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A B S T R A C T 
 

The explosive growth of Internet of Things (IoT) devices has led to escalating threats from distributed 
denial of service (DDoS) attacks. Moreover, the scale and heterogeneity of IoT environments pose unique 
security challenges, and intelligent solutions tailored for the IoT are needed to defend critical 
infrastructure. The deep learning technique shows great promise because automatic feature learning 
capabilities are well suited for the complex and high-dimensional data of IoT systems. Additionally, 
feature fusion approaches have gained traction in enhancing the performance of deep learning models by 
combining complementary feature sets extracted from multiple data sources. This paper aims to provide 
a comprehensive literature review focused specifically on deep learning techniques and feature fusion 
for DDoS attack detection in IoT networks. Studies employing diverse deep learning models and feature 
fusion techniques are analysed, highlighting key trends and developments in this crucial domain. This 
review provides several significant contributions, including an overview of various types of DDoS 
attacks, a comparison of existing surveys, and a thorough examination of recent applications of deep 
learning and feature fusion for detecting DDoS attacks in IoT networks. Importantly, it highlights the 
current challenges and limitations of these deep learning techniques based on the literature surveyed. 
This review concludes by suggesting promising areas for further research to enhance deep learning 
security solutions, which are specifically tailored to safeguarding the fast-growing IoT infrastructure 
against DDoS attacks. 

 

1. INTRODUCTION 

The Internet of Things (IoT) has led to an explosion of interconnected smart devices and objects capable of collecting, 
exchanging, and processing data. By 2025, projections estimate that there will be more than 30 billion connected IoT devices 
globally [1]. This massive growth is driving major innovations by allowing for new levels of monitoring, control, 
optimization, and automation through technologies such as wearables, smart homes, autonomous vehicles, and sensor-
enabled manufacturing. Fig. 1 illustrates the complex web of connections among various IoT devices and services. While 
this extensive connectivity facilitates data sharing and automation, it also introduces vulnerabilities that heighten security 
risks. A major emerging threat is distributed denial of service (DDoS) attacks, where multitudes of compromised devices are 
weaponized to overwhelm systems or services with traffic, disrupting availability [2]. DDoS attacks, such as the Mirai botnet 
attack on Twitter and Netflix in 2016, illustrate the destructive potential of insecure IoT networks [2][3]. IoT networks not 
only serve as potential attack vectors but are also susceptible targets for DDoS attacks [4]. This underscores the urgent need 
for robust security solutions tailored to the unique nature of IoT networks to defend against escalating DDoS attacks. 

A major challenge in securing IoT systems stems from the inherent limitations of IoT devices. Many IoT devices have low 
computing power, memory, and battery life [5]. This hinders the implementation of comprehensive security features such as 
encryption, firewalls, and frequent software updates. Moreover, security, functionality, usability, and low cost are often 
secondary concerns for IoT device design [6]. The resulting vulnerabilities, such as default passwords, unencrypted traffic, 
and unpatched firmware, make IoT devices ripe targets for attackers [7]. Botnets exploit these weaknesses to infect millions 
of poorly secured IoT devices and recruit them into DDoS armies. 

The decentralized nature of the IoT makes traditional security, such as firewalls, insufficient [8]. Intelligent, tailored solutions 
are needed to address the IoT's immense scale and diversity. Disruptions to critical infrastructure through DDoS attacks 
could be catastrophic, underscoring robust IoT security needs. According to Statista [9], as illustrated in Fig. 2, the pricing 
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for DDoS attacks shows how affordable these cyber threats are. The data show that DDoS attacks can be purchased for as 
little as $200 for a 24-hour strike on a premium website. Higher intensity attacks run from $450 for a week-long attack on 
an unprotected site to $850 for a month-long barrage. Overall, the figure confirms the accessibility of DDoS and malware 
services. This affordability underscores the critical need for robust, adaptive security to safeguard IoT networks from attacks. 

 

 

Fig. 1. Complex web of connections in IoT networks 

 

 

Fig. 2. Average price of malware and DDoS attack services for sale on the dark web as of March 2023 [9] 
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While intelligent security solutions are needed for the unique challenges of IoT environments, identifying optimal 
technologies tailored to the IoT remains an open research challenge. In recent years, deep learning (DL) has rapidly emerged 
as a transformative technology, achieving state-of-the-art results across domains as well as computer vision, natural language 
processing, and cybersecurity [10][11]. Compared to traditional machine learning, DL offers inherent advantages in 
automatically extracting complex features and patterns from high-dimensional data such as network traffic and system logs 
[12]. These characteristics make DL suitable for addressing the scale, dynamism, and heterogeneity of IoT ecosystems. 
Additionally, the integration of feature fusion techniques has gained momentum in improving the performance of DL models. 
This is achieved by combining complementary feature sets derived from multiple data sources [91]. The integration of feature 
fusion with DL has shown promising results in improving the accuracy and robustness of DDoS attack detection [92]. 
Consequently, applying DL and feature fusion specifically for IoT security represents an active emerging field, as researchers 
have investigated its potential to overcome the limitations of classical techniques. However, literature surveys lack 
comprehensive analysis dedicated to the pressing challenge of using DL and feature fusion to detect DDoS attacks in IoT 
networks. While valuable surveys have examined DL for general IoT security, most comprehensive analyses specifically 
focused on using DL and feature fusion for DDoS attack detection in IoT networks are lacking. 
Therefore, this review provides a focused examination of applying DL and feature fusion to detect DDoS attacks that threaten 
IoT networks. This review offers insights into the various DL techniques and feature fusion approaches used for identifying 
DDoS attacks in IoT networks. Accordingly, the core contributions of the review include the following: 

1. Examination and comparison of recent surveys addressing DL-based DDoS attack detection methods in IoT 
networks. 

2. Comprehensive overview of different types of DDoS attacks. 
3. Review and comparison of various DL techniques used for DDoS attack detection in IoT networks. 
4. Review of recent applications of feature fusion for detecting DDoS attacks in IoT networks. 
5. Identification of the challenges and limitations of current DL-based DDoS attack detection techniques based on the 

literature. 
6. We suggest promising future research directions for advancing DL-based DDoS attack detection in IoT networks. 

The paper is structured as follows: Section 2 examines previous work related to the current topic. Section 3 outlines the 
methodology employed for conducting a literature review on deep learning techniques for detecting DDoS attacks in IoT 
networks. Section 4 provides an overview of DDoS attacks, explaining their characteristics and impact. Section 5 reviews 
and synthesizes key trends and developments in the literature on deep learning techniques specifically designed for DDoS 
detection in IoT networks. Section 6 focuses on feature fusion techniques, which combine multiple features to enhance DDoS 
detection in IoT networks. Section 7 highlights the limitations of current approaches and discusses open challenges in this 
domain. Section 8 explores potential future research directions to improve the performance and effectiveness of deep 
learning-driven DDoS attack detection in IoT networks. Finally, Section 9 concludes the paper by summarizing the main 
findings and contributions. 
 

2. RELATED WORK 
Several prior survey papers have examined how DL can be applied to strengthen the security of IoT networks. However, 
many of these surveys do not investigate in-depth the specific use of DL for detecting DDoS attacks targeting IoT networks. 
While there is an extensive body of literature on DDoS attack detection techniques that could form the basis for developing 
effective DDoS prevention models for IoT networks, there appears to be a lack of surveys that comprehensively review 
feature fusion techniques aimed at enhancing the performance of DDoS attack detection systems specifically for IoT 
environments. Table I provides a comparative overview of related survey papers on this topic. 

TABLE I. DEEP LEARNING TECHNIQUES FOR DDOS ATTACK DETECTION 

Paper Year IoT DL/ML Feature fusion Focus 

on DDoS detection 

[93] 2024 Yes DL No No 

[94] 2024 Yes ML/DL No Yes 

[12] 2020 Yes ML/DL No Partly 

[13] 2021 Yes DL No Partly 

[11] 2021 Yes DL No Partly 

[14] 2023 No DL No Yes 

[15] 2022 Yes ML/DL No Partly 

[16] 2023 Yes ML/DL No Partly 

[17] 2022 Yes ML/DL No Partly 

[18] 2024 Yes DL No Partly 

[89] 2018 No No Yes No 

[90] 2019 Yes No Yes No 

This paper 2024 Yes DL Yes Yes 
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Alsoufi et al. [13] conducted a survey presenting a taxonomy of DL approaches, evaluating model performance across 
diverse metrics and datasets. The authors explored seven DL methods used in IoT security, addressing key challenges. 
Moreover, the paper also offers an overview of DL and IoT intrusion detection while also suggesting avenues for future 
research. 

Similarly, Aversano et al. [11] investigated DL approaches for IoT security, providing a structured taxonomy of the literature 
and shedding light on seven DL techniques. Another study [14] offered a systematic review of DL methods for detecting 
DDoS attacks, emphasizing methodologies, datasets, performance metrics, and research gaps. Importantly, this review 
diverges from the literature by not focusing on IoT networks, concentrating on DDoS detection within the broader context 
of network security. 

In contrast, [18] explored various DL methods for IDS in IoT security. This paper analysed seven specific DL models, 
investigated their applications, and evaluated their performance using real-world traffic datasets (CSE–CIC–IDS2018 and 
Bot-IoT). The assessment examined models for both binary classification and multiclass classification. This comprehensive 
evaluation provided useful insights into how well these different DL methods perform across a range of scenarios relevant 
to securing IoT networks and systems. 

Conversely, [12][15][16][17] provide comprehensive surveys of machine and DL methods for IoT security, contributing to 
the broader understanding of the field. However, our review provides a unique focus compared to previous surveys because 
we specifically concentrate on DL techniques for detecting DDoS attacks in IoT networks. DDoS attacks pose a critical 
threat to IoT networks, yet most prior surveys have taken a broad perspective on IoT security. This study provides a 
comprehensive analysis of the pressing issue of DDoS attack detection. It provides deeper insights into the DL methods for 
combatting DDoS attacks that compromise availability and service quality in increasingly essential IoT infrastructure. 

While the above surveys focused primarily on deep learning techniques for IoT security and DDoS attack detection, a 
separate line of research has explored the potential of feature fusion approaches for enhancing intrusion detection 
performance. The study in [89] reviewed data fusion approaches in network intrusion detection systems. They proposed 
evaluation criteria to compare different fusion techniques and identified open challenges such as dealing with high-
dimensional data and complex attacks. Their work highlighted the potential of fusion methods to improve detection accuracy 
by combining complementary feature sets. Similarly, [90] surveyed data fusion techniques for IoT applications across smart 
homes, grids, and transportation domains. They specified requirements for secure and private IoT data fusion and then 
evaluated existing approaches against those criteria. The emphasis was on multisource data integration while addressing 
privacy and security risks through potential solutions. 

This paper specifically targeted surveys focused on DDoS attack detection in IoT networks to gain insights into the essential 
topics requiring coverage. However, it is noteworthy that many existing surveys tend to emphasize general IoT security 
rather than prioritizing the unique challenges associated with detecting DDoS attacks in IoT networks through DL models 
and feature fusion approaches. This paper argues that prioritizing the detection of DDoS attacks is crucial because of its 
significant impact on the internet. 

 

3. METHODOLOGY 
This paper follows a four-phase methodology: (1) search, (2) screening, (3) eligibility, and (4) analysis. Fig. 3 illustrates the 

methodology process flow of the various steps taken in the survey procedure. 

 

3.1 Search Phase 
The first phase focused on searching for relevant papers using the Scopus database, selected specifically for its unparalleled 

coverage of over 76 million records spanning a wide range of disciplines [19][63]. Scopus provides access to an extensive 

collection of relevant technical and scientific studies. In contrast to the systematic review in [11], which searched multiple 

databases, this study focused exclusively on the Scopus database. A precisely constructed Boolean search query using 

relevant keywords and operators was used to locate relevant papers: "(DDoS AND detection AND IoT AND deep learning) 

OR (distributed denial of service AND detection AND internet of things)". Executing this search query resulted in an initial 

set of 455 papers for screening and further analysis. 

 

3.2 Screen Phase 
In the screening phase, the titles and abstracts of the 455 retrieved papers were quickly scanned. Since only one database 

(Scopus) was searched, no duplicate removal step was necessary. After quick title and abstract screening, 235 potentially 

relevant papers were identified for further in-depth eligibility assessment. 
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3.3 Eligibility Phase 

In the eligibility phase, the full texts of the 235 relevant papers were reviewed in depth to further filter the papers and 
thoroughly assess their suitability and quality for inclusion in the final analysis. The inclusion criteria stipulated that studies 
be peer-reviewed journal articles published between 2013 and 2023 and written in English. The date range was chosen to 
focus the review on current advancements in the research area. Moreover, the papers had to present original research 
examining the application of DL techniques to detect DDoS assaults in IoT networks. Several exclusion criteria were also 
applied to filter out papers that were not relevant to this review. Literature review papers were excluded because they 
specifically analysed original experimental studies. Papers not focused on IoT networks or not examining DDoS attacks in 
the field of IoT were excluded because of lack of relevance to the review. Additionally, papers that did not focus on DL 
techniques were also excluded. Furthermore, after applying all the criteria, the first directly relevant papers were published 
in 2020, indicating that DL for DDoS detection in the IoT is a relatively new but rapidly growing research subdomain. The 
rigorous application of the screening criteria resulted in the exclusion of 200 papers, leaving 35 high-quality papers that 
passed all aspects of the assessment for inclusion in the final in-depth analysis phase. 

3.4 Analysis Phase 

The final set of 35 eligible papers was analysed in depth to extract key technical details, assess the effectiveness of the 
techniques used, and synthesize findings across the studies. Specifically, the DL methods utilized, the performance of the 
models, limitations, and directions for future work were extracted, compared, and consolidated. This rigorous analysis phase 
helped in generating insights into the use of DL for DDoS detection in IoT networks. 

 

 

Fig. 3. Methodology process flow 
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4. OVERVIEW OF DDoS ATTACKS 

This section provides an overview of DDoS attacks. In a DDoS attack, the victim is flooded with incoming traffic from 
various sources, making it challenging to halt the attack by blocking a single source [18][20]. Web servers, network 
infrastructure devices, and application servers are typical targets of DDoS attacks, with the key goal of overwhelming and 
crashing the target, causing a denial of service for authorized users [21]. The motives behind DDoS attacks include cyber 
vandalism, revenge, competition elimination, ideological belief, cyber warfare, and extortion [3][21]. With the proliferation 
of insecure network-connected devices in the expanding IoT landscape, DDoS attacks can now have crippling effects on 
organizations. Fig. 4 shows the types of DDoS attacks. 

 

 
Fig. 4. Types of DDoS Attacks 

 

4.1 Protocol Attacks 

Protocol attack vectors attempt to consume excessive resources on the target by exploiting inherent weaknesses in 

communication protocols such as TCP, UDP, and ICMP [22]. They send specially crafted malicious packets that incur 

expensive processing costs for the victim for decoding and error handling. Some examples of protocol attacks include SYN 

flood, ping of death, smurfing, and fraggle attacks. 

1) SYN flood attack 

The SYN flood is a type of attack that exploits vulnerabilities in the TCP three-way handshake process used to establish 
connections. Normally, a client initiates a TCP connection by sending an SYN packet to the server. The server responds with 
a SYN-ACK packet, and the client confirms with an ACK packet, completing the three-way handshake and establishing the 
connection. However, in an SYN flood attack, the attacker continuously bombards the target server with a stream of SYN 
packets from spoofed source IP addresses. The server, which is unaware of the spoofing, allocates resources and sends back 
SYN-ACK packets for each incoming SYN packet. However, since the source IP addresses are fake, the attacker never 
responds with the final ACK packets needed to complete the connections. As a result, the server's resources become 
increasingly consumed by an accumulation of half-open connections, eventually leading to resource exhaustion and an 
inability to accept legitimate connection requests [23]. 

2) Ping of death attack 

The ping of death attack involves sending malformed or oversized ping packets to the target. The ICMP protocol allows a 
maximum packet size of 65,535 bytes [24]. The attacker breaks this limit and sends "jumbo" pings that, when reassembled 
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on the target system, can reach millions of bytes. This causes the target system to freeze, crash, or reboot due to buffer 
overflows. Firing to process these large packets also consumes large amounts of CPU resources [22]. 

3) Smurf attack 

In a Smurf attack, the attacker exploits the internet Control Message Protocol (ICMP), which is a fundamental protocol used 
to send echo requests, commonly known as "pings," across network segments. The attacker forges ICMP echo request 
packets, altering the source IP address to that of the victim. These packets are then sent to the broadcast address of a large 
network. This results in all the hosts on that network responding to the ICMP request and flooding the spoofed IP address 
(the victim) with echo response traffic [25]. The amplification effect of using broadcast addresses consumes significant 
bandwidth and overloads victim resources [26]. The scale of the attack traffic can overwhelm the victim's network capacity 
and exhaust computational resources such as CPU and memory as the victim attempts to process the influx of packets. Even 
if the victim's network does not go down entirely, the attack can severely degrade network performance and availability. 

4) Fraggle attack 

The Fraggle attack has the same concept as the Smurf attack, except it uses UDP instead of ICMP. The attacker sends large 
amounts of spoofed UDP traffic to the broadcast address of intermediate networks. This causes amplification flooding of 
the victim with UDP response traffic. The Fraggle attack is more potent than the Smurf attack because UDP networks are 
often much larger than ICMP networks [21][25]. 
 

4.2 Volumetric Attacks 

Volumetric attacks aim to flood a target with an overwhelming amount of traffic that exceeds its available bandwidth 
capacity [26]. These attacks cause network congestion, slow down legitimate traffic and ultimately lead to denial of service 
when the infrastructure becomes overloaded. Some major types of volumetric attacks are UDP and ICMP floods. 

1) UDP flood 

A UDP flood attack involves sending a continuous massive volume of UDP packets to random ports on the victim system. 
The attacker spoofs the source IP address of the UDP packets to hide the source and make blocking difficult. When the 
target receives this flood of UDP packets, its network stack must determine which application is mapped to each destination 
port. However, since the ports are random, no application is listening to those ports [21]. However, the operating system 
still consumes resources to generate ICMP responses for unreachable ports and check port-to-application mappings. When 
the volume of malicious UDP packets sent by the attacker grows exponentially, it overwhelms the target system's capacity 
to process legitimate traffic, resulting in a denial of service conditions where the target becomes unresponsive to legitimate 
users and requests. [22]. 

2) ICMP flood 

In an ICMP flood attack, the attacker spoofs multiple random source IP addresses and sends a high volume of ICMP echo 
request packets (pings) to the target. The target system allocates resources to confirm receipts and respond with ICMP echo 
reply packets for each incoming request. The attacker uses randomized spoofed source IP addresses so that the target cannot 
identify and block a single attack source [24]. This forces the target to respond to the flood of ping requests, consuming its 
available bandwidth and overwhelming the ICMP processing modules. The result is that the target is unable to handle valid 
ICMP and UDP traffic, thereby causing a denial of service [3]. 
 

4.3 Application Layer Attacks 

Application layer DDoS attacks target web server resources, databases, APIs, and applications that run on the infrastructure 
[25]. They attempt to crash applications by depleting resources such as CPU, memory, sessions, and concurrency. Some 
major types of application layer attacks include the following: 

1) Slowloris 

Slowloris is a stealthy form of HTTP DDoS attack that opens multiple connections to the target web server and slowly 
sends partial HTTP requests to keep these connections open indefinitely. It does not rely on flooding the target with traffic 
but instead utilizes carefully crafted headers and minimal bandwidth to hold connections open as long as possible. By 
opening thousands of connections from multiple sources and dripping minimal traffic to maintain them, Slowloris can 
exhaust the concurrent connection limit of the target web server without sending significant volumes of data. The persistent 
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connections overwhelm the server’s ability to respond to legitimate traffic without being detected by conventional rate-
based DDoS protection [27]. 

2) HTTP flooding 

HTTP flood attacks aim to overwhelm web servers and applications by saturating them with HTTP or HTTPS requests 
(depending on the protocol used). The most basic HTTP flood attack simply involves sending a very high volume of GET 
or POST requests to a web application in a short period. This deluge of requests exceeds the target's capacity to handle 
them, causing denial of service to legitimate users [20]. 
 

4.4 Zero-day Attacks 

A zero-day DDoS attack utilizes an unknown vulnerability in systems and devices to rapidly infect them with malware and 
add them to a powerful botnet army. Attackers can therefore swiftly build an extremely large network of compromised 
devices under their control. They then use this massive botnet to overwhelm a target with junk traffic and take down its 
servers or online services through bandwidth overloading or resource exhaustion [3]. As the vulnerability is unknown when 
an attack occurs, the target has had zero days to patch systems or implement specific protections. Instead, defenders are 
forced to rely on general mitigation techniques such as traffic scrubbing and filtering [20]. 
 

5. DEEP LEARNING TECHNIQUES FOR DDoS DETECTION IN IoT NETWORKS 

This section describes the DL techniques used for DDoS attack detection in IoT networks. It aims to perform a rigorous 

analysis of the diverse array of DL techniques that have recently emerged for detecting DDoS attacks in IoT networks. Many 

valuable studies proposing DL solutions for strengthening security in IoT networks remain outside the scope of current 

literature surveys on this crucial topic. More recent research has progressively applied DL architectures and techniques for 

DDoS detection in IoT networks. This study examines the latest research in this field by categorizing the works based on the 

DL models and approaches employed. Table II summarizes recent research on DL techniques for DDoS attack detection. 

TABLE II. RECENT RESEARCH ON DL TECHNIQUES FOR DDOS ATTACK DETECTION 

Ref 

 

Year 

 

Aim Method Dataset Performance 

(Accuracy) 

Limitations 

[64] 2024 To develop a lightweight IDS 

framework which uses Modified 

Gated Recurrent Units (mGRU) 

stacked for the detection of 

DDoS attacks within healthcare 
applications and services that 

require timely responses. 

Stacked Modified 

GRU (mGRU) 

CIC-IoT2023 

 

Binary 

classification: 

98.10% 

Multiclass 

classification: 
99.80% 

The absence of a standard 

dataset for healthcare-related 

DDoS attacks means that the 

proposed IDS was tested on 

IoT datasets which do not 
accurately reflect the unique 

challenges of the healthcare 

domain. 
CIC-DDoS2019 Binary 

classification: 

99.30% 
Multiclass 

classification: 
99.60% 

[65] 2024 To propose a method called 

MRFM (Multidimensional 

Reconstruction and Function 
Mapping), designed for timely 

DDoS attack detection in IoT 

networks. 

Multidimensional 

Reconstruction 

Encoder (MrE) with 
Function Mapping 

CIC-DDoS2019 99.07% The resource requirements of 

implementing MRFM, such as 

computational power and 
memory, have not been fully 

addressed. 

BOT-IoT 99.81% 

[83] 2024 To improve DDoS attack 

detection in IoT networks 

Hybrid CNN and 

LSTM 

CIC-IoT2023 

 

Binary 

classification: 

99.99% 

Multiclass 

classification: 

99.96% 

The study, while 

demonstrating promising 

results, does not fully address 

the trade-off between 

accuracy and efficiency, 

which could limit its 
immediate applicability in 

resource-constrained or time-

sensitive environments. 

TON-IoT Binary 
classification: 

98.75% 

[28] 2023 To propose a robust DDoS attack 
detection technique for a secure 

IoT network using a piecewise 

Harris Hawks optimizer with a 
DL classifier (PHHO-ODLC). 

PHHO-ODLC, 
ABiLSTM, and 

GWO 

BOT-IoT Binary 
classification: 

99.20% 

Multiclass 
classification: 

98.83% 

The study only evaluated the 
method on BoT-IoT dataset 

without comparing it to other 

existing datasets. Thus, the 
findings cannot be 
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generalized to other data 

samples. 

[29] 2023 To introduce a novel technique 
for securing IoT networks by 

integrating dynamic 

counterbased methods into SDN 
architecture, alongside DL 

architectures. 

dynamic 
counterbased 

approach and LSTM 

CIC-DDoS2019 99.8% There is a lack of IoT traffic in 
the CIC-DDoS2019 dataset. 

[30] 2023 To propose an IDS based on a 
Conditional Tabular Generative 

Adversarial Network (CTGAN) 

for detecting DDoS and DoS 
attacks on IoT networks. 

CTGAN BOT-IoT LSTM = 97.8% 
RNN = 69.3% 

GRU = 69.5% 

The study only considered 2 
types of attacks that use UDP 

and TCP protocols, which are 

the most common protocols 
used in these attacks. 

However, it did not explore 

other DDoS attacks that use 
other protocols for such 

attacks. 

Syntactic tabular 

dataset 

LSTM = 99.4% 

RNN = 98.6% 
GRU = 98.1% 

[31] 2023 To make use of DL in detecting 

DDoS attacks in IoT 
environments. 

CNN-BiLSTM CIC-IDS2017 99.76%  

 

The authors used a simulated 

dataset that does not 
necessarily reflect real-world 

IoT network traffic and DDoS 

attacks. 

[32] 2023 To develop an advanced 

intrusion detection model 

capable of identifying various 
types of DDoS attacks through a 

hybrid deep learning 

methodology, aiming for high 
performance. 

Hybrid (CNN, 

LSTM, Deep 

autoencoder, and 
DNN) 

CIC-DDoS2019 80.75% 

 

The proposed model is 

composed of several 

submodels and levels, which 
makes it complex and 

computationally intensive. 

[33] 2023 To propose an edge 

heterogeneous IoT (HetIoT) IDS 
capable of detecting a range of 

DDoS attacks with learning 

techniques. 

Hybrid CNN and 

LSTM 

CIC-DDoS2019 F1-score = 100% The disparity in how the data 

is distributed between the 
training and testing dataset 

can negatively impact the 

accuracy for certain classes or 
categories. 

[34] 2023 To propose an efficient 

intelligent IDS for heterogeneous 

IoT using a CNN. 

HetIoT-CNN IDS CIC-DDoS 2019 Binary class = 

99.75% 

Multiclass (8) = 
99.95% 

Multiclass (13) = 

99.99% 

The method used in the study 

is based on a 1D-CNN model, 

which is simple and efficient. 
However, it does not fully 

account for the spatial 

dependencies present in 
network traffic features. 

[35] 2023 To propose an intelligent, 

network-level IDS aimed at 
safeguarding IoT networks 

against DDoS attacks. 

S-SL BOT-IoT 99.96% 

 

The substantial computational 

resources required to 
transform each network traffic 

flow into an image 

representation negatively 
impacts the efficiency and 

performance of the proposed 

solution. 

LATAM-DDoS-
IoT 

86.11% 

[36] 2023 To develop a new technique for 
DDoS attack detection in IoT 

network, this approach combines 
ensemble learning techniques 

with a snake optimizer 

algorithm. 

DDAD-SOEL BOT-IoT 99.76% 
 

The study utilized deep 
learning models that demand 

substantial computational 
resources and memory, 

rendering them impractical 

and inefficient for deployment 
on IoT edge devices with 

constrained processing power 

and limited memory 
capacities. 

[37] 2023 To propose a lightweight IDS for 

DDoS detection in IoT networks 

using ML classifiers. 

ML and DL BOT-IoT 

 

ANN = 95% 

LSTM = 95% 

The proposed method cannot 

identify new or unknown 

attacks. TON-IoT ANN = 99% 
LSTM = 99% 

[4] 2023 To develop a resilient NIDS 

capable of accurately detecting 

previously unseen DoS and 
DDoS attacks in IoT networks, 

SOCNN, LOF, and 

iNNE 

CIC-IDS-2017 F1-score = 

91.68% 

Compared to supervised 

learning approaches, it 

exhibits a higher false 
positive, potentially 

CIC-IDS-2018 F1-score = 
96.07% 



 

 

56 Ahmad et al, Mesopotamian Journal of Cybersecurity Vol.2024, 47–70 

while also providing defense 

against adversarial attacks. 

BOT-IoT F1-score = 

98.94% 

undermining its practical 

utility in real-world 
deployment scenarios. 

[38] 2023 To propose an innovative 

approach for identifying DDoS 

attacks in IoT environments, 
leveraging an optimized Elman 

Recurrent Neural Network 

(ERNN) enhanced by Chaotic 
Bacterial Colony Optimization 

(CBCO). 

CBCO - ERNN BoT-IoT 99.02% The study does not evaluate 

the scalability of the proposed 

method when dealing with 
large-scale and dynamic IoT 

networks with heterogeneous 

devices and protocols. 

CIC-IDS2017 98.49% 

CIC-DDoS2019 98.29% 

IoTID20 98.64% 

[39] 2023 To develop a new method for 
DDoS attack detection in the IoT 

environments using LSTM and 

BCO. 

BCO-LSTM BOT-IoT 98.75% The BCO algorithm has a low 
convergence rate because it 

does a lot of random searches 

and inner iterations. 

CICIDS2017 95.38% 

[40] 2023 To develop a light and 
transparent decentralized IDS 

approach, called OPTIMIST, 

that can detect high and low 
DDoS attacks. 

LSTM Own generated 98.40% The proposed IDS model 
requires sufficient memory 

and computation power to run 

on IoT devices. 

[41] 2023 To develop a new DL-based 

method to detect DDoS attacks in 
smart farming systems. 

Hybrid CNN and Bi-

GRU 

APA-DDoS 99.35% The study did not conduct 

validations with different 
performance metrics to 

evaluate the effectiveness of 

the proposed IDS. 

ToN-IoT 99.71% 

[42] 2023 To propose an IDS incorporating 
DL model tailored for 

Agriculture 4.0 

Hybrid CNN–LSTM CIC-DDoS2019 100% The dataset used does not 
reflect the real smart 

agricultural environment. 

[43] 2023 To propose an efficient hybrid 
DNN model that combines a 

CNN and LSTM architecture for 

DDoS attack detection in 
Software-Defined IIoT 

networks. 

Extreme Gradient 
Boosting with hybrid 

CNN & LSTM 

CIC-DDoS2019 99.50% The performance of the model 
on the dataset might not 

generalize to other network 

environments or attack 
scenarios not covered by the 

dataset. 

[44] 2023 To enhance the security of Smart 
Grids by proposing a hybrid DL 

algorithm for detecting DDoS 

attacks. 

Hybrid CNN and 
GRU 

CIC-IDS2017 99.70% The study’s simulations are 
based on a benchmark dataset 

and do not account for the 

dynamic and unpredictable 
nature of actual cyberattack 

scenarios in operational Smart 

Grids. 

[45] 2022 To develop a technique that 
employs blockchain and DL to 

safeguard the smart transport 

system from various 
cyberattacks. 

Hybrid AE and MLP CIC-DDoS2019 F1-score = 95% - 
100% 

The study did not analyse the 
scalability of the approach 

when dealing with large-scale 

and high-dimensional 
network data. 

CIC-IDS2017 F1-score = 94% 

BOT-IoT F1-score = 95% 

[46] 2022 To propose a Protocol Based 

Deep Intrusion Detection (PB-
DID) architecture for detecting 

DoS and DDoS attacks in IoT 

networks using DL. 

PB-DID BOT-IoT, 

UNSW-NB15 

96.3% The study only used TCP and 

flow features from the 
datasets, which do not capture 

the complete network traffic 

and protocols prevalent in IoT 
networks. 

[47] 2022 To propose a hybrid DL 

framework for DDoS attack 
detection in IoT-SDN network 

MWOA-LSTM NSL-KDD 98.37% The study did not evaluate the 

robustness of the proposed 
method against adversarial 

attacks. 

CSE-CIC-

IDS2018 

99.84% 

Own generated 99.48% 

[48] 2022 To introduce a novel approach 

for detecting botnet attacks, 

designed for fog computing 
environments, that leverages the 

programmable nature of SDN 

Hybrid DNN and 

LSTM 

N-BaIoT 99.98%  

 

The study only focuses on 

bottleneck detection and does 

not address other security 
issues in IoT. 

[49] 2022 To propose a novel algorithm 
named DALCNN to detect 

DDoS attacks in IoT using RNN 

and implementation of SDN 
using the OpenDayLight 

platform 

DALCNN NSL-KDD 99.98%  
 

The study only considered a 
limited range of DDoS 

attacks, which affects the 

generalizability and validity 
of the results. 

[50] 2022 To propose a hybrid algorithm 

that integrates a Sample Selected 

SSRNN-ELM NSL-KDD 99.2% The employed dataset is 

obsolete and fails to capture 



 

 

57 Ahmad et al, Mesopotamian Journal of Cybersecurity Vol.2024, 47–70 

Recurrent Neural Network 

(SSRNN) with an Extreme 
Learning Machine (ELM) for 

DDoS attack detection in IoT 

networks. 

the contemporary and realistic 

attributes of IoT network 
traffic patterns and the 

evolving nature of DDoS 

attack vectors. 

[51] 2022 To propose a deep intelligent 
DDoS attack detection scheme 

for fog-based IoT applications. 

DI-ADS DDoS-SDN 99.44% The use of a single dataset in 
the study introduces 

challenges regarding the 

generalizability of the model. 

[52] 2022 To propose a hybrid DL-based 

IDS for IoT networks using 

generative adversarial network 
(GAN) and binary particle 

swarm optimization (B-PSO) 

HD_GAN NSL-KDD 99.02% The dataset used in the study 

has no IoT traffic included, 

therefore, restricting the 
model's capability to detect 

emerging IoT-based threats. 

[53] 2022 To propose a method for 

detecting DoS and DDoS attacks 
in IoT networks using ML and 

DL algorithms. 

SAD-IoT Bot-IoT for 

training, and 
own generated 

for testing 

DL (multiclass 

neural network) = 
99.5% Stacked 

ML (KNN, NB, 

DT, RF) = 99.6% 

The study did not evaluate the 

potential ramifications of 
adversarial attacks on the 

performance and robustness 

of the proposed SAD-IoT 

[54] 2022 To propose a DL-based method 

to detect low-rate DDoS attacks 

for IoT network-based SDN. 

LSTM Edge-IIoTset 98.8% While the employed dataset 

provides a comprehensive and 

realistic representation of IoT 
applications, it does not 

encompass all potential 

scenarios and variants of 
DDoS attacks that may target 

IoT networks. 

[55] 2022 To design a model based on DL 
that can identify and prevent 

DDoS attacks on SIP-based 

multimedia transmission in 
mobile networks 

Stacked autoencoder Own generated 97.40% The study only focuses on a 
few types of DDoS attacks. 

[56] 2022 To propose an autonomous 

defense system that combines 

edge computing with a two-
dimensional CNN to detect and 

prevent DDoS attacks on the IoT 

2D CNN 

 

 
 

 

Own generated Packet traffic 

dataset = 99.5% 

Packet feature 
dataset = 99.8% 

The dataset generated from 

the experimental network 

affects the generalization and 
robustness of the system. 

[57] 2021 To create a hybrid DL framework 
for identifying replay and DDoS 

attacks within a smart city 

infrastructure. 

Hybrid RBM and 
CNN 

Environmental 98.37% The study used simulated 
cyber-attacks on a real smart 

city dataset, which does not 

necessarily reflect the actual 
behavior and impact of real 

attackers in a smart city 

environment 

Smart river 98.13% 

Smart soil 99.51% 

[58] 2021 To propose and evaluate three 
DL-based IDS for detecting 

DDoS attacks in Agriculture 4.0, 

which is the integration of 
advanced technologies into 

existing farm operations 

CNN, DNN, and 
RNN 

CIC-DDoS2019 Binary 
classification: 

CNN = 99.95% 

DNN = 99.93% 
RNN = 99.94% 

Multiclass (7 

class): 
RNN = 94.99% 

DNN = 94.91% 
CNN = 95.90% 

Multiclass (13 

class): 
CNN = 95.12% 

DNN = 93.88% 

RNN = 94.88% 
 

The study only considered 
some types of DDoS attacks, 

while other types of DDoS 

attacks can affect the model. 

TON-IoT Multiclass 

CNN = 99.92% 

RNN = 98.94% 
DNN = 98.93% 

[59] 2020 To develop an IDS for 

identifying attacks and 
anomalies in the IoT 

environment, using a DL-based 

method called the Deep Belief 
Network (DBN) algorithm 

DBN CIC-IDS2017 96.67% The study relied on a single 

dataset. Additional datasets 
should be utilized to validate 

findings. 
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[60] 2020 The objective is to develop a 

security framework that can 
operate in near real-time within 

SDN environments. This 

framework aims to mitigate 
DDoS attacks launched from 

compromised internal devices, 

such as IoT devices that have 
been co-opted into botnets. 

CNN Own generated 99.9% The study only tested the 

proposed system on a 
simulated environment with a 

limited number of hosts and 

DDoS attack types. Therefore, 
the results will not reflect the 

performance of the system in 

a real-world scenario. 

CIC-DDoS2019 95.4% 

[61] 2020 To propose methods to detect and 

prevent DoS and DDoS attacks 

in IoT networks. 

LSTM CIC-DDoS2019 99.19% The study did not provide 

details on the implementation 

and deployment of the IDS 
and the DL models in a 

realistic IoT system, which 

limits the practicality of the 
proposed solutions. 

 

As shown in Table II, numerous studies have effectively employed hybrid DL techniques, combining different methods to 
enhance DDoS attack detection in IoT networks. Elsaeidy et al. [57] uniquely combined unsupervised restricted Boltzmann 
machines (RBMs) for generic traffic feature discovery and convolutional neural networks (CNNs) for temporal analytics to 
offer interpretable DDoS detection for smart city IoT assets. RBM density modelling trains robustly on small heterogeneous 
datasets for initial information distillation, thereby enabling CNN sequence learning. Evaluations of three distinct 
synthesized datasets of environment, river, and soil monitoring IoT networks infected with simulated DDoS attacks reported 
that the proposed method achieved a detection accuracy greater than 98%, outperforming standalone ML and DL approaches. 
The integrated approach hence demonstrates the value of hybrid tuning to match security assurance needs for diverse city 
infrastructures. The authors could further investigate the integration of feature fusion techniques within their hybrid 
framework, potentially combining features extracted by the RBM with additional domain-specific features to capture a more 
comprehensive representation of the IoT network behavior, which may lead to even higher detection accuracy. 

Aswad et al. [31] proposed a hybrid DL architecture fusing a CNN for automatic spatial traffic data feature extraction with 
bidirectional LSTM networks with intrinsic sequence learning capabilities for enhanced attack pattern modelling. Tested for 
DDoS detection over the contemporary CICIDS2017 intrusion repository, the CNN-BiLSTM framework achieves 99.76% 
accuracy and 98.90% precision, surpassing standalone or ensemble alternatives of CNN, LSTM, and RNN architectures. 

Additionally, Aldhyani & Alkahtani[42] introduced a hybrid DL intrusion detection framework that combines a CNN that 
automatically learns informative features from raw traffic data with LSTM recurrent networks that analyse temporal 
correlations in the extracted representations. Evaluated on the CICDDoS2019 benchmark containing diverse DDoS attacks 
on IoT networks, the CNN-LSTM model attained 100% detection accuracy across all threat types, outperforming state-of-
the-art alternatives. 

Furthermore, Diaba & Elmusrati[44] introduced a hybrid DL algorithm that pairs CNNs and gated recurrent units (GRUs) 
for real-time DDoS attack identification in a smart grid communication infrastructure. The GRU specializes in modelling 
longer-term sequential dependencies through gating mechanisms, while the CNN extracts spatial features. Validated over 
the CICIDS2017 dataset, the integrated CNN-GRU model achieves 99.70% accuracy, demonstrating hybrid tuning benefits 
for critical infrastructure protection against cyber threats. 

Moreover, Liu et al. [45] integrated a DL-based anomaly detector combining autoencoders (AEs) for learning compressed 
threat traffic representations and multilayer perceptron networks (MLPs) for final attack classification. Evaluations using the 
CICIDS2017, CICDDoS2019, and BOT-IoT datasets prove 95-100% effectiveness across diverse DDoS attacks, affirming 
their applicability against evolving threats. Uniquely, blockchain mechanisms are also incorporated for secure and 
trustworthy anomaly data sharing with layered cyber-physical resilience. This underscores the pervasive need for 
multifaceted cybersecurity advancements that shield IoT networks. 

Beyond hybrid techniques that combine multiple DL methods, extensive research has examined LSTM models for their 
exceptional capacity in sequential modelling and learning long-term dependencies prevalent in traffic classification [62]. 
Cherian & Varma [29] proposed an SDN framework for IoT networks that leverages a dynamic counterbased approach 
alongside LSTM architecture to detect and mitigate various DDoS attack types. The framework utilizes a dynamic 
counterbased mechanism to analyse network traffic and detects zero-day DDoS attacks based on abnormal counter values. 
This approach enables the detection of the latest DDoS variants and reduces the workload on the SDN controller. An LSTM 
model trained on the CICDDoS2019 dataset is utilized to enhance the detection capabilities. The LSTM model demonstrated 
over 99% detection accuracy across all attack types with minimal false positives. By combining counterbased filtering and 
the LSTM model, the framework provides superior detection efficiency and accuracy for securing IoT networks against 
different types of DDoS attacks. 
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Additionally, Alashhab et al. [54] developed a DL-based low-rate DDoS (LDDoS) attack detection technique employing an 
LSTM model for software-defined IoT networks. They implemented an experimental SDN-IoT testbed and simulated 
LDDoS attacks by generating legitimate OpenFlow protocol messages. A recurrent neural network (RNN) is utilized to 
classify network traffic as either malicious or benign. The LSTM model achieves a highly accurate LDDoS detection rate of 
98.88% using the Edge-IoTset dataset containing recent cybersecurity attacks in IoT networks. The proposed methodology 
is shown to be highly effective for SDN-based IoT platforms to identify stealthy LDDoS attacks that avoid detection by 
traditional signature-based IDS. 

Moreover, Ragab et al. [28] proposed a framework for DDoS attack detection in IoT networks by integrating feature 
selection, DL classifiers, and hyperparameter optimization. A piecewise chaotic Harris hawks optimization (PHHO) 
algorithm is used for selecting the most important features from the IoT traffic data. An attention-based bidirectional LSTM 
(ABiLSTM) architecture then leverages the sequential patterns in the filtered data to accurately categorize normal and attack 
traffic. Additionally, grey wolf optimization further tunes the ABiLSTM hyperparameters to improve the detection 
performance. Evaluation on the BOT-IoT dataset demonstrated accuracies of 99.20% and 98.83% for binary and multiclass 
classification, respectively. To further enhance the detection capabilities, the authors could explore feature fusion techniques, 
combining the selected features with additional relevant features from other data sources, potentially leading to even higher 
accuracy rates. 

Alamer & Shadadi[39] developed a novel DDoS attack detection technique for IoT networks using LSTM and bacterial 
colony optimization (BCO) algorithms. LSTM is leveraged to learn long-term dependencies from network traffic data. BCO 
is a metaheuristic optimization strategy based on bacterial behavior. The integrated BCO-LSTM methodology uses BCO to 
optimize the architectural parameters of the LSTM model. The BoT-IoT and CICIDS2017 datasets containing different 
DDoS attack types were used for training and testing the model. The results demonstrate that BCO-LSTM achieves 
accuracies of 98.75% and 95.38% on the BOT-IoT and CICIDS2017 datasets, respectively. These results show that BCO-
LSTM can effectively profile normal and abnormal traffic patterns in IoT networks. The incorporation of feature fusion 
techniques, such as combining features from multiple data sources or extracting higher-level features, could further improve 
the accuracy of the BCO-LSTM model. 

While LSTM’s sequential process shrinks for temporal pattern recognition, convolutional neural networks (CNNs) also 
garner significant attention because of their poor ability to automatically learn informative features from raw input data. 
Accordingly, Mahadik et al. [34] proposed an efficient and intelligent IDS leveraging a CNN for safeguarding heterogeneous 
Internet of Things (HetIoT) environments against various DDoS attack types. The proposed HetIoT-CNN IDS is evaluated 
on the CICDDoS2019 dataset containing DDoS attack traffic. Both binary and multiclass (8 and 13 attack categories) 
classifications are performed and compared to prior DL strategies. The results demonstrate that the proposed HetIoT-CNN 
IDS achieves significantly higher accuracy in identifying all classes of DDoS threats, reaching 99.75%, 99.95%, and 99.99% 
for the three classification tasks, respectively. 

Nguyen & Kim-Hung [4] developed a robust network intrusion detection system (NIDS) for IoT networks that integrates a 
soft ordering convolutional neural network (SOCNN) architecture with outlier detection algorithms. The combined approach 
is evaluated using the BoT-IoT, CIC-IDS2017, and CIC-IDS2018 datasets, which contain different cyber attack scenarios 
and normal traffic. The results demonstrate that the SOCNN model in conjunction with isolation forest and influence 
function-based outlier detection can accurately identify DoS and DDoS attacks, including zero-day attack variants, attaining 
F1 scores greater than 98.94%, 91.68%, and 96.07% on the BoT-IoT, CIC-IDS2017 and CIC-IDS2018 datasets, respectively. 
However, the false alarm rates are higher than those of supervised classifiers, which is an area that needs improvement. One 
potential avenue for reducing false alarms and further enhancing detection performance is the application of feature fusion 
techniques, which could provide a more comprehensive representation of network traffic patterns. 

Almaraz-Rivera et al. [35] introduced a novel self-supervised learning (S-SL) paradigm for network IDSs to protect IoT 
environments against DDoS attacks. Synthetic image representations of network traffic from the BOT-IoT and LATAM-
DDoS-IoT datasets are generated. Without explicit attack labels, contrastive learning is employed on top of pretrained 
ImageNet weights to construct discriminative traffic embeddings in a completely unsupervised manner. Impressively, the S-
SL approach achieves attack detection accuracy equivalent to or greater than that of supervised learning baselines, even with 
minimal labelled samples for fine-tuning. Specifically, accuracies of 99.96% and 86.11% are attained on the BOT-IoT and 
LATAM-DDoS-IoT datasets, respectively. 

While CNN and LSTM models individually achieve formidable detection performance, assembling ensemble systems that 
aggregate multiple models can further boost accuracy and robustness. Accordingly, Aljebreen et al. [36] proposed a novel 
DDoS attack detection system named DDAD-SOEL that uses a snake optimization algorithm alongside an ensemble of DL 
architectures. The approach first selects the most relevant subset of features from the Bot-IoT dataset containing both benign 
and attack traffic using the snake optimization method. The filtered features are input to an ensemble of LSTM, bidirectional 
LSTM, and deep belief network models for efficient multiclass attack classification. Moreover, the Adadelta optimizer tunes 
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the neural network hyperparameters during the training process for enhanced detection. The evaluation demonstrated that 
the proposed DDAD-SOEL framework achieved a significantly improved accuracy of 99.76%. 

Kumar et al. [53] proposed a novel method called SAD-IoT that utilizes both machine learning and DL algorithms to 
accurately detect DoS and DDoS attacks in IoT networks. The authors use the Bot-IoT dataset from the UNSW Canberra 
Cyber for training their models and generate their dataset with a 20-device testbed for testing purposes. Through extensive 
experimentation with various machine learning and deep neural network architectures, the authors determined that the 
stacking ensemble method with logistic regression achieves the highest accuracy of 99.61% among ML models, while a deep 
neural network with ReLU activation provides the highest accuracy of 99.52% for DL models in identifying DoS/DDoS 
attacks. The authors provide useful insights into the most relevant features and activation functions to consider for effective 
attack detection. 

The studies reviewed in this section employ various datasets to evaluate the performance of their proposed DL techniques 
for DDoS attack detection in IoT networks. Table III provides an overview of available datasets on DL techniques for DDoS 
attack detection. The most commonly used datasets include the CIC-DDoS2019, BoT-IoT, and CIC-IDS2017 datasets, which 
provide a diverse range of network traffic data and attack scenarios. 

TABLE III. AVAILABLE DATASETS ON DL TECHNIQUES FOR DDOS ATTACK DETECTION 

Ref Dataset Description of the dataset Size of the 

dataset (# of 

records) 

Link of the 

dataset 

Is it legally 

collected 

dataset? 

Public/

Private 

[66] CIC-
DDoS2019 

The Dataset was developed by the Canadian Institute for 
Cybersecurity (CIC). It contains real-world data 

representing both normal, benign network traffic as well 

as traffic from actual DDoS cyber-attacks. The dataset 
was specifically designed to capture DDoS attacks by 

using the CICFlowMeter tool developed by CIC. It 

introduces two new types of DDoS attack categories that 
were modelled - reflection-based attacks and 

exploitation-based attacks. 

50,006,249 https://www.unb.c
a/cic/datasets/ddos

-2019.html 

Yes Public 

[67] Bot-IoT Researchers at the Cyber Range Lab of the University of 

New South Wales in Canberra curated a dataset 
comprising network traffic data, with some data 

representing normal, legitimate activities and other data 

representing various types of malicious attacks. This 
traffic data was simulated to mimic the network behavior 

of Internet of Things (IoT) devices operating within a 

smart home environment. The dataset captured malicious 
attack traffic such as keylogging, unauthorized data 

exfiltration, reconnaissance scans of operating systems 
and services, as well as denial of service (DoS) and 

distributed denial of service (DDoS) attacks. A notable 

characteristic of this dataset is its imbalanced nature, 
where the number of benign traffic samples is relatively 

small compared to the significantly larger volume of 

records representing malicious traffic. 

73,370,443 https://research.un

sw.edu.au/projects
/bot-iot-dataset 

Yes Public 

[68] CIC-
IoT2023 

 

The dataset is a collection of network traffic data from 
105 diverse IoT devices, focusing on various attack 

scenarios in real-world IoT environments. This dataset 

captures a wide range of attacks that occur in real-world 
IoT networks. It comprises 47 features that describe both 

benign traffic and seven distinct categories of attacks: 

DDoS, DoS, Reconnaissance, Web-based attacks, Brute 
Force attacks, Spoofing, and Mirai. By providing a 

comprehensive set of features and a variety of attack 

types, the CIC-IoT2023 dataset enables researchers to 
develop and evaluate intrusion detection systems that can 

effectively identify and mitigate threats in contemporary 

IoT environments. 

46,686,579 https://www.unb.c
a/cic/datasets/iotda

taset-2023.html 

Yes Public 

[69] CIC-

IDS2017 

The dataset was created by the CIC, featuring various 

attack scenarios along with real user-generated 

background traffic. It includes attacks such as DoS, 
DDoS, Web Attack, Botnet, and Brute Force SSH. 

CICFlowMeter was used to extract 80 different network 

flow features. 

2,827,876  https://www.unb.c

a/cic/datasets/ids-

2017.html 

Yes Public 

[70] UNSW-

NB15 

A dataset developed by the Australian Centre for Cyber 

Security captures a mix of real normal behaviors and 

2,540,044 https://research.un

sw.edu.au/projects

Yes Public 
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synthetically generated modern cyber-attacks. It consists 

of 2,218,761 benign and 321,283 malicious records, 
including nine different attack types, and contains 49 

features. 

/unsw-nb15-

dataset 

[71] NSL-KDD The NSL-KDD dataset, created in 2009 by the CIC, 

addresses limitations of the KDD CUP 99 dataset by 
eliminating duplicate and unbalanced data. However, the 

dataset is old and lacks recent attack types and packet-

level information. 

148,517 https://www.unb.c

a/cic/datasets/nsl.h
tml 

Yes Public 

[72] ToN-IoT A dataset developed by UNSW Canberra IoT Labs 

combines data from various sources within an IIoT 

system. It identifies many attacks, including DDoS, and 
consists of 44 features grouped into four service-profile-

based categories. 

22,339,021 https://research.un

sw.edu.au/projects

/toniot-datasets 

Yes Public 

[73] Edge-

IIoTset 

The dataset aims to support research on intrusion 

detection systems, particularly in evaluating the 
performance of federated deep learning and centralized 

approaches. It covers a wide range of IoT and IIoT-

specific attacks, including DDoS attacks. The dataset has 
a nearly even split between benign and malicious 

instances. Each record is characterized by a rich set of 

1176 features, providing a comprehensive view of the 
network traffic for effective intrusion detection. 

20,780,120 https://ieee-

dataport.org/docu
ments/edge-

iiotset-new-

comprehensive-
realistic-cyber-

security-dataset-

iot-and-iiot-
applications#files 

Yes Public 

[74] DDoS-SDN The dataset, sourced from Mendeley Data, is 

characterized by 23 attributes. It focuses on three specific 
types of DDoS attacks: TCP Syn flood, UDP flood, and 

ICMP flood. By providing a diverse set of network 

features, the dataset enables the development and 
evaluation of intrusion detection systems specifically 

tailored for SDN environments. 

104,345 https://data.mendel

ey.com/datasets/jx
pfjc64kr/1 

Yes Public 

[75] N-BaIoT The dataset, released by the UCI Center of Machine 
Learning and Intelligent Systems in 2018, comprises real 

network traffic data collected from nine commercial 

Internet of Things (IoT) devices. To provide a realistic 
representation of IoT botnet attacks, the devices were 

intentionally infected with two notorious and destructive 

IoT botnets, Mirai and BASHLITE. The dataset is 
presented in CSV format and includes 115 statistical 

features derived from the captured traffic data. These 

features capture characteristics across ten different 
classes of attacks targeting IoT systems and devices. By 

incorporating real-world traffic from compromised IoT 

devices under the control of powerful botnets like Mirai 
and BASHLITE, this dataset aims to serve as a valuable 

resource for developing and evaluating security solutions 

tailored to the unique threats faced by IoT networks. 

7,062,606 https://archive.ics.
uci.edu/dataset/44

2/detection+of+iot

+botnet+attacks+n
+baiot 

Yes Public 

[76] CSE-CIC-
IDS2018 

The dataset was developed due to the result of a joint 
effort by the Communications Security Establishment 

(CSE) and the CIC to create a benchmark for evaluating 

IDS. Carefully designed to simulate a wide range of real-
world cyber threats and attacks within complex network 

environments, the dataset was collected over a period of 
ten days. It consists of 80 features and represents fifteen 

different attack types, such as brute force attacks on FTP 

and SSH, various DoS and DDoS attacks, SQL injection, 
infiltration, and bot activity. 

16,233,002 https://www.unb.c
a/cic/datasets/ids-

2018.html 

Yes Public 
 

[77] APA 

DDoS-

Attack 

The dataset consists of data samples categorized into 

three distinct types: DDos-PSH-ACK, Benign, and 

DDos-ACK. This dataset is designed to represent various 
DDoS attack scenarios, with a primary focus on ACK and 

PUSH-ACK DDoS attacks. By providing a diverse set of 

DDoS attack samples alongside benign traffic, the APA-
DDoS dataset enables researchers to develop and evaluate 

intrusion detection systems specifically tailored to detect 

and mitigate these types of DDoS attacks in real-world 
network environments. 

151,201 https://www.kaggl

e.com/datasets/yas

hwanthkumbam/a
paddos-dataset 

Yes Public 

[78] IoTID20 The dataset is one of the few publicly available resources 

for IoT intrusion detection research, offering a realistic 
representation of modern IoT network communication 

patterns. It includes 80 network features and categorizes 

625,783 https://sites.google

.com/view/iot-
network-intrusion-

dataset 

Yes Public 
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data into normal and anomaly classes. The anomaly 

category encompasses four attack types: DoS (Syn 
flooding), Mirai (Brute force, HTTP, and UDP flooding), 

MITM, and Scan (Host port and port OS). 

[79] LATAM-

DDoS-IoT 

The dataset is the product of a joint effort involving 

Aligo, Universidad de Antioquia, and Tecnologico de 
Monterrey. It was generated using a specialized testbed 

environment explicitly designed to study Denial of 

Service (DoS) and Distributed Denial of Service (DDoS) 
attacks. The testbed incorporated both physical Internet 

of Things (IoT) devices as well as real users interacting 

with live services on a production network. During the 
data collection process, four physical IoT devices and one 

simulated IoT device were subjected to DDoS attack 

scenarios. The resulting dataset encompasses 20 distinct 
features, providing a comprehensive set of attributes 

tailored for analysing and detecting DDoS attacks 

targeting IoT environments. 

49,666,991 https://ieee-

dataport.org/docu
ments/latam-ddos-

iot-dataset 

Yes Public 

 

6. FEATURE FUSION TCHNIQUES FOR DDoS DETECTION IN IOT NETWORKS  

This section presents a comprehensive analysis of the recent feature fusion techniques proposed for detecting DDoS attacks 

in IoT networks. Despite the growing research on feature fusion solutions for IoT security, many significant studies remain 

unexamined in literature reviews. This study bridges this gap by categorizing and examining the latest research based on the 

employed feature fusion techniques and approaches. Table IV summarizes the utilization of data fusion techniques in DDoS 

attack detection in IoT networks. By combining features from multiple data sources, these techniques create a more 

comprehensive feature representation, enhancing the accuracy and robustness of detection models. 

TABLE IV. UTILIZATION OF DATA FUSION TECHNIQUES IN DDOS ATTACK DETECTION IN IOT NETWORKS 

Ref Source data Fusion type Fusion techniques Categorization 

of the fusion 

data sources 

Data types of 

fusion 

Solved challenges Level of 

fusion 

[80] ToN-IoT 
dataset and 

CIC-DDoS2019 

dataset 

Feature-
level fusion 

Feature fusion 
using relational 

algebra to merge 

datasets 

Network traffic 
data from IoT 

and IIoT devices 

HTTP activity, 
Connection activity, 

DNS activity, 

Statistical activity, 

SSL activity,, 

TCP and UDP-

based attack 
features 

Improving the 
detection accuracy 

of ARP poisoning, 

SSL-based attacks, 

and DNS flood 

(DDoS) attacks by 

combining 
relevant features 

from multiple 

datasets 

Feature-level 
fusion 

[81] NSL-KDD 
dataset and 

KDD CUP 99 

dataset 

Data-level 
fusion 

N/A Network traffic 
data 

Network traffic data 
from NSL-KDD 

and KDD CUP 99 

datasets 

Improving the 
accuracy of 

intrusion detection 

in wireless sensor 
networks by using 

fused data. 

Data-level 
fusion 

[82] Network traffic 
data and Power 

profiling data 

Data-level 
fusion 

Combining Power 
Profiling and 

Network Traffic 

data using Central 
Limit theorem 

IoT edge device 
(IoT-ED) power 

consumption 

data and 
Network traffic 

data between 

IoT-ED and IoT 
gateway device 

(IoT-GD) 

Power consumption 
values 

Number of 

messages per unit of 
time 

Detecting multiple 
types of hardware 

Trojan-based 

attacks, including 
DoS attacks, in 

IoT-ED without 

requiring design 
time intervention 

Centralized 
fusion at the 

coordinator 

level 

[84] NSL-KDD 
dataset 

Multiview 
feature 

fusion 

Concatenation of 
features extracted 

from knowledge 

graphs and 
statistical analysis 

Features 
extracted by 

knowledge graph 

based on 
semantic 

relationships and 

Features 
extracted by 

statistical 

analysis based 

Semantic data from 
knowledge graphs 

and 

Numerical/statistical 
data from network 

traffic analysis 

Improving the 
accuracy and 

robustness of 

intrusion detection 
in IoT networks 

by combining 

semantic and 
statistical features 

Feature-level 
fusion 
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on numerical 

calculations and 
power-law 

distribution 

[85] KDD CUP 99, 

NSL-KDD, and 
UNSW-NB15 

Multisource 

data fusion 

Word Embedding 

(WE) for mapping 
physical network 

features into feature 

space vectors 

Network traffic 

data 

Heterogeneous IoT 

data includes raw 
data collected by 

sensors, and the 

network sequences 
contain various data 

fields. 

Difficulties in 

heterogeneous 
data preprocessing 

and fusion for 

traditional 
machine learning-

based IDS. 

Feature-level 

fusion 

[86] SDN-IoT Feature-
level fusion 

Concatenation of 
features extracted 

from hidden layers 

of recurrent deep 
learning models 

(RNN, LSTM, and 

GRU) 

Features 
extracted from 

network traffic 

data using 
recurrent deep 

learning models 

Features extracted 
from network traffic 

data, representing 

various types of 
network attacks, 

including DDoS 

attacks 

Improving the 
performance of 

network attack 

detection and 
classification by 

fusing features 

extracted from 
different recurrent 

deep learning 

models 

Feature-level 
fusion 

[87] Network logs, 
Raw packet 

captures, Snort 

IDS logs, and 
power sensor 

readings 

Multisource 
and 

multidomain 

fusion 

Time-synchronized 
merge of data from 

multiple sources 

and Feature 
extraction and 

fusion of cyber and 
physical features. 

Cyber data 
sources (network 

logs, packet 

captures), 
Physical data 

sources (power 
system 

measurements 

from DNP3 
traffic) 

Network traffic data 
and 

Power system 

measurements 

Improvement in 
detection 

capabilities, 

handling feature 
explosion, data 

inconsistencies. 

Data-level 
fusion 

[88] WUSTL-

EHMS-2020 

dataset and ICU 
dataset 

Data-level 

fusion 

Contractive Deep 

Autoencoder 

(CDAE) with 
differential privacy. 

The CDAE is used 

to correlate and 
fuse the data from 

different sources 

and reduce the data 
dimensions 

Network traffic, 

sensor readings, 

and device logs. 

Correlating and 

fusing data from 

different sources 

Efficiently fusing 

and correlating 

heterogeneous 
IoMT data from 

multiple sources 

for effective attack 
detection 

Feature-level 
fusion 

 

As illustrated in Table IV, numerous studies have explored diverse feature fusion techniques for detecting distributed denial 
of service (DDoS) attacks in IoT networks. A prominent approach is data-level fusion, in which datasets from multiple 
sources are amalgamated to create a larger and more heterogeneous training dataset. For example, the study by Adnan Khan 
et al. [81] proposed a data fusion-based machine learning architecture that integrates the NSL-KDD and KDD CUP 99 
datasets. Although not exclusively focused on DDoS attacks, the proposed real-time deep extreme learning machine (RTS-
DELM) model demonstrates enhanced detection performance for various types of attacks in wireless sensor networks 
(WSNs). Notably, the RTS-DELM model achieves superior accuracy compared to other benchmark approaches, 
underscoring the efficacy of data fusion in augmenting the performance of intrusion detection systems, a technique that can 
be extended to DDoS attack detection in IoT networks. 

Additionally, the research conducted by Mohammed et al. [82] addresses the challenge of hardware Trojan attacks in IoT 
edge devices through the implementation of a data fusion technique. The authors amalgamate network traffic (NT) and power 
profiling (PP) data via centralized fusion at the coordinator level, enabling the detection of various attack types, including 
DoS attacks. The proposed methodology exhibits high accuracy in identifying attacks while preserving privacy by retaining 
data at the local level, thereby demonstrating the efficacy of data fusion in enhancing security and privacy measures for IoT 
edge devices. 

Feature-level fusion is another widely explored type of fusion in which features from different data sources or domains are 
combined to create a more informative and comprehensive feature set. Mohammed et al. [80] employed feature-level fusion 
to combine features from the CICDDoS2019 and ToN_IoT datasets. The authors utilize relational algebra to merge the 
datasets, aiming to improve the detection of various attacks in IIoT networks. This includes DNS flooding, which is a type 
of DDoS attack. The proposed federated learning-based approach allows distributed IIoT nodes to collaboratively train a 
global model while preserving data privacy, demonstrating the benefits of feature fusion in enhancing the accuracy and 
robustness of DDoS attack detection. 
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Sahu et al. [87] explored the use of multisource and multidomain data fusion in the context of DDoS attack detection. The 
authors merged data from multiple sources, including network logs, raw packet captures with DNP3 traffic, and Snort IDS 
logs, to create a comprehensive feature set for detecting cyberattacks, including DoS attacks, in power systems. This 
approach addresses challenges such as handling data inconsistencies and reducing the explosion of the cyber-physical state 
space. This highlights the importance of multidomain data fusion in enhancing the accuracy of cyberattack detection. 

Similarly, Chen et al. [85] proposed a novel approach that leverages word embedding and deep transfer learning to address 
the challenges of intrusion detection in heterogeneous IoT networks. The authors introduce a sample-based transfer learning 
method that fuses data from different source domains (the NSL-KDD, KDD CUP 99, and UNSW-NB15 datasets) by treating 
network sequences as sentences and applying natural language processing techniques. This approach allows for the 
integration of data from multiple sources without the need for extensive data preprocessing. Additionally, they employ a 
feature-based transfer learning method that utilizes word embedding coefficients to map the mathematical and logical 
features of heterogeneous network sequences into a shared feature space. This technique enables the fusion of features from 
different source domains, enhancing the system's ability to detect attacks across various IoT environments. 

In summary, feature fusion has demonstrated promising results in enhancing the performance of DDoS attack detection 
systems in IoT networks. By leveraging and combining different data sources, feature sets, or models, these techniques create 
a more comprehensive and robust representation of the data, enabling more accurate and reliable detection of DDoS attacks 
in IoT networks. 

 

7. CHALLENGES AND LIMITATIONS 

While the studies covered in this review paper propose innovative techniques for detecting DDoS attacks in IoT networks, 
they also face some common challenges and limitations. 

The use of public datasets for evaluating intrusion detection models in IoT networks is limited. Most were created using 
simulated traffic in laboratory settings. These methods lack vital protocol-specific features. They exhibit significant class 
imbalance. They have redundant attributes. They cover only a fraction of known attacks and provide no visibility to zero-
day attacks. As such, the generalizability, efficiency, and robustness of models tuned on these datasets are questionable. 
These datasets are unable to accurately represent the complexity and diversity of modern real-world IoT traffic and threat 
models. Therefore, evaluating models on more recent, comprehensive, and balanced datasets representing complex real-
world environments is a persistent challenge. 

Additionally, complex hybrid DL models such as LSTM-autoencoders, CNN-RNNs, and ensemble architectures have shown 
promising detection capabilities, and their computational complexity makes deployment challenging for resource-
constrained IoT devices. The memory, energy, and latency costs of running multiple interconnected neural network 
components on embedded IoT hardware can be prohibitive. As such, an open research gap exists in designing optimized 
shallow models that balance detection performance with feasibility for edge devices. Simplified models to retain predictive 
capacity while reducing the number of parameters and layers warrant further exploration. 

Furthermore, most studies demonstrate model effectiveness through offline testing on datasets. However, while invaluable 
for initial development, offline datasets have significant limitations that must be addressed for real-world deployment. 
Specifically, offline data lack the diversity, scale, and noise of live production environments. Models tested solely on offline 
data will likely overestimate performance when faced with real-world attacks of varying intensity and patterns. Additionally, 
offline data reflect past behaviours and may fail to generalize to new, evolved attack types. More critically, controlled offline 
tests ignore many crucial real-world performance factors. There are no constraints on computational demand, system 
resilience, or heterogeneous hardware. Without rigorous live testing, models risk failure when transitioning from ideal offline 
settings to complex, dynamic production networks. These limitations clearly show the necessity of real-world testbeds to 
validate model effectiveness. Live testing is more likely to reveal performance gaps that are not exposed in offline testing 
by capturing real-world constraints that are absent in offline datasets. Thorough real-world validation will provide invaluable 
feedback to optimize models for reliable, efficient performance under noisy, constrained conditions. 

Adversarial attacks designed explicitly to fail machine learning models are accounted for by few studies in detecting DDoS 
attacks in IoT networks. While DL has shown success in detecting known attacks, evaluating its robustness to deliberately 
engineered inputs and perturbations is lacking. Testing against evasion, poisoning, spoofing, encrypted payloads, and noise 
injection can reveal blind spots. Zero-day attacks using generative models can craft adversarial samples misclassified by 
detection models. 

An additional challenge arises with feature fusion techniques that combine multiple feature sets for improved detection 
performance. Determining the optimal set of features and fusion methods is challenging because different features may 
exhibit varying degrees of relevance, redundancy, and noise across diverse IoT environments. Inappropriate feature selection 
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or fusion can degrade model performance. Extensive empirical analysis is required to identify robust feature combinations 
that are generalizable across IoT deployment scenarios. Furthermore, fusing heterogeneous feature sources increases 
computational overhead, which may impact real-time detection capabilities on resource-constrained devices. 

DL models show promise for detecting DDoS attacks in IoT networks but require more evaluation on realistic, balanced 
datasets. While complex DL architectures demonstrate good detection capabilities, simplified models warrant research to 
enable feasibility on resource-constrained edge devices. Additional real-world testing is needed, as most studies evaluate 
models offline. Further work should prioritize model optimization, robustness against adversarial attacks, and addressing 
practical deployment challenges around overhead, false positives/negatives, reliability, and effective utilization of feature 
fusion techniques. Overall, DL has shown potential but needs more research into real-world effectiveness, model efficiency, 
adversarial robustness, and optimal multimodal feature combination to maximize DDoS attack detection in IoT networks. 

 

8. FUTURE WORK AND RESEARCH DIRECTIONS 

Although the literature has made good progress, there are several promising areas of future work to advance DDoS detection 
in IoT networks. Evaluating model performance on more recent and diverse datasets covering different IoT protocols, 
realistic benign and attack traffic distributions, and the latest DDoS variants will strengthen the generalizability of these 
techniques. Many studies rely on dated public datasets that fail to reflect current IoT environments and threats. Testing 
systems against modern benchmark datasets that capture the breadth of protocols, normal traffic patterns, and emerging 
attacks seen in real-world networks will provide a much better assessment of generalizable accuracy. 

Designing optimized DL models that offer high detection accuracy while being lightweight enough for resource-constrained 
edge devices will increase the usability of these techniques for real-world IoT infrastructure. As many detection models 
leverage complex, multiarchitecture designs, their computational overhead makes deployment challenging on memory- and 
power-limited IoT endpoints. The development of innovative yet simplified model architectures tailored to edge hardware 
capabilities can thus enable localized on-device inference, which is critical for scalable threat visibility. 

Testing detection methods by integrating them into operational IoT testbeds instead of just using offline datasets can reveal 
practical challenges and accuracy metrics closer to real-world environments. While offline dataset analysis provides a 
convenient method for initial model evaluations, those controlled settings differ vastly in terms of the sheer diversity and 
unpredictability of live production networks. Hence, real-world testing can serve as a litmus test, revealing additional factors 
impacting performance, false alarms, and evasion issues and guiding further improvement. 

Enhancing model robustness against adversarial attacks through techniques such as adversarial retraining and ensemble 
modelling will improve resilience against evolving DDoS threats. The current literature overlooks evaluation under 
adversarial conditions. However, model manipulation attacks pose serious practical concerns. Prioritizing adversarial threat 
detection via robust training processes and ensemble approaches combining multiple model inferences could significantly 
expand protection against both current and zero-day DDoS attacks. 

Another promising research direction is investigating self-supervised learning techniques to reduce the reliance on large, 
labelled datasets, which are expensive and time consuming to construct. Collecting and manually labelling massive amounts 
of IoT traffic data across diverse protocols and attacks poses a practical challenge, making adoption difficult. Self-supervised 
approaches that exploit structure within the data itself to automatically generate labels and learn useful representations could 
provide a pathway for more accessible and scalable model development. 

An additional promising research direction is investigating optimal feature fusion techniques that combine complementary 
feature sets for enhanced detection performance. Determining the ideal set of features and fusion method across diverse IoT 
environments is nontrivial due to varying relevance, redundancy, and noise levels. Extensive empirical analysis is needed to 
identify robust multimodal feature combinations that are generalizable to different deployment scenarios. Furthermore, 
fusing heterogeneous features increases computational requirements, so lightweight fusion approaches suitable for resource-
constrained devices warrant exploration. 

In summary, advancing research in the above directions can help overcome the limitations of current DDoS detection 
techniques for IoT networks and enable more robust, adaptive, and practical solutions suited for production environments. 
Optimizing feature fusion strategies, model architectures for edge deployments, robustness against adversarial attacks, self-
supervised learning, and evaluations on diverse real-world datasets are key areas of focus. This remains an active and crucial 
area of cybersecurity research to strengthen the IoT infrastructure against persistent DDoS risks. 
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9. CONCLUSION 

In conclusion, this comprehensive review highlights the potential of deep learning methodologies and feature fusion 
techniques in detecting DDoS attacks within IoT networks. While these approaches show promise, their real-world 
application necessitates extensive research focused on enhancing generalization, developing resource-efficient algorithms, 
and strengthening detection methods against evolving threats. Feature fusion has demonstrated significant potential for 
improving the accuracy and robustness of DDoS attack detection by combining complementary features from multiple data 
sources. However, further research is needed to identify optimal feature fusion strategies that can effectively handle the 
heterogeneity and complexity of IoT data while remaining computationally efficient. Addressing these research limitations 
is crucial for deploying intelligent and robust security mechanisms in IoT networks, ensuring the security and reliability of 
these interconnected systems through cutting-edge deep learning and feature fusion approaches. As the IoT continues to 
penetrate every aspect of our lives, advancing research at the intersection of these domains is paramount to build a robust 
foundation for the IoT-driven future, where the benefits of widespread connectivity are utilized while mitigating the risks 
posed by malicious actors. 
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