

to rotate the antenna rotator as in Figure 4.15. Figure 4.16 shows the backend information

during the data is received, and Figure 4.17 shows the angles update in LCD, web server

and serial monitor.

Figure 4.15 Sending desire rotation angle from web server to ESP32

Figure 4.16 Received desire rotation angle in ESP32

79

Figure 4.17 Angles update 2

User can manually control the orientation of antenna rotator using potentiometer

by simply togg e t e s it to “ ”. When the manual mode is activated, serial monitor

shows “ anua rotation a tivate ” as in Figure 4.18 and the antenna rotator rotates

according to the potentiometer. Figure 4.19 shows the angles update in LCD, web server

and serial monitor, the antenna rotator stop when the current angle reaches the desire angle.

Figure 4.18 Manual rotation mode being activated

80

Figure 4.19 Angles update 3

Figure 4.20 shows the web server layout by using web browser in a smart phone.

Users are able to access the web server by simply enter the IP address in the web browser

of phone and control the antenna rotator or monitor the system.

Figure 4.20 Web server layout in smartphone

81

4.2 Integration and System Testing

In this stage, the individual program units or the software programs are integrated

with the hardware components. The full system is tested to assure compliance with the

software requirements and achieve the objective of the project.

Figure 4.21 shows the hardware connection of this project. In order to increase the

accuracy of the rotation angle of antenna rotator, 2 protractors are pasted at the rotation

plate of antenna rotator as in Figure 4.22 to form a circular protractor. The calibration of

the system has been made as stated in Chapter 3.9 with the assistance of the protractor.

Figure 4.21 Hardware connection of IoT Integrated Antenna Rotator

 30

trans ormer

 po er supp ontro o

 ntenna rotator

 otation p ate

82

Figure 4.22 Antenna rotator

The software is integrated with all the hardware material as in Figure 4.23. The

programs are uploaded into ESP32 via micro-USB cable. The IoT Integrated Antenna

Rotator is a standalone system and it is able to operate without connect to the laptop. In

Figure 4.23, after the program has been uploaded, the laptop is simply provide the 5V

power supply to ESP32 to allow ESP32 function continuously. Instead of using laptop,

there are a lot of devices or equipment could be used to provide the 5V power supply such

as power bank or phone charger.

 otation signa Fee a k signa

 otation p ate

83

Figure 4.23 System integration

When the system is integrated, the user is able to control the antenna rotator thru

web server (GUI). Figure 4.24 shows the real-time current rotation angle update of the

antenna rotator in web server. Figure 4.25 shows the user pin the location in Google Maps

and send the information to ESP32 to control the antenna rotator. The rotation plate starts

to move upon received the instruction from the controller. At the same time, LCD displays

the real-time current angle of the antenna rotator and the desire rotation angle selected by

user. User can control the antenna rotator with a specific rotation angle by adjust the slider

in the web server as in Figure 4.26. Besides, the antenna rotator is able to be manually

regulated by switching to manual rotation mode and adjusting the potentiometer as in

Figure 4.27. All the process executed by web server can be done using mobile phone as

well in Figure 4.28.

84

Figure 4.24 System integration real-time update current angle

Figure 4.25 Control system using Google Maps

85

Figure 4.26 Control system by setting angle from GUI

Figure 4.27 Manual rotation control

86

Figure 4.28 System testing using mobile phone

4.3 Prototype

After the system testing, all the hardware is assembled and a complete prototype is

fabricated. Figure 4.29 and Figure 4.30 shows the top view and side view of the IoT

Integrated Antenna Rotator control box respectively. The prototype is then being tested as

shown in Figure 4.31 to ensure the system functionality. The testing results have achieved

all the objectives and the characteristics and benefits of the IoT Integrated Antenna rotator

are listed as following:

• Display real-time current angle of antenna rotator in GUI and LCD.

• Pinpoint locations in Google Maps via GUI.

• Regulate the orientation of antenna rotator through internet or by adjusting the

potentiometer.

• Accurate geographic coordinates.

• Enhance the transmission and reception of signal.

87

Figure 4.29 Top view of the IoT Integrated Antenna Rotator control box

Figure 4.30 Side view of the IoT Integrated Antenna Rotator control box

Figure 4.31 Prototype testing

88

Figure 4.32 shows the fully functioning prototype of IoT integrated Antenna

Rotator with the web server control using laptop and mobile phone.

Figure 4.32 IoT Integrated Antenna Rotator prototype

89

4.4 Ethical Consideration

Ethical issues are explicitly considered throughout the software development life

cycle in ethics-aware software engineering (Rashid et al., 2009). To strengthen security

and preserve the user's privacy, the web browser will request permission from the user

before obtaining the user's current location. A pop-up window appears as in Figure 4.33

 en user irst entering t e e server or i k t e “ et urrent o ation” utton.

Figure 4.33 Request for location information

When user agree to let the website to access location services, the coordinate

information of current location of the user will be updated in the text box and Google Maps

as in Figure 4.34. The Internet Service Provider assigns the device an IP address which is

required to access the internet. IP addresses establish a link between the device and the

websites and services that the user accesses. IP addresses are assigned on an approximately

geographical basis. This implies that every website that a user visits may obtain

information about the user's general location.

90

Figure 4.34 Location information permission is allowed

If user deny the permission, the current location of the user will not be obtained by

the website as in Figure 4.35. However, user still can set the current location by pinpoint

the location manually in Google Maps or simply enter the latitude and longitude in the text

box.

Figure 4.35 Location information permission is denied

91

CHAPTER 5

CONCLUSION AND RECOMMENDATION

This chapter concludes the essential features of the design and the meaningful

outcomes of the project. The limitation and the recommendation for the future work of this

project also included in this chapter.

5.1 Conclusion

An IoT Integrated Antenna Rotator is successfully fabricated in this project to

upgrade an existing antenna rotator by integrating it with Internet of Things (IoT)

technology. The objective of this thesis is to integrate Google Maps into GUI (web server)

with the antenna rotator system in order to achieve a speedy and high accuracy standalone

antenna pointing system. The real-time current rotation angle of the antenna rotator is able

to be displayed at the web server and LCD. User is able to control the antenna rotator by 3

types of modes which are sending coordinate information from Google Maps, transmitting

certain desire rotation angle remotely from web server and manually regulate the antenna

rotator by adjusting the potentiometer. The objectives are achieved and the results are

validated. IoT Integrated Antenna Rotator can give significantly impact to the

communication system with the convenience and precision in controlling antenna

directionality in this system.

92

5.2 Recommendation for Future Work

Although the IoT Integrated Antenna Rotator is successfully fabricated, there are

still few limitations have been found. Firstly, the Dennard Type 2000 rotator only can rotate

in a range from 0° to 290°. A limit switch inside the Dennard Type 2000 rotator will limit

the orientation of the rotator to prevent it from damaging the device. To make the rotation

range from 0° to 360°, a continuous rotation 360° servo motor could be considerate as the

rotator.

Besides, this project only controls the azimuth angle of the antenna rotator. This

project could be enhanced by adding feature of controls the elevation angle of the antenna

rotator. By adding this feature, the antenna rotator will have the ability to easily point at

the satellite.

Lastly, the feedback value of the antenna rotator is not stable and affect the accuracy

of the rotator angle. To resolve it, an external analog signal filter circuit could be applied

at the feedback mechanism to eliminate the ripple of the signal. Also, an amplifier could

be used and regulate the voltage range from 0V to 3.3V to enable it compatible with the

ESP32 ADC analog input voltage and avoid floating value.

93

REFERENCES

Alfaridzi, M. D., & Yulianti, L. P. (2020). UI-UX design and analysis of local medicine and

medication mobile-based apps using task-centered design process. 2020 International

Conference on Information Technology Systems and Innovation, ICITSI 2020 -

Proceedings, 443–450. https://doi.org/10.1109/ICITSI50517.2020.9264947

Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer

Networks, 54(15), 2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

Bammidi, R., & Kundala, D. (n.d.). Remote Monitoring and Control by Embedded Database

Design and Web Server Implementation.

Benslimane, D., Dustdar, S., & Sheth, A. (2008). Services mashups: The new generation of web

applications. In IEEE Internet Computing (Vol. 12, Issue 5, pp. 13–15).

https://doi.org/10.1109/MIC.2008.110

Bhasin, S. (2012). Quality assurance in agile: A study towards achieving excellence. Proceedings

- Agile India 2012, AgileIndia 2012, 64–67. https://doi.org/10.1109/AgileIndia.2012.18

Boehm, B. (2006). A view of 20th and 21st century software engineering. In Proceedings -

International Conference on Software Engineering (Vol. 2006).

https://doi.org/10.1145/1134285.1134288

Boehm, B., & Turner, R. (n.d.). Balancing Agility and Discipline: A Guide for the Perplexed.

Bourque, P., Robert, F., Lavoie, J. M., Lee, A., Trudel, S., & Lethbridge, T. C. (2002). Guide to

the Software Engineering Body of Knowledge (SWEBOK) and the Software Engineering

Education Knowledge (SEEK) - A preliminary mapping. Proceedings - 10th International

Workshop on Software Technology and Engineering Practice, STEP 2002, 8–23.

https://doi.org/10.1109/STEP.2002.1267595

Can Filibeli, M., Ozkasap, O., & Reha Civanlar, M. (2007). Embedded web server-based home

appliance networks. Journal of Network and Computer Applications, 30(2), 499–514.

https://doi.org/10.1016/j.jnca.2006.04.001

94

Caspi, P., Sangiovanni-Vincentelli, A., Almeida, L., Benveniste, A., Bouyssounouse, B.,

Buttazzo, G., Crnkovic, I., Damm, W., Engblom, J., Folher, G., Garcia-Valls, M., Kopetz,

H., Lakhnech, Y., Laroussinie, F., Lavagno, L., Lipari, G., Maraninchi, F., Peti, Ph., Puente,

J. e a, … Yi, . (00). ui e ines or a ra uate urri u um on m e e So t are

and Systems. ACM Trans. Embed. Comput. Syst., 4(3), 587–611.

https://doi.org/10.1145/1086519.1086526

Chen, S., Xu, H., Liu, D., Hu, B., & Wang, H. (2014). A vision of IoT: Applications, challenges,

and opportunities with China Perspective. In IEEE Internet of Things Journal (Vol. 1, Issue

4, pp. 349–359). Institute of Electrical and Electronics Engineers Inc.

https://doi.org/10.1109/JIOT.2014.2337336

Cohen, S., de Haan, U., & Dori, D. (2010). A Software System Development Life Cycle Model

 or mprove Stake o ers’ ommuni ation an o a oration. Int. J. of Computers, V, 20–

41. https://doi.org/10.15837/ijccc.2010.1.2462

Dennard Type 2000. (n.d.).

Diaz-Cacho, M., Delgado, E., Falcon, P., & Barreiro, A. (2015). IoT integration on industrial

environments. IEEE International Workshop on Factory Communication Systems -

Proceedings, WFCS, 2015-July. https://doi.org/10.1109/WFCS.2015.7160553

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development:

Introduction to the special section on continuous value delivery. Information and Software

Technology, 77, 56–60. https://doi.org/10.1016/j.infsof.2016.04.018

Duplouy, J., Morlaas, C., Aubert, H., Potier, P., & Pouliguen, P. (2019). Wideband Vector

Antenna for Dual-Polarized and Three-Dimensional Direction-Finding Applications. IEEE

Antennas and Wireless Propagation Letters, 18(8), 1572–1575.

https://doi.org/10.1109/LAWP.2019.2923531

Ebert, C. (2008). A brief history of software technology. IEEE Software, 25(6), 22–25.

https://doi.org/10.1109/MS.2008.141

Ebert, C., & Dumke, R. (2007). Software measurement: Establish - Extract - Evaluate - Execute.

In Software Measurement: Establish - Extract - Evaluate - Execute.

https://doi.org/10.1007/978-3-540-71649-5

95

ESP-WROOM-32 Datasheet Espressif Systems. (2017).

Fette, I., & Melnikov, A. (2011). The websocket protocol. RFC 6455, December.

Fitzgerald, B. (2000). Systems development methodologies: the problem of tenses. In ITP (Vol.

13, Issue 3). # MCB University Press. http://www.emerald-library.com

Graham, D. R. (1992). INCREMENTAL DEVELOPMENT AND DELIVERY FOR LARGE

SOFTWARE SYSTEMS.

Grudin, J. (1989). The Case against User Interface Consistency. Commun. ACM, 32(10), 1164–

1173. https://doi.org/10.1145/67933.67934

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision,

architectural elements, and future directions. Future Generation Computer Systems, 29(7),

1645–1660. https://doi.org/10.1016/j.future.2013.01.010

Hamel, G. (2001). Leading the revolution: Strategy & Leadership, 29(1), 4–10.

https://doi.org/10.1108/10878570110367141

Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios.

Proceedings of the Annual Hawaii International Conference on System Sciences, 2016-

March, 3928–3937. https://doi.org/10.1109/HICSS.2016.488

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1995). Information Systems Development and Data

Modeling: Conceptual and Philosophical Foundations. Cambridge University Press.

https://doi.org/DOI: 10.1017/CBO9780511895425

Hsu, H. J., & Lin, Y. (2018). How Agile Impacts a Software Corporation: An Empirical Study.

Proceedings - International Computer Software and Applications Conference, 2, 20–25.

https://doi.org/10.1109/COMPSAC.2018.10197

Illera, M. J., & Sepulveda, S. B. (2015). Embedded system based on microcontroller for

generating I-V curves of electronic devices. 2014 IEEE 33rd International Performance

Computing and Communications Conference, IPCCC 2014, 2014-January.

https://doi.org/10.1109/PCCC.2014.7017033

96

Jain, P., Ahuja, L., & Sharma, A. (2016). Current State of Research in Agile Quality

Development.

Jain, P., Sharma, A., & Ahuja, L. (2018). The Impact of Agile Software Development Process on

the Quality of Software Product. 2018 7th International Conference on Reliability, Infocom

Technologies and Optimization: Trends and Future Directions, ICRITO 2018, 812–815.

https://doi.org/10.1109/ICRITO.2018.8748529

Johnson, J. (2010). Designing with the Mind in Mind: Simple Guide to Understanding UI Design

Rules.

Joo, H. (2017). A Study on Understanding of UI and UX, and Understanding of Design

According to User Interface Change. In International Journal of Applied Engineering

Research (Vol. 12). http://www.ripublication.com

JOO, H. S. (2017). A Study on UI/UX and Understanding of Computer Major Students.

International Journal of Advanced Smart Convergence, 6(4), 26–32.

https://doi.org/10.7236/IJASC.2017.6.4.4

Junfithrana, A. P., Rahardjo, E. T., Zulkifli, F. Y., & Basari. (2017). Development of automated

antenna radiation pattern measurement using rotator application model to increase accuracy.

2017 International Conference on Computing, Engineering, and Design (ICCED), 1–5.

https://doi.org/10.1109/CED.2017.8308101

Kivinen, J., Zhao, X., & Vainikainen, P. (1999). Wideband indoor radio channel measurements

with direction of arrival estimations in the 5 GHz band. IEEE Vehicular Technology

Conference, 4, 2308–2312. https://doi.org/10.1109/vetecf.1999.797350

Kumar, G., & Bhatia, P. K. (2014). Comparative analysis of software engineering models from

traditional to modern methodologies. International Conference on Advanced Computing

and Communication Technologies, ACCT, 189–196. https://doi.org/10.1109/ACCT.2014.73

Kurniawan, S. (2004). Interaction design: Beyond human?computer interaction by Preece, Sharp

and Rogers (2001), ISBN 0471492787. Universal Access in the Information Society, 3(3–4),

289–289. https://doi.org/10.1007/s10209-004-0102-1

97

Lacerda, L. L., & Furtado, F. (2018). Factors that help in the implantation of agile methods: A

systematic mapping of the liteature. Iberian Conference on Information Systems and

Technologies, CISTI, 2018-June, 1–6. https://doi.org/10.23919/CISTI.2018.8399406

Lee, H. E. (2014). A Study on the concept and types of UX design in the smart product field.

Journal of Korea Design Knowledge, null(30), 289–299.

https://doi.org/10.17246/jkdk.2014..30.027

Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges

for enterprises. Business Horizons, 58(4), 431–440.

https://doi.org/10.1016/j.bushor.2015.03.008

Li, S. (2011). A method for building thematic map of GIS based on Google Maps API.

Proceedings - 2011 19th International Conference on Geoinformatics, Geoinformatics

2011. https://doi.org/10.1109/GeoInformatics.2011.5980798

Limpraptono, F. Y., Sudibyo, H., Ratna, A. A. P., & Arifin, A. S. (2011). The design of

embedded web server for remote laboratories microcontroller system experiment. TENCON

2011 - 2011 IEEE Region 10 Conference, 1198–1202.

https://doi.org/10.1109/TENCON.2011.6129302

Liu, Q., Yang, G., Zhao, R., & Xia, Y. (2018). Design and Implementation of Real-time

Monitoring System for Wireless Coverage Data Based on WebSocket; Design and

Implementation of Real-time Monitoring System for Wireless Coverage Data Based on

WebSocket. In 2018 IEEE 3rd International Conference on Cloud Computing and Internet

of Things (CCIOT).

Lubbers, P. (2011). Html5 web sockets: A quantum leap in scalability for the web. Http://Www.

Websocket. Org/Quantum. Html.

Lyytinen, K. J. (1987). A taxonomic perspective of information systems development: theoretical

constructs and recommendations.

MacHeso, P., Chisale, S., Daka, C., Dzupire, N., Mlatho, J., & Mukanyirigira, D. (2021). Design

of Standalone Asynchronous ESP32 Web-Server for Temperature and Humidity

Monitoring. 2021 7th International Conference on Advanced Computing and

Communication Systems, ICACCS 2021, 635–638.

https://doi.org/10.1109/ICACCS51430.2021.9441845

98

Martinez, W. (2011). Graphical user interfaces. Wiley Interdisciplinary Reviews: Computational

Statistics, 3. https://doi.org/10.1002/wics.150

Mei, W., & Long, Z. (2020). Research and Defense of Cross-Site WebSocket Hijacking

Vulnerability. Proceedings of 2020 IEEE International Conference on Artificial Intelligence

an omputer pp i ations : 0 0 :

Muhammad Rusydi Bin Buchek, by, & Darul Ridzuan, P. (2014). ANTENNA ROTATOR

DESIGN AND CONTROL.

Nagy, J., Oláh, J., Erdei, E., Máté, D., & Popp, J. (2018). The role and impact of industry 4.0 and

the internet of things on the business strategy of the value chain-the case of hungary.

Sustainability (Switzerland), 10(10). https://doi.org/10.3390/su10103491

Nakajima, H., Isshiki, M., & Takefuji, Y. (2013). WebSocket proxy system for mobile devices.

2013 IEEE 2nd Global Conference on Consumer Electronics, GCCE 2013, 315–317.

https://doi.org/10.1109/GCCE.2013.6664841

NIELSEN, J. (1989). 1 - Executive Summary: Coordinating User Interfaces for Consistency. In J.

Nielsen (Ed.), Coordinating User Interfaces for Consistency (pp. 1–7). Morgan Kaufmann.

https://doi.org/https://doi.org/10.1016/B978-0-08-050315-8.50007-9

Pedersen, M. R., Nalpantidis, L., Andersen, R. S., Schou, C., Bøgh, S., Krüger, V., & Madsen, O.

(2016). Robot skills for manufacturing: From concept to industrial deployment. Robotics

and Computer-Integrated Manufacturing, 37, 282–291.

https://doi.org/https://doi.org/10.1016/j.rcim.2015.04.002

Qin, J. (2017). Research and performance analysis of instant messaging based on WebSocket [J].

Mobile Communication, 41(12), 44–48.

Rashid, A., Weckert, J., & Lucas, R. (2009). Software Engineering Ethics in a Digital World.

Computer, 42(6), 34–41. https://doi.org/10.1109/MC.2009.200

Reddy, Martin. (2011). API design for C++. Morgan Kaufmann.

Redwine, S., & Riddle, W. (1985). Software Technology Maturation. In Proceedings -

International Conference on Software Engineering.

99

Rovce, W. W. (1970). MANAGING THE DEVELOPMENT OF LARGE SOFTWARE SYSTEMS.

Saloni, S., & Hegde, A. (2016). WiFi-aware as a connectivity solution for IoT: Pairing IoT with

WiFi aware technology: Enabling new proximity based services. 2016 International

Conference on Internet of Things and Applications, IOTA 2016, 137–142.

https://doi.org/10.1109/IOTA.2016.7562710

Shaw, M. (1990). Prospects for an Engineering Discipline of Software. IEEE Software, 7(6), 15–

24. https://doi.org/10.1109/52.60586

Shneiderman, Ben., & Plaisant, Catherine. (2010). Designing the user interface : strategies for

effective human-computer interaction. Addison-Wesley.

Singh, B., & Gautam, S. (2016). Hybrid Spiral Model to Improve Software Quality Using

Knowledge Management. In International Journal of Performability Engineering (Vol. 12,

Issue 4).

Singh, B., & Prasad Kannojia, S. (2012). A Model for Software Product Quality Prediction.

Journal of Software Engineering and Applications, 05(06), 395–401.

https://doi.org/10.4236/jsea.2012.56046

Sinha, A., & Das, P. (2021). Agile Methodology Vs. Traditional Waterfall SDLC: A case study on

Quality Assurance process in Software Industry. 1–4.

https://doi.org/10.1109/iementech53263.2021.9614779

Sommerville, I. (1996). Software Process Models.

Subbian, V., & Beyette, F. R. (2013). Developing a new advanced microcontrollers course as a

part of embedded systems curriculum. Proceedings - Frontiers in Education Conference,

FIE, 1462–1464. https://doi.org/10.1109/FIE.2013.6685076

Tian-huang, C., & Jia-xi, H. (2008). Design and Realization of CGI in Embedded Dynamic Web

Technology. 774–777. https://doi.org/10.1109/npc.2007.39

Trivedi, P., & Sharma, A. (2013). A Comparative Study between Iterative Waterfall and

Incremental Software Development Life Cycle Model for Optimizing the Resources Using

Computer Simulation.

100

Weyer, S., Schmitt, M., Ohmer, M., & Gorecky, D. (2015). Towards Industry 4.0 -

Standardization as the crucial challenge for highly modular, multi-vendor production

systems. IFAC-PapersOnLine, 48, 579–584.

Wittern, E. (2018). Web APIs-Challenges, design points, and research opportunities. Proceedings

- International Conference on Software Engineering, 19–22.

https://doi.org/10.1145/3194793.3194801

Wynekoop, J. L., & Russo, N. L. (1997). Studying system development methodologies: an

examination of research methods. Information Systems Journal, 7.

Yang, L., & Yang, G. (2016). Real-time wireless signal testing and analyzing system based on

websocket. Proceedings - 2016 6th International Conference on Instrumentation and

Measurement, Computer, Communication and Control, IMCCC 2016, 648–652.

https://doi.org/10.1109/IMCCC.2016.179

Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for

smart cities. IEEE Internet of Things Journal, 1(1), 22–32.

https://doi.org/10.1109/JIOT.2014.2306328

Zha, X., Wu, R., & Gao, Y. (2014). Technology research on conversion from C/S to B/S. Comput

Eng, 40, 263–267.

Zhang, L., & Shen, X. (2013). Research and development of real-time monitoring system based

on WebSocket technology. Proceedings - 2013 International Conference on Mechatronic

Sciences, Electric Engineering and Computer, MEC 2013, 1955–1958.

https://doi.org/10.1109/MEC.2013.6885373

Zhong, H., & Mei, H. (2019). An Empirical Study on API Usages. IEEE Transactions on

Software Engineering, 45(4), 319–334. https://doi.org/10.1109/TSE.2017.2782280

Zhu, Y. (2012). Introducing Google Chart Tools and Google Maps API in Data Visualization

Courses. IEEE Computer Graphics and Applications, 32(6), 6–9.

https://doi.org/10.1109/MCG.2012.114

101

APPENDICES

A. Gantt Chart for SDP 2

102

B. Back End Scripting

/*************************************/
/*---------------- Attribution Notice ---------------*/
/* This program was written by: */
/* Chong Jia Xin (TG18001) */
/* Date : 9th January 2022 */
/* Email : tg18001@student.ump.edu.my */
/* Intended for SDP use. */
/************************************/
//===
//ESP32 WebSocket Server
//===
#include <WiFi.h>
#include <WebServer.h>
#include <WebSocketsServer.h>
#include <ArduinoJson.h>
#include <LiquidCrystal_I2C.h>

// set the LCD number of columns and rows
int lcdColumns = 16;
int lcdRows = 2;
LiquidCrystal_I2C lcd(0x27, lcdColumns, lcdRows);

// The JSON library uses static memory, so this will need to be allocated:
StaticJsonDocument<200> doc_tx; // provision memory for about 200
characters
StaticJsonDocument<200> doc_rx;

// We want to periodically send values to the clients, so we need to define an "interval"
and remember the last time we sent data to the client (with "previousMillis")
int interval = 1000; // send data to the client every 1000ms -> 1s
unsigned long previousMillis = 0; // we use the "millis()" command for time
reference and this will output an unsigned long

//---
const char* ssid = "";
const char* password = "";
//---
WebServer server(80);
WebSocketsServer webSocket = WebSocketsServer(81);
//---
String JSONtxt;

103

const char* PARAM_INPUT_3 = "input3";//D34
const char* PARAM_INPUT_4 = "input4";//D35
const int RELAY1_PIN = 32;//cw
const int RELAY2_PIN = 33;//ccw
const int SWpin = 4; //SW manual/online

float c_lat;
float c_lng;
float n_lat;
float n_lng;
int manual_angle;
int angle;
int rotation_angle;
String POTvalString;
float POTvalue;
int manual_lot;
//int SW_POT;

// variable for storing the pushbutton status
int SWstate = 0;

//---
#include "webpage.h"
//---
void handleRoot()
{
 server.send(200,"text/html", webpageCont);
}
//==
void setup()
{
 Serial.begin(115200);
 /*Initial rotation angle*/
 rotation_angle = int(0.113961*(analogRead(A6))+10.7873);//initial state of the rotator
remain unchanged.
 pinMode (RELAY1_PIN, OUTPUT);
 pinMode (RELAY2_PIN, OUTPUT);
 pinMode(SWpin, INPUT);
 WiFi.begin(ssid, password);
 while(WiFi.status() != WL_CONNECTED)
 {
 Serial.print("."); delay(500);
 }
 WiFi.mode(WIFI_STA);

104

 Serial.print(" Local IP: ");
 Serial.println(WiFi.localIP());

 server.on("/", handleRoot);
 server.begin(); webSocket.begin();
 webSocket.onEvent(webSocketEvent);

 // initialize LCD
 lcd.init();
 // turn on LCD backlight
 lcd.backlight();
 lcd.clear();

}
//==
void loop()
{
 webSocket.loop(); server.handleClient();

unsigned long now = millis(); // read out the current "time" ("millis()" gives
the time in ms since the Arduino started)
 if ((unsigned long)(now - previousMillis) > interval) { // check if "interval" ms has passed
since last time the clients were updated

 POTvalue=(0.113961*(analogRead(A6))+10.7873);//D34
 POTvalString = String(POTvalue);
 //Serial.println(POTvalString);
 JSONtxt = "{\"POT\":\""+POTvalString+"\"}";
 webSocket.broadcastTXT(JSONtxt);
 previousMillis = now; // reset previousMillis
 }

 SWstate=digitalRead(SWpin);

 if (SWstate == HIGH) {
 Serial.println("******Manual rotation activated******");
 Serial.println("");
 // turn on manual rotation
 POTvalue=(0.113961*(analogRead(A6))+10.7873);//D34
 rotation_angle=(((analogRead(A7))*290)/4096);//D35
 rotation();

 //lcd.clear();
 // set cursor to first column, first row

105

 lcd.setCursor(0, 0);
 lcd.print("Current: ");
 lcd.print(POTvalue);
 lcd.setCursor(0, 1);
 lcd.print("Desire: ");
 lcd.print(rotation_angle);
 delay(100);
 }

 //-------------Rotation----------------------//

 rotation();

}

void webSocketEvent(uint8_t num, WStype_t type, uint8_t *payload, size_t length){
 switch (type) { // switch on the type of information sent
 case WStype_DISCONNECTED: // if a client is disconnected, then type ==
WStype_DISCONNECTED
 Serial.println("Client " + String(num) + " disconnected");
 break;
 case WStype_CONNECTED: // if a client is connected, then type ==
WStype_CONNECTED
 Serial.println("Client " + String(num) + " connected");
 // optionally you can add code here what to do when connected
 break;
 case WStype_TEXT: // if a client has sent data, then type ==
WStype_TEXT
 // try to decipher the JSON string received
 DeserializationError error = deserializeJson(doc_rx, payload);//catch if there's error
or not
 if (error) {
 Serial.print(F("deserializeJson() failed: "));
 Serial.println(error.f_str());
 return;
 }

 else {
 // JSON string was received correctly, so information can be retrieved:
 c_lat = doc_rx["my_lat"];
 c_lng = doc_rx["my_lng"];
 n_lat = doc_rx["new_lat"];

106

 n_lng = doc_rx["new_lng"];
 manual_lot = doc_rx["manual_angle"];

 Serial.println("Received coordinate from user: ");
 Serial.println("Current Latitude: " + String(c_lat));
 Serial.println("Current Longitude: " + String(c_lng));
 Serial.println("New Latitude: " + String(n_lat));
 Serial.println("New Longitude: " + String(n_lng));
 Serial.println("Manual rotation angle: " + String(manual_lot));
 Serial.println("");
 //Serial.println(payload[0]);

 if (manual_lot==0){
 rotation_angle=(int)getBearing();
 }
 else{
 rotation_angle=manual_lot;
 }
 lcd.clear();

 }

 break;
 }

}
float getBearing(){

 float theta1 = c_lat;
 float theta2 = n_lat;
 float delta1 = n_lat-c_lat;
 float dL = n_lng-c_lng;

 //--------------Calculation--------------//

 float x = cos(theta2) * sin(dL) ;
 float y = cos(theta1)*sin(theta2) - sin(theta1)*cos(theta2)*cos(dL);

 float bearing = atan2(x,y);
 bearing = degrees(bearing);// radians to degrees

 angle = (((int)bearing + 360) % 360); //change the range from -180~180 to 0~360

107

 /* //Alternate way to change the range from -180~180 to 0~360
 if(bearing<0){
 angle=360+((int)(bearing));
 }
 else{
 angle= (int)(bearing);
 }
 */

 Serial.print("Bearing: ");
 Serial.println(angle);

 return angle;

 }

 void rotation(){
 int current_angle=(int)(POTvalue);
 Serial.println("current: "+String(current_angle)+" vs rotation: "+String(rotation_angle));
 int Xval = rotation_angle - current_angle;

 if(rotation_angle==current_angle || (Xval>-10 && Xval<10)){//if manual=feedback
 digitalWrite(RELAY1_PIN, LOW);
 digitalWrite (RELAY2_PIN, HIGH);

 Serial.println("***Rotation Complete***");
 Serial.println(" ");
 lcd.setCursor(0, 0);
 lcd.print("Current: ");
 lcd.print(POTvalue);
 lcd.setCursor(0, 1);
 lcd.print("Desire: ");
 lcd.print(rotation_angle);

 delay (500);

 }

 else if(rotation_angle>current_angle){ //new location > current location, turn RIGHT
 digitalWrite (RELAY1_PIN, LOW);
 digitalWrite (RELAY2_PIN, LOW);

108

 Serial.println("Rotating... ...(left)");
 Serial.println(" ");
 lcd.setCursor(0, 0);
 lcd.print("Current: ");
 lcd.print(POTvalue);
 lcd.setCursor(0, 1);
 lcd.print("Desire: ");
 lcd.print(rotation_angle);

 delay (500);

 }
 else if (rotation_angle<current_angle){//new location < current location, turn LEFT
 digitalWrite (RELAY1_PIN, HIGH); //D32
 digitalWrite (RELAY2_PIN, HIGH); //D33

 Serial.println("Rotating... ...(right)");
 Serial.println(" ");
 lcd.setCursor(0, 0);
 lcd.print("Current: ");
 lcd.print(POTvalue);
 lcd.setCursor(0, 1);
 lcd.print("Desire: ");
 lcd.print(rotation_angle);

 delay (500);

 }
 }

109

C. Front End Scripting

/***************************************/
/*------------------ Attribution Notice -----------------*/
/* This program was written by: */
/* Chong Jia Xin (TG18001) */
/* Date : 9th January 2022 */
/* Email : tg18001@student.ump.edu.my */
/* Intended for SDP use. */
/***************************************/
//=====================
//HTML code for webpage
//=====================
const char webpageCont[] PROGMEM =
R"=====(
<!DOCTYPE HTML>
<html>
<head>
<title>IoT Integrated Antenna Rotator</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=0.1">
<!---------------------------Javascript (G Map)-------------------------->
<script src="https://polyfill.io/v3/polyfill.min.js?features=default"></script>

<script>

 /* Global variables */
 let map = null;
 let marker1 = null;
 let marker2 = null;

 const curLocation = {
 lat: 3.221101104201,
 lng: 101.63787669557,

 get getGeo() {
 return {lat: this.lat, lng: this.lng};
 },
 set setGeo(cood) {
 this.lat = cood.lat;
 this.lng = cood.lng;
 // Side effect
 document.getElementById("myLat").value = this.lat;
 document.getElementById("myLng").value = this.lng;
 marker1.setPosition(this.getGeo);

110

 }
 };

 const desLocation = {
 lat: 3.221101104201,
 lng: 101.63787669557,

 get getGeo() {
 return {lat: this.lat, lng: this.lng};
 },
 set setGeo(cood) {
 this.lat = cood.lat;
 this.lng = cood.lng;
 document.getElementById("lat").value = this.lat;
 document.getElementById("lng").value = this.lng;
 marker2.setPosition(this.getGeo);
 }
 };

 function initMap() {

 // Create map
 map = new google.maps.Map(document.getElementById("map"), {
 zoom: 4,
 center: curLocation.getGeo,
 pixelRatio: window.devicePixelRatio || 1
 });

 // Create markers
 marker1 = new google.maps.Marker({
 position: curLocation.getGeo,
 map,
 draggable:true,
 title: "Current location",
 });

 marker2 = new google.maps.Marker({
 position: curLocation.getGeo,
 map,
 draggable:true,
 title: "Destination",
 icon: {url: "http://maps.google.com/mapfiles/ms/icons/blue-dot.png"},
 });

 currentLot()

111

 // Subscribe to marker drag-end events
 google.maps.event.addListener(marker1, 'dragend', function() {

 var coordinate = marker1.getPosition();

 curLocation.setGeo = {lat:coordinate.lat(), lng: coordinate.lng()}

 });

 google.maps.event.addListener(marker2, 'dragend', function() {

 var coordinate = marker2.getPosition();

 desLocation.setGeo = {lat:coordinate.lat(), lng: coordinate.lng()}

 });

 }

 function handleLocationError(browserHasGeolocation, infoWindow, pos) {
 infoWindow.setPosition(pos);
 infoWindow.setContent(
 browserHasGeolocation
 ? "Error: The Geolocation service failed."
 : "Error: Your browser doesn't support geolocation."
);
 infoWindow.open(map);
 }

 function currentLot() {
 // Get current location using GMAP
 if (navigator.geolocation) {
 navigator.geolocation.getCurrentPosition(
 (position) => {

 const markerDist = 2.0;
 curLocation.setGeo = {lat:position.coords.latitude, lng: position.coords.longitude}

112

 desLocation.setGeo = {lat:position.coords.latitude+markerDist, lng:
position.coords.longitude+markerDist}
 map.panTo(curLocation.getGeo);

 },
 () => {
 handleLocationError(true);
 });
 } else {
 // Browser doesn't support Geolocation
 handleLocationError(false);
 }
 }

 </script>
<!---------------------------CSS-------------------------->
<style>
 #dynRectangle
 {
 width:0px;
 height:20px;
 top: 9px;
 background-color: #7ccfbd;
 z-index: -1;
 margin-top:8px;
 }
 body {background-color:#2b6777; font-family: 'Lato', sans-serif;}
 h1 {font-size: 40px; color: #2b6777; text-align: center;}
 h2 {font-size: 30px; color: rgb(255, 255, 255)}
 h3 {font-size: 17px; color:rgb(255, 255, 255)}
 .header {
 background-color: #c8d8e4;;
 padding: 0.5px;
 text-align: center;
 }

/* Google Map */
 #map {
 height: 50%;
 border-radius: 5px;
 margin-top: 0px;
 margin-left: 80px;
 margin-right: 80px;
 margin-bottom: 0px;
 padding: 40px;
}

113

/* Optional: Makes the sample page fill the window. */
html,
body {
 height: 100%;
 margin: 0;
 text-align: center;
}
div.input {
 border-radius: 5px;
 background-color: #c8d8e4;
 margin-top: 0px;
 margin-left: 80px;
 margin-right: 80px;
 margin-bottom: 0px;
 padding-top: 40px;
 padding-bottom: 10px;
}
input[type=text], select {
 width: auto;
 padding: 5px;
 margin: 8px 0;
 display: inline-block;
 border: 1px solid #ccc;
 border-radius: 4px;
 box-sizing: border-box;
}
button[type=button] {
 width: 100%;
 background-color: #52ab98;
 color: white;
 padding: 14px 20px;
 margin: 8px 0;
 border: none;
 border-radius: 4px;
 cursor: pointer;
 width: 15%;
}
button[type=button]:hover {
 background-color: #3a796b;
}
div.dynamic {
 margin-left: 205px;
 margin-right: 205px;
 padding-left: 205px;
 padding-right: 205px;
 color: white;

114

}
.slidecontainer {
 width: auto;
 padding: 0px 400px;
 color: white;
}

.slider {
 -webkit-appearance: none;
 width: 100%;
 height: 15px;
 border-radius: 5px;
 background: #d3d3d3;
 outline: none;
 opacity: 0.7;
 -webkit-transition: .2s;
 transition: opacity .2s;
}

.slider:hover {
 opacity: 1;
}

.slider::-webkit-slider-thumb {
 -webkit-appearance: none;
 appearance: none;
 width: 25px;
 height: 25px;
 border-radius: 50%;
 background: #04AA6D;
 cursor: pointer;
 transition: height 0.2s ease-in-out;
 }

.slider::-webkit-slider-thumb:hover {
 -webkit-appearance: none;
 appearance: none;
 width: 25px;
 height: 35px;
 border-radius: 50%;
 background: #04AA6D;
 cursor: pointer;
}

.slider::-moz-range-thumb {
 width: 25px;
 height: 25px;
 border-radius: 50%;

115

 background: #04AA6D;
 cursor: pointer;
}

</style>
<!----------------------JavaScript------------------------>
<script>
 InitWebSocket()
 function InitWebSocket()
 {
 websock = new WebSocket('ws://'+window.location.hostname+':81/');
 websock.onmessage=function(evt)
 {
 JSONobj = JSON.parse(evt.data);
 document.getElementById('POTvalue').innerHTML = JSONobj.POT;
 var pot = parseInt(JSONobj.POT*2);//length
 var elem = document.getElementById("dynRectangle");
 var width = pot;
 elem.style.width = pot+"px";
 // elem.innerHTML = (width/2) + '°';
 }
 }
 /* function sendText(){
 websock.send(document.getElementById("txBar").value);
 document.getElementById("txBar").value ="";
}
*/

 function sendLocation(){

 var new_lot={
 my_lat:document.getElementById("myLat").value,
 my_lng:document.getElementById("myLng").value,
 new_lat:document.getElementById("lat").value,
 new_lng:document.getElementById("lng").value,
 manual_angle:'0',
 };
 console.log(new_lot);
 websock.send(JSON.stringify(new_lot));
 alert("Coordinates has been sent");

}

function manualRotation(){

 var manual_lot={

116

 my_lat:'0',
 my_lng:'0',
 new_lat:'0',
 new_lng:'0',
 manual_angle:document.getElementById("myRange").value,
 };
 console.log(manual_lot);
 websock.send(JSON.stringify(manual_lot));
 alert("Rotation angle has been sent.");

}
</script>
</head>
<!--------------------------HTML-------------------------->
<body>
 <div class="header">
 <h1>IoT Integrated Antenna Rotator</h1>
 </div>
 <h2>
 Current Bearing: 0 degree
 </h2>
 <div style="color:white;">
 0°
            

            &e
msp;

            &e
msp;  360°
 </div>
 <div class="dynamic">

 <div id="dynRectangle"></div>
 </div>

 <!---Google Maps--->
 <div id="map"></div>

 <!-- Async script executes immediately and must be after any DOM elements used in callback.
-->
 <script
 src="https://maps.googleapis.com/maps/api"
 async
 ></script>

117

 <div class="input">
 <form name="input">
 Current Latitude: <input type="text" name="myLat" id="myLat" value="">  
 Current Longitude: <input type="text" name="myLng" id="myLng" value="">  

 New Latitude: <input type="text" name="lat" id="lat" placeholder="Type or drag the
cursor">  
 New Longitude: <input type="text" name="lng" id="lng" placeholder="Type or drag the
cursor">  
    
 <button type="button" onclick="currentLot()">Get Current Location</button>
 <button type="button" onclick="sendLocation()">Send</button>
 </form>
</div>

<!--Manually control rotation angle with range slider-->
<h2>Manually Control Rotation Angle</h2>
<div class="slidecontainer">
 <input type="range" min="0" max="290" value="0" class="slider" id="myRange">

 <p>Rotation Angle: °</p>
 <button type="button" onclick="manualRotation()">Rotate</button>
</div>

<script>
 var slider = document.getElementById("myRange");
 var output = document.getElementById("m_angle");
 output.innerHTML = slider.value;

 slider.oninput = function manual() {
 var manualVal = this.value;
 output.innerHTML = manualVal;
 }
</script>

</body>

</html>
)=====";

